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ABSTRACT

For diffusion models, machine unlearning is crucial for mitigating the intellec-
tual property and ethical challenges arising from unauthorized style replication.
However, most existing unlearning methods struggle to completely remove styles
while preserving generation quality, as their erasure mechanisms rely on the noise
distribution where style and content are intrinsically entangled. To address it, we
propose Style Unlearning in Diffusion Models (SUDM), a novel framework based
on hybrid-attention distillation, where cross-attention provides style-agnostic su-
pervision to self-attention for targeted style erasure. By leveraging the structural
distinctions within attention component, SUDM enables more effective destyl-
ized modeling compared to previous work. To further ensure content preservation
and robust generalization, we introduce query consistency and parameter consis-
tency losses into the overall objective function. Finally, extensive experiments and
user studies on Stable Diffusion demonstrate that SUDM achieves more thorough
style erasure with minimal quality degradation, outperforming existing unlearn-
ing methods in both visual fidelity and precision. Our code is available in the
supplementary materials.

1 INTRODUCTION

Text-to-image diffusion models|Ho et al.[(2020); |Dhariwal & Nichol|(2021b) are trained on LAION-
5B |Schuhmann et al.|(2022)), a massive but minimally curated collection of image-text pairs |Carlini
et al.| (2023). As a result, they can generate photorealistic images [Yu et al.| (2022); |Gafni et al.
(2022);|Chang et al.| (2023); Xu et al.|(2023b) and imitate artistic styles, especially when guided by
prompts like “art in the style of [artist]”|Gafni et al.|(2022); |Saharia et al|(2022); |Yu et al.| (2022);
Somepalli et al.| (2023); |Chang et al.| (2023). Nevertheless, alongside their impressive abilities,
these models can produce unauthorized or harmful content—including copyrighted art |Somepalli
et al.| (2023)); |Shan et al.| (2023), explicit imagery [Schramowski et al.| (2023b)), and deepfakes |Car-
lini et al.| (2023)—which raises serious legal and ethical concerns. As illustrated in Fig. [1} Stable
Diffusion |Comp Vis| (2022) can fabricate replicas of Van Gogh’s distinctive style, posing significant
threats to the authenticity and integrity of artistic works. Lawsuits from artists such as Kelly McKer-
nan against Stable Diffusion underscore these challenges Setty|(2023). Accordingly, it is imperative
to unlearn specific styles or visual modes embedded in pre-trained diffusion models, thereby up-
holding established ethical norms in Al development.

Existing methods mitigate the unauthorized replication of artistic styles in diffusion models fall into
two groups: 1) Training-free methods which perform real time erasure during inference without fine-
tuning the pre-trained diffusion model Comp Vis|(2022)); [Schramowski et al.|(2023a));|L1 et al.| (2023).
Although these methods computationally efficient, their erasure performance is limited, primarily
because they struggle to eliminate style information that is intrinsically embedded in the model
configuration. 2) Training-based methods, such as ESD |Gandikota et al.[ (2023), SPM [Lyu et al.
(2023)),ConAbl |Kumari et al.[ (2023a), and UCE |Gandikota et al.| (2024)), mainly focus on erasing
semantic concepts by fine-tuning pre-trained diffusion models. However, since they rely on the pre-
dicted noise distribution—which is insensitive to abstract and intricate style patterns—their ability
to erase specific stylistic representations remains limited, often accompanied by degraded gener-
ation quality. Therefore, the development of unlearning techniques tailored explicitly for stylistic
representations in diffusion models remains an urgent and open challenge, with no existing solutions
to date.
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(‘a) briginal artwork of Van gh (b) Van Goh-tyle images generted by Stable Diffusion (¢) Style Unlearning with SUDM(Ours)
Figure 1: (a): Original Van Gogh artworks. (b): Images generated by Stable Diffusion models that
mimic Van Gogh’s style. (c) Results after applying SUDM to remove Van Gogh’s style from (b).
This comparison illustrates the model’s capability to reproduce the visual characteristics of a specific
artist as well as the effectiveness of SUDM in style unlearning.

