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ABSTRACT

Temporally causal representation learning aims to identify the latent causal process
from time series observations, but most methods require the assumption that the
latent causal processes do not have instantaneous relations. Although some recent
methods achieve identifiability in the instantaneous causality case, they require
either interventions on the latent variables or grouping of the observations, which
are in general difficult to obtain in real-world scenarios. To fill this gap, we pro-
pose an IDentification framework for instantaneOus Latent dynamics (IDOL) by
imposing a sparse influence constraint that the latent causal processes have sparse
time-delayed and instantaneous relations. Specifically, we establish identifiability
results of the latent causal process up to a Markov equivalence class based on
sufficient variability and the sparse influence constraint by employing contextual
information. We further explore under what conditions the identification can be
extended to the causal graph. Based on these theoretical results, we incorporate a
temporally variational inference architecture to estimate the latent variables and
a gradient-based sparsity regularization to identify the latent causal process. Ex-
perimental results on simulation datasets illustrate that our method can identify
the latent causal process. Furthermore, evaluations on human motion forecasting
benchmarks indicate the effectiveness in real-world settings.

1 INTRODUCTION

Time series analysis (Zhang et al., 2023; Tang & Matteson, 2021; Li et al., 2023a; Wu et al., 2022;
Luo & Wang, 2024), which has been found widespread applications across diverse fields such as
weather (Bi et al., 2023; Wu et al., 2023b), finance (Tsay, 2005; Huynh et al., 2022), and human
activity recognition (Yang et al., 2015; Kong & Fu, 2022), aims to capture the underlying patterns
(Wang et al., 2019; Jin et al., 2022) behind the time series data. To achieve this, one solution is to
estimate the latent causal processes (Tank et al., 2021; Li et al., 2023b; Zheng & Kleinberg, 2019).
However, without further assumptions (Locatello et al., 2020), it is challenging to identify latent
causal processes, i.e., ensure that the estimated latent causal process is correct.

Researchers have exploited Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000; Comon,
1994; Hyvärinen, 2013; Zhang & Chan, 2007), where observations are generated from latent variables
via a linear mixing function, to identify the latent causal process. To deal with nonlinear cases,
different types of assumptions including sufficient changes (Yao et al., 2021; Khemakhem et al.,
2020a; Xie et al., 2022b) and structural sparsity (Lachapelle et al., 2022; Zheng et al., 2022) are
proposed to meet the independent change of latent variables. Specifically, several works leverage
auxiliary variables to achieve strong identifiable results of latent variables (H"alv"a & Hyvarinen,
2020; Hälvä et al., 2021; Hyvarinen & Morioka, 2016; 2017; Khemakhem et al., 2020a; Hyvarinen
et al., 2019). To seek identifiability in an unsupervised manner, other researchers (Ng et al., 2024;
Zheng & Zhang, 2024) propose the structural sparsity on the generation process from latent sources
to observation. However, these methods usually do not have instantaneous relations, e.g., the latent
variables are mutually independent conditional on their time-delayed parents at previous timestamps.
Hence, further assumptions are used for identifiability. For example, Lippe et al. (Lippe et al., 2023)
demonstrate identifiability by assuming that there exist interventions on latent variables, and Morioka
et al. (Morioka & Hyvärinen, 2023) yield identifiability with the assumption of the grouping of
observational variables. Recently, Zhang et al. (Zhang et al., 2024) use the sparse structures of latent
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Figure 1: Three different data generation processes with time-delayed and instantaneous dependencies.
(a) iCITRIS (Lippe et al., 2023) requires intervention variables it for latent variables (the gray nodes
with blue rim.). (b) G-CaRL (Morioka & Hyvärinen, 2023) assumes that observed variables can be
grouped according to which latent variables they are connected to (the blue dotted lines), (c) IDOL
requires a sparse latent causal process (the blue solid lines).

variables to achieve identifiability of static data under distribution shift. Beyond it, in this work, we
demonstrate that temporal identifiability benefits from the sparsity constraint on the causal influences
in the latent causal processes by employing the temporal contextual information, i.e., the variables
across multiple timestamps. Please refer to Appendix A and C for further discussion of related works,
including the identification of latent variables and instantaneous time series.

