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Abstract
We develop algorithms for adapting pretrained dif-
fusion models to optimize reward functions while
retaining fidelity to the pretrained model. We pro-
pose a general framework for this adaptation that
trades off fidelity to a pretrained diffusion model
and achieving high reward. Our algorithms take
advantage of the continuous nature of diffusion
processes to pose reward-based learning either as
a trajectory optimization or continuous state rein-
forcement learning problem. We demonstrate the
efficacy of our approach across several application
domains, including the generation of time series
of household power consumption and images sat-
isfying specific constraints like the absence of
memorized images or corruptions.

1. Introduction
Diffusion models have become the de-facto state of the
art in image, video and audio generation, following recent
breakthroughs (Song et al., 2020a;b; Ramesh et al., 2021; Ho
et al., 2022). This has opened the door to several compelling
applications of diffusion models including image editing
and super resolution, time series forecasting and medical
image reconstruction.

In many application domains, there are constraints or pref-
erences one may want to express regarding the samples gen-
erated by a diffusion model. A convenient way to capture
these is using a reward function that evaluates the quality of
the generated sample with respect to a specific consideration.
For example, for image generation, since diffusion models
are typically trained on images scraped from the web (for
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example, (Schuhmann et al., 2022)), one may want to avoid
generating samples containing image artifacts like times-
tamps or logos, or inappropriate content. While progress
has been made towards these goals by using simple filtering
techniques, the optimal adaptation of a pretrained diffusion
model towards maximizing a reward while maintaining its
ability to generate high quality samples remains an open
question. We address this problem by posing reward-based
adaptation as either a continuous state reinforcement learn-
ing or stochastic control problem, using off-the-shelf rein-
forcement learning on trajectory optimization algorithms to
accomplish optimal adaptation.

Our formulation is inspired by analogous work on reward-
based fine tuning for language models, which has seen
great success as noted in recent breakthroughs on reinforce-
ment learning with human feedback (Stiennon et al., 2020;
Ouyang et al., 2022). These works have an additional step
of learning the reward function from human preferences. In
this work, we do not study reward functions learned from
human feedback; rather, we focus on developing the right
algorithms for adapting diffusion models given a reward
function. However, our framework is compatible with any
reward function, including those which are handcrafted,
learned by solving a classification task (for example classi-
fying images with artifacts versus images with no artifacts),
or learned from human feedback.

1.1. Contributions

1 We develop a novel theoretical formulation of stochas-
tic control of diffusion processes to optimize a combi-
nation of a fidelity term that penalizes KL divergence
to a pretrained diffusion model and a reward function
capturing desired behavior. We show that a special
case of our framework reduces to a deterministic opti-
mal control problem that can be solved using gradient
based optimization, as opposed to general purpose re-
inforcement learning (RL) algorithms.

2 We demonstrate how off-the-shelf actor critic policy
gradient algorithms can be tuned towards being suc-
cessful in the high dimensional continuous state spaces
encountered in RL based fine tuning of diffusion mod-
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els. We also show that our custom gradient based
trajectory optimization algorithm can outperform RL
on some tasks.

3 We conduct experiments demonstrating the effective-
ness of our methods across a variety of domains and
modeling tasks:

– Modeling the time series of power consumption
in a household adapted to preferentially sample
time series patterns with large ramps up or down
(“spikes”) in power consumption.

– Modeling images from the MNIST dataset cor-
rupted with time stamps, adapted to prevent the
generation of images containing time stamps.

– Modeling images from the MNIST dataset with a
recurring canary image that is memorized by the
diffusion model, adapted to prevent generation of
the memorized canary images.

2. Background and Theoretical Formulation
We work with diffusion models that describe probability
distributions over a random variable taking values in Rn.
The random variable is assumed to come from an underly-
ing distribution Pdata. We use U(·) and N (·, ·) to refer to
uniform and normal distributions, and I to be the identity
matrix.

Forward diffusion process: We consider the diffusion pro-
cess that perturbs this data distribution to Gaussian noise,
according to the following stochastic differential equation
(SDE)

dx = f (t)xdt+ g (t) dω, t ∈ [0, 1], x (0) ∼ Pdata,
(1)

where f : [0, 1] 7→ R and g : [0, 1] 7→ R are functions
determined by pre-set schedules meant to diffuse Pdata to
the standard normal distribution N (0, I). The marginal
distribution of x (t) evolving according to (1) conditioned
on x (0) is

P (x (t) |x (0)) = N
(
α (t)x (t) ;σ2 (t) I

)
,

where α : [0, 1] 7→ R+ and σ : [0, 1] 7→ R+ are related to f
and g via

f (t) =
d log (α (t))

dt
,

g (t) =

√
dσ (t)

2

dt
− 2

d log (α (t))

dt
σ (t)

2
.

We denote by pt (x) the unconditional marginal probability
of x (t) evolving according to (1).

Reverse diffusion process: Beginning with the work of
Song et al. (2020b), the above SDE formalism has been
used to derive successful training objectives for diffusion
models. Diffusion models are trained to approximate the
score function, i.e., the gradient of the log of the density
pt (x), which we denote it by s (x, t) , ∇x log (pt (x)).
Once the score function is learned, samples can be generated
by reversing time in the SDE in (1). The exact time reversal
for the above SDE can be written as (Anderson, 1982; Song
et al., 2020b)

dx =
(
f (t)x− g (t)2 s(x, t)

)
dt+ g (t) dω (2a)

t ∈ [0, 1], x (1) ∼ N (0, I) , (2b)

which is solved backward in time starting at t = 1. Then
x (0) is guaranteed to be distributed as Pdata, and thus, solv-
ing the reverse SDE, one can generate samples from Pdata.