To address this problem, we propose a novel framework, Style Unlearning in Diffusion Models
(SUDM), by leveraging Hybrid-Attention Distillation(HAD) module with joint attention mecha-
nisms and distillation mechanisms. The rationale behind this approach stems from a key trait on
attention mechanisms validated by [Hertz et al| (2024); [Jeong et al| (2024)); Zhou et al] (2025) that
the key (K) and value (V) components of self-attention encode style-related representations whereas
the query (Q) component predominantly preserves semantic content. Accordingly, it is feasible by
leveraging self-attention to capture the model’s representations on the specific styles. Simultane-
ously, it is workable by employing cross-attention to achieve style-neutral representations with the
consistent content semantics. Thereafter, we design a distillation loss to align these two attention
outputs, which facilitates the model to discard style-specific information without distorting content
semantics. Specifically, given a style-neutral reference image and a stylized prompt such as “The
night by Van Gogh”, hybrid-attention distillation leverages the key (K) and value (V) from the refer-
ence image as style-neutral anchors, and the query (Q) from the generated image to encode content
information. Then, a cross-attention mechanism between Q and the style-neutral K, V guides the
self-attention in the generated image to unlearn the style.

To further preserve semantics, we enforce query consistency between the reference and stylized gen-
erations, and ensure generalization through parameter consistency during training. Consequently, as
shown in Fig. [T{c), SUDM effectively erases style information with minimal impact on semantic
content and generation performance.

Our main contributions are summarized as follows:

* We propose a novel framework for style unlearning in diffusion models by leveraging hy-
brid attention distillation module (HAD), query consistency, and parameter consistency
techniques, named SUDM. To the best of our knowledge, it is the first unlearning tech-
nique tailored for style removal from diffusion models.

* Innovatively, our HAD module aligns stylized and style-neutral representations, to facilitate
targeted style removal while preserving semantic content. Unlike the alignment in noise
space, the alignment in representation space is capable to capture non-interfering embedded
style and content, thereby benefiting for more precise removal of style.

» Extensive experiments depict that our method can effectively unlearn the style while pre-
serving the generation performance of other concepts.

2 RELATED WORK

Machine unlearning has recently gained increasing attention in diffusion models to
mitigate the retention of undesirable knowledge, such as copyrighted content/Somepalli et al.| (2023),
biased representations (2024), or specific artistic styles (2023). Existing ap-
proaches are broadly categorized into training-free [Schramowski et al.| (2023a); (2024);

ang et al.| (2025)) and fraining-based methods [Gandikota et al.| (2023); Kumari et al.| (2023a));
et al.| (2023); |Gandikota et al| (2024). Training-free methods aim to unlearn or avoid generating
undesired concepts without fine-tuning the pretrained diffusion model, and they broadly fall into
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Figure 2: Overview of the proposed SUDM framework. Given a stylized prompt and a style-neutral
reference image with shared content, SUDM extracts the self-attention response and applies distil-
lation to remove style-specific representations while preserving semantic content.

inference-guided and pruning-based approaches. Inference-guided methods guide the generation
process at inference time to reduce the influence of specific concepts. For instance, NP |(CompVis
(2022) and SLD [Schramowski et al.| (2023a) modify the classifier-free guidance mechanism to di-
minish the effect of undesired content. A more recent inference-guided method, AdaVD |Wang et al.
(2025), leverages classical linear algebraic orthogonal complement operations implemented in the
value space of cross-attention layers , enabling precise disentanglement of target semantics from
non-target ones. However, due to the entanglement of style and content features in the model’s
latent space, these methods often result in limited precision and reduced image quality. Pruning-
based methods identify and deactivate internal components associated with undesired concepts. For
example, ConceptPrune Chavhan et al.[(2024)) applies activation-based importance scoring or learns
binary masks to turn off neurons or attention heads related to certain concepts. While pruning main-
tains model size and is computationally efficient, it often lacks semantic precision and struggles to
generalize beyond the specific examples used. Additionally, these methods fall short in handling
abstract or widely distributed representations, such as artistic styles.

Training-based methods mainly focus on fine-tuning the model to unlearn target concepts. For
example, ESD Gandikota et al.|(2023) aligns the output distribution of target concept with that of an
empty prompt, while FMN [Zhang et al.[(2024) progressively erases the concept during inference by
re-steering attention maps within the U-Net’s cross-attention layers. However, these approaches lack
explicit mechanisms to preserve the non-target concepts, often causing side effects such as training
instability, semantic drift, and degraded generation quality for unrelated content. To mitigate this,
ConAbl Kumari et al| (2023a) aligns the predicted noise between target and anchor concepts and
utilizes a regularization loss to maintain anchor integrity. UCE |Gandikota et al.| (2024) edits cross-
attention projections tied to the target text embeddings. Similarly, SPM [Lyu et al.| (2023)) proposes
a latent anchoring strategy combined with a similarity-aware retention loss to better preserve the
surrogate concepts. While these methods enhance the stability of concept unlearning and reduce
unintended degradation of unrelated concepts, they face challenges in style unlearning due to the
diffuse, spatially variable, and tightly entangled nature of styles with semantic content. Therefore,
we propose a style unlearning method for diffusion models that leverages cross-attention to guide
self-attention with style-agnostic supervision for targeted style erasure.