Although these methods (Lippe et al., 2023; Morioka & Hyvärinen, 2023) have demonstrated
the identifiability of latent variables with instantaneous dependencies, they often impose strict
assumptions on the latent variables and observations. Specifically, as shown in Figure 1 (a), iCITRIS
(Lippe et al., 2023) reaches identifiability by assuming that interventions It, i.e., the gray nodes with
blue rim, on the latent variables, which is expensive and difficult in practice. For instance, considering
the joints as the latent variables of a human motion process, it is almost impossible to intervene in the
joints of the knee when a human is walking. Moreover, as shown in Figure 1 (b), G-CaRL (Morioka
& Hyvärinen, 2023) employs the grouping of observations to identify the latent variables, i.e., the
blue dotted lines. However, the grouping of observations is usually expensive, for example, grouping
the sensors on a human body from the joints of skeletons requires massive of expert knowledge and
labor. Therefore, it is urgent to find a more general approach with an appropriate assumption to
identify the latent causal process with instantaneous dependencies.

To identify the latent variables in more relaxed assumptions, we present a general IDentification
framework for instantaneOus Latent dynamics (IDOL) with the only assumption of the sparse causal
influences in the latent processed named “sparse latent process” as shown in Figure 1 (c), where
the transition process denoted by the blue solid lines is sparse. It is worth noting that the sparse
latent process assumption is common and naturally appears in many practical time series data. In the
example of human motion forecasting, a skeleton of the human body, which can be considered to be a
latent causal process, is usually sparse. This is because there are a few connections among the joints
of the human body. Based on the latent process sparsity, we first establish the relationship between
the ground truth and the estimated latent variables by employing sufficient variability. Sequentially,
we propose the sparse latent process assumption to achieve the component-wise identifiability of
latent variables by leveraging the contextual information of time series data, which implies the
identification of Markov equivalence class. Furthermore, we can extend to the identification of the
causal graph when the endpoints of instantaneous edges do not share identical time-delayed parents,
i,e, the example in Figure 1 (c) precisely satisfies this condition. Building upon this identifiability
framework, we develop the IDOL model, which involves a variational inference neural architecture
to reconstruct the latent variables and a gradient-based sparsity penalty to encourage the sparse
causal influences in the latent process for identifiability. Evaluation results on the simulation datasets
support the theoretical claims and experiment results on several benchmark datasets for time series
forecasting highlight the effectiveness of our method.

2 PROBLEM SETUP

2.1 TIME SERIES GENERATIVE MODEL UNDER INSTANTANEOUS LATENT CAUSAL PROCESS

We begin with the data generation process as shown in Figure 1 (c) where the latent causal process is
sparse. To facilitate clarity, we adopt the terminology widely used in ICA literature like observation
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xt, latent variables zt and mixing function g (Hyvarinen & Morioka, 2016). Suppose that we have
time series data with discrete timestamps X = {x1, · · · ,xt, · · · ,xT }, where xt is generated from
latent variables zt ∈ Z ⊆ Rn via an invertible and nonlinear mixing function g. We have:

xt = g(zt). (1)

Specifically, the i-th dimension of the latent variable zt,i is generated via the latent causal process,
which is assumed to be related to the time-delayed parent variables Pad(zt,i) and the instantaneous
parents Pae(zt,i). Formally, it can be written via a structural equation model (Neuberg, 2003) as

zt,i = fi(Pad(zt,i), Pae(zt,i), ϵt,i) with ϵt,i ∼ pϵi , (2)

where ϵt,i denotes the temporally and spatially independent noise extracted from a distribution pϵi .
To better understand this data generation process, we take an example of human motion forecasting,
where the joint positions can be considered as latent variables. In this case, the rigid body effects
among joints result in instantaneous effects, and the human movement trajectory recorded by the
sensor are observed variables. As a result, we can consider the process from latent joint positions to
movement trajectory as the mixing process.

2.1.1 IDENTIFIABILITY OF LATENT CAUSAL PROCESSES

Based on the aforementioned generation process, we further provide the definition of the identifiability
of latent causal process with instantaneous dependency in Definition 1. Moreover, if the estimated
latent processes can be identified at least up to permutation and component-wise invertible transfor-
mation, the latent causal relations are also immediately identifiable up to a Markov equivalence class
(Spirtes et al., 2001). We further show how to go beyond the Markov equivalence class and identify
the instantaneous causal relations with a mild assumption in Corollary A2.
Definition 1 (Identifiable Latent Causal Process (Yao et al., 2022; 2021)). Let X = {x1, . . . ,xT } be a
sequence of observed variables generated by the true latent causal processes specified by (fi, p(ϵi),g)
given in Equation (1) and (2). A learned generative model (f̂i, p̂(ϵi), ĝ) is observational equivalent to
(fi, p(ϵi),g) if the model distribution pf̂i,p̂ϵ,ĝ