It can be shown (Zhang et al., 2022) that the following
family of SDEs preserve the marginals pt(x), ∀t ∈ [0, 1]:

dx =

(
f (t)x−

(
1 + λ2

2

)
g (t)

2
s (x, t)

)
dt+ λg (t) dω

(3a)

x (1) ∼ N (0, I) , (3b)

for any λ ≥ 0. For convenience, we consider the SDE (3)
in reversed-time, i.e.,

dx = −
(
f (t)x−

(
1 + λ2

2

)
g (t)

2
s (x, t)

)
dt+ λg (t) dω

(4a)

x (0) ∼ N (0, I) . (4b)

Distribution over trajectories: A trajectory x : [0, 1] 7→ Rn
is a mapping from time t ∈ [0, 1] to data-points x ∈ Rn.
We denote by P sλ the probability measure over trajectories
induced by the SDE in (4).

Training the score function: In practice, the score function
s is unknown but has to be learned from data. This is usually
done by training a neural network εθ (x, t) to approximate
−s(x,t)
σ(t) . It can be shown that this can be done by training a

neural network with the following objective

min
θ

E
x∼Pdata
t∼U [0,1]
ω∼N (0,I)

[
‖εθ (x+ σ (t)ω, t)− ω‖2 δ (t)

σ2 (t)

]
,

where δ : [0, 1] 7→ R+ is a schedule chosen to balance
sample quality with data likelihood (Song et al., 2020b).
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3. Theoretical Formulation of Reward-based
Adaptation

Our goal is to develop a procedure to adapt the parameters
or generative process of a diffusion model in order to opti-
mize a reward model, while retaining fidelity to the original
diffusion model.

Defining the adaptation problem requires the following com-
ponents:

• Reward function: This measures the desirability of the
samples generated by the diffusion model w.r.t. a criterion
of interest (e.g., non-toxicity or absence of artifacts). We
denote the reward function as r : Rn 7→ R.

• Pretrained diffusion model: This is parameterized as a
score function sθ (x, t), where θ represents the parame-
ters of a parametric model (neural network) trained to
approximate sθ (x, t).

• Fidelity penalty: This measures the penalty we in-
cur for deviating from the original diffusion model
KL (Puλ ‖ P

sθ
λ ), where Puλ and P sθλ are the probability

measures over trajectories induced by the SDE in (4) for
the new and pretrained diffusion models. Noting that
the KL divergence blows up as λ → 0, we scale the
KL divergence by λ2 to ensure a finite limit. However,
the "correct" weighting between the fidelity penalty and
the reward function is a hyperparameter that is tuned
to achieve the right balance of sample quality and high
reward in our experiments.

The following theorem provides the theoretical basis for our
reward-based adaptation algorithms.

Theorem 3.1. Consider the objective function

max
u
−λ2 KL (Puλ ‖ P

sθ
λ ) + E

x∼Pu
[r (x (1))] ,

where the maximization is over all measurable functions
u : Rn× [0, 1] 7→ Rn. The above objective can be rewritten
as the following stochastic optimal control problem:

max
u

E
x∼Puλ

[
−
(
1 + λ2

)2
g (t)

2

8
CC + r (x (1))

]
(5a)

where CC =

∫ 1

t=0

‖u (x (t) , t)− sθ (x (t) , t)‖2 dt (5b)

where we denote by u? its optimal solution.

Moreover, a sample x from the optimally controlled distri-
bution Pu

?

0 can be generated by sampling z ∼ N (0, I) and

solving the following trajectory optimization problem:

max
x:[0,1] 7→Rn

x(0)=z

∫ 1

t=0

−O

8g (t)
2 + r (x (1)) . (6a)

where O=
∥∥∥∥ẋ (t) + f (t)x (t)− 1

2
g (t)

2
sθ (x (t) , t)

∥∥∥∥2 dt
(6b)

Proof. (5) can be derived by applying Girsanov’s theorem
to compute the Radon-Nikodym deriverive of dPuλ

dP
sθ
λ

. The
expectation of the logrithm of this quantity is (5). Taking
limits as λ → 0, we obtain an expectation where the only
stochasticity is in x (0). This enables us to rewrite the
optimization in a pathwise-form, where the optimal u can
be determined purely based on x (0), by solving a problem
that can be shown to be equivalent to (6). Details can be
found in Appendix E.

Theorem 3.1 suggests two algorithmic solutions for reward-
based adaptation: 1) a general purpose RL algorithm applied
to (5) and 2) a more specialized trajectory optimization algo-
rithm (for the special case λ = 0) to solve (6). We explore
both algorithms in this paper, show their effectiveness and
offer different advantages and trade-offs for each of them
(see Section 6). We present a theoretical comparison of the
two approaches in the next section.

