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Abstract

Federated learning has been deployed to train machine learning models from
decentralized client data on mobile devices in practice. The clients available for
training are observed to have periodically shifting distributions changing with
the time of day, which can cause instability in training and degrade the model
performance. In this paper, instead of modeling the distribution shift with a block-
cyclic pattern as previous works, we model it with a mixture of distributions that
gradually changes between daytime and nighttime modes, and find this intuitive
model to better match the observations in practical federated learning systems. We
propose a Federated Expectation-Maximization algorithm enhanced by Temporal
priors of the shifting distribution (FedTEM), which jointly learns a mixture model
to infer the mode of each client, while training a network with multiple light-weight
branches specializing at different modes. Experiments for image classification on
EMNIST and CIFAR datasets, and next word prediction on the Stack Overflow
dataset show that the proposed algorithm can effectively mitigate the impact of the
distribution shift and significantly improve the final model performance.

1 Introduction

In Federated Learning (FL), many clients collaboratively train a machine learning model with
decentralized data under the orchestration of a central server (Kairouz et al., 2019). FL is designed
for privacy protection: the private data of local clients will never be directly transferred to the server
or shared with other clients, which follows the principle of data minimization and keeps the attack
surface of the system small (Wang et al., 2021). Initially introduced for decentralized training on
mobile devices (McMahan et al., 2017), FL has been widely applied for various different applications
including finance, health, digital assistance and personalized recommendations (see a few recent
surveys (Yang et al., 2019; Kairouz et al., 2019; Li et al., 2020a; Lim et al., 2020; Wang et al., 2021)).
Specifically, cross-device FL has been used in practice to boost utility and privacy for applications
such as next word prediction (Hard et al., 2018), emoji suggestion (Ramaswamy et al., 2019), query
suggestion (Yang et al., 2018), out-of-vocabulary word discovery (Chen et al., 2019), and keyword
trigger models (Granqvist et al., 2020; Hard et al., 2020).

A typical communication round of FL starts with a server broadcasting a global model to clients.
Clients then perform local computation on private data and only send back aggregated model updates.
Finally, the server aggregates the client updates and apply them to the global model before beginning
the next round. In practical FL systems (Bonawitz et al., 2019; Paulik et al., 2021), clients can
only participate when the local criteria is met, such as when mobile devices are charging, idle,
and connected to an unmetered network. For the server, clients that satisfy their local criteria and
participate training at different times of the day are usually from different time zones that can have
significant cultural differences, which cause a periodically shifting data distribution that may degrade
the training stability and final model performance (Yang et al., 2018; Eichner et al., 2019). For
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centralized systems where client data can be collected, such a problem may be mitigated by caching
and uniformly sampling from cached data. However, due to the privacy and system constraints (Wang
et al., 2021), the orchestrator (server) in FL systems is not allowed to collect the raw user data, and
must deal with such non-IID, heterogeneous data distribution.

To our knowledge, there are only a few previous works (Eichner et al., 2019; Ding et al., 2020)
discussing periodical distribution shift of client population in federated learning. Both works assume
a block-cyclic structure where daytime clients and nighttime clients alternately participate in training.
Eichner et al. (2019) proposed the semi-cyclic SGD approach, where clients participating training at
different time slots will contribute to and only use the corresponding model of the group. However,
there are several caveats of semi-cyclic SGD that makes it difficult to apply in practice: (1) It assigns
models to clients based on their participation time, but not all clients will participate in federated
learning, hence it is hard to decide the correct group for these clients. (2) It maintains a version of
the full model for each clients group, which potentially increases the communication cost or privacy
risk. (3) The assumption of the abrupt switch from the daytime group to the nighttime group at a
specific time of a day is unintuitive in practice. (Ding et al., 2020) is a variant of semi-cyclic SGD
that inherits these issues. We provide further discussions of related works in Appendix C.5.

In this paper, we study periodical distribution shift of clients, and make the following contributions:

1. We revisit the periodical distribution shift. Instead of adoopting the block-cyclic struc-
ture (Eichner et al., 2019), we assume a smooth transition between the day mode and night
mode, and empirically verify through simulation that its impact on training better matches
the observation in practical FL systems.

2. We propose to jointly train a multi-branch network and a Gaussian mixture model to select
the branch that better fits the client’s distribution based on the feature representations. The
lightweight branches for the day and night modes only slightly increase the communication
cost, but significantly improve the model performance. Unlike (Mansour et al., 2020; Ghosh
et al., 2020; Marfoq et al., 2021), the feature-based mixture model does not rely on labelled
data, and can be easily applied can be easily applied for inference on new clients.

3. We propose a Federated Expectation-Maximization algorithm enhanced by Temporal priors
of the shifting distribution (FEDTEM) to train the multi-branch networks. We assume
participating clients per communication round is a mixture of daytime and nighttime clients,
and the number of participating clients from the daytime group will gradually increase as
time passes from the night mode to day mode, and vice versa. We use such temporal prior
to guide the EM algorithm in the M step to learn parameters that better distinguish the two
modes. By exploiting such temporal prior, we can train models that are even more accurate
than models trained with uniformly sampled clients.

4. We provide simulations of the distribution shift on three benchmark datasets (EMNIST,
CIFAR and Stack Overflow) to evaluate the empirical performance of FL algorithms under
the periodic distribution shift with smooth transition. We perform extensive experiments,
where the multi-branch networks trained by FEDTEM outperform the distribution-oblivious
baselines by a large margin: 3-5% on EMNIST, 2-14% on CIFAR, and 0.4-1.35% on
the challenging Stack Overflow dataset under various degrees of distribution shifts. By
leveraging the temporal priors, the proposed method can take advantage of the periodic
distribution shift and beat the strong baselines of training with uniformly sampled clients by
4%, 4% and 0.45%, respectively.

2 Modeling Periodical Distribution Shift

FL setting. We consider the federated learning algorithm for a set of clients I , and the i-th client has
data samples Di. The clients are heterogeneous, while the data on each client are IID (independent
and identically distributed) sampled from its own distribution. We minimize the expected loss on all
clients,

minimize
w

L(w) =
∑
i∈I

piLi(w), where Li(w) =
1

|Di|
∑
ξ∈Di

`(w, ξ), and
∑
i∈I

pi = 1, (1)

where pi is the weight (probability) of client i, and ξ = (x,y) is a training sample pair of data and
label on a client. By setting pi = |Di|/

∑
j∈I |Dj |, the federated training loss recovers the empirical
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Figure 1: Training accuracy of next word prediction models. (Left): real data from on-device training in a FL
system. (Middle): simulation of the smooth distribution shift with qL,1(t) on Stack Overflow (T = 256). In the
beginning of each period, the probability of clients coming from nighttime mode is 1, and it linearly decreases to
0 in the middle of each period so that all clients are from daytime mode, corresponding to the peaks and valleys
of the curves respectively in the latter stage of training. (Right): simulation of the block-cyclic shift on Stack
Overflow (T = 256).

risk minimization (ERM) objective on all client samples. For simplicity, we abuse notation and use
x ∈ Di to denote a training sample (without label) for client i.

Periodic distribution shift. A subset of clients I ′(t) ⊂ I(t) are available for training in a com-
munication round t. I(t) periodically changes with most of the clients from a daytime (nighttime)
client group in midday (midnight). Figure 1 (left) shows that the training loss in a cross-device FL
system has daily oscillation. Such oscillations was also observed in (Yang et al., 2018), and Yang
et al. (2018) conjecture it is due to the domain differences between clients from different time zones
and cultural backgrounds. Eichner et al. (2019) study the block-cyclic structure, where training takes
place over T rounds each day, and clients are from the day mode and night mode alternately, each last
continuously for T/2 rounds. We simulate the training curves of block-cyclic structure in Figure 1
(right), and observe it is different from the (left) curves from real FL systems.

Smooth transition. We also assume the distribution changes periodically with a period of T . Unlike
(Eichner et al., 2019), we assume clients at round t are a mixture of daytime clients and nighttime
clients, denoted as I1(t) and I2(t), respectively. Intuitively, since the available population is usually
large around the clock, the population distribution of available clients will gradually shift, rather than
abruptly jumping from one mode to another as in the block-cyclic structure. To better approximate
the behavior in practice, we assume that in each period, clients come from the day mode I1(t) with a
probability q(t) that varies smoothly between 0 and 1. Specifically, we simulate I1(t) and I2(t) with
two disjoint sets of clients with different data distributions, and define q : R+ → [0, 1] to be periodic
function with a period of T . At each round t, we sample the clients from the following distribution

P (i ∈ I1(t)) = q(t), P (i ∈ I2(t)) = 1− q(t). (2)

We consider two types of functions for q(t): Linear (L) and Cosine (C), each further parameterized
by an exponent factor p > 0 to control smoothness of the transition,

qL,p(t) =

∣∣∣∣2 t mod T

T
− 1

∣∣∣∣p , qC,p(t) =

[
1

2
(cos (2πt/T ) + 1)

]p
. (3)

We visualize the transition probability q(t) in Figure 7 of the appendix. When p < 1, more daytime
clients are available in T rounds, and when p > 1, more nighttime clients are available. This simulates
the difference in the number of completed training rounds during daytime and nighttime observed in
practice (Yang et al., 2018).

Observation and insight. Figure 1 (middle) simulates the training curve with qL,1(t) to control
the probability for sampling from I1(t), which more accurately approximates the curves in real FL
systems. All three curves show that training a single model around the clock achieves reasonable
performance on both modes (much better than random) despite the domain differences, which
motivates us to train a model with large amount of shared weights. Semi-cyclic SGD (Eichner et al.,
2019) provides the worst-case guarantees when the domains of each block are unrelated, which
argues that training a single model on both modes is not optimal, but does not match our observations.
Another important observation is that the training accuracy reaches its minima (maxima) when the
clients are most biased towards the day mode or night mode, e.g., round 1024 and 1152 in the middle
figure, from which we can infer the peak momentum of daytime clients and nighttime clients in
practice and use it to define a strong prior in the proposed FedTEM algorithm.
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Figure 2: Comparing the methods on EMNIST, CIFAR and SO under linear (top row) and cosine (bottom row)
distribution shifts with different p’s.

3 Mitigating Periodical Distribution Shift

We propose FEDTEM to tackle the periodical distribution shift, in which we jointly train a multi-
branch network and a Gaussian mixture model (GMM). The GMM can infer latent variables that
determine a participating client is from daytime mode or nighttime mode. The learning process of
the GMM is enhanced by priors about the probability of daytime (nighttime) clients at the current
round. A multi-branch network is simultaneously trained on the participating clients based on the
inferred latent variables, with each branch corresponding to a mode. Our algorithm satisfies many
desirable properties for cross-device FL, which are missing in many previous works in clustered
FL or personalization. The server and clients only exchange information once in a communication
round, and clients do not maintain local states. Also, the GMM model does not rely on labeled data,
facilitating deployment on new clients without labeled data. We will discuss how FEDTEM is applied
in cross-device FL in detail in Section A.

Algorithm 1 FEDTEM: Federated EM with Temporal Prior (Training)
1: Input: A stream of clients I(t) with periodical distribution shift; Number of communication rounds N ;

Number of rounds per day T .
2: Output: Network parameters wN+1 = (wN+1

f ,wN+1
1 ,wN+1

2 ), mixture model parameters θN+1 =

(µN+1,σN+1,πN+1).
3: for t = 1 to N do
4: A set of m clients I′(t) ⊂ I(t) is available for training;
5: Server broadcasts parameters of the networkwt and the GMM (µt,σt,πt) to I′(t);
6: for clients i ∈ I′(t) in parallel do
7: Estimate πi on Di, and choose the branch k∗i = arg maxk π

∗
ik; . see Eq. 5

8: Given k∗i , run local updates for the network by optimizing Eq. 6 and get w̃t+1
i ;

9: On Di, compute the MLE π̄∗i and all feasible Gaussian parameters (µ̃t+1
i , σ̃t+1

i ); . see Eq. 8,11
10: Server aggregates the network and GMM params {w̃t+1

i , π̄∗i , µ̃
t+1
i , σ̃t+1

i |i ∈ I′(t)} from the clients;
11: Update the GMM parameters to (µt+1,σt+1,πt+1) with the temporal prior on π̄∗i ; . see Eq. 12
12: Update network parameters towt+1 with the prescribed server optimizer.

4 Experiments
We give the main results in this section, and defer the details in Section B.

Methods to compare. First, we provide ablation studies on the temporal prior to quantify its efficacy,
and see which prior (Linear, Cosine, or Soft) works better in practice. Note for Linear and Cosine,
we always use the same periodical linear or cosine function with p = 1 under all types and p’s for the
distribution shift. The detailed comparisons are given in Appendix C.3 and Figure 4, from which we
can see: 1) all three types of priors improve the baseline in most cases; 2) linear prior works better on
image datasets, while cosine prior works better on SO; 3) with weakened assumptions, Soft prior is
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able to fit the distribution shift and improves the results.
With these observations, we use the linear prior on EMNIST and CIFAR (FedTEM (linear)) and
the cosine prior on SO (FedTEM (cosine)), to compare with other methods. Results are shown in
Figure 2. For fair comparisons, we adapt all methods into our settings to maintain two important
conditions unless otherwise stated: 1) training the same multi-branch network to keep model capacities
the same; 2) labels are not available for test clients. For the baseline without any branch selection
technique, we train the same multi-branch network by taking the averaged output from both branches
for prediction. Such networks trained under shifting data distribution are denoted as “Vanilla", while
those trained without distribution shift are denoted as “No Dist. Shift" (NDS).In Appendix C.6, we
also give results of training single-branch models in these two settings, which obtained almost the
same results. For other methods addressing data heterogeneity, we consider: 1) “SCSGD", where
similar as Semi-Cyclic SGD (Eichner et al., 2019), we train one model during first half of each period,
and the other model on the other half. During test time, since there is no indicator of which mode the
clients come from in practice, we select the models according to the certainty of their predictions,
measured by evaluating the KLD between the prediction and a uniform distribution over all labels. 2)
T-shot K-means, which is an enhancement of the one-shot K-means (Dennis et al., 2021), collecting
the cluster centers on raw data from all participating clients during a whole period of T rounds before
training. For both training and test, it selects the branches for each sample according to the nearest
cluster center. 3) “Min Loss (IFCA)", where same as IFCA (Ghosh et al., 2020), we choose the
branch with minimum loss on the local training set of each client during training, but different from
IFCA, we choose branches with highest certainty on the unlabeled test set clients, using the same
criterion as 1). Besides, we have also applied the same label smoothing regularization (Eq. 6) to
IFCA, which improves the results. 4) FedEM (Marfoq et al., 2021), where we use the same algorithm
on participating clients during training. For testing, we let it “cheat" and assume all test samples are
labeled, so that it can execute its modified EM steps based on the loss to select the branches.

Main Results The best results of all compared methods are shown in Figure 2. By comparing
results of Vanilla and NDS, we find the temporal distribution shift indeed causes issues for normal
training, causing the worst-case decrease in accuracy by more than 7%, 20% and 1% respectively
on EMNIST, CIFAR and SO. Surprisingly, with FEDTEM, the accuracy can be even higher than
models trained in the NDS setting in most cases, indicating FEDTEM obtains more distinctive feature
representations by learning to separate the two modes in the feature space and learning specialized
prediction branches. The improvement on the strong NDS baseline can be as high as 4%, 4% and
0.45% on the three datasets. FEDTEM is not better than NDS when p deviates too much from 1, but
the data distribution is extremely skewed in such settings, where FEDTEM still improves over most
other methods in most cases. For other methods, SCSGD performs surprisingly well on EMNIST
when p is large, but the performance quickly drops on the more complicated CIFAR and SO. T-shot
K-means achieves improvements for extreme p’s on EMNIST, but it is not significantly better than
“Vanilla" on CIFAR, due to the difficulty in reliable clustering in more complicated image spaces.
Also note it is not straightforward to do clustering on raw data of SO so we have not implemented
it. Min Loss (IFCA) alleviates the drop and sometimes catches up with NDS, but cannot achieve
improvements over NDS. By contrast, results of FedEM is the worst even when it is “cheating" on
the test clients. This is probably due to the staleness of the priors, since we simulate the on-device
setting on a large population where clients only participate training for a few rounds on EMNIST and
CIFAR, and at most one round on SO.

5 Conclusions
In this paper, we demonstrated that the smooth transition model for simulating the periodical dis-
tribution shift better matches practical FL systems, and developed FEDTEM algorithm to train
multi-branch networks to tackle the distribution shift. FEDTEM incorporated priors of the temporal
distribution shifts into learning a GMM to guide the network to select corresponding branches for
clients of different modes. The GMM is defined in the feature space and does not require labelled
data for inference, hence is ready to use for new test clients. The branches are light-weight with little
communication overhead, and the model demonstrates significant improvements in test accuracy on
the benchmark datasets. FEDTEM also satisfies many other real-world constraints like single round
communication and stateless clients (Bonawitz et al., 2019; Paulik et al., 2021; Wang et al., 2021),
which makes it ready to be deployed in practical FL systems.
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A Details of FEDTEM

Multi-branch network. We consider applications in which clients are training a model with common
input and output space, despite the distribution shift of clients. Though there exists distribution
shift, training a model that shares common features by leveraging data from all clients can enable
representation learning with better data efficiency. For vision tasks, for example, a common model can
use data across domains to learn common low-level features, while for language tasks it helps with
learning common embedding and grammatical rules from the context. To alleviate the communication
overhead, we adopt the weight-sharing strategy from multi-task learning (Caruana, 1997) to train a
multi-branch network with shared feature representation layers f(wf ,x) and specialized prediction
branches gk(wk, f(wf ,x)) for clients from mode k. In this paper, we set each of the prediction
branches to be a single linear layer. A k-branch network is potentially more communication efficient
and data efficient than having k copies of models.

A.1 Learning the Mixture Model with Temporal Priors

We learn a mixture model together with the multi-branch network to infer the mode and select the
corresponding branch for prediction of each client. Similar joint learning strategies are applied
in (Ghosh et al., 2020; Marfoq et al., 2021) to learn a clustering or mixture model for selection from
multiple networks, but both works have the impractical assumption that labeled data is available for
all clients. In addition, (Marfoq et al., 2021) also assumes stateful clients, which can suffer from
staleness in cross-device setting (Wang et al., 2021). Our approach has three key differences: (1) our
k-branch network is more communication and data efficient compared to previous k networks, (2)
our model selects the branches based on the features instead of the loss, and therefore does not need
labeled data to select branches for new clients; (3) we propose the temporal prior to tackle periodic
distribution shift when learning the mixture model.

We define discrete latent variables z and ζ to represent which mode a sample and a client comes
from, respectively, which will be inferred by our model. Our model also assumes all samples from
the same client are from the same mode during training, so the prior P (ζ) = P (z), but our model
can still be used to estimate the posterior for each sample during inference. For convenience, we also
introduce a vector π with each entry πk = P (z = k) to denote the prior distribution of z. We model
P (x|z = k) as a Gaussian distribution N (f(w,x)|µk,σ

2
k) on the feature representation f(w,x).

For efficiency, we assume and learn a diagonal covariance σ2
k for the Gaussian models. We use θ to

denote the parameter of the GMM for convenience. Algorithm 1 summarizes the training process,
and the details of each step are provided in the following sections.

A.1.1 Modeling the Client Distributions and Selecting Branches for Training

During training, on each client, before proceeding to the local update steps, we estimate the probabili-
ties of client i coming from each mode k given its training set Di, and then select the corresponding
branch. We assume all samples on one client are from the same mode, so P (ζ) = P (z). There are
two options for inferring the modes

1 Given the current mixture model, estimate P (ζ|Di) from P (x|z) of all x ∈ Di;

2 Given the training samples on the client, find the Maximum Likelihood Estimation (MLE)
of P (z) for the client and use it for P (ζ).

Option 1 exploits the current parameters of the mixture model to infer the mode of each client. With
the assumption that samples in Di are independent, from Bayes’ theorem, we can get P (z|Di) as

P (ζ = k|Di) =
πk
∏
x∈Di

P (x|z = k)∑K
j=1 πj

∏
x∈Di

P (x|z = j)
. (4)

Intuitively, since the client distribution is constantly shifting, we should not expect the prior P (ζ) to
be unchanged from the last round. Option 2 re-estimates the prior P (z) of the mixture model on the
current client through MLE and use it as P (ζ|Di). As shown in Figure 6, we find this achieves better
empirical results than Option 1. Specifically, we use π∗i , the MLE of P (z) on the data of client i, to
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select the branch for training:

π∗ik =
1

|Di|
∑
x∈Di

P (z = k|x) =
1

|Di|
∑
x∈Di

πkN (f(wt,x)|µt
k,σ

t
k)∑K

j=1 πjN (f(wt,x)|µt
j ,σ

t
j)
, (5)

where π∗ik is the k-th dimension of π∗i , corresponding to the MLE of P (z = k). For completeness,
we give the derivation of Eq. 5 in Appendix C.1.

After estimating the distribution of ζ, we can either greedily select the branch k∗i corresponding to
the maximum probability, or we can sample from this distribution. Our experiments in Figure 6 show
that the greedy approach is more effective. Since our experiments only consider the case of two
modes, let k̄∗i be the other, less-likely branch. On each client, we train the model to optimize the
following objective

minimize
w

Li(w) =
1

|Di|
∑
ξ∈Di

`CE(gk∗i (w,x),y) + λ`CE(gk̄∗i (w,x), s(ε,y)), (6)

where λ > 0 is the regularization strength, s(ε,y) = ε 1
n + (1− ε)y is the label smoothing function

with 0 ≤ ε ≤ 1 to determine the amount of label smoothing. The regularization enables the other
branch to be updated jointly with the feature extractor to prevent mismatch. Meanwhile, it encourages
learning distinctive features for the two clusters through label smoothing: the other branch treats
samples from the current mode as outliers and is trained to become less certain on these samples.

A.1.2 Updating the Mixture Model

After the local updates of the network parameters on client i with the chosen branch as described in
Section A.1.1, we obtain the updated network parameters wt+1

i , and update the parameters of the
GMM based on wt+1

i . In this way, the GMM is synchronized with the latest network parameters and
ready for inference immediately after training. The GMM parameters are usually estimated with the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977). In the federated setting, this can
be achieved privately by first running EM on each client i to get the locally updated GMM parameters
(µ̃t+1

i , σ̃t+1
i , π̃t+1

i ), and then aggregating on the server.

Further, to target the temporal distribution shift, we integrate our priors q̃(t) into the aggregation
step on the server, so that a ratio of q̃(t) clients will be used to update (µt+1

1 ,σt+1
1 , πt+1

1 ) for mode
1, while the remaining clients will only update (µt+1

2 ,σt+1
2 , πt+1

2 ) for mode 2. The server decides
which clients are from mode 1 and which are from mode 2 by their π̃t+1

i , since π̃t+1
i estimates the

probability of an arbitrary sample from client i to come from each mode. We give details of the steps
below.

E step. For each client i ∈ I(t), compute the posterior γik(x) for each sample x to infer the
probability of x coming from mode k

γik(x) = P (z = k|x) =
πt
kN (f(wt+1

i ,x)|µt
k,σ

t
k)∑K

j=1 π
t
jN (f(wt+1

i ,x)|µt
j ,σ

t
j)
. (7)

Temporal prior. We integrate the temporal prior into the M step, so that we can estimate GMM
parameters that better capture the differences in the modes behind the shifting distributions. The
temporal prior q̃(t) is a rough estimate for the ratio of clients coming from the day mode. From the
observations in Section 2, we can locate the time when q(t) is most likely to be 0 or 1 by observing
when the minima and maxima occur from the train curve. In between these minima and maxima,
we consider three types of q̃(t) in our current experiments: 1) Linear: q̃(t) = qL,1(t); 2) Cosine:
q̃(t) = qC,1(t); 3) Soft: see Appendix C.2.

Conditioned on q̃(t), our goal is to estimate the posterior P (ζ|Di,θ
t, q̃(t)) for each client to decide

which mode they are from. To achieve this, similar as in Section A.1.1, we first obtain the MLE of
the prior on Di using the updated network parameters wt+1

i as

π̄∗ik =
1

|Di|
∑
x∈Di

γik(x), (8)
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where γik(x) comes from the E step in Eq. 7. Then, we sort the prior probability π̄∗i1 of mode 1 for
all sampled clients i ∈ I ′(t), and assign bq̃(t) · |I ′(t)|+ 1

2c clients with the highest π̄∗i1 to mode 1,
denoted as Ĩ ′1(t). The remaining clients, denoted as Ĩ ′2(t), are assigned to mode 2. As a result, for
i1 ∈ Ĩ ′1(t), P (ζ = 1|Di,θ

t, q̃(t)) = 1, while for i2 ∈ Ĩ ′2(t), P (ζ = 2|Di,θ
t, q̃(t)) = 1. Note it is

possible to design soft assignments where the posteriors are not one-hot, but this one-hot assignment
has smaller communication overhead, as we will discuss in the M steps below.

M step (client). In our federated setting, the M step happens on both the server and the clients. It is
first executed locally on each client i, where its objective is to find the GMM parameters to maximize
the expectation of the log likelihood of data, weighted by the time-varying client-level posterior
P (ζ = k|Di,θ

t, q̃(t))

θ̃t+1
i = argmax

θ

K∑
k=1

P (ζ = k|Di,θ
t, q̃(t)) logP (Di, ζ = k|θ, q̃(t)). (9)

For each client, q̃(t) affects the posterior distribution P (ζ|Di, q̃(t)), and the effect depends on other
clients. Therefore, the distributions in Eq. 9 should be estimated on the server. However, we cannot
send client data to the server, and it is almost impossible in practice to have multiple communication
rounds between the server and client (Bonawitz et al., 2019; Wang et al., 2021) so that the server
can send the re-estimated prior to the clients. A viable approach is to restrict P (ζ|Di, q̃(t)) to have
a finite number of possible values, so that the client can solve Eq. 9 for all possible P (ζ|Di, q̃(t))
and send all feasible solutions to the server. To make q̃(t) effective, we should set a minimum of K
different values for P (ζ|Di, q̃(t)) so that each mode corresponds to a different value. To learn more
distinctive representations for the modes, we let P (ζ = k|Di, q̃(t)) = 1 if the client is estimated to
come from mode k, so P (ζ = j|Di, q̃(t)) = 0 for all j 6= k, and Eq. 9 becomes

θ̃t+1
i = argmax

θ
logP (Di, ζ = k|θ, q̃(t))

= argmax
θ

logP (ζ = k|θ, q̃(t)) +
∑
x∈Di

logP (x|ζ = k,θ, q̃(t))

= argmax
θ

πk −
∑
x∈Di

 d∑
j=1

([f(wt+1
i ,x)]j − µkj)

2

2σ2
kj

+ log σkj
√

2π


(10)

where d is the dimension of the features, µkj , σkj denotes the j-th dimension of µk,σk, and we use
similar notation for πk and [f(wt+1

i ,x)]j . The last equation comes from our modeling assumption
that all x ∈ Di are from the same mode. From Eq. 10, we can see the optimal solution is to keep
parameters for other modes unchanged, while only updating them for the k-th mode as

µ̃t+1
ik =

1

|Di|
∑
x∈Di

f(wt+1
i ,x), [σ̃t+1

ik ]2 =
1

|Di|
∑
x∼Di

(f(wt+1
i ,x)− µ̃t+1

ik )2, (11)

In this way, we can pack the all the feasible µ̃t+1
ik , [σ̃t+1

ik ]2 into matrices that have the same size as
one set of GMM parameters, which does not increase the communication cost.

M step (server). The server collects the MLE of the priors {π̄∗i |i ∈ I ′(t)} (Eq. 8) and all the feasible
solutions {(µ̃t+1

i , σ̃t+1
i )|i ∈ I ′(t)} from the clients. Then, with the temporal prior, it divides the

clients into two sets I ′1(t) and I ′2(t) as described before. Similar as FedAvg (McMahan et al., 2017),
it updates the parameters for each mode k weighted by the number of samples from each client as

µt+1
k =

∑
i∈Ĩ′k(t)

|Di|
M t

k

µ̃t+1
ik , [σt+1

k ]2 =
∑

i∈Ĩ′k(t)

|Di|
M t

k

[σ̃t+1
ik ]2, πt+1

k =
M t

k∑K
j=1M

t
j

, (12)

where M t
k =

∑
i∈I′k(t) |Di| is the total number of samples of clients assigned to mode k. Note

the resulting σt+1 is not guaranteed to be an unbiased estimate, but we found this process to give
satisfying results in practice.

Setting the prior. During test, to compare the model performance with established baselines and
ensure fairness, we consider a static test set where the number of clients and samples from both
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Figure 3: Compare the effect of the label smoothing regularization on FEDTEM under linear and cosine
distribution shifts. We use the linear prior in all cases.

modes are roughly the same. Therefore, we use a uniform distribution for the priors on the test set.
This does not make the GMM worse if the underlying P (x|z) is the same for the training and test
sets, and our estimate of P (x|z) is accurate. During training, we estimate the prior πt in every
step to match the shifting distribution. However, we find it beneficial to use a running average of
πt+1
k = βπt

k + (1− β)πkM
t
k/(
∑K

j=1M
t
j ) during training, which achieves better results than setting

β = 0 or using uniform prior in our preliminary experiments.

B Additional Details of Experiments

Table 1: Stats of the datasets. We use |D·| to denote number of samples in each subset. On SO, #
Classes is the vocabulary size.

Dataset # Classes I1 |I1| |DI1 | I2 |I2| |DI2 | |Dtest|
EMNIST 62 Digits 3383 341,873 Characters 3400 329,712 77,483
CIFAR 110 CIFAR10 500 50,000 CIFAR100 500 50,000 20,000
Stack Overflow 10K Questions 171K 67M Answers 171K 67M 16M

Dataset. We consider two image classification datasets, EMNIST and CIFAR, and one next word
prediction task on Stack Overflow (SO). The split of the day mode (I1) and night mode (I2), and
other statistics, are shown in Table 1. On SO, we use a vocabulary size of 10K and report the test
accuracy without special tokens. We truncate each sentence to have no more than 20 tokens.

Architecture of the multi-branch networks. For image classification, on EMNIST, we train
LeNet with 2 Conv layers and 2 FC layers, while on CIFAR, we train a ResNet-18 with the Batch
Normalization replaced by Group Normalization (Wu & He, 2018) for stability in federated learning.
We use the last FC layer of these convolutional networks as the multi-branch part and share all
the remaining layers for all modes. We use the output from the shared feature extractor for GMM,
which are 128 and 512 dimensional respectively. On SO, we train a single-layer LSTM (Hochreiter
& Schmidhuber, 1997) with a hidden size of 670 and embedding size of 96. To alleviate the
communication overhead and prevent overfitting, we define the branches to be the last projection
layer before the final prediction layer and share the remaining weights for both modes, which is
15x smaller than the final prediction layer. We concatenate the average of all tokens’ features from
both branches for GMM, which has dimensionality 192. With these configurations, the models on
EMNIST, CIFAR and SO increase the communication cost by 0.7%, 0.5% and 1.6%, respectively.

Hyperparameters. We use FedAdam (Reddi et al., 2021) as the optimizer. Table 2 shows the
training hyperparameters. We use T = 256 for the majority of our results, and we evaluate both
linear and cosine distribution shifts under p ∈ {0.1, 0.25, 0.5, 1, 2, 4, 10}. We use β = 0.99 for the
moving average of πk in all experiments. For FEDTEM and Min Loss, we also do a grid search on
the label smoothing parameters ε and λ. For each set of hyperparameters, we run 3 experiments with
different random seeds and report their mean and standard error.

Effect of label smoothing regularization. Shown in Figure 3. Since EMNIST is relatively easy and
the network on it is small, the label smoothing does not show significant improvements. However,
it is critical to the success on CIFAR and SO. Without the regularization, one branch will not be
updated simultaneously with the feature extractor, resulting in instability and low test accuracy.

MLE for Evaluation. During evaluation, for image classification, we find it beneficial in most cases
to use the MLE in Eq. 5 on the minibatches (typically of size no larger than 64) to select the best
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branch, compared with the sample-level inference. We show its benefit in Figure 5. In practice,
similar approach can be realized through caching. We find Min Loss does not show much difference
when a similar approach is applied, where branches are chosen by the average of per-sample certainty.
The baseline model even gets worse performance with this approach, as shown in Figure 5, indicating
our model is much better at distinguishing two modes in expectation. However, this approach does
not show improvements for FEDTEM on SO.

Effect of T . As shown in Figure 8, for FEDTEM with linear prior on EMNIST, a smaller T tends
to decrease the performance when p deviates too much from 1. In such scenarios, the distribution
changes frequently and abruptly. However, the performance of FEDTEM is maintained when the
distribution changes in a frequent but more balanced way.

C Appendix

C.1 Derivation of Option 2

We consider maximizing the expectation of the complete-data log likelihood logP (Di,Z|θt+1)
under the posterior distribution P (Z|Di,θ

t), where Z denotes the collection of latent variables
associated with each of the sample x ∈ Di. Formally, it is solving the following constrained
optimization problem

maximize
θ

EZ∼P (Z|Di,θt) [logP (Di,Z|θ)] ,

subject to
K∑
j=1

πj = 1, πj ≥ 0, for all 1 ≤ j ≤ K.
(13)

We introduce an indicator function 1[z=k] which is 1 if z = k or 0 otherwise. In this way, the log
likelihood can be represented as

logP (Di,Z|θ) = log

|Di|∏
n=1

K∏
k=1

[P (xn, zn|θ)]1[z=k]

=

|Di|∑
n=1

K∑
k=1

1[zn=k] [log πk + logP (xn|zn,θ)] .

(14)

Meanwhile,

EZ∼P (Z|Di,θt)

[
1[zn=k]

]
= P (zn = k|xn,θ

t) =
πt
kP (xn|zn = k,θt)∑K

j=1 π
t
jP (xn|zn = j,θt)

. (15)

Plug Eq. 14 and Eq. 15 back into Eq. 13, and ignore terms that do not depend on πt+1, we find we
are solving the following problem for πt+1

maximize
π

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ
t) log πk,

subject to
K∑
j=1

πj = 1, πj ≥ 0, for all 1 ≤ j ≤ K.

(16)

The Lagrangian multiplier of this problem is

h(π, λ) =

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ
t) log πk + λ(1−

K∑
j=1

πj). (17)

Let the derivative w.r.t. πk be 0,

∂h

∂πk
=

|Di|∑
n=1

P (zn = k|xn,θ
t)

1

πk
− λ = 0. (18)
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Figure 4: The effect of the temporal prior. Note the linear or cosine prior is the same periodical linear or cosine
function with p = 1 for different types of distribution shifts and different p’s.

Multiply both sides of Eq. 18 with πk, sum over 1 ≤ k ≤ K, and apply the constraint that∑K
k=1 πk = 1, we have

λ =

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ
t) = |Di|. (19)

Plug this back into Eq. 18, we get the equation as desired.

πt
k =

1

|Di|

|Di|∑
n=1

P (zn = k|xn,θ
t) (20)

C.2 The Soft Prior

The soft prior q̃S(t) gives strong signals only at time steps where we believe q(t) = 0 or q(t) = 1. In
between, it only requires the ratio to be non-increasing or non-decreasing, where the ratio is estimated
using the posterior from Eq. 7 as

q̃′S(t) =
|{x|x ∈ Di, γi1(x) > γi2(x)}|

|Di|
, (21)

i.e., the ratio of samples whose posterior has higher probability on mode 1. In this way, the model can
still learn to distinguish the modes but we do not enforce a strong prior at every time step. Specifically,
it is defined as

q̃S(t) =


1, if t mod T = 1

0, if t mod T = T
2

min(q̃S(t− 1), q̃′S(t)), if 1 < t mod T < T
2

max(q̃S(t− 1), q̃′S(t)). if t mod T > T
2

(22)

C.3 Ablation studies: the effect of temporal prior

To quantify the effect of temporal prior on training, we compare four versions of our algorithm: 1)
EM Only: only apply the EM part of our algorithm without the temporal priors, where the only
difference from FEDTEM is that the server, in the M step, greedily uses client i to update parameters
of mode k∗i = arg maxk π̄

∗
ik (see Eq. 8 and Eq. 12); 2) FedTEM (linear): our algorithm where the

temporal prior is the periodic linear function P (i ∈ I1(t)) = qL,1(t); 3) FedTEM (cosine): our
algorithm where the temporal prior is the cosine function P (i ∈ I1(t)) = qC,1(t); 4) FedTEM
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Figure 5: Comparing the effect of MLE on EMNIST and CIFAR.
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Figure 6: Comparing the Bayesian and MLE based branch selection on EMNIST and CIFAR under linear
distribution shifts. We also compare the greedy branch selection vs. sampling based branch selection on
EMNIST.

(soft): our algorithm with the soft temporal prior introduced in Section C.2. The results are shown in
Figure 4. We find all three priors improves the “EM Only" baseline in most cases. “FedTEM (linear)"
is better on image datasets, while “FedTEM (cosine)" is better on the language dataset. The soft prior
has very weak assumptions about the prior, only requiring the estimated ratios to be non-increasing
or non-decreasing within certain intervals, but still improves the results.

C.4 Verifying the effect of MLE for evaluation

To quantize the effect the batch-level MLE, we compare the results of our method with or without
MLE on EMNIST and CIFAR. As shown in Figure 6, this only decreases the accuracy of the baseline
model, indicating our model is much better at distinguishing the two modes in expectation.

Table 2: Training hyperparameters on the datasets. The network parameters are trained for one epoch
on each client. In addition, on Stack Overflow, we also limit each client to use no more than 512
samples during training.

Dataset Server Opt Server LR ε Client Opt Client LR |Ĩ(t)| Batch Size Total Rounds

EMNIST Adam 10−2.5 10−4 SGD 10−1.5 10 20 2049
CIFAR Adam 1 10−1 SGD 10−1.5 10 20 8196
Stack Overflow Adam 0.01 10−5 SGD 10−0.5 50 16 2048

C.5 Additional Related Works

As mentioned above, Semi-cyclic SGD (Eichner et al., 2019) and (Ding et al., 2020) are the only
previous works we are aware of that explicitly consider periodical distribution shift in FL. We now
review other related works that either consider other types of distribution shift, or have (weak)
similarity as the proposed FEDTEM method.

Heterogeneity and client distribution shift. Client heterogeneity is an active topic in FL, and
various methods have been proposed to address the distribution difference among clients. No-
tably, FedProx (Li et al., 2020b) applies proximal regularizer when perform client updates; SCAF-
FOLD (Karimireddy et al., 2020) uses control variates as local states on clients for variance reduction;
FedPA (Al-Shedivat et al., 2021) provides a Bayesian view and adopts posterior sampling; FedGen
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Figure 7: Probability of sampling of clients from I1(t) in each round, with T = 256, under the linear and
cosine transit functions and different values of p.
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Figure 8: Evaluating the effect of the underlying T on FEDTEM with linear prior.

(Zhu et al., 2021) learns a generator that can be shared among clients; FedRobust (Reisizadeh et al.,
2020) applies gradient descent ascent to tackle distribution shifts in the form of affine transforms in
the image domain. Transfer learning, multi-task learning, and meta learning are introduced into FL to
explicitly handle distribution shifts among clients assuming heterogeneous clients are from different
domains or tasks (Smith et al., 2017; Khodak et al., 2019). Continual learning is introduced to handle
distribution shift due to streaming tasks on each client (Yoon et al., 2021). More recently, distribution
shift in clusters of clients instead of each individual client are studied in Mansour et al. (2020);
Ghosh et al. (2020), while still assuming the clients can be uniformly accessed during the training
process. We kindly ask interested readers to find more papers on heterogeneity in a few recent surveys
(Kairouz et al., 2019; Li et al., 2020a; Wang et al., 2021). All these methods consider the distributions
shift among different clients, while the proposed FEDTEM considers periodic distribution shift of
client population.

Clustering and mixture models. We do not assume strong control over the clients and the available
client population is always changing due to the periodical distribution shift. We also do not require
stateful clients, since our prior is applied globally to all clients. Our mixture model is based on
the feature space, therefore we do not require labeled data for unseen clients to infer its mode. To
our knowledge, existing works in clustered FL, including those on personalization, mostly fail to
satisfy at least one of the three properties and therefore not applicable in our setting. Dennis et al.
(2021) propose a one-shot clustering approach based on the raw client data before training, which
implicitly assumes all representative clients are available simultaneously. Clustering on raw data can
also be unreliable when the data demonstrates complicated distributions in the input space. Clustered
Federated Learning (Sattler et al., 2020) applies an one-shot clustering based on a trained global
model, and then train a personalized model for each cluster. To achieve this, it implicitly assumes
strong control over population and clients sampling. Ghosh et al. (2020) and Mansour et al. (2020)
propose a similar algorithm that alternatively perform clustering and updating the personalized models
for corresponding clusters. Both of them require labled data for the clients to compute the loss for
model selection. During the preparation of this draft, we notice a concurrent work, FedEM (Marfoq
et al., 2021), which proposes a Federated EM algorithm to learn a mixture model for each client
and weigh the predictions from multiple models. The modified EM algorithm requires computing
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Figure 9: The effect of using multi-branch networks for the baselines. “Vanilla (s)" is the single-branch network
trained with FedAdam under various distribtuion shifts. “No Dist. Shift (s)" is the single-branch network trained
with FedAdam with no distributoin shift.

the loss and therefore labeled data for every client. It maintains a different prior distribution for
every client, which requires stateful clients and strong control over client sampling. The hierarchical
or bi-partitioning clustering process of (Briggs et al., 2020; Fu et al., 2021) requires all clients
to be available for clustering simultaneously, violating our assumption that the distribution of the
population is constantly changing and is not practical in on-device FL in the real world. In addition,
for unseen clients, either additional communications are needed for determining their clusters, or the
client has to download models for all clusters, which adds significantly to the communication cost.
(Xie et al., 2021) maintains one set of weights on each client while maintaining multiple weights as
cluster centers on the server. It takes two communication rounds for each weight update, which can
be impractical. It remains unclear if this mechanism can be generalized to unseen clients. (Marfoq
et al., 2021) trains a different set of weights for each node/client, which requires all the nodes/clients
to be available all the time. It is more suitable for the cross-silo setting but not practical for on-device
setting. (Duan et al., 2021) clusters the clients based on the similarities between their gradients at
the initial model weights. This is impractical in our setting since the training population changes
throughout the day and we cannot assume clients from both modes are available at the first round
for clustering. In addition, there is no guarantee that the gradient at the chosen round can separate
the clusters well. And to compute the gradients, it still requires labeled data. (Andreux et al., 2020)
advocates using different sets of BNs to track different running statistics for different silos, which is
not practical for on-device FL since BN has been widely observed to cause instability in on-device
FL, and is often replaced by Group Normalization which does not track running statistics (Hsieh
et al., 2020; Hsu et al., 2020). Another limitation is it assumes every client is seen during training.

Multi-branch networks in FL. Multi-branch networks have been explored in FL when a personal-
ized model is preferred for each client: the branchs are either locally stored on clients (Arivazhagan
et al., 2019; Liang et al., 2020), or reconstructed based on client data (Singhal et al., 2021). All the
aforementioned three works require labeled data and additional training efforts to learn the weights of
the branches. By comparison, our method does not need re-training the branches and does not need
labeled data for unseen clients to select the branches. The branch selection is based on the mixture
model in the feature space, and the weights of the branches are fixed.

C.6 Comparing single-branch and multi-branch baselines without clustering

For fair comparisons, we have used two branches for the baselines (“Vanilla" and “No Dist. Shift")
so that their capacities are the same as our method. Since these two baselines are just training the
networks with FedAdam, it is more natural to train single-branch networks directly. In Figure 9, we
show that the single-branch and multi-branch networks obtain similar results under various settings,
with or without distribution shift. Our method still outperforms these two single-branch baselines.

C.7 The effect of local training set sizes

When the number of training samples is small, the EM estimates may have high variance, causing
misspecifications and resulting in worse performance. Meanwhile, models trained on smaller training
sets tend to have worse generalization, so the test accuracy will drop for any method in general. To see
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Figure 10: The effect of local training set sizes of each client. x-axis represents the maximum number of
training samples per client. For “inf", we use all available training samples from the original dataset. To add to
the challenge, we ensure the distribution shift is different from the temporal prior. On EMNIST and CIFAR,
we consider cosine data distribution shift with p = 1 and use linear prior for FedTEM. On Stack Overflow,
we consider cosine distribution shift and linear prior. We also compare with the results for the baseline model
trained without distribution shift (No Dist. Shift).

Figure 11: The training accuracy, out of vocabulary rates and total number of tokens at each round for training
a next word prediction model in a real FL system. In general, the out of vocabulary rates become lower on
nighttime clients, and the sentence lengths become longer on nighttime clients. The plots also show training is
faster during nighttime, since more rounds are finished during nighttime.

which factor has more significant effect on the test accuracy, we compare with the baselines trained
with or without distribution shift in Figure 10, where we only change the maximum training samples
per client while keeping other hyperparameters unchanged. From the plot, we can see FedTEM
maintains the advantage over the baselines and oracle (No Dist. Shift) under various training set sizes,
though its accuracy also decays as the baselines due to the decreased numbers of training samples.

C.8 Stats of training a language model in a real FL system

In Figure 11, we show some stats that could characterize the data distribution shifts in a real FL
system. Generally, the data of daytime clients is more difficult to fit and generalize. Data during
daytime has higher out of vocabulary rates, and lower sequence length, indicating these sentences
might be more arbitrary or informal than data during nighttime. From the plots, we can also see more
rounds are completed during nighttime. This is because the product is mainly deployed in one region,
so during daytime, fewer devices are idle for training and the round completion rates are lower (Yang
et al., 2018). These plots further justify that the data shifts smoothly rather than abruptly in practice.
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