({x}Tt=1) matches the data distribution pfi,pϵ,g({x}Tt=1)

for any value of {x}Tt=1. We say latent causal processes are identifiable if observational equivalence
can lead to a version of the generative process up to a permutation π and component-wise invertible
transformation T :

pf̂i,p̂ϵi ,ĝ
(
{x}Tt=1

)
= pfi,pϵi ,g

(
{x}Tt=1

)
⇒ ĝ = g ◦ π ◦ T . (3)

Once the mixing process gets identified, the latent variables will be immediately identified up to
permutation and component-wise invertible transformation:

ẑt = ĝ−1(xt) =
(
T −1 ◦ π−1 ◦ g−1)(xt) =

(
T −1 ◦ π−1)(g−1(xt)

)
=
(
T −1 ◦ π−1)(zt). (4)

3 IDENTIFICATION RESULTS FOR LATENT CAUSAL PROCESS

Given the definition of identification of latent causal process, we show how to identify the latent
causal process in Figure 1 (c) under a sparse latent process. Please note that our theorem is discussed
under Markov Network. For more details, please refer to Appendix B.6. Specifically, we first leverage
the connection between conditional independence and cross derivatives (Lin, 1997) and the sufficient
variability of temporal data to discover the relationships between the estimated and the true latent
variables, which is shown in Theorem 1. Moreover, we establish the identifiability result of latent
variables by enforcing the sparse causal influences, as shown in Theorem 2. Finally, we also show
that the existing identifiability results of the temporally causal representation learning methods are a
special case of our IDOL method, which is shown in Corollary 1.

3.1 RELATIONSHIPS BETWEEN GROUND-TRUTH AND ESTIMATED LATENT VARIABLES

In this section, we figure out the relationships between ground truth and estimated latent variables
under a temporal scenario with instantaneous dependence. In order to incorporate contextual informa-
tion to aid in the identification of latent variables zt, latent variables of L consecutive timestamps
including zt, are taken into consideration. Without loss of generality, we consider a simplified case,
where the length of the sequence is 2, i.e., L = 2, and the time lag is 1, i.e., τ = 1. Please refer to
Appendix B.2 for the general case of multiple lags and sequence lengths.
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Theorem 1. For a series of observations xt ∈ Rn and estimated latent variables ẑt ∈ Rn with
the corresponding process f̂i, p̂(ϵ), ĝ, where ĝ is invertible, suppose that the process subject to
observational equivalence xt = ĝ(ẑt). Let ct ≜ {zt−1, zt} ∈ R2n and thatMct

be the variable set
of two consecutive timestamps and the corresponding Markov network respectively. Suppose that the
following assumptions hold:

• A1 (Smooth and Positive Density): The conditional probability function of the latent variables ct
is smooth and positive, i.e., p(ct|zt−2) is third-order differentiable and p(ct|zt−2) > 0 over R2n,

• A2 (Sufficient Variability): Denote |Mct
| as the number of edges in Markov networkMct

. Let

w(m) =
(∂3 log p(ct|zt−2)

∂c2t,1∂zt−2,m
, · · · , ∂

3 log p(ct|zt−2)

∂c2t,2n∂zt−2,m

)
⊕

(∂2 log p(ct|zt−2)

∂ct,1∂zt−2,m
, · · · , ∂

2 log p(ct|zt−2)

∂ct,2n∂zt−2,m

)
⊕
( ∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m

)
(i,j)∈E(Mct )

,

(5)

where ⊕ denotes concatenation operation and (i, j) ∈ E(Mct
) denotes all pairwise indice such

that ct,i, ct,j are adjacent inMct
. For m ∈ [1, · · · , n], there exist 4n+ |Mct

| different values of
zt−2,m, such that the 4n+ |Mct

| values of vector functions w(m) are linearly independent.

Then for any two different entries ĉt,k, ĉt,l of ĉt ∈ R2n that are not adjacent in the Markov network
Mĉt

over estimated ĉt,
(i) Each ground-truth latent variable ct,i of ct ∈ R2n is a function of at most one of ĉk and ĉl,
(ii) For each pair of ground-truth latent variables ct,i and ct,j of ct ∈ R2n that are adjacent inMct

over ct, they can not be a function of ĉt,k and ĉt,l respectively.