4. Algorithms
In order to be implementable, our practical algorithms for
solving the formulations in Theorem 3.1 operate in discrete
time. We primarily work with the standard Euler-Mayurama
discretization of (3), although our approach can be adapted
easily to other discretization schemes. Concretely, we con-
sider a discretization with a fixed timestep h = 1

T where
T ∈ N is an integer denoting the number of discrete time
steps. We denote by T = {0, h, 2h, . . . , 1} the set of dis-
crete timesteps and by x = (x0, xh, . . . , x1) a trajectory.
As a result, for each t ∈ T we have x (t) = xt. We use
P sθλ and P θλ interchangeably as the probability measure over
trajectories induced by the SDE. Given this discretization,
we may write (3) as

x0 ∼ N (0, I) (7a)

xt+h ∼ πθ (· | xt, t) , N
(
xt − hFλθ (xt, t) , hg (t)

2
λ2I
)
,

(7b)

Fλθ (x, t) , f (t)x−
(
1 + λ2

2

)
g (t)

2
sθ (x, t) (7c)

∀x ∈ Rn, t ∈ [0, 1]. (7d)
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Note that in (7) we use πθ (· | x (t) , t) to refer to the distri-
bution of x (t+ h) conditioned on x (t), as opposed to the
likelihood of a specific transition from x (t) to x (t+ h).

4.1. Trajectory Optimization

Given the above time discretization, the objective in (6) can
be approximated as

max
xh,...,x1
x0=z

∑
t∈T \{1}

−1
8g (t)

2

∥∥∥∥xt+h − xth
+ F 0

θ (x, t)

∥∥∥∥2 h+
1

β
· r (x1) ,

(8)

where we introduce an additional scaling factor β that we
sweep over in our experiments to control the tradeoff be-
tween the fidelity to the original diffusion model and opti-
mizing the control cost.

This can easily be solved by gradient-based optimization
approaches as long as r is differentiable. The overall algo-
rithm to generate a sample using trajectory optimization is
in Algorithm 2 where we can use any (stateful) optimizer
like Adam (Kingma and Ba, 2014) with internal optimizer
state opt-s and that updates the decision variables x given
access to the optimizer state and gradients of the objective
function.

4.2. Reinforcement Learning

We cast the diffusion model adaptation problem as a
continuous-state continuous-action Markov Decision Pro-
cess (MDP), where we tune the parameters θ of the esti-
mated score function sθ(x, t) via policy gradient (PG) meth-
ods. We denote the adapted parameters by φ. Algorithm 1
presents the pseudo-code of our method, which we describe
its details below.

Any off-the-shelf PG algorithm can be used to optimize
φ. We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017), which is an actor-critic method in our experi-
ments. However, we modify PPO to only estimate the PG
due to the rewards. For the KL penalty term, we estimate
the gradient directly since we have direct access to both
the controlled and uncontrolled diffusion models as well as
their gradients.

Reward-based objective: Suppose the current policy param-
eters are φold. The PPO objective is:

JCLIP
φold (φ, t,x) = (9a)

min
{
ρt(φ,x)Ât , clip

(
ρt(φ,x), 1− ε, 1 + ε

)
Ât

}
(9b)

t ∼ U (T \ {1}) , x ∼ Pφ
old

λ , (9c)

where ρt(φ,x) =
πφ(x(t+h)|x(t),t)
πφold(x(t+h)|x(t),t) is the policy ratio be-

tween the current and previous iteration policy, Ât denotes

an estimator of the advantage function at timestep t, and
clip(·) clips the probability ratio to be within the interval
(1− ε, 1 + ε) (see Schulman et al. 2017 for details).

KL objective: While it is feasible to compute and back-
prop through the KL divergence KL

(
Pφλ ‖ P θλ

)
this incurs

significant computational burden in practice as it requires
extensive sampling to compute an accurate estimate of the
expectation. Instead, we use

K̂Lφold

(
Pφλ ‖ P

θ
λ

)
, (10a)

E
x∼Pφ

old
λ

[ ∑
t∈T \{1}

log
(πφ (x (t+ h) |x (t) , t)

πθ (x (t+ h) |x (t) , t)

)]
(10b)

=
1

h
E

x∼Pφ
old

λ

t∼U(T \{1})

[
KL (πφ (·|x (t) , t) ‖ πθ (·|x (t) , t))

]
,

(10c)

which simplifies the task, as the measure used to compute
the expectation no longer depends on the updated parame-
ters φ (the detailed derivation of the above equations can be
found in Appendix E). So long as φ is close to φold, this is
a reasonable estimate of the KL divergence; nicely, such a
condition is often achievable in practice by choosing a small
learning rate for the policy and only using samples from the
most recent policy (rather than from a replay buffer).

Overall objective: Given all the above, the overall policy
objective to be maximized at each step of the policy gradient
method is

JPolicy
φold (φ, t,x) = JCLIP

φold (φ, t,x)−
βλ2

h
K̂Lφold (πφ (·|x (t) , t) ‖ πθ (·|x (t) , t)),

(11)

where t ∼ U (T \ {1}), x ∼ Pφ
old

λ , and β is a hyperparame-
ter used to control the weighing between the PPO objective
and the KL penalty term.

Algorithmic and architecture details: In our experiments,
advantage function estimation Ât occurs as in vanilla
PPO (Schulman et al., 2017), which involves training a
value network using the raw terminal rewards r. Here, we
use a value network with a torso architecture identical to the
uncontrolled diffusion model, and an MLP head to generate
scalar values. Policy and value network torso parameters
are warm-started by the uncontrolled model parameters and
trained independently via PPO. The value function MLP
head is randomly initialized.
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Algorithm 1 Reinforcement learning based adaptation of
diffusion models (RL)

Input: θ, r, λ
Output: Fine-tuned parameters φ

1: procedure RL(θ, r, λ)
2: Initialize φ← θ, φold ← θ
3: Initialize torso parameters of value network using θ
4: for k = 0, 1, . . . do
5: Sample x ∼ Pφ

old

λ

6: Sample t ∼ U (T \ {1})
7: Set rt = 0 if t < 1, r1 = r (x1)
8: Update value function using Ât as in Schulman

et al. (2017)
9: Compute policy update

φ← argmax
φ,x,t

JPolicy
φold (φold,x, t)

