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ABSTRACT

The lack of an acceptable confidence level associated with the predictions of Machine
Learning (ML) models may inhibit their deployment and usage. A practical way to
avoid this drawback is to enhance these predictions with trustworthiness and risk-
aware add-ons such as Uncertainty Quantification (UQ). Typically, the quantified un-
certainty mainly captures two intertwined parts: an epistemic uncertainty component
linked to a lack of observed data and an aleatoric uncertainty component due to irre-
ducible variability. Several existing UQ paradigms aim to disentangle the total quanti-
fied uncertainty into these two parts, with the aim of distinguishing model irrelevance
from high uncertainty-level decisions. However, few of them are delving deeper into
evaluating the disentanglement result, even less on real-world data. In this paper, we
propose and implement a methodology to assess the effectiveness of uncertainty dis-
entanglement through benchmarking of various UQ approaches. We introduce some
indicators that allow us to robustly assess the decomposition feasibility in the absence
of ground truth. The evaluation is done using an epistemic variability injection mech-
anism on four state-of-the-art UQ approaches based on ML models, on both synthetic
and real-world gas demand datasets. The obtained results show the effectiveness of
the proposed methodology for better understanding and selection of the relevant UQ
approach. The corresponding code and data can be found in Github repository.

1 INTRODUCTION AND RELATED WORK

Introduction Complex systems (such as factories[16], transport[27], or electricity networks[5]) are now
equipped with multiple sensors allowing subsystems characterization and global operational monitor-
ing. To process massive amounts of dynamic data, the deployment of AI-based monitoring models
becomes mandatory, raising a critical question: can we trust them? This work takes place in the con-
text of trustworthy AI and risk-aware Machine Learning (ML) predictions based on Uncertainty Quan-
tification (UQ). In this respect, AI-based systems must be enhanced by an uncertainty management
framework[2; 12], paving the way for their certification through risk-based decision-making [9].

In the field of ML-UQ, several paradigms claim to produce models able to separate and quantify two
distinct components contributing to the total uncertainty [3; 18; 10; 8]. Epistemic uncertainty expresses
the irrelevance of a model facing an atypical input and aleatoric uncertainty expresses irreducible intrin-
sic variability in a model decision [15]. These two components are defined for and in a given modeling
scope, resulting from the methodological choice of both observed features and model type, which de-
pends on the predictive task’s characteristics. Setting up this modeling scope draws the line between
upstream sources of irreducible uncertainty (e.g. stemming from the studied phenomena, measurement
imprecision, unobserved hidden variables, or limiting model hypothesis) and reducible sources of uncer-
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tainty (e.g. out-of-distribution data or lack of observations). According to a common view in the ML-UQ
community [15; 18; 8], disentangled Uncertainty Quantification (dUQ) approaches are often composed
of two parts. The first is an explicit or implicit ensemble of submodels, each one providing a prediction
and an aleatoric estimation. The second is a metamodel synthesizing the ensemble outputs and pro-
ducing an epistemic confidence level based on the variability of ensemble decisions. To highlight the
meaning of this distinction, we asked the following question: "for a given modeling scope, can we reduce
the variability of predictions by enhancing the quantity and/or quality of observed data?"

However, dUQ faces both technical and methodological difficulties. On real data with noisy and limited
observations, the epistemic and aleatoric uncertainty components are strongly entangled [15; 9]. Plus,
there is no ground truth that allows the evaluation of the quantification and even less the possibility
of the decomposition. In this regard, our contribution addresses the following methodological chal-
lenges, related to robust evaluation of model epistemic confidence, despite the absence of ground truth
in real data. We will first compare recent works on UQ regression in ML, then propose a dUQ evaluation
methodology based on a novel epistemic variability injection mechanism, aiming to exhibit or disprove
the effectiveness of aleatoric and epistemic uncertainty disentanglement.