Proof Sketch. The proof can be found in Appendix B.1. First, we establish a bijective transformation
between the ground-truth zt and the estimated ẑt to connect them together. Next, we utilize the
structural properties of the ground-truth Markov network Mct to constrain the structure of the
estimated Markov networkMĉt

through the connection between conditional independence and cross
derivatives (Lin, 1997), i.e., ct,i ⊥ ct,j |ct\{ct,i, ct,j} implies ∂2 log p(ct)

∂ct,i∂ct,j
= 0. By introducing the

sufficient variability assumption, we further construct a linear system with a full rank coefficient
matrix to ensure that the only solution holds, i.e.,

∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l

= 0,
∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

= 0,
∂2ct,i

∂ct,k∂ct,l
= 0, (6)

where ∂ct,i
∂ĉt,k

· ∂ct,i∂ĉt,l
= 0 and ∂ct,i

∂ĉt,k
· ∂ct,j∂ĉt,l

= 0 correspond to statement (i) statement (ii), respectively.

Theorem 1 provides an insight, such that when observational equivalence holds, the variables that
are directly related in the true Markov network must be functions of directly related variables in
the estimated Markov network. Please note that τ and L can be easily generalized to any value by
making some modifications on the assumption A2. The τ timestamps that are conditioned on provide
sufficient changes, and L sequence length provides a sparse structure, which will be discussed in
Theorem 2. A detailed discussion is given in Appendix B.2.

3.2 IDENTIFICATION OF LATENT VARIABLES

In this subsection, we demonstrate that given further sparsity assumptions, the latent Markov network
over ct and the latent variables are also identifiable. For a better explanation of the identifiability of
latent variables, we first introduce the definition of the Intimate Neighbor Set (Zhang et al., 2024).
Definition 2 (Intimate Neighbor Set (Zhang et al., 2024)). Consider a Markov networkMZ over
variables set Z, and the intimate neighbor set of variable zt,i is

ΨMct
(ct,i)≜{ct,j |ct,j is adjacent to ct,i, and it is also adjacent to all other neighbors of ct,i, ct,j ∈ct\{ct,i}}.

In other words, Ψ contains all neighbors, iff all neighbors of ct,i are also in the same unique clique
as ct,i, else Ψ = ∅. We further provide an example in the Appendix B.8.

Based on the conclusions of Theorem 1, we consider 3 consecutive timestamps, i.e., ct =
{zt−1, zt, zt+1}, where the identifiability of zt can be assured with the help of the contextual
information zt−1 and zt+1.
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Theorem 2. (Component-wise Identification of Latent Variables with instantaneous dependencies.)
Suppose that the observations are generated instantaneous latent process, andMct

is the Markov
network over ct = {zt−1, zt, zt+1} ∈ R3n. Except for the smooth, positive density and sufficient
variability assumptions, we further make the following assumption:

• A3 (Sparse Latent Process ): For any zit ∈ zt, the intimate neighbor set of zit is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
Markov network ofMĉt

, then we have the following two statements:

(i) The estimated Markov networkMĉt
is isomorphic 1 to the ground-truth Markov networkMct .

(ii) There exists a permutation π of the estimated latent variables, such that zit and ẑπ(i)t is one-to-one
corresponding, i.e., zit is component-wise identifiable.

Proof Sketch. Given the fact that there always exists a row permutation for each invertible matrix such
that the permuted diagonal entries are non-zero (Zheng & Zhang, 2024), we utilize the conclusion of
Theorem 1 to demonstrate that any edge present in the true Markov network will necessarily exist
in the estimated one. Furthermore, when the number of estimated edges reaches a minimum, the
identifiability of Markov network can be achieved. Finally, we once again leverage Theorem 1 to
illustrate that the permutation which allows the Markov network to be identified can further lead to a
component-wise level identifiability of latent variables. A detailed proof is given in Appendix B.3.

(i) 𝒄𝐭 = {𝒛𝒕ି𝟏, 𝒛𝒕, 𝒛𝒕ା𝟏} (iii) 𝒄𝐭 = {𝒛𝒕}
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Figure 2: Examples of Markov networks with different types
of contextual information that satisfy the sparse latent pro-
cess assumption. Case (i) uses both historical and future
information for identifiability. Case (ii) uses only historical
information. Case (iii) that does not include instantaneous
dependencies can identify latent variables without any con-
textual information, which degenerates to TDRL(Yao et al.,
2022). Please note that in all cases, we show only the Markov
net of ct conditioned on previous timestamps while omitting
the conditions for simplicity.

Discussion. Intuitively, Theorem 2
tells us that any latent variable zt,i
is identifiable when its intimate set
is empty, which benefits from the
sparse causal influence. Compared
with the existing identifiability re-
sults for instantaneous dependencies
like intervention or grouping observa-
tions, this assumption is more practi-
cal and reasonable in real-world time
series datasets.

One more thing to note is that it is
not necessary to utilize all contex-
tual information for identifiability. In
fact, as long as there exist consecu-
tive timestamps where the intimate
sets of all variables in zt are empty,
the identifiability can be established.

Corollary 1. (General Case for
Component-wise Identification.) Suppose that the observations are generated by Equation (1)
and (2), and there exists ct = {zt−a, · · · , zt, · · · , zt+b} ∈ R(a+b+1)×n with the corresponding
Markov networkMct

. Suppose assumptions A1 and A2 hold true, and for any zt,i ∈ zt, the inti-
mate neighbor set of zt,i is an empty set. When the observational equivalence is achieved with the
minimal number of edges of estimated Markov network ofMĉt

, there must exist a permutation π
of the estimated latent variables, such that zt,i and ẑt,π(i) is one-to-one corresponding, i.e., zt,i is
component-wise identifiable.

Discussion. In this part, we give a further discussion on how contextual information can help to
identify current latent variables. Let us take Figure 2 (i) as an example, when we consider the current
latent variables zt,1, zt,2 and zt,3 only, it is easy to see that neither zt,1 nor zt,3 are identifiable since
both of their intimate set are {zt,2}. However, when the historical information zt−1 is taken into
consideration, where zt−1,1 affects only zt,1 but not zt,2, then zt,1 will immediately be identified
since the intimate set of zt,1 will be empty thanks to the unique influence from zt−1,1. Similarly,
with a future variable zt+1,3 which is influenced by zt,3 but not zt,1, then zt,3 can be identified
as well. Besides, under some circumstances, only part of the contextual information is needed.

1Please refer to the definition of isomorphism of Markov networks in Appendix B.7.
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Table 1: The summary of related work of causal representation learning.
No Intervention No Grouping Stationarity Instantaneous Effect Temporal Data

IDOL ✓ ✓ ✓ ✓ ✓
Yao et al. (2022) ✓ ✓ ✓ × ✓
Morioka & Hyvärinen (2023) ✓ × ✓ ✓ ✓
Lippe et al. (2023) × ✓ ✓ ✓ ✓
Zhang et al. (2024) ✓ ✓ × ✓ ×

Therefore, the length of the required time window L can be reduced as well, which leads to a more
relaxed requirement of assumption A2, according to Theorem 1. As shown in Figure 2 (ii), with only
historical information, the identifiability of zt can already be achieved. Furthermore, some existing
identifiability results (Yao et al., 2021; 2022) can be considered as a special case of our theoretical
results when the instantaneous effects vanish. For example, Figure 2 (iii) provides the example of
TDRL (Yao et al., 2022), where all intimate sets are empty naturally, and the identifiability is assured.

We further explore when the causal graph of latent variables is also identifiable. Please refer to
Appendix B.5 for more details.

3.3 COMPARASION WITH EXISTING METHODS

The application of real-world scenarios presents numerous new opportunities and challenges. Com-
pared to existing methods of temporally causal representation learning with instantaneous effects,
our approach significantly relaxes the constraints on theoretical assumptions, as shown in Table 1.
TDRL (Yao et al., 2022) requires that there are no instantaneous effects during the transition process,
which can be considered as a special case of our method. G-CaRL (Morioka & Hyvärinen, 2023) and
iCITRIS (Lippe et al., 2023) require extra intervention or grouping information, which is not neces-
sary in our method. Zhang et al. (2024) focus on non-temporal scenarios and require extra domain
labels. Instead, IDOL can handle the stationary temporal case. Besides, when the instantaneous effect
is dense, which is beyond the capacity of Zhang et al. (2024), IDOL can still utilize the contextual
information for better identifiability as long as the temporal transition is sparse.

3.4 DISCUSSION OF ASSUMPTIONS

To enhance understanding of our theoretical results, we provide some explanations of the assumptions,
their connections to real-world scenarios, as well as the potential boundary of theoretical results.

First, The smooth and positive density assumption is standard in the literature on nonlinear ICA
(Khemakhem et al., 2020a; Yao et al., 2022; Kong et al., 2022), meaning that the latent variables zt
change continuously based on historical information. For instance, in a weather dataset, temperature
varies smoothly over time. However, this assumption may be violated if we cannot fully capture the
transition probabilities from the observations. To mitigate this, we can sample a larger dataset to
better estimate the latent causal process.