10: end for
11: return φ
12: end procedure

Algorithm 2 Trajectory optimization based online adapta-
tion of diffusion models (TrajOpt)

Input: θ, r, λ
Output: Sample x from the adapted diffusion process

procedure TRAJOPT(θ, r, λ)
Generate trajectory x ∼ P θ0 .
Define o as the objective function in (8)
Initialize optimizer state opt-s
for i ∈ 1, . . . , Niter do

g← ∇o (x)
x, opt-s← optupdate (x,g, opt-s)

end for
Return x1

end procedure

4.3. Comparison between RL and Trajectory
Optimization Formulations

A qualitative comparison of the two approaches on various
dimensions is presented in Table 1. The general purpose
formulation (5) is a challenging high-dimensional stochastic
control problem. We show that it can be handled by lever-
aging a state-of-the-art deep RL algorithm for continuous
control and conducting extensive hyperparameter sweeps.
However, the need for extensive hyperparameter sweeps
highlights the advantages of the alternative formulation (6),
which can be solved using any off-the-shelf gradient-based
optimizer as long as the reward function is differentiable. It
only requires tuning parameters of the optimizer and the β
parameter trading off control cost and reward.

Furthermore, trajectory optimization is "free" in terms of
train compute, as the parameters of the pretrained model are
left unchanged; only the generation process is modified by
the trajectory optimization. Finally, trajectory optimization
leads to a globally optimal policy assuming gradient descent
converges to the global optimum of (6). This is true, for
example, if the score function s (x, t) is linear in x, or,
more realistically, if the globally optimal solution x? is
in the vicinity of the initial uncontrolled trajectory x0 ∼
P θλ , ensuring that a linear approximation of s around x is
accurate.

On the downside, TrajOpt requires access to the reward
model and its gradients, and is expensive at the evaluation
(or sample generation) time, since the optimization problem
(6) needs to be solved every time a sample is generated.

5. Related work
RL based fine tuning of diffusion models: Fan and Lee (2023)
propose to fine-tune pretrained diffusion models with policy
gradient and GAN training to reduce the number of steps
required by DDPM (Ho et al., 2020) sampling. They train a
critic network to distinguish real and fake distributions, use
it to provide reward signals, and then update the diffusion
model via policy gradient with the advantage function. They
demonstrate that fine-tuned model can generate realistic
samples with few steps with DDPM sampling. However,
they mainly focus on improving the quality of generation
and do not explore the best way to maximize the reward.
In our work, we explore both trajectory optimization and
RL methods to maximize a pre-defined reward function
and demonstrate the advantages of fine-tuning methods for
diverse purposes, such as artifact removal or addressing
memorization issues.

Learning reward functions for evaluating text-to-image mod-
els: Even though several evaluation metrics, such as CLIP
score (Radford et al., 2021) and FID score (Heusel et al.,
2017), exist for assessing the quality of text-to-image mod-
els, they do not perfectly align with human judgment (Hu
et al., 2023; Kirstain et al., 2023). To overcome this limita-
tion, significant progress has been made in reward learning
from human feedback recently (Lee et al., 2023; Kirstain
et al., 2023; Xu et al., 2023; Wu et al., 2023). Such meth-
ods first collect human feedback that assesses model output
over a set of diverse text prompts and then train a reward
function to predict human feedback. They show that learned
rewards are better-aligned with human evaluation than ex-
isting score functions. However, optimizing text-to-image
models using this reward function remains a challenging
problem. This work investigates a trajectory optimization
and RL algorithm for the purpose of fine-tuning.

Stochastic control and diffusion models: Several papers have
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Table 1. Comparison of algorithmic approaches for adaptation of diffusion models. RL refers to an actor critic method applied to (5) and
TrajOpt to a gradient-based optimization method applied to (6).

Train compute Train stability Eval compute Reward Optimality

RL High Low Low Black box Local
TrajOpt Zero High High White box gradient Global

studied control theoretic aspects of diffusion models Liu
et al. (2023); Zhang and Chen (2021). However, their focus
was on directly improving training or sampling from diffu-
sion models using control theoretic ideas, while our focus
here is on . We also believe that our results in theorem 3.1
are novel relative to the theoretical results in these papers.

6. Experiments
In this section, we compare the proposed trajectory optimiza-
tion and RL-based approaches over several domains. Hy-
perparameter sweep, computation resources, and additional
experiment details and results are presented in Appendix B.

6.1. Approaches Considered

We compare the following approaches:

• Uncontrolled: This denotes the uncontrolled diffusion
model with parameters θ

• Rejection: This is a simple baseline where we generate
samples from the uncontrolled model until we obtain
K = 512 samples (per class for conditional sampling)
that achieve a reward above a threshold.

• RL: This denotes the diffusion model adapted using the
RL algorithm 1. The RL algorithm updates the param-
eters of the diffusion model to a new set of parameters
φ.

• TrajOpt: This denotes the diffusion model adapted
using the trajectory optimization algorithm 2.

Details of RL algorithm: As mentioned in Section 4.2, the
policy and value network torsos have the same architecture
as the uncontrolled diffusion model, and are warm-started
from the uncontrolled model checkpoint. For the value
network head, we use a randomly-initialized 3-layer MLP
with hidden units (256, 128, 1), thus yielding scalar-value
outputs. We use the Acme library (Hoffman et al., 2020) for
all RL experiments. Reward and KL-divergence curves for
all RL experiments are presented in Appendix C.2.

Details of TrajOpt algorithm: We initialize TrajOpt at a
trajectory x generated by the uncontrolled diffusion model,
and perform gradient-based optimization using the Adam

optimizer with a piecewise constant schedule (details in
Appendix C.2).

6.2. Metrics

Sample quality metrics: we consider the following eval-
uation metrics (Kynkäänniemi et al., 2019; Naeem et al.,
2020) to compare the quality of generated samples:1

• Fidelity: we compute the precision and density metrics
to check whether generated samples are realistic.

• Diversity: we compute the recall and coverage met-
rics to measure the ratio of real samples covered by
generated samples.

For class-conditional generation, we compute the evaluation
metrics per each class and then report the average value
across all classes. We remark that these metrics can provide
more detailed and reliable information than the Frechet
Inception Distance (FID) score (Heusel et al., 2017). We
defer the details of each metric to the original papers.

Reward metrics: We report the mean2 and standard de-
viation or 95% confidence intervals for (for cases where
the data is skewed) the reward obtained by each approach
across all the 512 samples (per class for class conditional
generation) generated.

6.3. Power Consumption Time Series

We first consider time series data. We utilize the POWER
dataset from the the UCI ML data hub (Dua and Graff,
2017). The dataset represents the power consumption for a
single household.

We craft a reward function which favors spikes in consump-
tion. Spikes in power have the potential to severely disrupt
energy networks; yet, such events are typically rare (Pin-
son et al., 2014; CAISO, 2016; Muratori et al., 2014; Silva
et al., 2020). As such, it may be advisable for purposes
such as stress-testing to generate more instances of these
safety-critical events – while maintaining realism, with re-

1We used the publicly released implementation repos-
itory: https://github.com/clovaai/generative-evaluation-
prdc/tree/master.

2We report median for the power consumption domain due to
skew by outliers in TrajOpt.

https://github.com/clovaai/generative-evaluation-prdc/tree/master
https://github.com/clovaai/generative-evaluation-prdc/tree/master
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spect to the distribution over observed events. Spikiness is
computed as the average derivative over the samples.

Mathematically, our reward function can be expressed as:
min

(
0.1,

∑23
i=1(xi+1 − xi)2

)
, where we saturate the re-

ward at .1 to avoid creating overly spiky samples. We in-
clude further details about reward construction and trajec-
tory optimization in the Supplement.

We find in Table 2 that while the RL fine-tuning method
boasts samples with consistently high reward (as further
demonstrated by the spikyness of generated samples, see
Supplement). However, the generated samples achiever
lower fidelity to the data distribution and diversity than Tra-
jOpt. In this domain, TrajOpt struggles with optimization
stability; we observe high variance in reward. Careful choice
of the control cost can ameliorate high variance concerns,
albeit at the cost of either high-fidelity or high reward (see
Appendix), but underscores important pragmatic considera-
tions when weighing method selection.

6.4. Removing artifacts and canaries in image
generation

For both tasks in this section, we train a diffusion model with
a UNet architecture with with time embedding dimension
256, 3 resnet blocks and attention resolutions 16, 8. The dif-
fusion models are trained on MNIST datasets corrupted with
artifacts or canaries as described in the following paragraphs
for 100 training epochs.

Handling artifacts: timestamp removal Images
sourced from the web may have artifacts; in particular,
many classical cameras emblazon images with a timestamp.
However, when generating new images, we may not
want such artifacts to appear. To mimic the presence
of timestamp artifacts, we construct a series of insignia
of years (i.e., 32 years (ranging from 1992 to 2023).
Timestamps are rendered in large font to ensure visibility.
We blend these timestamps with images from the MNIST
dataset via linear interpolation with a factor of .8 (i.e., 50%
images used for training are .8 * MNIST image + .2 *
Timestamp).

When training the diffusion model, 50% of each batch is
corrupted with a timestamp artifact. All 32 different times-
tamps are included per batch, and wrapped to corrupted
portion. We take our reward model to be a convolutional
neural network (CNN; 2 convolutional layers and 2 full
layers with an average pooling layer in between) trained to
perform binary classification between timestamped and non-
timestamped examples; reward is the classifier’s predicted
probability (as given by the sigmoid function applied to the
logit output by the binary classifier) that an example is not
time-stamped.

(a) Uncontrolled model

(b) RL-tuned model

(c) Trajectory-Optimized

Figure 1. Generated samples for MNIST timestamp removal
dataset.

Figure 1b shows the generated samples from the uncon-
trolled diffusion model, the RL fine-tuned model and the
Trajectory Optimization approach. Both the RL and TrajOpt
approaches successfully achieve removal of the timestamp
while generating high quality samples (with the exception
of one miss of timestamp removal via the RL approach).
Overall, TrajOpt outperforms RL on both sample quality
and reward. Unsurprisingly, the rejection sampling method
achieves higher fidelity (since the accepted samples all come
from the original diffusion model which has high fidelity
to the training distribution), but lower diversity than our
alternative approaches.

Handling memorized inputs: canary detection It has
been shown that diffusion models can memorize images in
the training data, particularly ones that have been duplicated
sufficiently often (Carlini et al., 2023). Uncurated datasets
scraped from the web often have duplicate or near-duplicate
images, and deduplication is not always easy especially if
the images are not exact but near duplicates. In this situation,
it is problematic if the diffusion model generates memorized
images.