3 METHOD

This section introduces SUDM which comprises three complementary components: hybrid-attention
distillation for removing style-specific representations, content preservation for retaining semantic
content, and generalization preservation for preventing performance degradation on generations of
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unrelated concepts. An overview of SUDM is illustrated in Fig. 2] We begin by introducing the
problem setup, and then detail the design of each component.

3.1 PRELIMINARY

Diffusion Models |Ho et al|(2020); Song et al|(2021)) learn to reverse a Markov process that
gradually adds Gaussian noise to an image x(, producing x; at each timestep t. This forward
process is defined as xy = /oo + /1 — €, where oy is a fixed or learned variance schedule
and z ~ N(0,I). A denoising network €g(-) is trained to recover x;_; from x;, optionally
conditioned on additional inputs c (e.g., text). Image generation is performed by iterative denoising
from ¢t = T to 0. The training objective is to predict the added noise €:

L(z,¢) = Ecun(01), 2. [Il€ = €o(xs, e, 1)][3] - (1)

The attention mechanism in diffusion models plays a crucial role in capturing long-range de-
pendencies and semantic correspondences during image generation [Vaswani et al.[|(2017). Given an
input feature map X, the attention module first computes three learnable linear projections: query
(Q), key (K), and value (V), formulated as:

Q=XW? K=XWK v=xwY, 2

where W@, WX, and WV are trainable projection matrices. For brevity, we abbreviate
Attention(-) as Attn(-) in the following. These projections are used to compute pairwise affinities
between elements in the feature space. The attention output is then obtained by:

. QK"
Attention(Q, K, V') = softmax Vv, 3)
Vd
where d denotes the dimensionality of the queries and keys, and the softmax operation ensures
that attention weights are normalized. This mechanism allows the model to adaptively aggregate
contextual information across spatial locations, which is particularly beneficial in diffusion models
for generating semantically coherent and structurally consistent outputs Dhariwal & Nicholl (2021a).

3.2 PROBLEM SETUP

Let €y (-) be a pre-trained latent diffusion model (e.g., Stable Diffusion (CompVis| (2022)) capable
of generating images from text prompts. Given a stylized prompt ¢, our objective is to remove €gy’s
ability to generate images in the style associated with ¢ (e.g., Van Gogh), such that images condi-
tioned on style-indicative prompts no longer exhibit the corresponding distinctive characteristics,
while still preserving content fidelity and generalization to other styles. To facilitate style unlearn-
ing, we construct a training dataset {(c, Irf) }, where I is a reference image that conveys the same
semantic content as c but in a neutral style, distinct from the one implied by c (e.g., photorealism or
Pixar-style).

3.3 HYBRID-ATTENTION DISTILLATION

In latent diffusion models such as Stable Diffusion, Cross-attention and Self-attention play distinct
yet complementary rolesLiu et al.| (2024). Cross-attention injects textual semantics into the image
latent space, aligning generation with the prompt, whereas self-attention operates solely on visual
latents to capture long-range spatial dependencies and regulate stylistic consistency across the im-
age. Building on this observation, recent works [Hertz et al. (2024); Jeong et al.| (2024); |Chung
et al.[(2024) in image editing have exploited self-attention for style manipulation where the atten-
tion is computed using the content query Q). and the style key K, and value V;, hence term KV
injection. Their hypothesis is that () encapsulates the content within an image, while K and V'
represent the style information. This assumption is supported by the experiments in image editing
research, which demonstrate that semantic structures are mainly preserved in queries, while stylistic
attributes are embedded in keys and values/Huang et al.|(2025) Based on these insights, we propose
a hybrid-attention distillation module to manipulate the self-attention mechanism for targeted style
erasure.