Second, the sufficient variability assumption has also been commonly adopted for the existing
identifiable results of temporally causal representation learning (Yao et al., 2021; 2022; Chen et al.,
2024a). This assumption describes the changeability of latent variables. Take human motion
forecasting as an example, the latent variable may represent joint location at different time steps. The
linear independence of the latent variables means that the changes of each joint cannot be linearly
represented by others. Besides, while the sufficiency assumption is foundational to the theory of
identifiability, it is not excessively restrictive. Even in cases where this assumption is not fully
satisfied, it is still possible to achieve a degree of subspace identifiability (Kong et al., 2022).

Finally, the sparse latent process is the key assumption of our method, which is common in real-world
scenarios. Intuitively, in human motion forecasting, the joints of humans can be considered as latent
variables. Since there are few connections among the joints of the human body, the latent process
described by the skeleton motion trajectory is sparse. Even though the sparsity assumption is not
completely satisfied, we can still attain a subspace level of identifiability (Li et al., 2024). In this case,
each true variable can be a function of, at most, an estimated version of its corresponding variable
and those within the intimate set. Let us provide a simple example here. In a video of a moving car, it
might be hard to have individual identifiability of the separate car wheels and car body; however, they
can be considered as essential parts of the macro variable ’car’. This macro representation might be
sufficient for the purpose of modeling the interactions between the car and other objects.
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4 IDENTIFIABLE INSTANTANEOUS LATENT DYNAMIC MODEL

4.1 TEMPORALLY VARIATIONAL INFERENCE ARCHITECTURE

Based on the data generation process, we derive the evidence lower bound (ELBO) as shown in
Equation (7) for general time series modeling. Please refer to Appendix D.2 for the derivation details
of the EBLO for time series forecasting.

ELBO =Eq(z1:T |x1:T ) ln p(x1:T ||z1:T )︸ ︷︷ ︸
Lr

−DKL(q(z1:T |x1:T )||p(z1:T ))︸ ︷︷ ︸
LK

,
(7)

where DKL denotes the KL divergence. We use posterior q(z1:T |x1:T ) to approximate the prior
p(z1:T ). Besides, p(x1:T |z1:T ) is used to reconstruct the observations. Formally, the encoder and the
decoder can be formalized as follows.

z1:T = ϕ(x1:T ), x̂ = ψ(z1:T ), (8)

where ϕ and ψ denote the neural architecture based on convolution neural networks. Please refer to
Table A4 for the implementation details of ϕ and ψ.

Encoder

{𝒙ଵ, 𝒙ଶ,⋯ , 𝒙்}

{𝒛ොଵ, 𝒛ොଶ, ⋯ , 𝒛ො்}

Decoder

𝐿௦

{𝒙ෝଵ, 𝒙ෝଶ,⋯ , 𝒙ෝ்}

𝐿௄

𝐿௥

𝜖𝜖̂
Prior Network
𝑟௜(𝒛ො௧, 𝒛ො௧ିଵ)

𝜕𝑟௜
𝜕𝑧̂௧,௜

,
𝜕𝑟௜

𝜕𝑧̂௧ିଵ,௜

Forward/Backward Propagation/

Figure 3: The framework of the IDOL
model. The encoder and decoder are used
for the extraction of latent variables and ob-
servation reconstruction. The prior network
is used for prior distribution estimation,
and Ls denotes the gradient-based sparsity
penalty. The solid and dashed arrows de-
note the forward and backward propagation.

Based on theoretical results, we develop the IDOL
model as shown in Figure 3, which is built on the vari-
ational inference to model the distribution of observa-
tions. To estimate the prior distribution and enforce the
independent noise assumption, we devise the prior net-
works. Moreover, we employ a gradient-based sparsity
penalty to promote the sparse causal influence.

4.2 PRIOR ESTIMATION

To enforce the independence of noise in Equa-
tion (2), we minimize the Kullback-Leibler
(KL) divergence between the posterior distribu-
tion

∏
i p(zt,i|Pad(zt,i),Pae(zt,i),xt) and a prior∏

i p(zt,i|Pad(zt,i),Pae(zt,i)). This minimization
implies that latent variables are mutually independent
and conditioned on their historical and instantaneous
parents. However, since the prior distribution may have
any arbitrary density function, it is difficult to estimate such a prior. To solve this challenge, we
follow Chen et al. (2024a); Yao et al. (2022) and propose the prior networks. Specifically, we
first let ri be an inversed function of f from Equation (2) that are implemented by normalizing
flow. Papamakarios et al. (2021) take the estimated latent variables as input to estimate the noise
term ϵ̂i, i.e. ϵ̂t,i = ri(ẑt, ẑt−1)

2. And each ri is implemented by Multi-layer Perceptron networks
(MLPs). Sequentially, we devise a transformation κ := {ẑt−1, ẑt} → {ẑt−1, ϵ̂t}, whose Jacobian

can be formalized as Jκ =

(
I 0
Jd Je

)
, where Jd =

(
∂ri

∂ẑt−1,i

)
and Je =

(
∂ri
∂ẑt,i

)
. Hence we have

Equation (9) via the change of variables formula.

log p(ẑt, ẑt−1) = log p(ẑt−1, ϵt) + log | ∂ri
∂zt,i

|. (9)

According to the generation process, the noise ϵt,i is independent with zt−1, so we can enforce the
independence of the estimated noise term ϵ̂t,i. And Equation (9) can be further rewritten as

log p(ẑ1:T ) = log p(ẑ1) +

T∑
τ=2

(
n∑

i=1

log p(ϵ̂τ,i) +

n∑
i=1

log | ∂ri
∂zt,i

|

)
, (10)

where p(ϵ̂τ,i) is assumed to follow a Gaussian distribution. Please refer to Appendix D.1 for more
details of the prior derivation.

2We use the superscript symbol to denote estimated latent variables
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4.3 GRADIENT-BASED SPARSITY REGULARIZATION

Ideally, the MLPs-based architecture ri can capture the causal structure of latent variables by restrict-
ing the independence of noise ϵ̂t,i. However, without any further constraint, ri may bring redundant
causal edges from ẑt−1, ẑt,[n]\i to ẑt,i, leading to the incorrect estimation of prior distribution and
further the suboptimization of ELBO. As mentioned in Subsection 4.2, Jd and Je intuitively denote
the time-delayed and instantaneous causal structures of latent variables, since they describe how the
ẑt−1, ẑt,[n]\i contribute to ẑt,i, which motivate us to remove these redundant causal edges with a
sparsity regularization term LS by simply applying the L1 on Jd and Je. Formally, we have

LS = ||Jd||1 + ||Je||1., (11)

where || ∗ ||1 denotes the L1 Norm of a matrix. By employing the gradient-based sparsity penalty on
the estimated latent causal processes, we can indirectly restrict the sparsity of Markov networks to
satisfy the sparse latent process. Finally, the total loss of the IDOL model can be formalized as:

Ltotal = −Lr − αLK + βLS , (12)

where α, β denote the hyper-parameters.

5 EXPERIMENTS

5.1 EXPERIMENTS ON SIMULATION DATA

5.1.1 EXPERIMENTAL SETUP

Data Generation. We generate the simulated time series data with the fixed latent causal process as
introduced in Equations (1)-(2) and Figure 1 (c). To better evaluate the proposed theoretical results,
we provide six synthetic datasets from A to F with 3, 5, 8, 8, 8, 16 latent variables, respectively.
Dataset D contains no instantaneous effects, which degenerate to the TDRL(Yao et al., 2022) setting
as introduced in Figure 2 (iii). Dataset E has a dense latent causal process that violates the assumption
A3(Latent Process Sparsity). All datasets except E satisfy the assumption A3. Please refer to
Appendix E.1.1 for the details of data generation and evaluation metrics.

Baselines. To evaluate the effectiveness of our method, we consider the following compared methods.
First, we consider the standard β-VAE (Higgins et al., 2017) and FactorVAE (Kim & Mnih, 2018),
which ignores historical information and auxiliary variables. Moreover, we consider TDRL (Yao
et al., 2022), iVAE (Khemakhem et al., 2020a), TCL (Hyvarinen & Morioka, 2016), PCL (Hyvarinen
& Morioka, 2017), and SlowVAE (Klindt et al., 2020), which use temporal information but do not
assume instantaneous dependency on latent processes. Finally, we consider the iCITRIS (Lippe et al.,
2023) and G-CaRL (Morioka & Hyvärinen, 2023), which are devised for latent causal processes with
instantaneous dependencies but require interventions or grouping of observations. As for G-CaRL,
we follow the implementation description in the original paper and assign random grouping for
observations. As for iCITRIS, we assign a random intervention variable for latent variables. We
repeat each method over three random seeds and report the average results.

5.1.2 RESULTS AND DISCUSSION

Quantitative Results: Experiment results of the simulation datasets are shown in Table 2. The
proposed IDOL model achieves the highest MCC performance, reflecting that our method can identify
the latent variables under the temporally latent process with instantaneous dependency. According
to the experiment results, we can obtain the following conclusions: 1) our IDOL method also
outperforms G-CaRL and iCITRIS, which leverage grouping and interventions for identifiability of
latent variables with instantaneous dependencies, reflecting that our method does not require a stricter
assumption for identifiability. 2) Compared with the existing methods for temporal data like TDRL,
PCL, and TCL, the experiment results show that our method can identify the general stationary latent
process with instantaneous dependencies. 3) According to the results of the dense dataset E, the IDOL
cannot well identify the latent variables, validating the boundary of our theoretical results. 4) We
further analyze the effectiveness of the sparsity regularization. Please refer to Appendix E.2.4,E.1.4
for more details.

Qualitative Results: Figure 4 provides visualization results on dataset A of the latent causal process
of IDOL, TDRL, G-CaRL, and iCITRIS. Note that the visualization results of our method are
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Table 2: Experiments results of MCC on simulation data. The iCITRIS algorithm encountered an
out-of-memory (OOM) issue when running on dataset F due to the high dimensionality of the latent
variables, which caused the code to fail to execute. This is indicated by the symbol ’-’.
Datasets IDOL TDRL G-CaRL iCITRIS β−VAE SlowVAE iVAE FactorVAE PCL TCL

A 0.9645 0.9416 0.9059 0.8219 0.8485 0.8512 0.6283 0.8512 0.8659 0.8625
B 0.9142 0.8727 0.6248 0.4120 0.4113 0.2875 0.5545 0.2158 0.5288 0.3311
C 0.9801 0.9001 0.5850 0.4234 0.4093 0.3420 0.6736 0.2417 0.3981 0.2796
D 0.9766 0.9796 0.5455 0.3343 0.2181 0.2641 0.3469 0.2527 0.4806 0.2461
E 0.7869 0.7228 0.5835 0.4646 0.4260 0.3986 0.6071 0.2319 0.4659 0.2881
F 0.9747 0.5899 0.5225 - 0.4321 0.5157 0.3176 0.2648 0.5908 0.6678

IDOL TDRL G-CaRL iCITRISGround Truth 

T
im

e
-d

e
la

ye
d

In
st

an
ta

n
e
o

u
s

Figure 4: Visualization results of directed acyclic graphs of latent variables of different methods. The
first and second rows denote time-delayed and instantaneous causal relationships of latent variables.

generated from Jd and Je. According to the experiment results, we can find that the proposed method
can reconstruct the latent causal relationship well, which validates the theoretical results. Please note
that here, not only the Markov equivalence class but also the causal graph can be identified for dataset
A, as shown in Figure 4. Please refer to Appendix B.5 for more details. Moreover, since TDRL
employs the conditional independent assumption, it does not reconstruct any instantaneous causal
relationships. Besides, without any accurate grouping or intervention information, the G-CaRL and
iCITRIS can not reconstruct the correct latent causal relationships. Please refer to Appendix D.3.1
for more details.

5.2 EXPERIMENTS ON REAL-WORLD DATA

5.2.1 EXPERIMENT SETUP

Datasets. To evaluate the effectiveness of our IDOL method in real-world scenarios, we conduct
experiments on two human motion datasets: Human3.6M (Ionescu et al., 2014) and HumanEva-I
(Sigal et al., 2010), which record the location and orientation of local coordinate systems at each joint.
We consider these datasets since the joints can be considered as latent variables and they naturally
contain instantaneous dependencies. We choose several motions to conduct time series forecasting.
For the Human3.6M datasets, we consider 4 motions: Gestures (Ge), Jog (J), CatchThrow (CT),
and Walking (W). For HumanEva-I dataset, we consider 6 motions: Discussion (D), Greeting (Gr),
Purchases (P), SittingDown (SD), Walking (W), and WalkTogether (WT). For each dataset, we select
several motions and partition them into training, validation, and test sets. Please refer the Appendix
E.2.1 for the dataset descriptions.

Baselines. To evaluate the effectiveness of the proposed IDOL, we consider the following state-
of-the-art deep forecasting models for time series forecasting. First, we consider the conventional
methods for time series forecasting including Autoformer (Wu et al., 2021), TimesNet (Wu et al.,
2022) and MICN (Wang et al., 2022). Moreover, we consider several latest methods for time series
analysis like CARD (Wang et al., 2023), FITS (Xu et al., 2024b), and iTransformer (Liu et al., 2024).
Finally, we consider the TDRL (Yao et al., 2022). We repeat each experiment over 3 random seeds
and publish the average performance. