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ABSTRACT

The quest to improve scalar performance numbers on predetermined benchmarks
seems to be deeply engraved in deep learning. However, the real world is seldom
carefully curated and applications are seldom limited to excelling on test sets. A
practical system is generally required to recognize novel concepts, refrain from
actively including uninformative data, and retain previously acquired knowledge
throughout its lifetime. Despite these key elements being rigorously researched
individually, the study of their conjunction, open world lifelong learning, is only a
recent trend. To accelerate this multifaceted field’s exploration, we introduce its
first monolithic and much-needed baseline. Leveraging the ubiquitous use of batch
normalization across deep neural networks, we propose a deceptively simple yet
highly effective way to repurpose standard models for open world lifelong learning.
Through extensive empirical evaluation, we highlight why our approach should
serve as a future standard for models that are able to effectively maintain their
knowledge, selectively focus on informative data, and accelerate future learning.

1 INTRODUCTION

Modern deep learning are predominantly developed and assessed on carefully curated datasets, where
information is accumulated from observed training inputs and a dedicated test set is meant to gauge
so called “generalization” capabilities. Yet, one needs to only briefly imagine deploying such a
pre-trained system into the real world to see that respective “unseen” data is unrealistic to fully
capture through static methods. Take for instance a popular ImageNet model; which may struggle
with numerous novel and previously uncaptured objects coming into sight, concepts’ appearance
differing drastically from the limited training data, or countless variability in conditions surrounding
acquisition sensors and environmental conditions. Whereas our confined benchmark environments
have thus historically enabled many of the initial algorithmic advances, the next stage of general
system’s life-cycles needs to account for both the transience and potential informativeness of future
experiences in the world - both to guarantee robust deployment and ongoing efficient adaptation.

To satisfy requirements of real-world systems, recent works (Boult et al., 2019; Mundt et al., 2023)
have postulated at least three essential criteria to take into account into machine learning model
design: i) the model’s ability to statistically differentiate between data-points that resemble the
known training data and unexpected or unknown concepts; ii) the model’s ability to actively query
new informative data-points to involve in future training; iii) the model’s ability to sequentially
consolidate information obtained from newly queried data-points with past knowledge. In essence,
each individual point is well known and has been extensively explored in the respective realms of:
i) open-set recognition (Scheirer et al., 2013), ii) active learning (Settles, 2009), and iii) continual
learning (Chen & Liu, 2018). Although their contributions seem entirely complementary, exploring
their conjunction is a rather emerging avenue. Generally referred to as “open world learning”, current
works thus primarily portray a large focus on transcending traditional ML evaluation and establishing
the setting’s relevance. However, the latter is challenging due to the requirement of assessing three
criteria in tandem and evaluating potential trade-offs between them in principled ways. Respectively,
reaching consensus on evaluation and streamlining experimental comparison is largely still open.

With growing interests in open world applications, we posit that the field of open world learning
is yet to develop its crucial baseline. There already exist promising approaches in the continual
learning paradigm (De Lange et al., 2022), with GDUMB (Prabhu et al., 2020) being the most

1



Under review as a conference paper at ICLR 2024

näive baseline that presents a worthy benchmark for non-stationary environments where tasks are
introduced in temporal fashion. However, there does not exist a particular baseline that is common
across open world learning works, not even within a specific application. Such a baseline is imperative
to meaningfully measure performance and easy to implement in existing (neural) architectures and
expand them to be open world learners. In this work, to remedy the lack of well suited baselines for
evaluation, we introduce such a first monolithic baseline for open world learning. This baseline is
derived from the insight that batch-normalization statistics (Ioffe & Szegedy, 2015), a commonly
present component in most neural networks, can be repurposed to yield an intuitive open world
learner. Our respective baseline BOWLL is designed with minimal assumptions and hence serves as
a competitive experimental anchor when tested on a range of scenarios. As such, the statistics from
the batch norm layer of a trained model serve as a tool that: distinguishes known unknowns from
unknown unknowns, prioritizes acquisition of novel data, and minimizes catastrophic forgetting. We
demonstrate that BOWLL can serve as the foundation for future work to build on, and quantify the
contribution through several experiments. In summary, our contributions are as follows:

• Leveraging the ubiquitous use of batch-normalization, we introduce a first monolithic, easy
to implement in existing models, baseline for open world lifelong learning: BOWLL.

• BOWLL consists of technically grounded mechanisms on the basis of the running mean
and standard deviation of batch-norm. Using the latter as a simple Gaussian distribution,
BOWLL enables robust prediction through measure of statistical deviation to flag unseen
unknown data (the robust learner’s perspective). It leverages batch-norm statistics to compute
information density (Settles & Craven, 2008) to query novel data (the active learner’s
perspective). Finally, to balance the stability-plasticity (Jung et al., 2023), it also generates
pseudo-inputs through deep inversion (Hsu et al., 2020) for rehearsal (Atkinson et al., 2018),
alleviating catastrophic forgetting of past knowledge (the continual learner’s perspective).

• Through a sequence of experiments we show that BOWLL learns tasks i) rapidly through
few shots, ii) continually through diverse memory, iii) robustly through effective data choice.

2 RELATED WORKS

A closed world setting limits the performance of a model due to a constrained lifecycle that does
not acknowledge the evolving nature of the world. In fact, the closed world approach adds adamant
assumptions to the data available at training and testing, where task boundaries are well defined,
data is free from distribution shifts, and minimal corruptions occur. This section discusses various
approaches put forward to alleviate the problems of the closed world setting by exploring individual
aspects of open world learning: out-of-distribution detection, active learning, and continual learning1.
We also discuss the shortcomings that led to and necessitated the formulation of the BOWLL baseline.
A comparison of important works that adopt individual or a subset of the three paradigms is given
in table 1. In contrast to these techniques, BOWLL delivers a comprehensive baseline that is
monolithically anchored in batch-norm statistics to allow models to learn in an open world.

Table 1: An overview of research works that contributed to resolving the challenges posed by closed
world set-ups. The listed works take advantage of either of the three paradigms with configuration
suitable for isolated training. GDUMB makes simple assumptions however it is not specifically
designed for open world learning. BOWLL is a suitable baseline for open world application.

Technique Open Set Recognition Active Learning Continual Learning
EWC (Kirkpatrick et al., 2017) ✓
GDUMB (Prabhu et al., 2020) * *

Towards Open World Object Detection (Joseph et al., 2021) ✓ ✓
CLT (Arani et al., 2022) ✓

OpenVAE (Mundt et al., 2022b) ✓ ✓
FoCAL (Ayub & Fendley, 2022) ✓ ✓

BOWLL ✓ ✓ ✓

1We remark that the original definition of open world learning did not yet explicitly take into account
catastrophic forgetting in its (accumulated) incremental learning step (Boult et al., 2019), instead accumulating
data that is firs accepted and then successively queried. We thus add the word lifelong to further disambiguate
terminology Mundt et al. (2023). We defer to the appendix A.1 for a detailed definition and further discussion.
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Out of Distribution Detection: Out of Distribution Detection (OoD) (Yang et al., 2021), Mukhoti
et al. (2021) is used to reject samples that are statistically different from the training distribution
and make models predict more robustly. Open Set Recognition (OSR) (Scheirer et al., 2013; Geng
et al., 2021) emerged as an idea to minimize the volume of unknown samples (unknown unknowns)
outside the domain of known samples (known unknowns) by creating a "boundary" with the help of
a measurable recognition function. Building on the idea of OSR, Bendale & Boult (2016); Mundt
et al. (2019); Joseph et al. (2021) design algorithms to differentiate between known and unknown
data instances. OoD is not an open-set classifier in itself, but can be incorporated as a detector to
proportionately differentiate learnable labels. Such ideas are useful in open world applications, where
a model faces corrupted and/or redundant data, minimally labelled data, data distribution shifts, and
fluid task boundaries. In our framework, we design an outlier hypothesis based on the batch norm
statistics to reject samples that largely deviate from the learned distribution. This hypothesis also
enables to identify new classes without additional operations and let an oracle provide labels.

Active Learning: Active learning (Cohn et al., 1996) adapts an already trained model on new
information by sampling novel data-points for future inclusion in the training process. One can
determine the most informative points at the hand of an “acquisition function”. That is, data-points
that can reduce model uncertainty are desirable and/or points that can provide information about the
pool of data i.e improve the generalization ability via mutual information (Guo & Greiner, 2007).
The model is then trained from scratch by interleaving newly acquired data-points with the old
instances, hence assuming the availability of the old dataset. One of the works that removes the
dependency on availability of old data by synergizing an active learning strategy with continual
learning includes Ayub & Fendley (2022). BOWLL formulates its active query on the basis of
information density (Settles & Craven, 2008) to sample most informative points and then interleaves
these with pseudo-points and (selective) past images of the previously trained dataset.

Continual Learning (Catastrophic Forgetting): A model undergoes catastrophic forgetting (Mc-
Closkey & Cohen, 1989) when acquiring new experiences from the data available at the current
timestep, leading to a drastic performance drop on past experiences. Various research works on
continual learning (CL) (Chen & Liu, 2018) have engineered three pathways to mitigate such forget-
ting, namely: i) regularization, ii) rehearsal, and iii) dynamic architectures. Farquhar & Gal (2019);
De Lange et al. (2022); Wang et al. (2023) summarize these different methods. Another line of
work harnesses complementary learning system (CLS) theory (Blakeman & Mareschal, 2020), which
draws parallels between short-term/long-term memory and hippocampus/neocortex interactions to
recreate the interplay between learned neural representations and a memory buffer (Arani et al., 2022).
This helps to sustain the plasticity and stability (Jung et al., 2023) of the model. BOWLL employs
the work by Yin et al. (2020) to generate pseudo-images of past data and further maintains a memory
buffer of relevant data for training to enable stable performance over time.

3 PROPOSED BOWLL FRAMEWORK

Predominantly existing closed world training assumes the availability of past data and doesn’t
take into account factors such as any data distribution shifts, the existence of outliers, or potential
redundancy of the data. Although the works of the related work section combat particular constraints
of isolated setups, a lack of baselines to compare against and extract insights from poses a massive
challenge to assess meaningful progress. Thus, we propose BOWLL as a cohesive formulation for
open world lifelong learning that uses a single recurring component: batch normalization. §3.1 gives
a brief overview of the interplay of different modules via the batch normalization statistics.

3.1 BOWLL AT GLANCE

Figure 1 depicts the information flow of BOWLL. We first wish to accept relevant data at the current
timestep that feature resemblance to past training inputs of the model. This helps with minimizing
unwanted interference and enforcing forward transfer while learning from data at the current timestep.
The respective OoD module takes as input a stream of small batches of new data, and filters this
stream via unsupervised out of distribution detection using population statistics maintained in the
batch-norm layers. This is portrayed by the solid green line in the figure, which begins at the start
of a new timestep. The accepted data-points then act as a “pool” for the Active Query module to
procure data for the oracle to label. The purpose here is to acquire data-points that are dense in
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Figure 1: An illustration of the mechanics of BOWLL. The processes and objects are represented
with circular and rectangular boxes respectively. The green line comes into play when the new dataset
arrives and starts with discarding unimportant data. The OoD module(§ 3.3.1) rejects statistically
extreme samples that interfere with already learned knowledge. The Active Query(§ 3.3.2) module
intelligently selects informative data to be trained. The memory buffer makes mutual concession
between past and new data-points using the same formulation in § 3.3.2. The Continual Train Step(§
3.3.3) trains the Model on the data in the memory buffer and pseudo-images generated via Deep
Inversion method. The blue dashed arrow depicts the BOWLL continual training regime with active
querying on the “queryable pool” and populating the memory buffer with informative samples which
runs until the pool is empty. The pseudo-data is generated at the beginning of the current timestep
and is plugged into the continual train step. This is represented by the orange dotted arrow.

information and to enhance learning speed. The informativeness is quantified using entropy weighted
with its similarity to other batches in the pool, to strike a trade-off between exploration and data
relatedness. These samples are stored in a (short-term) memory buffer through an Active Sample
Selection module, which replaces the least informative samples with the acquired labelled batch using
the Active Query module’s formulation. The goal here is to achieve stable performance on datasets in
previous timesteps by a selective replacement strategy and maximize learning with novel data-points
at the current timestep. To achieve competitive performance and retain representations learnt over a
long time, we further generate class-conditioned pseudo-images using these representations. The
pseudo-images act as a proxy to the already learned long-term features and are synthesized by
Deep Inversion (Yin et al., 2020), i.e. using the running mean and running variance from the batch
normalization layers, denoted by the orange dotted line. Finally, in the Continual Train Step(s),
the model is trained on data interleaved from the memory buffer and its generated images, before
the buffer is once again updated by the Active Query module and the process is repeated until the
queryable pool is exhausted. All individual modules are explained in detail in §3.3.1, 3.3.2 and 3.3.3.

3.2 PRELIMINARIES: BATCH NORM LAYERS AND GAUSSIAN UNCERTAINTY

A batch norm layer (Ioffe & Szegedy, 2015) uses an estimate of the mean µx and standard deviation
σx of its input x to produce a shifted and scaled output y with mean β and standard deviation γ:

y = γ
(x− µx)√
σ2
x + ϵ

+ β (1)

where ϵ is some small constant, and γ and β are learnable parameters initialized to 1 and 0 respectively.
The key property of the batch norm layer from our perspective is that, for every point in our
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architecture with a batch norm layer, we automatically know the mean and standard deviation of
the intermediate values at that point. This allows us to model these intermediate values x as being
distributed according to a Gaussian distribution with mean µx and variance σ2

x.
The batch normalization (BN) layer is an indispensable component in the majority of neural network
architectures that improves learning and generalization by hypothesized internal covariate shift
reduction (Ioffe & Szegedy, 2015). Although there may exist disagreement on the precise contribution
of BN to optimization (Santurkar et al., 2018; Daneshmand et al., 2020; Schneider et al., 2020; Awais
et al., 2021), the usefulness of the statistics derived from the BN layer remains unaffected.

3.3 THE TRIFOLD NATURE OF BATCH-NORM FOR OPEN WORLD LIFELONG LEARNING

3.3.1 LEVERAGING BATCH-NORM STATISTICS FOR OUT OF DISTRIBUTION DETECTION

The OoD module is designed to reject extremely unusual data-points before they are placed into the
queryable pool. This is useful because some of the data may be corrupted, or irrelevant, and we do
not want to waste the capacity of our continual learner on trying to fit these data-points.
To determine if an input is unusual we can compare the intermediate values x(l) at every batch norm
layer l with their expected distribution N (l)

BN according to the batch norm layer as described in § 3.2.
The simplest sense in which the values x(l) could be considered unusual is if they are low probability
according to N (l)

BN . We could assign the activations a score η0 given by

η0 =
∑
l

(x− µ)TΣ−1(x− µ) (2)

which is proportional to the negative log probability of x according to NBN plus a constant. This is
effectively a measure of whether or not the values x(l) are larger in magnitude than expected.
This score is well motivated as a way of discarding outliers, and is effective at discarding outliers
which produce very large intermediate values. Unfortunately, some data items we would like to
discard produce intermediate values which are very small instead of very large. In order to address
both cases simultaneously, we use a simple modification η1 of η0 given by

η1 = η0 − d ln η0 (3)

where d is the dimension of x. It can be seen that η1 is large for both unusually large and unusually
small intermediate values. We compute η1 for each batch in the dataset and allow batches into the
queryable pool if their corresponding value of η1 is below some threshold τ .

In appendix A.2 we show how both η0 and η1 can be derived from the application of Bayes’ theorem,
but under different assumptions about the variance of intermediate values produced by outlying data.
Specifically, η0 corresponds to assuming that this variance is large with respect to that of the inlying
data, whereas η1 corresponds to assuming that it is simply unknown. We also briefly discuss on how
we set the threshold τ that allows data into the queryable pool.

3.3.2 LEVERAGING BATCH-NORM STATISTICS TO ACTIVELY QUERY INFORMATIVE SAMPLES

The Active Query module queries the most informative samples from a candidate pool for future
training of the model. We accept data-points from the pool that answer two questions: 1) How novel
is the data-point? 2). How representative is the data-point of the pool? We design the acquisition
function such that it respects the trade-off between exploration of novel data-points and exploitation
through the use of similarity, using a combination of entropy of intermediate sample activations and
similarity between the sample and the rest of the available data.

Given a queryable pool DQ = {xi,yi}Qi=1, for every data sample xq we have the intermediate
variance σ2

q from the BN layer. In the spirit of Settles & Craven (2008), we then calculate the novelty
score γq as:

γq =
1

2
(1 + log(2πσ2

q ))︸ ︷︷ ︸
H(xq)

∗ 1

|Q|

|Q|∑
i=1,i̸=q

[
xi · xq

∥xi∥2 · ∥xq∥2

]
︸ ︷︷ ︸

[cos(XQ\q,xq)]

(4)
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Here, γq is the score for sample xq, H(xq) is the entropy, and the cosine term quantifies similarity
between data-points. We thus have a strategy that leverages uncertainty via entropy and discourage
the selection of unrelated data-points via cosine similarity. We provide an additional motivating
example and detailed discussion to further highlight the necessity of both parts in appendix A.3.

3.3.3 LEVERAGING BATCH-NORM STATISTICS TO ALLEVIATE CATASTROPHIC FORGETTING
WITH A COMPLEMENTARY LEARNING SYSTEM

The Continual Train module trains the model in a fashion that intends to avoid catastrophic forgetting
while maximizing performance. Hence, we draw inspiration from complementary learning system
(CLS) (Jung et al., 2023), where hippocampus and neocortex interact in the roles of short term
memory, storing novel experiences, and long term memory, extracting representations that generalize
over the consolidated data-points, respectively. In analogy to CLS, we adopt a dual memory recall
system, where i) we maintain a memory buffer F to gather episodic information, ii) generate pseudo-
images from stabilized past representations of the model.
For the former, i.e. the memory buffer at any timestep t, we have new points (Xq

t , Y
q
t ) that are

actively acquired from §3.3.2. Following the query’s spirit, we sample high scoring points of size |F|
and assign a score by modifying Eq. 4 as: H(xf ) ∗ [cos(X(F∪Xq

t )\f ,xf )]. In this fashion, older, no
longer necessary, parts of the memory may get replaced with novel information, whereas critical data
points may prevail to maintain memory diversity and avoid completely flushing old tasks.
For the latter, i.e. the generated images to resemble already existing knowledge of the model, we
use the trained modelM to generate class-conditioned images as detailed in Deep Inversion (Yin
et al., 2020). The auxiliary data is synthesized by optimizing on the loss l on initial random noise x̂
while regularizing with respect to the batch normalization layers’ stored running means and running
variances of the pre-trained model (and thus past data):

min
x̂

l(x̂, y) +Rprior(x̂) +Rfeature(x̂) (5)

where:
Rfeature (x̂) =

∑
l

∥µl(x̂)− µl||2 +
∑
l

∥σ2
l (x̂)− σ2

l ||2 (6)

and an (optional) priorRprior can be employed to incorporate knowledge on the data modality:

Rprior (x̂) = αtvRTV(x̂) + αℓ2Rℓ2(x̂) . (7)

Here µl and σ2
l represent the running mean and the running variance maintained by the batch

normalization of the trained model. At the specific example of our later experiments’ images, we
adopt Yin et al. (2020)’s prior, composed of a total variation (TV) and L2 distance term. In essence,
these encourage adjacent pixels to be related in magnitude, discouraging noisy adversarial generation.
The generated images thus contain previously extracted patterns that induce former contextual
information while replaying during training, hence dampening forgetting. We refer to appendix A.4
for formal definitions of the priors and a discussion of conceivable future implementation alternatives.

Overall, the balanced combination of old and new data facilitates recall of past information while
adapting the model to new information. We thus overcome the stability-plasticity dilemma by
adopting a dual memory recall via a diverse memory and generated data.

3.4 PUTTING IT ALL-TOGETHER: BOWLL

In summary, in a traditional training regime, due to the sequential nature of the data, new and
old information interfer, leading to forgetting of accrued knowledge. In addition, all new data,
independently of its relevance and information content, is typically observed. In contrast, given a
model previously trained on a dataset D0 = {Xi

0, Y
i
0 }Ni=1 at timestep t = 0, the open world BOWLL

baseline filters and actively selects important data from the incoming successive stream {Xi
t , Y

i
t }Ni=1

at t = 1, . . . , T and proceeds to continually learn representations at overall competitive performance.

To this end, we have adopted continual learning strategies to preserve known knowledge while
simultaneously actively grasping new semantics of recent data. Specifically, BOWLL’s memory
buffer F is populated with {Xi

0, Y
i
0 }|F|

i=0 at random for t = 0 and gets updated with {Xq
t , Y

q
t } after

every active query step, where q is the index of the batch chosen by the Active Query module. At
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each training step, a batch of input Xi
t is then fetched from the memory buffer and interleaved with

a batch of input Xsynj

t from the generated synthetic images. To avoid unwarranted entanglement
(Xie et al., 2020) between the generated and clean underlying distributions and balance training,
the loss L is respectively composed of two cross-entropy (CE) losses: i) CE loss between one-hot
encoding and predictions for F ii) CE loss between one-hot encoding and predictions for class-
conditioned generated images. Overall, BOWLL thus actively queries novel related data, decides
whether and which part of the memory buffer to replace to involve these instances in the learning
step, and finally continually trains by mitigating forgetting on interleaved old and new instances:
L = λ1LCE(σ(fθ(X

i
t)), Y ) + λ2LCE(σ(fθ(X

synj

t )), Y ). For the sake of completeness, λ1 and λ2

are optional weights assigned to the individual loss terms, although their values have remained at a
default of one in all of our experimentation. The complete algorithm is given in the appendix A.5.

4 EXPERIMENTAL SETUP

We empirically demonstrate BOWLL’s suitability as a baseline for open world learning. Importantly,
we show that: i) BOWLL identifies and accommodates novel information rapidly, ii) BOWLL
minimizes catastrophic forgetting when data distribution shift occurs, iii) BOWLL yields robust
performance in realistic open world settings. To respectively highlight the latter, we investigate three
set-ups: a) MNIST (Deng, 2012)→ SVHN (Netzer et al., 2011)→ DIGIT-5 (Peng et al., 2019a),
each composed of differently appearing digits; b) split CIFAR-10 (Krizhevsky & Hinton, 2009),
where five increments of disjoint class pairs are introduced sequentially; c) an extension of the latter
to an open world, where datasets are now contaminated with corrupted instances (Hendrycks &
Dietterich, 2019) and/or out-of-distributon data in the form of ImageNet (Deng et al., 2009).

Baselines and Metrics: We investigate five methods for comparisons against BOWLL, namely: 1)
Joint (Hayes & Kanan, 2021): all datasets are available at the beginning and the model is trained from
scratch, 2) Finetuned (Hayes & Kanan, 2021): datasets are introduced sequentially to mimick an
incoming stream of data at different timesteps. Both of the above setups resemble traditional training.
3) GDUMB (Prabhu et al., 2020): although not particularly designed for open world learning, it is
good contender against a plethora of continual learning approaches. Similar to BOWLL, GDUMB
trains only on a memory buffer, but actively fills it at random. A suitable baseline to assess the
quality of our active queries. 4) Experience Replay (ER) (Riemer et al., 2019; Rolnick et al., 2019):
also mitigates forgetting through a random memory buffer, yet follows the conventional strategy to
interleave it with all available current task data - a useful baseline to assess the focus on forgetting in
our second experiment. 5) SoftO (Hendrycks & Gimpel, 2017): rejecting data on the basis of model
Softmax confidence as a baseline for our third experiment with corrupted and OoD data.
We use several common evaluation metrics (Mundt et al., 2022a) to corroborate the performance of
BOWLL: i) average accuracy - to assess the overall and final accuracy of the system, ii) learning
curve area(LCA) - to determine the learning speed of the model after observing b mini-batches of data
(and thus the quality of data queries) and its transferability (i.e. forward transfer in the case of small
values of b), iii) number of (new) data points observed by the learner - to gauge the efficiency and
data resourcefulness, iv) backward transfer (BWT) - to evaluate whether continued training harms
prior tasks (negative BWT, synonymous to forgetting) or retrospectively improves them (positive
BWT). We summarize mathematical definitions, datasets and training details in appendix A.6.

4.1 BOWLL LEARNS RAPIDLY WITH FEW SHOTS

Table 2 shows the summary of results of BOWLL and other baselines on MNIST→ SVHN→ USPS.
Although the overall accuracy is not significantly higher, what should be taken into consideration is the
learning pace and the number of samples the methods trains on. On the one hand, BOWLL delivers
88.54±1.44% accuracy with only 8508 samples placed into the memory buffer. The remaining
data at disposition is excluded beforehand and thus never included in any model optimization. As
such, only about 5% of the overall dataset is observed in contrast to regular training. On the other
hand, the Bayesian-based OoD module ensures that the samples don’t disrupt the already learned
representations and facilitates smooth transfer of information for training at current timestep. This
can be observed from the positive backward transfer (BWT) values, which signify the retrospective
knowledge transfer from timestep t = 1 to t = 0, indicating that the information gained from future
timesteps doesn’t overwrite past information. Finally, the LCAβ demonstrates “β-shot" learning
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Table 2: BOWLL achieves competitive accuracy on MNIST→ SVHN→ USPS, at a more rapid
learning speed (LCA) and significantly fewer observed training samples (total number of unique data
points that have been placed in the 5k large memory buffer over time) than other settings.

Method LCAβ(↑) BWT(↑) # of new data points Accuracy(↑)
β=1 β=5 β=10 used in training

Joint 16.55±0.00 30.74±0.21 38.89±0.11 n/a 158257 97.74±0.05
Finetuned 42.24±0.13 69.16±0.12 77.93±0.10 -13.28±0.02 158257 89.66±0.07
GDUMB 40.60±0.11 68.56±0.10 77.32±0.09 -5.63±0.02 10000 87.33±0.15
BOWLL 67.82±1.24 75.67±0.45 77.70±2.62 0.86±0.00 8508±581 88.54±1.44

capability after training on only β = 1, 5, 10 mini-batches. Here, it can be seen that BOWLL delivers
significantly higher learning speed even with few examples than for instance the popular GDUMB,
which also only trains on a memory buffer but fills it at random. This can primarily be attributed
to the active query of most informative data-points at early stages, but also learning from a set of
pseudo-images that acts as proxy for past representations to enable high forward transfer.
Overall, the experiment demonstrates that BOWLL successfully mitigates forgetting and highlights

BOWLL’s active component to significantly speed up learning at a lower consumed amount of data.

4.2 BOWLL LEARNS CONTINUALLY WITH EQUITABLE MEMORY

Next, we evaluate BOWLL for incremental addition of new class labels on Split CIFAR-10 dataset
with a ResNet-18 model. Figure 2 illustrates the demographics of the memory buffer for Split
CIFAR-10 by GDUMB and BOWLL. GDUMB randomly select data-points with a balanced class
distribution constraint. Hence, the population dynamic in the memory buffer remains same. This
can put a limit on learning as the number of new samples is restricted, constrained to the past, and
there is no notion of the informativeness of samples. In figure 3 we can see that the accuracy of
GDUMB deteriorates more heavily as new class labels are added over-time. In case of BOWLL, the
active query mechanism to acquire and replace informative data-points in the memory buffer yields
population diversity and thus a less forgetful model. In fact, BOWLL is competitive with the ER
baseline in terms of forgetfulness, despite the latter first training on all data before populating the
memory buffer. We also study the effect of including generative images, where BOWLL∗ denotes
training the model only on the memory buffer by discarding the second term in the loss. Figure 3
records a ∼ 3% boost in performance when trained collectively on the memory buffer and generated
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policy to populate the memory buffer. Vari-
ants like ER or the follow-up baseline DER
(Buzzega et al., 2020) (that includes logits)
sample the memory equally randomly.
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Figure 3: BOWLL obtains significantly better accu-
racy than GDUMB on Split CIFAR-10. It features
large accuracy at any point in time, that is further
improved when trained collectively on the diverse
memory buffer and generated images. Although ER
trains on all available data and maintains a similarly
sized memory of old tasks, BOWLL is competitive by
learning exclusively from data in the memory buffer.
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images. We discuss the entailed trade-off between accuracy gain and computational effort in appendix
A.4. In appendix A.8, we also demonstrate the contribution of each module via ablation.
Overall, the experiment highlights BOWLL’s effective balance of stability-plasticity through dual
memory recall of generated pseudo-images and diverse memory of informative samples.

4.3 BOWLL LEARNS ROBUSTLY WITH EFFECTIVE DATA CHOICE

To investigate BOWLL’s performance in a full open world setting, we contaminate Split CIFAR-10
with corrupted images (Hendrycks & Dietterich, 2019) and additional out-of-distribution data from a
subset of ImageNet (Deng et al., 2009). Figure 4 summarizes the final test accuracy on the clean Split
CIFAR-10 after training on corrupted data. It is evident that BOWLL dominates the performance of
other techniques. This is credited to the application of the trifold nature of the batch-norm statistics
that enables a robust performance in the open world setting, further observable by the rapid inclusion
of new information in figure 5. It shows that the learning trend of GDUMB is not stable, pertaining
to its random memory buffer strategy that stores noisy, corrupted and irrelevant data. ER suffers
even more, as it first learns from all data. Even though SoftO can reject some of the OoD data,
it in turn suffers from forgetting in open world learning. In contrast, BOWLL’s exhibits superior
performance, as its OoD module rejects erroneous samples, the Active Query module prioritizes
informative samples, and in conjunction with the continual step leads to an increasing learning curve.
Further training details and complete comparison are given in appendices A.7 & A.9.
Overall, the experiment highlights that BOWLL is able to discard irrelevant data, selectively focus on
important information only, and continually learn from it - making its monolithic batch-norm based
nature the perfect contender for a well-rounded open world lifelong learning baseline.
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Figure 4: Final Accuracy on Split CIFAR-
10 corrupted, tested on numerous corrup-
tions types, and in the presence of ImageNet.
BOWLL is considerably more qualified for
these open world applications than other train-
ing setups that focus on single aspects alone.
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Figure 5: LCAβ trend for BOWLL and GDUMB
on Split-CIFAR10 corrupted. GDUMB stagnates,
whereas the components of BOWLL enforce better
data choices and thus warrant robust learning. ER
is not displayed, as it is even worse than GDUMB.

5 CONCLUSION

We have introduced a simple monolithic baseline for open world learning: BOWLL. BOWLL uses
the statistics from the batch normalization layer to seamlessly tether the three paradigms of OoD
detection, active learning and continual learning. It detects outliers to minimize disruption of already
learned knowledge, achieves high learning speed by sampling data using active queries, and mitigates
forgetting by adopting insights from complementary learning systems. We demonstrated that BOWLL
is a few-shot, stable, and robust learner through empirical evaluations that include scenarios such
as distribution shift, incremental class encounters, and a realistic open world. Owning to the use of
a common component i.e the BN layer, BOWLL can thus be seen as an exceptional baseline with
enticing prospects (listed in more detail in appendix A.10). In summary, we anticipate future works to
both adopt more accurate implementations of the present batch-norm’s simplified Gaussian, as well
as broad application to other tasks, such as regression or clustering. Overall, we envision BOWLL to
help the community make the first meaningful assessments in open world lifelong learning.
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A APPENDIX

The appendix complements the main body with additional details on:

A.1 The required elements and a loose definition of the term open world learning

A.2 A derivation of BOWLL’s out of distribution score

A.3 A detailed motivation of BOWLL’s active query function

A.4 Mathematical details of Deep Inversion priors and conceivable alternatives

A.5 Pseudo-code algorithm of BOWLL

A.6 Mathematical details of all evaluation measures

A.7 Data sequences and training hyper-parameters used in experiments

A.8 BOWLL ablation studies

A.9 Additional results for experiment C’s open world setting

A.10 A discussion n limitations and prospects

A.1 THE ELEMENTS OF OPEN WORLD LIFELONG LEARNING

In this section, we provide a more detailed intuition behind the components of open world learning,
and motivate our use of the term’s extension to open world lifelong learning. Using natural language
to ease understanding, Bendale & Boult (2016) define open world recognition (learning) as:

“In open world recognition the system must be able to recognize objects and
associate them with known classes while also being able to label classes as unknown.
These “novel unknowns” must then be collected and labeled (e.g. by humans).
When there are sufficient labeled unknowns for new class learning, the system must
incrementally learn and extend the multi-class classifier, thereby making each new
class “known” to the system. Open World recognition moves beyond just being
robust to unknown classes and toward a scaleable system that is adapting itself and
learning in an open world.” - Bendale and Boult, Towards Open World Recognition

Without quoting the entire formal statement, (please refer to Bendale & Boult (2016) Definition 1),
the mathematical description can intuitively be summarized as:

1. An open set recognition function that involves a novelty detector to determine whether any
result from the recognition function is from an unknown class.

2. An active labelling function, typically a human oracle in supervised learning, to label any
unknown data points and, if necessary, extend the set of existing known classes.

3. An incremental learning function that trains the system by adding the new data points and
respectively continuing to train the recognition function.

BOWLL follows the general concept of open world learning and provides the first monolithic baseline
to empower experimental progress and transparent comparison. As such, it further disambiguates
above definition in places where the exact implementation allows for a vague interpretation.
In favor of generality, BOWLL thus encapsulates a broader interpretation of steps two and three, in
the spirit of the desiderata of lifelong learning (Mundt et al., 2023).

Specifically, in the active labelling function of step 2, BOWLL includes an actual active learning
query. In other words, rather than simply labelling all data that the out of distribution detector has
detected as unknown, the active query step further gauges informativeness and relatedness of the
data. This is important, because the lifelong open world learner should leverage examples that are
remotely related to what the objectives are, rather than introducing any sorts of novel points. If we
think of the novelty detector giving a high score to arbitrary unseen noise, it is important to gauge
whether inclusion of this example is expected to reduce prospective loss. In turn, such inclusion of an
active learning query further significantly reduces the amount of (redundant) data used for continuous
training of open world learning system.
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In addition, and most importantly, we place the strict requirement on the incremental learning step to
avoid concatenation of data. In fact, existing algorithms that tackle some form of open world learning
(Joseph et al., 2021) place a large emphasis on the novelty detector and active data inclusion, yet they
continue extending the dataset in the spirit of traditional active learning. In the spirit of continual
learning and overall real-world system plausibility, we avoid retention of all old data and thus need to
combat any expected catastrophic forgetting (McCloskey & Cohen, 1989).

In the easiest sense, our three above points thus remain the same, but are augmented with the specific
challenge of gauging data informativeness and mitigating common catastrophic interference. To
respectively disambiguate our work and the BOWLL baseline from approaches that may simply
concatenate queried unknown examples with existing known data, we have included the additional
“lifelong” in the terminology open world lifelong learning in emphasis of the continual aspect.

A.2 DERIVATION OF OUT OF DISTRIBUTION SCORE

In this appendix we show how decision rules for outlier detection based on η0 and η1 The log
probability density function of the multivariate t-distribution with mean µ, variance ν

ν−2Σ, degrees
of freedom ν, and dimensionality d is as follows:

lnP (x) = − ln Γ

(
ν + d

2

)
−ln Γ

(ν
2

)
−1

2
ln det(νπΣ)−ν + d

2
ln

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)
(8)

As a belief about future observations of x this corresponds to assuming that x is distributed according
to a multivariate normal distribution, the mean and covariance of which were estimated from ν
observations of previous xs. In the limit ν →∞ we recover the normal distribution

lnP (x) = −1

2
(x− µ)TΣ−1(x− µ) + C (9)

where C is a normalizing constant and does not depend on x.

If we perform a Bayesian hypothesis comparison between the inlier hypothesis “the intermediate
activations x are drawn from a normal distribution with mean µ and covariance Σ" and the outlier
hypothesis “the intermediate activations are drawn from a uniform distribution", we obtain a posterior
log odds ratio of

η0 =
1

2
(x− µ)TΣ−1(x− µ) + C0 (10)

in favour of the outlier hypothesis, where C0 includes both a normalizing constant and the prior log
odds in favour of the outlier hypothesis.

The observed failure mode of using large values of η0 in a decision rule for outlier detection is that
outlying data which produces anomalously small intermediate activations is accepted as inlying. One
way of interpreting this is to note that our inlier hypothesis corresponds to very high confidence that
the covariance of activations is Σ, (the limit ν → ∞ corresponding to having estimated Σ from
arbitrarily many prior samples of x). If we now ask what our outlier hypothesis corresponds to, we
see that it corresponds to very high confidence that outliers produce activations with a very large
covariance. (That is, the limit of equation 9 as Σ becomes large is the uniform distribution). From this
point of view it is reasonable that our decision rule malfunctions for outliers which have anomalously
small intermediate activations: we have implicitly assumed that such outliers do not exist.

Intuitively we want our outlier hypothesis to instead say something like "the intermediate activations
are drawn from a normal distribution with a covariance about which we are highly uncertain". We can
achieve this by taking the opposite limit of equation 8 to that which constructed equation 9, ν → 0.
Doing so produces an unnormalized (and indeed, like the uniform distribution, unnormalizable) log
probability density of

lnP (x) = −d

2
ln
(
(x− µ)TΣ−1(x− µ)

)
(11)

If we now perform Bayesian hypothesis comparison with equation 9 as the inlier hypothesis and 11
as the outlier hypothesis, we obtain a posterior log odds ratio of

η1 =
1

2
(x− µ)TΣ−1(x− µ)− d

2
ln
(
(x− µ)TΣ−1(x− µ)

)
+ C1 (12)

15



Under review as a conference paper at ICLR 2024

in favour of the outlier hypothesis, where C1 is again the combination of a normalizing constant and
the prior log odds ratio in favour of the outlier hypothesis. The reader will observe that, unlike η0, η1
is large for both large and small magnitude values of (x− µ).

We set the threshold τ using the bootstrap method (Nalisnick et al., 2019). Although for the initial
setting a held-out validation dataset is used, in our case we use the samples in the memory buffer.
Similar to Nalisnick et al. (2019), we sample K ‘new’ data sets X |F|

k=1 of size M from the memory
buffer F and then calculate η1k for the kth bootstrap set. We then calculate α-quantile over the η1k
distribution to get the overall threshold estimate τ .

A.3 MOTIVATION OF THE QUERY FUNCTION

The purpose of the query function is to select data from the pool to be labelled and used in training
the model. We would like to select data whose labels will be most informative about the task(s) the
model is being optimized to solve. There are two major reasons it might be less worthwhile to label
a particular datum. Firstly, the datum might be too similar to other data for which we already have
labels. Secondly, it might be unusual enough that it is mostly unrelated, not only to the data we
already have labelled, but also to any data we expect to need to predict labels for in the future (e.g. at
test time). We attempt to capture these two failure modes with two heuristics.

For the first heuristic αq , we use the following quantity:

αq =
1

2
(1 + log(2πσ2

q )) (13)

where σq is the standard deviation across pixels, channels and layers of the post-batch-norm interme-
diate activations of the network when given the input xq , i.e.

σ2
q =

1

|L|
∑
l∈L

1

|Cl|
∑
c∈Cl

1

|Pl|
∑
p∈Pl

a2lcpq (14)

where L is the set of layers and Cl and Pl are the sets of channels and pixels for layer l, and alcpq
is the post-batch-norm activation at pixel p, channel c and layer l when the input to the network is
xq . This is a measure of how spread out the intermediate activations are relative to their distribution
on the existing labelled data, since the batch norm layer normalizes its inputs with respect to the
statistics of that data. We use this measure of dissimilarity in intermediate activation space as a proxy
for dissimilarity in terms of what information their labels would give us about the task.

For the second heuristic βq we use the following normalized inner product in input space:

βq =
1

|Q|

|Q|∑
i=1,i̸=q

[
xi · xq

∥xi∥2 · ∥xq∥2

]
(15)

where Q is the queryable pool and xq is the datum we are evaluating. This quantity captures a notion
of similarity averaged over the queryable pool. It can be seen to reach a value of 1 for the case where
xq is identical to every other xi, and a value of 0 for the case where xq is orthogonal to them. Taking
the pool to be a proxy for the kinds of data we want the model to perform well on, this addresses the
second failure mode.

To combine these two heuristics, we multiply them, giving the query score formula from equation 4
of the main text, which we reproduce below:

γq = αq ∗ βq =
1

2
(1 + log(2πσ2

q )) ∗
1

|Q|

|Q|∑
i=1,i̸=q

[
xi · xq

∥xi∥2 · ∥xq∥2

]
(16)

where γq is the query score for datum xq. The choice of multiplying the heuristics does not
immediately require us to assign a weight to the two heuristics, and we did not find it necessary to
look for a way to introduce any such weighting.

A.4 DEEP INVERSION AND CONCEIVABLE ALTERNATIVE IMPLEMENTATIONS

We first provide the mathematical definitions of the priors used in the adopted Deep Inversion and
their intuition, before discussing the nature and reasoning behind the employed replay of inputs.
Finally, we also provide a brief comment on the computational trade-off and the gained accuracy.
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Deep Inversion priors: Yin et al. (2020) adopt an optional data prior term in their Deep Inversion
algorithm, repeated here for convenience from the main body:

Rprior (x̂) = αtvRTV(x̂) + αℓ2Rℓ2(x̂) (17)

In the specific context of images, they employ prior insights from Mahendran & Vedaldi (2015) to
use a norm (generally an α norm, but here set to 2) on the image values and a natural additional
regularizer to encourage piece-wise consistent image areas. Respectively, the former is to ensure
that the range of the generated data point remains in the typical range of values expected in 0 to 1
normalized image:

Rℓ2(x̂) = ||x̂||22 (18)

In principle, this is to avoid that the inversion algorithm generates any arbitrary valued inputs to the
system that simply satisfy batch-norm statistics.

In similar spirit, the latter total variation (TV) regularizer tries to avoid the creation of unmeaningful
noisy and adversarial inputs that are tailored to fit batch-norm statistics. Mahendran & Vedaldi (2015)
formulate this in a general case, but the variant employed by Yin et al. (2020) and BOWLL in its
image experiments accounts for the discrete nature of images of fixed width i and height j. RTV can
then be expressed as another norm on the basis of finite differences between neighboring pixels:

RTV(x̂) =
∑
i,j

[
(x̂i,j+1 − x̂i,j)

2 + (x̂i+1,j − x̂i,j)
2)
]β/2

(19)

Following the prior authors’ intuition to avoid “spikes” in the interpolation of values we adopt β + 1
and similarly do not search over the weighting factors α of the individual priors.

Rationale behind replaying inputs and feature-based alternatives: In BOWLL we have chosen
to employ Deep Inversion in its original form by optimizing a synthetic input to have minimal
divergence to expected batch norm statistics and then replaying the conceived generated data point.
The rationale behind this choice is simple, BOWLL is intended to be not only a monolithic open
world lifelong learning baseline, where each component leverages batch normalization, but also one
that is highly competitive yet straightforward to implement. As such, we believe the success of a
competitive baseline lies in beating various contenders despite its simplicity. Synthesizing generated
inputs and rehearsing them in raw form, in turn allows concatenation with the data points that the
complementary real memory buffer contains in the continual training steps.

However, we do acknowledge that the reader may at this point wonder if other variants, that perhaps
directly employ the feature space are plausible. At present, we preserve BOWLL’s competitive
simple nature, yet point to works such as Pellegrini et al. (2020), that have shown the efficacy of
“latent replay” variants, for completeness. Here, more involved mechanisms may enable potentially
improved performance by rehearsing and regularizing various latent states. The respective insights
are complementary to BOWLL’s formulation and we anticipate future works to construct more
complicated open world learning variants. For the latter, BOWLL now provides the first natural
baseline for rigorous experimental comparison.

Accuracy-compute trade-offs: We remark that Deep Inversion is by far the most computationally
expensive component of BOWLL. However, the main body’s figure 3, where we evaluate a variant of
BOWLL termed BOWLL* without the Deep Inversion part, also demonstrates that Deep Inversion
provides the final 3% on top of already phenomenal performance. As even BOWLL* is an exceptional
baseline, it is important to quantify the computational gain by stripping away Deep Inversion.

Overall, the OoD step is computationally almost negligible. Here, there is barely any overhead to a
traditional forward-pass, as batch-normalization layers are calculated independently. The subsequent
active learning component, operating already on a subset of the data is slightly more involved,
yet still comparatively cheap. Again, the batch norm values are yielded by default, and as such
calculating the entropy term is a negligible overhead. The cosine similarity term is slightly more
involved, as in principle the current considered data points needs to be compared to a set of other data
points. However, as data points are independent the respective involved matrix multiplication is fully
parallelizable for any reasonably sized data inputs. In fact, we suspect extremely large input size to
become a detriment to any neural network model before calculation of a cosine similarly becomes
problematic. The population of the memory buffer adopts a variant of this active query equation, as
described in the main body, however is computationally bounded by the fact that we typically desire
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a small memory and thus the amount of comparisons are strictly limited. In principle, again, if the
memory buffer were to become extremely large, the computation time may be impacted, however,
in that scenario the open world learning idea is essentially relaxed to the traditional isolated regime
where all data is always present, defeating the original purpose of BOWLL.

This leaves Deep Inversion as the final element, as the actual training step on the memory buffer is
synonymous to the conventional loop of a forward-backward pass over mini-batches in the memory
buffer. In our experience the number of update iterations on the initially random x̂ to align with
batch-norm statistics has practically required hundreds, up to 2000 or 3000 steps (CIFAR) of updates
in Deep Inversion to achieve meaningful convergence (orange loop in figure 1). However, we also
note that we only generate as many synthetic examples as there are real examples in the memory
buffer (in our cases 5000) in a one to one balance of components. In principle many more generated
examples could be used and would likely improve the system further (at expense of compute). In
fact, continual learning methods relying on generative rehearsal of data (Mundt et al., 2023; 2022b)
typically conceive as many examples as are in the original dataset to achieve competitive performance.
In light of the fact that even without Deep Inversion, BOWLL beats GDUMB significantly (figure 3)
and retains its open world learning capability in its OoD detector and active query component, we
leave the decision to the user on whether a mild gain in accuracy at significant expense in compute is
required by the particular application.

A.5 BOWLL ALGORITHM

Algorithm 1 gives the pseudo-code for BOWLL. We executed all the experiments on a single Nvidia
Tesla A100 or V100 GP. We use PyTorch (Paszke et al., 2019) for implementing the BOWLL
framework. We also provide the source code in the supplementary material.

Algorithm 1 BOWLL pipeline
Input: Trained model fθt−1 , Data {Xi

t , Y
i
t }Ni=1 where t = 1, 2, . . . , T , acquisition batch size B

Initialize: Memory Buffer: F ← {X0, Y0}
1: for each timestep t, {Xi

t , Y
i
t }Ni=1 do

2: Xsyn
t , Y syn

t = DeepInversion(fθt−1
, |F|)

3: Perform:{Xp
t , Y

p
t } = OoD(fθt−1

, Xt, τ)

4: while pool DQ = {Xp
t , Y

p
t }

|Q|
p=1 is not empty do

5: Xq
t , Y

q
t = ActiveQuery.runAcquisition(DQ, B)

6: Update memory buffer by replacing old samples with newly acquired data samples:
Xt, Yt = ActiveQuery.runAcquisition(F ∪ {Xq

t , Y
q
t }, |F|)

7: Train: ContinualLearning(fθt−1 , {Xsyn
t , Y syn

t }, {Xi
t , Y

i
t }|F|

i=1)
8: end while
9: end for

A.6 EVALUATION MEASURES

We primarily use three metrics to evaluate and compare the performance of BOWLL, as sketched
in the main body, in addition to reporting the overall number of data points used for training. We
point to Mundt et al. (2022a) for an overview of relevant metrics considered in continual learning,
and repeat the definitions for our respectively used ones here.

Average Classification Accuracy: We measure the performance of a model on the cumulative test
dataset after learning on the train data at each incremental timestep. At each timestep t, after training
the model on train dataset Dtrain

t , we calculate the accuracy at of the model on the test dataset Dtest
t .

The final average accuracy after T timesteps is given as:

AT =
1

T

T∑
t

at (20)

In context of BOWLL, average classification accuracy provides a good estimate of the overall
system’s balance between encoding new information while maintaining prior learned knowledge.
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Learning Curve Area (LCA): LCA determines the learning speed of the model after being trained
on batch b. At each timestep t, after training on batch b sampled from Dtrain

t , we record the accuracy
at,b on the test dataset Dtest

t . Respectively, the learning curve at T under β is calculated as:

LCAβ =
1

β + 1

β∑
b=0

(
1

T

T∑
t=1

at,b,t) (21)

Intuitively, the values of β = 1, 5, 10 highlight critical learning phases. β = 1 is synonymous
with one-shot learning, directly assessing the system’s capability for forward transfer and immediate
adaptation. The values of 5 and 10 respectively highlight whether the chosen examples are informative
and the system thus rapidly improves in quality. In context of BOWLL, LCA aids in assessing the
quality of the active query, as prioritizing highly informative samples is expected to result in the most
rapid reduction of the loss.

Backward Transfer (BWT): BWT measures the effect on performance of the model for previously
learned data at timestep < t when training on the data of the current timestep t:

BWTt =
1

t− 1

t−1∑
j=1

(at,j − aj,j) (22)

It is useful to differentiate observations of positive and negative BWT values. If a negative BWT
value is experienced, the former performance deteriorates. Negative BWT is thus synonymous with
forgetting. If the value is close to 0, then no adverse influence is experienced. In contrast, if a positive
BWT value is observed, current training provides retrospective improvement to what has been learned
before. The latter may be the case if subsequent data shares resemblance or tasks are related. We
note that positive BWT seldom occurs in existing practical algorithms (Mundt et al., 2023), as many
continual learning methods rely on various forms of constraints or regularization that aim to preserve
existing representations. Although positive BWT still requires much future research, we believe
effective memory management, such as in BOWLL, to be one key element.

A.7 DATASET SEQUENCES AND TRAINING HYPER-PARAMETERS

A.7.1 MNIST→ SVHN→ USPS

We use AlexNet (Krizhevsky et al., 2012) with batch normalization layers to train on MNIST (Deng,
2012) (60k tiny grayscale images resized to 32× 32 split across 10 classes for the digits 0-9). We
train using the Adam (Kingma & Ba, 2017) optimizer with a learning rate of 0.001 for 60 epochs. We
first adapt the model to SVHN (Netzer et al., 2011) (a real-world analogue of MNIST with 32× 32
resolution cropped digits in the form of house numbers) at timestep t = 1 and then DIGIT-5 (Peng
et al., 2019b) (a collection of different appearing digits from 0-9 based on a combination of MNIST,
MNIST-M, Synthetic Digits, SVHN, and the USPS datasets) at timestep t = 2. The memory buffer
size is set to |F| = 5000 and is initialized with random samples from the MNIST training. For OoD
we use a mini-batch size of 4 and samples in memory buffer act as the validation dataset for setting the
threshold τ via bootstrap sampling. After the OoD step, BOWLL delivers a queryable pool. BOWLL
queries a mini-batch of size of 256, which then replaces least informative samples in the memory
buffer. We use DeepInversion to generate pseudo-images of previously trained dataset. We generate
|F| in total, with 500 images assigned to each class. We continually train on the memory buffer and
the generated images for 1 epoch and repeat the process for all the samples in the “queryable pool".
We report results wit standard deviations over 5 runs. In contrast to the original setup of GDUMB and
ER, where a static model uses a masking strategy at the output nodes to deal with varying number of
class labels, in our experiments, we modify the model’s output nodes to grow when it encounters new
class labels for the sake of fair comparison.

A.7.2 SPLIT CIFAR-10

We divide CIFAR-10 (Krizhevsky & Hinton, 2009) (consisting of 50k color images equally balanced
across 10 classes of 32× 32 resolution) into 5 disjoint timesteps (classes {2, 5} → [0, 6]→ [1, 7]→
[3, 8]→ [4, 9] ) at timestep t = 0→ t = 1→ t = 2→ t = 3→ t = 4 i.e Split CIFAR-10. We use a
ResNet-18 (He et al., 2016) to train on data with labels that come under {. . .} braces with two output
nodes for classification at timestep t = 0. We use SGD with a learning rate of 0.1, a momentum
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value of 0.9 and weight decay of 0.0005 and train for 120 epochs with mini-batch size b = 256. This
training is performed under traditional setup. For BOWLL, the memory buffer is filled with random
samples from the training data (availability of old training data is assumed only at this initial point in
time). The model first discards irrelevant data at timestep t = 1 with batch size b = 8. To enable
open world learning of the model to the new data available at incremental timestep t > 0, we expand
the number of output nodes of the classifier to the number of classes detected at timesteps t by the
number of unique class labels detected in the queryable pool. The expanded model is then used for
continual learning on the upcoming disjoint tasks. The accepted data is available to actively query and
learn from. For one loop of active query, acquired batch of size 256, supersedes unimportant samples
in the memory buffer. The model is then trained in continual fashion using the same configuration as
stated earlier but for 2 epochs. The active query loop iterates until the queryable pool is vacant. We
measure the test accuracy at the end of training for each timestep on classes seen thus far. We report
results wit standard deviations over 5 runs.

A.7.3 PRESENCE OF OOD AND CORRUPTED DATA: CIFAR-10-C AND IMAGENET

CIFAR-10-C(Hendrycks & Dietterich, 2019): We apply 3 corruptions namely: impulse noise, Gaus-
sian noise, shot noise to all the classes of CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. Out of the
75 available noise types, we chose these 3 as they simulate common noise additions that occur more
often that can affect model performance when trained on. Gaussian noise especially can be more
harmful depending on their severity. We generate 50000 images for each noise type equally balanced
across all classes. The image meta-information such as width, height and channel remain the same.
ImageNet(Deng et al., 2009): We use a subset of the ImageNet dataset with labels
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and about 1000 images per class. We discard remaining subset. These
clean images from ImageNet act as the inputs which the model needs to discard in order focus on
relevant “in-distribution” data.

We then interleave the corrupted data(CIFAR-10-C) and the subset of ImageNet dataset with the
original CIFAR-10 dataset to simulate data for open world learning.

A.8 ABLATION STUDY

We perform experiments to demonstrate the contribution of each module to the entire OWLL frame-
work against employing each module in isolation under a closed world training environment. The
ablation study is done on Split CIFAR-10 with the ResNet-18 model as detailed in previous section.
We show the results of the ablation study in Table 3. We make the following observations: i) For,
BOWLL without the OoD module the BWT is higher than that of BOWLL suggesting that OoD
does help in discarding data-points that interfere with previously learned representations. ii) BOWLL
without the Active Learning (AL) module, fails to deliver competitive performance over longer
incremental timestep. iii) BOWLL without the Continual Learning (CL) module clearly performs the
worst with lowest final accuracy and BWT. iv) Complete BOWLL achieves consistent accuracy and
minimizes forgetting, as reflected in BWT.

In summary, the OoD module discards data that can interfere and potentially disrupt past learned
representations, the active query procures data-points that are maximally informative about the
incoming data stream and the dual memory backed continual training delivers an intricate balance
between previously encoded knowledge and judicious maintenance of past and latest samples in the
memory buffer. Above the conceptual contributions, our ablation study quantitatively demonstrates
that each module contributes meaningfully to overall performance in open world learning.

A.9 OPEN WORLD SETTING

Figure 6 demonstrates the LCAβ curve on Split CIFAR-10 combined with only CIFAR10-C data
and figure 7 demonstrates the LCAβ curve on Split CIFAR-10 combined with subset of ImageNet.
BOWLL outperforms GDUMB in both settings that simulate the open world learning environment.
These additional individual experiments further support that BOWLL is effective when either cor-
rupted related data or unrelated data is presence, nicely complimenting in supporting the main body’s
insight in the experiment with both kinds of data being present at once.
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Table 3: Ablation study of BOWLL on Split CIFAR-10 reporting test accuracy at the end of every
timestep and Backward Transfer(BWT) at the end of timestep i.e t=4. “x” indicates that the module
is removed and “✓” indicates otherwise. Study(iv) represents the complete BOWLL framework.

Study Modules Accuracy BWT(↑)
OoD AL CL t=1 t=2 t=3 t=4

i) x ✓ ✓ 37.19±0.54 50.18±0.75 56.14±0.96 58.29±7.04 -31.42±2.20

ii) ✓ x ✓ 80.05±5.26 77.53±5.18 60.05±5.75 50.55±7.40 -40.98±3.05

iii) ✓ ✓ x 65.15±6.93 31.54±6.77 28.91±5.49 19.52±7.85 -68.97±3.06

iv) ✓ ✓ ✓ 78.80±4.50 77.54±6.78 67.81±6.15 62.70±5.61 -15.11±0.58
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Figure 6: LCAβ trend of BOWLL on Split
CIFAR-10 corrupted with noisy CIFAR10-C.
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Figure 7: LCAβ trend of BOWLL on Split
CIFAR-10 corrupted with subset of ImageNet.

A.10 LIMITATIONS AND PROSPECTS

We provide additional discussions on the limitations and future prospects for BOWLL. BN
layers normalize the pre-activations of a layer using the statistics from mini-batches of data
to yield zero mean, unit variance and diagonal covariance. We emphasize that the diagonal
covariance assumption is a simplification (pertaining to de-correlations), yet BOWLL delivers
a strong simple monolithic baseline using just the diagonal values. We list other limitations as follows:

Quality and computation of Deep Inversion: The Deep Inversion module relies on the BN
outputs to synthesize reliable image representations for the model to further train on. Hence
one aspect of knowledge transfer from previous timesteps to the current one is conditioned on
competitive model performance. The pseudo-data from Deep Inversion help with mitigating
forgetting and since BOWLL trains on both memory buffer and pseudo-images higher quality
synthesized images are beneficial. One particular aspect to ensure the latter is the choice of a data
modality prior, in the case of images total variation. Although Deep Inversion can technically
be used for any data type, as it simply aims to match BN statistics, finding such priors can
significantly aid in performance, for instance by assuring that neighboring pixels are correlated
in images. As such, if BOWLL is applied to other data modalities, respective similar priors
are likely necessary for the Deep Inversion module (see also appendix A.4 for a discussion on
computational complexity and removing Deep Inversion altogether) More details on the limita-
tions of Deep Inversion pertaining to data synthesis time and quality can be found in (Yin et al., 2020).

Memory buffer size: As in all memory-based continual learning methods, BOWLL requires a
good estimate on the size of the memory buffer to store data. At present, all approaches, including
BOWLL, thus motivate buffer size from a storage and compute constraint and make a choice a priori.
The memory requirement can however increase or vary with time and one can investigate methods to
dynamically allocate memory, depending on both how informative novel data is and the expected
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performance of the model. The a priori choice is thus a current limitation, requiring some intuition of
task complexity, and the dynamic extension of memory size an enticing future prospect.

Generalization and application beyond supervised open world learning: Already in the current
form, BOWLL’s OoD module detects the outlier on small batch size in an unsupervised fashion and
without any prior training on out-of-distribution data, using only population statistics maintained
in the batch-norm layers. Similarly, the active query module acquires novel samples using entropy
obtained from the BN layer activations weighted with data similarity. This again is done without
any information about the label or any form of supervision. Finally, the dual memory for continual
training formulated using pseudo-images and a memory buffer for storing informative samples is also
driven purely batch-norm statistics. In essence, one can thus trivially extend BOWLL to unsupervised
learning, reinforcement learning, or other prediction tasks, such as e.g. semantic segmentation.
We thus expect BOWLL to fuel further development of open world lifelong learning beyond the
supervised examples in this paper.
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