Specifically, we extract the query, key, and value representations from the image generated us-
ing a stylized prompt P, denoted as QF, K}, V%, at layer | and timestep ¢. Similarly, we obtain
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f,t perel,t y reft . f,t ft
C0 KN, VT from a style-neutral reference image. Among these, K; " and V" serve as

the anchors for style removal. We then define the hybrid-attention distillation loss at each selected
layer and timestep as:

2
LiAD — HAtm(Q;, K}, Vi) — Attn(QF, KI5, vrett) H2 . 4)

The first term in (@) represents the original self-attention of the image generated from the stylized
prompt, while the second term denotes a cross-attention operation that replaces the key and value
matrices with those from the style-neutral reference image to unlearn stylistic bias. This design en-
sures that the model focuses on erasing style-related features, while preserving the semantic content
encoded primarily in the query representations.

3.4 CONTENT PRESERVATION

While the proposed Liap effectively removes style-specific features, it may inadvertently compro-
mise the semantic content of the image. To mitigate this issue, we introduce a content preserva-
tion mechanism by enforcing consistency between the query representations of the generated image
(from the stylized prompt) and those of the reference image at each timestep ¢ and layer [, as for-
malized in (B).

S

t ref,t 2
Econtent = HQl — W ’ ‘2

As the query representations predominantly encode semantic content Zhou et al.| (2025), enforc-
ing alignment between the query matrices of the stylized and reference images facilitates semantic
preservation and alleviates potential compromise caused by style erasure.

3.5 GENERALIZATION PRESERVATION

Inevitably, the joint optimization of hybrid-attention distillation and content preservation objectives
induces a deviation of model parameters from those of the original pre-trained model. Such a shift
may adversely affect the model’s ability to generalize to other styles or content. To address this
issue and retain generalization during effective erasure, we introduce a retain loss that regularizes
the parameters toward the original pre-trained weights:

['retain = ||9 - eori”l 5 (6)

where 6,,; denote the original parameters of the model. This regularization encourages the model
to preserve its generalization ability while unlearning the target style.

Then, the total loss is defined as:
»Ctotal = »CHAD + )\1 ['content + )\2£retain7 (7)
where \; and )\, are hyperparameters that balance the contributions of different objectives.

This formulation (7)) unifies three complementary components: /) style unlearning through hybrid-
attention distillation, which selectively suppresses style-related information; 2) content preservation
via alignment of query representations, which encourages the model to retain content consistency
with the reference image; and 3) parameter regularization to maintain model generalization, mit-
igating potential overfitting to the erased style. Together, these components enable effective and
controllable style erasure while maintaining high fidelity to the original content and preserving the
generative capacity of the model across diverse inputs.

During training, we apply the above three losses across multiple timesteps and selected attention
layers of the diffusion model. The hybrid attention and query alignment are computed per layer. This
design allows targeted style forgetting while retaining the model’s generation ability on unrelated
concepts. We summarize the training process in Alg|[I]

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. We employ four datasets, each corresponding to a distinct artistic style: Van Gogh,
Claude Monet, Pablo Picasso, and Rembrandt. Each training set contains 50 stylized prompts that
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Figure 3: Visualization of unlearning on Van Gogh, Monet, Picasso, and Rembrandt shows our
method removes target styles while preserving content, outperforming baselines.

Monet Picasso Van Gogh Rembrandt
Methods
Ccs] FIDtT CStT FID] CStT FID] CStT FID|
ESD 66.12  90.30 66.55 5395 68.17 91.58 6723 7691

FMN 57.78 11329 66.52 48.58 65.82 111.34 67.22 78.48
UCE 6327 9368 69.15 38.17 72.88  44.69 06943 48.17
SPM 71.64 5758 67.58 2746 7195 50.39 6898  40.62
Ours 57.37 12029 67.75 7256 7295 58.69 69.86 93.26

Table 1: Results of unlearning the Monet style while preserving the styles of Picasso, Van Gogh,
and Rembrandt. Lower CS and higher FID indicate better erasure; higher CS and lower FID indicate
better preservation. Best and second-best results are in bold and underlined, respectively.

capture the visual characteristics of the target artist while covering a diverse range of semantic scenes
(e.g., landscapes, portraits, objects). The test set includes 20 prompts that are disjoint from those
used in training.

To construct the reference images in our training set, we start by extracting a base prompt from each
stylized prompt (e.g., from the starry night by Van Gogh, we derive the night with stars by removing
style-specific keywords). We then pair the base prompt with a negative prompt that specifies the
artist (e.g., negative prompt = “Van Gogh”) to generate a reference image that retains the high-level
content but excludes the targeted artistic style. The resulting reference images, together with their
original stylized prompts, serve as the training data in our study.

Baselines. We compare our method with four latest approaches including ESD |Gandikota et al.

(2023), FMN [Zhang et al] (2024), UCE (2028). and SPM (023). The
Implementation details of SUDM are provided in[A.2]

Evaluations. We adopt a leave-one-style-out evaluation, where each of the four datasets (Van
Gogh, Monet, Picasso, Rembrandt) is held out in turn as the target style to forget, with the others
retained. This rotational setup enables a thorough examination of the method’s ability to selectively
forget one style while preserving the others.

To assess unlearning and preservation performance, we employ two standard metrics: CLIP Score
(CS)[Hessel et al.| (2021)); Beaumont (2022); [Kumari et al.| (2023b) and Fréchet Inception Distance
(FID) Heusel et al| (2017). CS quantifies the similarity between generated images and the target
prompt, while FID measures the distributional distance between images generated post-unlearning
and those produced by the original model. For the forgotten style, lower CS and higher FID values
indicate more effective unlearning. In contrast, for the preserved styles, higher CS and lower FID
values suggest better retention of the model’s generative capabilities. For each evaluation, we gen-
erate 400 images using 20 test prompts, and report the average performance across the datasets.
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Van Gogh Picasso Monet Rembrandt

Methods

Ccs| FIbt CS1T FID] CS1T FID|l CS1T FIDJ
ESD 6594 11697 67.01 5395 7445 5371 6823 7371
FMN 6348 124.16 6582 54.04 7143 5995 6773 7051
UCE 6190 120.89 67.04 3359 7443 2753 6895 51.03
SPM 6391 111.18 6627 39.67 7344 4381 6799 61.64
Ours 61.07 16331 66.87 67.69 7518 53.53 7015 93.26

Table 2: Results of unlearning the Van Gogh style while preserving the styles of Picasso, Monet,
and Rembrandt. Lower CS and higher FID indicate better erasure; higher CS and lower FID indicate
better preservation. Best and second-best results are in bold and underlined, respectively.

M Picasso Van Gogh Monet Rembrandt
ethods

CS | FID 1 CS 1 FID | CS 1 FID | CS 1 FID |
ESD 62.91 94.44 71.18 81.23 73.00 49.45 69.00 71.29
FMN 61.08 103.58  66.64 104.06  73.20 111.34  68.15 70.42
UCE 61.45 97.38 72.54 53.46 79.41 35.86 69.85 59.23
SPM 62.84 74.21 72.44 48.09 74.73 20.86 68.95 45.10
Ours 61.87 15111 72.56 126.65  74.33 84.43 72.12 118.91

Table 3: Results of unlearning the Picasso style while preserving the styles of Monet, Van Gogh,
and Rembrandt. Lower CS and higher FID indicate better erasure; higher CS and lower FID indicate
better preservation. Best and second-best results are in bold and underlined, respectively.

Single-style unlearning. We assess SUDM’s performance in unlearning a target style while re-
taining quality for others, with results for Monet, Van Gogh, Picasso, and Rembrandt presented in
Tables [TH4} The visual effects of different unlearning methods are compared in Fig. [3]

The results reveal three main findings: /) As shown in Tables SUDM consistently achieves the
lowest CS when unlearning Monet, Van Gogh, and Rembrandt, and the highest FID when unlearning
Monet, Van Gogh, and Picasso, demonstrating superior unlearning performance. From the visual
comparisons in Fig. [3] SUDM also shows more thorough erasure of the target style, while others
retain stylistic artifacts. For instance, ESD and SPM fail to remove Picasso’s abstract textures, and
FMN and UCE only achieve partial removal. 2) SUDM also demonstrates strong generalization
preservation. Specifically, it achieves the highest CS on Van Gogh and Rembrandt, and the second-
highest CS on Picasso when Monet is the target of unlearning, indicating that it preserves non-target
styles effectively during the unlearning process. 3) SUDM exhibits a higher FID than most other
methods in preserving non-target styles, primarily due to its emphasis on effectively erasing the
target style, which inevitably compromises preservation fidelity. In contrast, the lower FID scores of
other methods often result from insufficient erasure rather than superior generalization. As shown in
the sensitivity analysis (Section[d.3)), increasing A\, (preservation) and decreasing \; (erasure) lowers
the FID, highlighting the trade-off between forgetting and generalization. This trade-off reflects the
strength of SUDM: it achieves effective erasure while maintaining competitive generalization on
non-target styles.

Multiply-style unlearning. To further evaluate the scalability of SUDM, we consider a more chal-
lenging setting that requires simultaneously unlearning both Van Gogh and Monet styles. Notably,
ESD is not applicable in this scenario due to its inability to handle multi-style unlearning, and thus
is not reported. As shown in Table[5] SUDM significantly reduces the CS for both target styles while
maintaining performance comparable to UCE, indicating effective removal of the stylistic features.
These results demonstrate that SUDM not only supports multi-style unlearning but also achieves
robust generalization.

4.2 ABLATION STUDY

We conduct ablation studies to assess each loss’s contribution in SUDM for unlearning Van Gogh
style while preserving Monet. Table [] reports CS and FID scores, and Fig. [] visualizes the ef-
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Rembrandt Van Gogh Monet Picasso

Methods

CS | FID 1 CS 1 FID | CS 1 FID | CS 1 FID |
ESD 63.81 102.12 71.46 69.20 72.75 54.50 68.74 47.83
FMN 64.48 121.54 68.26 85.93 72.52 54.99 66.65 48.98
UCE 65.18 171.59 73.09 58.18 74.90 46.60 68.10 43.42
SPM 68.99 55.73 73.24 47.83 71.06 6291 68.49 36.87
Ours 63.39 132.15 71.98 108.48 73.05 60.74 68.16 78.25

Table 4: Results of unlearning the Rembrandt style while preserving the styles of Monet, Van Gogh,
and Picasso. Lower CS and higher FID indicate better erasure; higher CS and lower FID indicate
better preservation. Best and second-best results are in bold and underlined, respectively.

. Van Gogh Monet Picasso Rembrandt
Methods

CS | FID 1 CS| FID 1 CS 1 FID | CS 1 FID |
ESD - - - - - - - -
FMN 63.80 120.12  68.12 80.42 66.41 52.02 67.25 80.13
UCE 59.11 134.62  61.16 10546  68.85 45.33 68.10 62.52
SPM 63.78 104.01 72.06 55.75 68.96 38.09 67.25 56.36
Ours 62.65 129.40  63.67 91.19 67.08 73.83 68.51 97.05

Table 5: Results of unlearning Van Gogh and Monet while preserving the styles of Picasso and
Rembrandt. Lower CS and higher FID indicate better erasure; higher CS and lower FID indicate
better preservation. Best and second-best results are in bold and underlined, respectively. ESD does

@ 9

not support multi-style unlearning (“-”).

fects of removing Lyap, Leontent> aNd Liewin. We further examine the impact of layer selection by
progressively including self-attention layers from shallow to deep, as shown in Fig.

Effect of HAD loss Lyap. Removing Lyap notably weakens unlearning, as reflected by the higher
CS to Van Gogh (0.61 — 0.72) in Table @ The results in Fig. E] further confirm this: unlike SUDM
(second column), the model without Lyap (third column) fails to remove Van Gogh style.

Effect of the content-preserving 10ss Leontent-  Ablating the content-preserving 10ss Lcontent leads
to noticeable content corruption. As shown in Fig. [i] the original image contains a distinct sun
element, which fails to appear when L.ontent is removed (see the fourth column). This results in
both visual content distortion and semantic shift. The decline in CS for Van Gogh, as shown in
Table[6] further underscores the importance of content preservation during unlearning.

Effect of the retain loss Liepin. We evaluate Liewin, Which designed to limits parameter drift
and preserve generalization on non-target styles. Removing it lowers CS for styles like Monet
(Table[6) and fails to preserve Monet’s style visually (Fig.[4] fifth column), highlighting its key role
in maintaining generalization during unlearning.

Effect of the selection of the self-attention layers. We examine the effect of selecting differ-
ent ranges of self-attention layers for optimization, as shown in Fig[7] The results reveal that the
erasure improves with deeper inclusion, but full-layer optimization causes overfitting and quality
degradation. Consequently, we choose to adopt the first ten layers as a balanced configuration.

4.3 SENSITIVITY ANALYSIS

To evaluate the sensitivity of the loss trade-off, we analyze the effects of A\; (content preservation loss
Lcontent) and Ao (generalization preservation 1088 Letin)- Fig. E] shows the CS and FID under varying
A1 and A2 on the Van Gogh unlearning task, with the Monet style used to assess generalization to
non-target styles.
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Variant Van Gogh (Unlearning Target) Monet (Preservation Target)
CLIP | FID © CLIP 1 FID |

w/o HAD 72.65 136.07 73.36 88.95

w/0 Lecontent 62.07 112.99 70.85 61.01

W/0 Lretain 60.11 205.26 60.02 111.43

SUDM (Ours) 61.46 184.54 71.85 76.99

Table 6: Ablation results for unlearning Van Gogh while preserving Monet. For evaluation metrics:
J indicates lower values are better (better style unlearning for Van Gogh, better style preservation
consistency for Monet), 1 indicates higher values are better (stronger style erasure for Van Gogh,
higher style fidelity for Monet).

Original Ours w/0 Lyap wio L

content WO Lyerain

Erase (Van Gogh)

Preservation (Monet)

Figure 4: Visual illustration of component effects in SUDM. The top row shows Van Gogh style
erasure, and the bottom row shows Monet style preservation. From left to right: (1) Original artwork.
(2) full model (Van Gogh erased, Monet retained); (3) w/o Lyap (Van Gogh not fully erased); (4)
W/0 Leonent (content distorted, e.g., sun missing); (5) w/o Liewin (Monet style not preserved).

From Fig.[6] we have the following two key findings. /) As \; increases (top subfigures), CS slightly
decreases while FID rises sharply, indicating that stronger query consistency enhances target-style
erasure(as indicated by a lower CS and higher FID on Van Gogh), but compromises generalization
to non-target styles(as reflected by decreased CS and increased FID on Monet). 2) As A, increases
(bottom subfigures), CS increases and FID decreases, suggesting that greater parameter consistency
weakens erasure but improves generalization preservation.

Therefore, balancing erasure and generalization is crucial. To emphasize erasure, \; can be in-
creased but kept below 1 to avoid harming generalization. To preserve generalization, Ay should
remain under 5 x 1074, as larger values result in a CS around 0.70, indicating incomplete erasure.

5 CONCLUSION AND LIMITATIONS

In this paper, we present SUDM, a novel framework for style unlearning in diffusion models. Unlike
prior methods that leverage the predicted noise distribution and struggle to capture abstract stylistic
features, SUDM exploits attention-based representations to achieve more precise style modeling.
This enables selective removal of style-related representations while maintaining the semantic con-
tent. Extensive experiments on Stable Diffusion demonstrate that our method effectively erases
specific artistic styles while minimizing degradation to unrelated concepts.

Despite its promising results, SUDM has several limitations. It assumes a clear separation between
style and content in self-attention representations, which may not hold for abstract or entangled
styles. Moreover, it depends on well-curated reference images, which may limit its applicability in
real-world settings. Future work may investigate theoretical guarantees for the trade-off between
style unlearning and generalization.
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A APPENDIX

A.1 ALGORITHM SUDM

We present the algorithm SUDM as follows:
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Algorithm 1 Style Unlearning in Diffusion Models

Require: Target stylized prompts c, reference images Irr, pretrained model e
of epochs N, € ~ N (0, I), set of layers Lqei, sampling steps Tiax-

1: for epoch¢ = 1to N do

2:  for each (¢, Irer) in dataset do

3 Randomly select a timestep ¢ ~ Uniform(1, Trmax)

4: Get the latent representations: z; < €g(c, €, t),
5: Add noise to the I, at step ¢:
6‘
7
8

model to train €5, number

ori?

Zref,t = 1/ i lrer + V31— o€
for layer [ € Ly do
Extract {Q}, K}, V;'} from z; using 0

9: Extract {Qgef’t, Klm’t, Vl“"f’t} from zrer,¢ using Gor;
10: end for
11: Compute HAD loss by leveraging (@)
12: Compute content-preserving loss by leveraging (5)
13: Compute generalization-retain loss by leveraging (6)
14: Compute total loss by leveraging
15: Update model parameters: 6 <— 0 — nVgLiotal
16:  end for
17: end for

18: return 6

A.2 IMPLEMENTATION DETAILS.

All experiments are conducted using the Stable Diffusion v1.5 model CompVis|(2022) as the back-
bone. Stable Diffusion V2-1 is also avaliable. In our approach, only the self-attention layers of the
UNet in the stable diffusion model are fine-tuned. Empirically, we use the first 10 self-attention
layers of the UNet to compute the Ly 4p and L.ontent. The model is then trained for 50 epochs
using a batch size of 1 and a learning rate of 1 x 107>, We set the loss weights to A; = 0.5 and
A2 = 0.000325.

A.3 USER STUDY

Following ESDGandikota et al.| (2023)), we conduct a user study to assess how well different meth-
ods erase or preserve artistic styles for generalization. Each participant views five real artworks in
a consistent style—either the target style or a generalization style—along with a sixth image, ran-
domly selected as either: /) an image with the target style removed by SUDM or a baseline, or
2) an image retaining a different style after target-style unlearning. A total of 2,925 responses are
collected from 13 participants, each rating the similarity of the sixth image to the reference set on a
scale from 0 to 5 (most similar). Figure[3|reports the average user ratings. SUDM obtains the lowest
score on the target-style set, indicating strong erasure, and a high score on the generalization-style
set, suggesting effective preservation. These results highlight SUDM’s advantage in style-specific
unlearning.

A.4 SENSITIVITY ANALYSIS

To better understand the role of different components in our objective, we conduct a sensitivity
analysis on the loss weights \; (content preservation) and Ay (generalization preservation). The
results are as follows:
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Figure 5: User study compares SUDM and baselines on erasing target styles and preserving others.
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Figure 6: Sensitivity analysis of loss weights \; (content preservation) and A5 (generalization preser-
vation) on Van Gogh erasure and Monet generalization. Top-left: Effect of A\; on CS; Top-right:
Effect of A1 on FID. Bottom-left: Effect of Ay on CS; Bottom-right: Effect of Ay on FID.

A.5 THE INFLUENCE OF SELF-ATTENTION LAYERS SELECTION

To investigate the impact of layer selection on style forgetting, we conducted an ablation study
by progressively incorporating self-attention layers into the optimization. Specifically, we trained
models with cumulative ranges of layers, starting from 0—1 and gradually extending up to 0-16.As
shown in Fig[7] the erasure becomes increasingly effective as more layers are involved, confirming
that style information is distributed throughout the hierarchy rather than confined to a single depth.
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However, we observe that applying optimization to all 16 layers, while yielding the strongest forget-
ting signal, also introduces overfitting, manifested as reduced diversity and fidelity in the generated
images. Based on these findings, we adopt the first ten layers in our final configuration, which
provides a favorable trade-off between effective style erasure and preservation of overall generative
quality.

1
9

Figure 7: Ablation on the selection of self-attention layers for HAD. We progressively expand the
included range from 0-1 up to 0-16. The erasure improves as more layers are involved, but full-
layer optimization (0—16) leads to overfitting and degraded image fidelity. We therefore adopt the
first ten layers as a practical trade-off.

A.6 SELF-ATTENTION AND CROSS-ATTENTION IN STABLE DIFFUSION

In latent diffusion architectures (e.g., Stable Diffusion), cross-attention and self-attention serve dif-
ferent but interdependent functions. As can be see in Fig[§] Cross-attention conditions the visual
latents on the textual embedding, injecting semantic guidance and any stylistic descriptors into the
generative process. Self-attention, by contrast, operates exclusively within the visual latent space,
modeling long-range spatial dependencies and enforcing coherent propagation of locally-introduced
attributes across the image. Consequently, although stylistic cues can be introduced via the prompt
through cross-attention, their spatial manifestation and global consistency are mediated by the self-
attention pathway. Building on this distinction, we modify the self-attention mechanism to erase
the style-related features while retaining semantic guidance from cross-attention. This intervention
enables targeted style erasure, allowing the model to generate content faithful to the prompt with-
out reproducing its stylistic attributes. We empirically demonstrate that this intervention effectively
removes target styles while preserving semantic fidelity and overall image quality.
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Figure 8: The self-attention and cross-attention in Stable Diffusion.

A.7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

A.8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
SUDM, to assist others in reproducing our experiments.

A.9 THE USE OF LARGE LANGUANGE MODELS (LLM)
In preparing this manuscript, LLMs were used solely for two auxiliary tasks,

1. Language Polishing: [ GPT-4] was employed to refine sentence structure, enhance ex-
pression clarity, and ensure writing style consistency. All LLM-generated revisions were
manually checked and adjusted to align with academic norms and the original research
intent.

2. Literature Summary Assistance: The LLM assisted in synthesizing key findings from
peer-reviewed literature (independently retrieved and screened by the authors). These sum-
maries served only as preliminary references; the authors further cross-verified content
against original sources and conducted critical analysis to finalize the literature review.
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