Related Works Multiple survey papers are also dedicated to UQ in ML [2; 12] and focus on three main
UQ paradigms. The Bayesian formalism [6; 28] is widely used to develop probabilistic methods for UQ.
As the exact Bayesian inference is intractable, multiple approximations are proposed in literature. Monte
Carlo Dropout (MCDP) is one of recent attempts to estimate the uncertainty of forecast using Dropout
in neural networks [11; 28]. The ensemble models [17] are widely used for uncertainty estimation due to
their simple implementation. The uncertainty could be measured through the prediction confidence of
the ensemble members. The well-known ensemble approach, namely, Random Forests (RF) can be used
for the estimation of uncertainty indicators based on the total variance theorem [19; 26]. Finally, Evi-
dential Deep Learning (EDL) [25] learns a distribution over the parametric space of model outcomes and
collects evidence regarding the model predictions. Recently, the evidential formalism has been adapted
for regression problems in [3] (see section B of Appendix).

Then, we propose to summarize the recent literature through three main categories of characteristics:
features, problem support, and environment configuration (see Table 1). Each of these categories has its
own set of criteria, allowing a better analysis of each approach. The last line has been added to illustrate
our contribution through the proposed dUQ evaluation, and the benchmark carried out on it.

Table 1: Summary of UQ approaches and the characteristics covered by proposed benchmark framework.

Features Problem support Environment setup

Methods UQ paradigm Prior
Decomposition

UQ
Regression Classification Dataset

criteria
Evaluation

Interpretation Baselines

[11]
MCDP

Drop-out No No Yes Yes
(diverse)

Public / Synthetic
NLL / RMSE Local Yes (diverse)

[8]
BNN+LV

Bayesian Yes Yes Yes No
(diverse)

Public / Synthetic
NLL Local Variants

[23]
DeepSTUQ

Ensemble
Variational

Yes Yes Yes No Public
Sharpness

NLL/Coverage
Quantitative

Partial
(diverse)

Yes

[17]
DeepEnsemble

Ensemble No No Yes Yes
(stationary)

Public / Synthetic
Brier/Calibration

NLL / RMSE
Qualitative

Local
(diverse)

Yes

[10]
AutoDEUQ

Ensemble No Yes Yes No
(stationary)

Public / Synthetic
NLL/RMSE No

(diverse)
Yes

[21]
PI

Ensemble No No Yes No
(stationary)

Public / Synthetic
Coverage

Sharpness
No Variants

[24]
Kalman

Covariance Yes Yes Yes No
(Time series)
Multivariate

Relative Error No Variants

U
Q

P
ap

er
s

[3]
EDL

Evidential Yes No Yes No
(stationary)

Public / Synthetic
NLL/RMSE

Quantitative
Partial

(diverse)
Yes

O
u

rs ;
Framework
Benchmark

- Yes Yes No
(Time series)

Public / Synthetic
Real

NLL/RMSE
Coverage

Sharpness

Quantitative
Qualitative

Cross-comparison

(diverse)
Yes

Color codes (green: satisfying, orange: partial, red: ignorance)

From Table 1, we can observe the existence of a diverse range of paradigms (from Drop-out to Ensemble
and Evidential), each having its own characteristics. Some consider the distinction between two sources
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of uncertainty in their modeling, whereas others output a unique quantity presenting the total uncer-
tainty. The regression problem is mostly addressed, whereas the adaptation to classification is straight-
forward. Furthermore, most approaches are evaluated on synthetic or small public datasets with some
limitations in the evaluation methodology. Firstly, those datasets do not reflect the underlying com-
plexity of real-world data due to inherent noises from heterogeneous sources (human, inherent, missing
knowledge, etc.). Additionally, there is a lack of interpretation and behavioral analysis of uncertainty
components during the evaluation (in particular regarding the epistemic part), which often focuses on
a global Negative Log Likelihood (NLL) metric. The influence and appropriateness of evaluation metrics
for UQ models are also studied in the literature [13; 4; 20], based on the use of reliability diagrams (or re-
liability based on the local fit and density principles) and calibrated measures for comparison of various
approaches. However, these uncertainty metrics are not compared through various UQ paradigms.

In this article, we seek to bridge this gap by introducing a dUQ evaluation methodology providing a com-
prehensive benchmark of various typologies of UQ models. To this end, we apply our methodology on
four standard ML approaches which are Monte Carlo Dropout (MCDP), Deep Ensemble, Random Forest
disentangled Uncertainty Quantification (RF-dUQ), EDL, and using real and synthetic datasets.

2 DISENTANGLED UNCERTAINY QUANTIFICATION MODELING FRAMEWORK

Before presenting how dUQ approaches work, we provide technical details concerning uncertainty
sources in the context of a regression task, and how a model captures these as aleatoric or epistemic. Let
us consider a modeling framework, in which random variables (denoted ε) are linked to specific uncer-
tainty sources. Here, time series forecasting (link to the type of data on which the work was undertaken)
is treated as a regression problem based on time-dependent features. In this context, a model f̂ aims to
predict the nominal behavior for variables of interest represented by univariate/multivariate time series
Y = (y1, . . . , yt , . . . , yT ). The forecast at time step t for the variable yt will be based on a vector of observed
variables xt composed of both exogenous ct and lagged response Y

past
t = (yt−l ag , . . . , yt−1) variables, as

well as some latent variables ht : yt = f (xt )+εut with; εut ∼N (0,σu
t (xt ,ht )) ; xt = {ct ,Y past

t },

with f (xt ) the average explainable signal, and εu
t a time-dependent Gaussian noise (local homogeneity

assumption). The latter is associated with upstream irreducible variability, encompassing both intrinsic,
measurement noises and premodeling noise arising from limits of the modeling scope (e.g. due to the
influence of hidden variables ht that cannot be captured through lagged temporal variables Y past

t ).

The ML model f̂θ aims to approximate the explainable part f of the target y using observed variables x
from a training set Dθ = (x1, y1), .., (xn , yn), a subset of the dataset D. θ is the set of parameters obtained
using the training set Dθ, overΘ indicating the whole set of parameters linked to all subsets of the dataset
D. According to the bias-variance trade-off (Eq.1), we decompose all error sources between yt and f̂θ(xt ):

EΘ

[
(yt − f̂θ(xt ))2]=EΘ

[
f̂θ(xt )− f (xt )

]2 +EΘ

[(
EΘ

[
f̂θ(xt )

]− f̂θ(xt )
)
)2]+Ey

[
(yt − f (xt ))2]

= (
f ∗
Θ (xt )− f (xt )

)2︸ ︷︷ ︸
Bias

+EΘ

[(
f ∗
Θ (xt )− f̂θ(xt )

)2
]

︸ ︷︷ ︸
Variance

+ σu
t︸︷︷︸

Intrinsic variability

, (1)

with f ∗
Θ =EΘ[ f̂θ(xt )], the average function given the distribution Θ. Among the three above-mentioned

error sources, the variance can be explained by a noise εθt which corresponds to the gap between the
average function over Θ and the ML model: εθt = f ∗

Θ (xt )− f̂θ(xt ). This epistemic noise is related to insuf-
ficient observations and could be reduced by gathering more data. The bias requires another random
variable εΘt linked to the gap between the average explainable signal and the average function over Θ:
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εΘt = f (xt )− f ∗
Θ (xt ). This noise, due to the modeling constraint over Θ, is irreducible in the modeling

scope. Finally, the intrinsic variability is related to the irreducible noise εu
t that appears upstream of the

modeling scope. It quantifies a lower bound for the expected error in the test data with both infinite data
and unconstrained modeling. To show the relation between the introduced random variables and the
epistemic/aleatoric concepts, we inject them into the total uncertainty law [8] in Eq.2. After simplifica-
tion allowed by strong independence and zeros-mean assumptions:

With yt = fθ(xt )+εθt +εΘt +εu
t and σ(yt |xt ;θ) =σΘ

[
Ey (yt |xt ;θ)

]+EΘ

[
σy (yt |xt ;θ)

]=σE
t +σA

t

We obtain σE
t =σΘ

[
f̂θ(xt )

]=EΘ

[(
εθt

)2
]

, σA
t =σy (εu

t )+σy (εΘt )
(2)

From these equations, we can see that the decomposition into epistemic and aleatoric components (de-
noted by E and A superscripts) requires the manipulation of the whole set of parametersΘ. As expected,
the epistemic part is essentially made up of the variance error caused by the sampling of the training
set. However, the aleatoric part contains several quantities that are all irreducible in the modeling scope
but may be associated with different sources: upstream modeling scope (intrinsic, measurement, and
pre-modeling noise), and model constraints which also cause bias. When we move slightly outside the
domain of validity of the assumptions (due to limited training data and approximate manipulation ofΘ),
the previous negligible terms can then induce blurs into the uncertainty decomposition.

Figure 1: Illustration of a metamodel using Gaussian Aleatoric and Epistemic assumptions.

Figure 2: Theoretical dUQ indicators space

Proposed unified dUQ framework: The functional
scheme of the proposed dUQ framework incorporating
various UQ paradigms is shown in Fig. 1. It is based on
a metamodel MΘ that learns and manipulates diverse
submodels ( f̂θ) to combine their inferences. The learning
phase aims to capture the explainable variability and
estimate irreducible variability while exploring a diversity
of submodel candidates Θ. To ensure diversity and avoid
submodel redundancy, a variability infusion mechanism
(depending on the UQ paradigm) is needed during the
learning phase. The estimated submodels produce, at the
inference step, a local regressor f̂θ(xt ) and an estimation of
aleatoric variability σ̂a( fθ(xt )). Furthermore, an epistemic
variability σ̂e

t is produced by computing the variability of
the submodel regression ŷt (using for example a Gaussian
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assumption). Finally, the metamodel provides a risk-aware forecast comprising three indicators:
µt ,σa

t , σ̂e
t expressing forecast, aleatoric and epistemic indicators. As can be seen in Fig. 2, these

indicators correspond to three independent axes on how the model perceives the data regarding forecast
and sources of uncertainty. We can use them to design confidence intervals, error margins, or warnings
highlighting a lack of model confidence.

3 PROPOSED DISENTANGLED UQ EVALUATION METHODOLOGY

Our dUQ evaluation methodology aims to perform a robust evaluation of model epistemic confidence,
despite the absence of ground truth in real datasets. As an evaluation criterion, to consider dUQ limit due
to modeling approximation, we propose the disentangled Epistemic indicator (dE-Ind) corresponding to
a Negative Epistemic Ratio under Total Log-Likelihoods. It is computed through Aleatoric and Epistemic

Gaussian assumptions from dUQ model output (µt ,σa
t , σ̂e

t ) as I e
t =−l n(1+ σ̂a

t

σe
t

) (dE-Ind)

The experimental goal is to highlight an epistemic confidence gap in model predictions, between nom-
inal and altered queries (i.e. affected by injections of epistemic uncertainty). Epistemic variability in-
jections are designed to force the metamodel to extrapolate predictions on altered queries, correspond-
ing to potentially unseen or even inconsistent feature space locations. In this latter case, the temporal
correlation between features holding complex dependence on each other is potentially broken [14] and
corresponds to out-of-distribution data. A distinction can then be made between altered queries close
to the training domain boundary (almost-normal instance) and altered queries far outside the training
domain boundary (abnormal instance). In what follows, we describe our methodology, which consists of
two types of epistemic variability injections (Fig. 3), one at the inference step and another at the training
step leading to different levels of experimental complexity and realism.

Figure 3: Scheme of the proposed dUQ evaluation methodology.

Inference step injection uses a data replacement to form a kind of robustness attack. To produce altered
queries, the most important features are identified (according to the SHAP and SAGE libraries [7]) and
their values are replaced by outliers belonging to distribution tails. Data replacements are done using
quantile feature distributions on the whole dataset (global) or on a subset of data (local). The number
and type of replacements determine the characteristics of the variability injection. Hence, computing a
pre-trained metamodel M d predictions on nominal (Xn) and altered (Xa) queries allow us to statistically
quantify the epistemic confidence gap due to performing inference on naive synthetic outliers.

5



Under review as a conference paper at ICLR 2023

Training step injection uses a data withdrawal approach. In addition to the pre-trained metamodel
(called control), a second instance of the same metamodel (called degraded) is trained on a slightly mod-
ified dataset: a selected subset (of neighboring data in the feature space) is ablated from training data
(called altered subset) by a large portion (98% or 100%). Therefore, a distinction is made between nom-
inal queries Xn (which belong to unaltered subsets) and altered queries Xa . Here, the epistemic confi-
dence gap is quantified by comparing the control (M c ) and degraded (M d ) model predictions on the
test parts of the nominal and altered queries. As it is a more complex setup generating more realistic
outliers, we designed a robust methodology based on statistical tests. These tests are corrected by a con-
trol mechanism accounting for both the shift between control and degraded models (due to divergence
during learning) and the original shift between subsets (due to training set heterogeneity).

Both experimental setups aim to investigate whether the injection of epistemic variability induces a sig-
nificant shift between the distributions of the dE-Indicator DI predicted by a metamodel for nominal
queries F (xn) ∼ DIn and for altered queries F (xa) ∼ DIa . For the training injection setup, two statistical
tests allow quantifying the significance of the dE-Indicator distribution shift with two distinct control
measures. The first test, Model deviation due to injection corrected by the control model deviation (test 1b
in Fig. 3), highlights an epistemic confidence gap between the control and the degraded model for the
altered subset, with a more substantial magnitude than for the nominal subset. The second test, Sample
shift due to injection corrected by the control subset shift (test 2) highlights an epistemic confidence gap
between the altered and nominal subsets for the degraded model, with a stronger magnitude than the
original gap for the control model. Our statistical framework (see Section D of Appendix) is based on
Wilcoxon-Mann-Whitney and Wilcoxon signed rank tests, with the hypothesis H0 that the two distribu-
tions are identical and the alternative hypothesis that DIa stochastically dominates DIn .

4 EXPERIMENTAL SETTINGS AND RESULTS

The benchmark aims to compare the performances of four metamodel-based approaches from different
UQ paradigms applied to univariate time series: Random Forest disentangled Uncertainty Quantifica-
tion (RF-dUQ)[26], Probabilistic Neural Network Monte Carlo Dropout (PNN-MCDP) [11], Probabilistic
Neural Network Deep Ensemble (PNN-DE)[17] and Evidential Deep Learning regression (EDL)[3]. Im-
plementations and datasets are available in Github repository. The developments are performed using
standard ML libraries (Scikit-Learn [22] and Tensorflow[1]) on CPUs (see Section F of Appendix).

Table 2: Test set performance of nominal setup using our two forecasting datasets.

Approach MLP RF-dUQ PNN-MCD PNN-DE EDL RF-dUQ PNN-MCD PNN-DE EDL
Dataset RMSE metrics (lower is better) NLL metrics* (lower is better)

real 0.22± 0.02 0.23± 0.02 0.22± 0.2 0.22± 0.02 0.22± 0.01 -0.51± 0.06 -0.55± 0.08 -0.57± 0.07 -0.55± 0.08

synthetic 0.43± 0.01 0.43± 0.01 0.44± 0.01 0.43± 0.01 0.44± 0.01 0.43± 0.01 0.46± 0.01 0.40± 0.02 0.44± 0.01

Dataset Sharpness* Coverage (Target: 95.65%)
real ;* 0.82± 0.01 0.81± 0.02 0.73± 0.01 0.75± 0.02 94.9± 0.8 94.9± 1.3 95.1± 1.4 94.4± 1.7

synthetic ;* 1.78± 0.01 1.86± 0.05 1.56± 0.03 1.80± 0.03 96.7± 0.1 96.3± 0.1 95.0± 0.01 96.5± 0.2

*NLL, Coverage and sharpness is meaningless for the MLP model.

Firstly, we compare performances of the mentioned methods in terms of regression accuracy (Root-
Mean-Square Errors, RMSE) and UQ relevance (Negative Log Likelihood, NLL) with six literature ap-
proaches over four public datasets 1 (see Table 2). We observe good overall performances of all methods,
with slightly better results obtained by Autodeuq [10] (improved PNN-DE using AutoML).

Hereafter, we perform our dUQ evaluation on two new forecasting datasets. A real dataset1 related to
gas demand prediction and a synthetic one1 based on local time-dependent Gaussian distribution sup-

1More information about methodology, and additional results are provided in Section E of Appendix.
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port. The evaluation process1 takes place in a standard ML framework with a sequential cross-validation
scheme (2-folds and 2 repetitions) to ensure the robustness of the results. It is divided into 3 steps:

1. UQ regression evaluation on two datasets We evaluated our four approaches on a nominal setup
(without any data alteration) to ensure comparable accuracy and calibrated variance. It is done globally
and locally (on several homogeneous subsets) to better acknowledge the data heterogeneity effects. We
consider two additional metrics to evaluate the relevance of UQ: Sharpness1 and Coverage1 (i.e. size and
% of data in the confidence interval respectively). Table 2 shows the competitive performance in terms
of regression accuracy obtained by UQ-based approaches compared to a simple Multi-Layer Perceptron
(MLP) model without UQ. Each approach obtains a coverage close to the theoretical one, although PNN-
DE seems to provide narrower confidence intervals for similar coverage.

Table 3: Comparison of UQ regression performances using RMSE and NLL metrics on public datasets.

Litterature performance Our metamodels

Approach PBP
Dropout

MC
Ens

Deep
Ens

hyper
Ens
DF

A-deuq RF-dUQ PNN-MCDP PNN-DE EDL

Dataset RMSE metrics (lower is better)
Kin8nm* 0.1 0.1 0.09 0.26± 0.0 0.09 0.06± 0.0 0.142± 0.0 0.069± 0.0 0.067± 0.0 0.068± 0.0

powerplant* 4.12 4.02 4.11 4.38± 0.02 4.10 3.43± 0.08 3.69± 0.13 3.75± 0.12 3.44± 0.12 3.56± 0.15

protein* 4.73 4.36 4.71 5.09± 0.01 4.98 3.52± 0.02 3.60± 0.03 3.77± 0.08 3.48± 0.08 3.57± 0.05

yearprediction** 8.88 8.85 8.89 16.84± 0.08 9.30 7.91± 0.04 9.25 8.75 8.71± 0.0 8.9
Dataset NLL metrics (lower is better)

Kin8nm* -0.9 -0.95 -1.2 6.89± 2.85 -1.14 -1.40± 0.01 -0.538± 0.02 -1.293± 0.02 -1.33± 0.01 -1.303± 0.02

powerplant* 2.84 2.8 2.79 5.24± 0.72 2.83 2.66± 0.05 2.69± 0.01 2.64 ± 0.01 2.55± 0.02 2.55± 0.02)

protein* 2.97 2.89 2.83 21.12 ± 2.52 3.12 2.48± 0.03 2.50± 0.01 2.351± 0.05 2.06± 0.06 3.23± 0.10

yearprediction** 3.6 3.59 3.35 7.44± 0.08 3.58 3.22± 0.00 3.64 3.31 3.22 3.30
*Cross-validation with 5-fold **No cross validation due to the size of dataset

2. Detailed dUQ evaluation on a training injection experiment on real data We propose an experi-
ment based on three subsets of the real dataset sharing homogeneous characteristics in terms of their
variance (see Appendix E for details): low-variability subset, mid-variability subset and high-variability
subset. We present the detailed results in Fig. 4 for a training variability injection with the withdrawal
of 98% of the mid-var subset. For each approach, performances of the control and degraded models
(denoted by c and d respectively) are shown for each subset. Control meta-models of each of the four
approaches display similar behaviors through all the metrics and subsets. As expected, models make
more errors on the high-var subset and their predictions are less confident (higher NLL), but still offer a
satisfying coverage thanks to the local uncertainty estimation.

Figure 4: Local performances for one learning injection setup on real data. Control and degraded models
are denoted by c and d. Data are partitioned in three subsets of Low, Mid and High-variability.
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By comparing control and degraded models, we observe their equivalent performances on nominal sub-
sets (proof of injection locality). On the contrary, for the altered subset, the injection of variability leads
to a loss of accuracy (arrows 1) and an increase in NLL (arrows 2), reflecting a loss of confidence between
the degraded and control models. We observe a decrease in coverage (arrows 3) with a slight increase of
sharpness for PNN-MCDP, PNN-DE, and EDL, meaning that the altered subset deviates from the nominal
distribution. However, for RF-dUQ (arrows 4), we observe instead a sharpness increase.

The dUQ evaluation is performed through aleatoric/epistemic sharpness and the dE-Indicator (Fig. 4).
Again, the control and degraded models show equivalent performances on nominal subsets. However,
for the altered subset, all the approaches (except EDL) display a significant increase in epistemic sharp-
ness (arrows 5) while there are only slight variations in aleatoric sharpness. The dE-Indicator logically
increases (arrows 6), expressing a loss of epistemic confidence due to epistemic uncertainty injection.
However, EDL shows no dE-Indicator increase, suggesting dUQ ineffectiveness in this case.

Finally, we represent the degraded PNN-DE model outputs in the UQ indicator space (introduced in
Fig. 2), where each sample is a point whose coordinates are its three predictive indicators. On the left plot
(colored by subset), green points (corresponding to the mid-var altered subset) are positioned higher on
the epistemic axis, expressing the degraded model’s lack of confidence at the inference step. The right
plot (colored by epistemic confidence difference∆dE between control and degraded models) proves that
contrary to the degraded model, the control model doesn’t express any lack of confidence in the mid-var
subset. Indeed, the mid-var region involves higher ∆dE values, showing the fact that the observed lack
of epistemic confidence is caused by mid-var data withdrawal.

Figure 5: UQ space for PNN-DE degraded model on real data with mid-var data as altered subset, colored
by variability-subset (left) and confidence gap ∆dE (right).

3. Synthesis of evaluation of dUQ effectiveness on all experiments In total, including cross-
validations, 64 variants of experiments were performed using both injection setups on the real and syn-
thetic data. Using the statistical framework based on dE-Ind distribution shifts, the objective is to de-
termine whether epistemic injections may affect the epistemic component and whether their impact is
significant on the aleatoric component.

For inference step injection experiments (test T1a of Fig. 6), all the approaches successfully expressed
the lack of epistemic confidence (large margin above the red dotted line) presence of naive outliers. We
observe the small impact of the injection strength for all approaches, whereas the type of injection (local
vs. global) does not seem to have a significant impact. For training injection experiments, where a posi-
tive result must be observed for both tests (T1b & T2 in Fig. 6) to prove dUQ effectiveness, the results are
more contrasted between the approaches. PNN-DE and PNN-MCDP show successful results in almost
all configurations. RF-dUQ fails on the high-var setup. EDL fails in almost all configurations, illustrating
that dUQ is not effective, either due to the intrinsic behavior of the approach or to parameterization is-
sues in spite of hyperparameter optimization. The perturbation of the low-variability subset (low-var-98
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and low-var-100) leads to small test scores for all approaches, suggesting difficulties in expressing low
confidence in small variability data, even with few observations. However, some approaches (e.g. PNN-
MCDP) still manage to express a loss of confidence even on low-magnitude injection. We also note that
the training injection strength (98% vs. 100% removal) does not have a significant impact on dUQ effec-
tiveness. A potential explanation relies on the fact the withdrawn samples have non-removed neighbors
that retain part of the supporting information for prediction.

Figure 6: Results of the statistical tests for all experiments.

5 CONCLUSION AND PERSPECTIVES

We propose a dUQ evaluation methodology, based on epistemic injection at training or inference. These
two mechanisms are designed to face methodological issues concerning the assessment of epistemic
confidence without ground truth on real data. Experiments, performed using four state-of-the-art mod-
els and two datasets, demonstrate dUQ relevance and effectiveness on heterogeneous and heteroscedas-
tic data. We show that some models (RF-dUQ, PNN-MCDP, PNN-DE) produce relevant local aleatoric
and epistemic indicators on both datasets and succeed in handling naive altered queries. In contrast,
others (EDL) show limitations when dealing with trickier outliers, resulting in ineffective dUQ.

Limitation and perspectives The current study only considers the regression task on time series, with
Gaussian assumption of aleatoric and epistemic uncertainties. However, the extension to classification
and other types of data is straightforward and within our perspectives. Future works will consider more
complex and massive datasets issued from dynamic systems. Moreover, we aim to include more complex
architectures (e.g. LSTM and Transformers) in our framework, go beyond the Gaussian assumption of UQ
formalism, and compare more UQ paradigms using our framework (e.g., Bayesian and variational).

Broader impact To implement trustworthy AI in operational conditions, the risk-aware UQ framework
will be a crucial part of a reliable chain combining control and certification mechanisms. It could be used
along with data-qualification frameworks to ensure dataset viability and meet operational needs, such
as complex systems monitoring, or anomaly and distribution drift detection.
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