We simulate such a situation by inserting a canary image
(the second image in the top panel of figure (Appendix figure
9a) repeatedly into the training data of the MNIST dataset.
Specifically, we replace 13% of each batch of images with
the canary. Training the diffusion model thus results in a
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Table 2. Inducing spikes in power consumption time series

Methods
Fidelity Diversity Reward (95% CI)

Precision Density Recall Coverage
Uncontrolled 0.71 0.93 0.43 0.48 0.0021 (0.0021, 0.0022)
Rejection 0.90 0.87 0.65 0.49 0.0022 (0.0022, 0.0023)
TrajOpt 0.85 0.86 0.68 0.62 0.0019 (0.0014, 0.0048)
RL fine-tuned 0.55 0.84 0.23 0.2 0.0027 (0.0027, 0.0029)

Table 3. MNIST Artifact Removal

Methods
Fidelity Diversity Reward

Precision Density Recall Coverage
Uncontrolled 0.56 0.34 0.77 0.40 .21 ±.4
Rejection 0.85 0.73 0.87 0.67 0.92 ±0.15
TrajOpt 0.84 0.69 0.90 0.68 .99 ±10−7

RL fine-tuned 0.83 0.67 0.87 0.63 .94 ±.25

Table 4. MNIST Canary Removal

Methods
Fidelity Diversity Reward

Precision Density Recall Coverage
Uncontrolled 0.37 0.34 0.62 0.44 .65 ± .17
Rejection 0.92 0.93 0.89 0.78 0.74 ± .01
TrajOpt 0.83 0.75 0.88 0.45 0.76 ±.05
RL fine-tuned 0.32 0.16 0.19 0.10 .75 ± .008

model that reproduces the canary frequently (3/32 or 10%
of the time in Appendix Figure 9a). We train a linear clas-
sifier that achieves 100% accuracy on validation data to
discriminate between all the other images of an 8 in the
MNIST dataset vs the canary image and use this as a reward
function.

The results in Table 4 and the output samples in Appendix
Figure 9 demonstrate that we can effectively prevent the
model from generating the canary, while still preserving the
quality of outputs. Overall, on this task though, we find that
the trajectory rejection sampling is a very strong method, as
the number of samples that need to be rejected (that match
the canary) are relatively small, and despite rejection, the
method can preserve strong fidelity and diversity.

7. Limitations & Broader Impacts
Our method relies on access to a high-quality reward func-
tion. However, in practice, reward functions may be im-
perfect and fail to generalize under distribution shift, e.g.,
if trained on only sparse human feedback (Stiennon et al.,
2020). Even here, we needed to apply heuristic clipping
onto our reward functions to support generalization. More
fundamentally, achieving the right balance between fidelity
to the pretrained diffusion model and optimizing the reward
is challenging. Finding principled ways to resolve these
issues are key directions for future work. Yet, it is worth
possible ramifications of facilitating ease of adaption of dif-
fusion models via reward functions; e.g., it is conceivable
that our methods could be deployed to hide that a model

was trained on copyrighted images, or that bad actors could
design a reward function to nudge a model to produce more
explicit or violent content.

8. Conclusion
As diffusion models are increasingly deployed in real-world
applications, it is critical to tune them away from undesir-
able behavior such as regurgitating memorized images or
producing inappropriate content. Reward-based adaptation
is a flexible framework for achieving better control. We
have developed a theoretical framework for optimally trad-
ing off fidelity to an initial generative diffusion model with
maximizing a user specified reward function. The algo-
rithms we develop are effective in practice across a range
of domains. Scaling our algorithms to state-of-the-art text-
to-image models, and investigating the interplay of reward
model uncertainty/robustness and adaptation are interesting
directions for future work.
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Appendix: Algorithms for Optimal
Adaptation of Diffusion Models to

Reward Functions

A. Outline
In section B, we provide details on hyperparameter sweeps,
archictecture details and compute resources used for run-
ning our experiments. In section C, we provide results on
another domain (generating Markov chains with specific
spectral properties), provide additional details on domains
used for experiments and sample images for the MNIST
domains. In section D, we provide additional details on
the trajectory optimization approach and in section E, we
provide a proof of theorem 3.1 and the derivations related
to the PPO objective.

B. Experiment Details and Hyperparameters
This section provides an overview of the details for our
experiments.

Hyperparameter sweeps Details of hyperparameter
sweeps are summarized in Tables 5 and 6.

Resources RL experiments were conducted on a cluster
of TPUs.

C. Additional Results
C.1. Generating Markov Chains with Mixing

Properties

We include further experiments investigating adaptation
into an additional domain; i.e., the problem of generating
discrete Markov chains over graph structures with desir-
able properties related to their equilibrium distributions and
mixing times. Specifically, we wish to sample Markov
chains from a fixed distribution of transition probabilities
over a fixed graph, such that either: 1. The resulting equi-
librium distributions (of each chain) are close to uniform,
or 2. The spectral gap (difference between the largest and
second-largest eigenvalue of the transition matrix) is maxi-
mized. Controlling the spectral gap in particular, is a very
well-studied problem with numerous applications e.g. con-
struction of rapidly mixing processes, ensuring convergence
of random walks etc. Generally however, results are ob-
tained by bounding the spectral gap for specific families of
graphs with regular properties. Here, we investigate how
optimal adaptation algorithms may be applied to generate
graphs satisfying these properties from general distributions.

In both cases, we consider Markov chains over a fixed graph
with N = 10 nodes and E = 57 edges. The distribution

over transition probabilities between nodes is sampled from
a non-uniform distribution determined by a small set of affin-
ity parameters between nodes. This distribution is learned
by the pre-trained diffusion model (an MLP) before the
adaptation algorithms are applied. During adaptation, we
apply a cost that is proportional to the variance of the equi-
librium distribution in the first case and to the spectral gap
of the reversibilization (See Montenegro and Tetali (2006))
of the chain in the second.

The results (shown in tables 7 and 8) indicate some degree
of difference in the performance of each. Rejection sam-
pling is quite competitive in both settings, achieving low
cost, though with a significant loss of fidelity in the equi-
librium case. TrajOpt achieves the best cost in the spectral
gap setting but with a large penalty for fidelity. For the
uniform case, it achieves a moderate reduction in cost with
high diversity and fidelity to the pre-trained distribution.
RL training was observed to be extremely unstable despite
extensive hyper-parameter search and barely moved the cost
in both settings, showing that this optimization problem is
non-trivial. The single-best trajectory observed over a large
sample had cost 2.42 × 10−4 in the equilibrium case and
0.645 in the spectral gap case. This may explain some of the
differences in the results, since all methods find trajectories
with average cost far from optimal for the uniform case, but
close to optimal for the spectral gap, perhaps indicating that
"good" trajectories are much sparser for the uniform cost
setting than for the spectral gap.

C.2. RL training curves

Here, we present reward curves for RL results. For each
series, errorbars correspond to standard deviations over all
other hyperparameters included in the sweep in Table 6 (e.g.,
seeds, learning rates, etc.). Figures 2 to 7 illustrate reward
and KL divergence curves throughout training for various
hyperparameter values.

C.3. Additional Details on Power Consumption
Experiments

We include further details on the data and model setup for
the power consumption domain.

Power consumption is measured every minute. We focus
on a single measure per timestep; i.e., global average power
consumed (in kilowatts). We follow (Papamakarios et al.,
2017) in in-filling missing data with the entry from the pre-
vious time’s measurement. The samples x ∈ R24 represent
the time-series of power consumption averaged over each
hour of the day. While training and sampling from the dif-
fusion model, x is normalized such that each dimension is
between 0 and 1. We employ an MLP-based architecture
for the score function, with time embedding of dimension
128 and 2 hidden layers of 100 neurons each. We train for



Algorithms for optimal adaptation of diffusion models

Table 5. Hyperparameters used for trajectory optimization experiments. Values in braces indicate sweeps. The learning rate drops by a
factor of 10 at the iteration number indicated in the row (Drops in learning rate)

Parameter Power Time Series Markov Chain MNIST

Initial learning rate 1e-3 1e-3 1e-3
Adam #steps 10000 10000 40000
Drops in learning rate - - 20000
Reward scaling 1 1 10, 20, . . . 90

Table 6. Hyperparameters used for RL experiments. Values in braces indicate sweeps.

Parameter Power Time Series Markov Chain MNIST

Training steps 1e7 5e6 2e6
Adam learning rate {3e-6, 3e-5, 3e-4} {3e-7, 3e-6} {3e-7, 3e-6}
Adam epsilon 1e-7 1e-7 1e-7
KL penalty β {1e-2, 1} {5e-4, 5e-3, 7e-3, 1e-2} {3e-4, 5e-4, 1e-2, 1}
Diffusion λ {0.1, 1.0} {0.1, 1.0} {0.1, 1.0}
Diffusion # timesteps 40 100 40
Batch size 128 128 128
PPO unroll length 2 2 2
PPO # minibatches 8 8 8
PPO # epochs 2 2 2
PPO clipping ε 0.1 0.1 0.1
# seeds 2 2 2

150,000 iterations.

C.4. Additional Details on MNIST experiments

We include additional information on the MNIST artificat
and canary removal domains. Additional class-conditional
generations for artifact removal are depicted in Figure 8 and
samples for canary removal are in 9.

D. Details of TrajOpt
We use the Adam optimizer (Kingma and Ba, 2014) with
details on learning rate schedules as outlined in tabel 5.
We initalize TrajOpt with x generated by the uncontrolled
model and then optimize towards the controlled model. In-
terestingly, the fidelity penalty term rises initially in order
to produces samples with high reward, but eventually falls
so that the trajectories remain close to those produced by
the original denoising steps of the diffusion model. Investi-
gating this behavior more closely might provide avenues for
developing more efficient trajectory optimization algorithms
in the future.

E. Proofs and derivations
E.1. Proof of theorem 3.1

Proof. By Girsanov’s theorem (as used in the proof of the-
orem 2.1 of (Tzen and Raginsky, 2019)), we find that the
Radon-Nikodym derivative of Puλ with respect to P sθλ is
given by

dPuλ
dP sθλ

=

∫ 1

0

1

2

((
1+λ2

2

)
g (t)

2
)2
‖u (x, t)− sθ (x, t)‖2

λ2g (t)
2 dt

Thus, the KL divergence between them is

E
x∼Puλ

[∫ 1

0

(
1 + λ2

)2
8λ2

g (t)
2 ‖u (x (t) , t)− sθ (x (t) , t)‖2 dt

]

Thus, the objective evaluates to

E
x∼Puλ

[
−
(
1 + λ2

)2
g (t)

2

8
CC + r (x (1))

]

which coincides with (5).

Furthermore, if we take the limit as λ → 0, samples from
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Table 7. Controlling for Uniform Equilibrium Distributions of Markov Chains.

Methods
Fidelity Diversity Cost ×103

Precision Density Recall Coverage (Var. of eq. dist.)
Uncontrolled 0.87 0.98 0.98 0.99 1.683 ±0.08
Rejection Sampling 0.67 0.56 0.90 0.88 0.82 ±0.006
TrajOpt 0.87 0.98 0.84 0.95 1.524 ±0.07
RL fine-tuned 0.77 0.74 0.85 0.93 1.642 ±0.03

Table 8. Controlling Spectral Gaps of Markov Chains.

Methods
Fidelity Diversity Cost

Precision Density Recall Coverage (1− λ2)
Uncontrolled 0.87 0.98 0.98 0.99 0.665 ±7× 10−4

Rejection Sampling 0.87 0.85 0.83 0.92 0.658 ±4× 10−5

TrajOpt 0.27 0.08 0.95 0.24 0.653 ±6× 10−4

RL fine-tuned 0.20 0.047 0.002 0.014 0.664 ±1× 10−3

Pu0 can be generated as (taking the limit of (4) as λ→ 0)

ẋ (t) = −
(
f (t)x (t)− 1

2
g (t)

2
u (x (t) , t)

)
t ∈ [0, 1],x (0) ∼ N (0, I)

and the objective reduces to

E
x∼Pu0

[
−g (t)2

8
CC + r (x (1))

]

Note that the stochasticity here is only in x (0) since the
rest of the trajectory can be generated by following the
ODE above starting at x (0). Hence, the expectation above
reduces to

E
x(0)∼N (0,I)

[
−g (t)2

8
CC + r (x (1))

]

Since we allow for arbitrary measurable functions u : Rn ×
[0, 1] 7→ Rn, once x0, we can reprhase the optimal control
problem (5) as

min
u

E
x(0)∼N (0,I)

[
−g (t)2

8
CC + r (x (1))

]

where

ẋ (t) = −
(
f (t)x (t)− 1

2
g (t)

2
u (x (t) , t)

)
Substituting this value into the above equation, we obtain

min
u

E
x(0)∼N (0,I)

[
−1

2g (t)
2 OO + r (x (1))

]

where

∫ 1

t=0

∥∥∥∥ẋ (t) + f (t)x (t)− 1

2
g (t)

2
sθ (x (t) , t)

∥∥∥∥2 dt
(12)

u (x (t) , t) =
ẋ (t) + f (t)x (t)

1
2g (t)

2 (13)

Thus, there is a one to one mapping between trajectories
x (t) and policies u. Further, the optimal sequence of values
u (x (t) , t) is determined given the value of x (0).

Furthermore, the optimal u (x (t) , t) can be determined by
solving

min
x:x(0)=z

−1
2g (t)

2 OO + r (x (1))

where z ∼ N (0, I) and setting u? (x (t) , t) based on (13).
Hence the theorem.

E.2. Detailed derivation of PPO KL term

We note that 10a in the original submission has a typo,
and that K̂Lφold

(
Pφλ ‖ P θλ

)
should be directly defined via
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Figure 2. Training curves for Toy Dataset.

equation 10b.

KL
(
Pφλ ‖ P

θ
λ

)
= E

x∼Pφλ

[
log

(
Pφλ (x)

P θλ (x)

)]
(14a)

= E
x∼Pφλ

log(Pφλ (x (0))

P θλ (x (0))

)
+

∑
t∈T \{1}

log
(πφ (x (t+ h) |x (t) , t)

πθ (x (t+ h) |x (t) , t)

)
(14b)

= E
x∼Pφλ

 ∑
t∈T \{1}

log
(πφ (x (t+ h) |x (t) , t)

πθ (x (t+ h) |x (t) , t)
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(14c)

= E
x∼Pφλ

 ∑
t∈T \{1}

KL (πφ (·|x (t) , t) ‖ πθ (·|x (t) , t))


(14d)

=
1

h
E

x∼Pφλ ,t∼U(T \{1})
[KL (πφ (·|x (t) , t) ‖ πθ (·|x (t) , t))]

(14e)

where (14d) follows by observing that

E
[
log
(πφ (x (t+ h) |x (t) , t)

πθ (x (t+ h) |x (t) , t)

)]
= E

[
E

x(t+1)∼πφ(·|x(t),t)

[
log
(πφ (x (t+ h) |x (t) , t)

πθ (x (t+ h) |x (t) , t)

)∣∣∣∣x (t)

]]

= E [KL (πφ (·|x (t) , t) ‖ πθ (·|x (t) , t))]

and (14e) follows by observing that there is an expectation
of average over T = 1

h terms which can be replaced by an
expaction where t is sampled uniformly.

Replacing the expectation with an expectation over x ∼
Pφ

old

λ yields K̂Lφold

(
Pφλ ‖ P θλ

)
.
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Figure 3. Training curves for Power Consumption Time Series dataset.
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Figure 4. Training curves for Graph dataset.
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Figure 5. Training curves for MNIST Timestamp dataset.
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Figure 6. Training curves for MNIST Canary dataset.
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Figure 7. Training curves for MNIST Canary (linear reward) dataset.
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(a) Uncontrolled model

(b) RL-tuned model

(c) Trajectory-Optimized

Figure 8. Generated samples for MNIST timestamp removal
dataset.



Algorithms for optimal adaptation of diffusion models

(a) Uncontrolled model.

(b) RL-tuned model. Canary images for digit class 8 are rarely generated ;

(c) TrajOpt. Canary images for digit class 8 are rarely generated ;

Figure 9. Generated samples for MNIST canary dataset.


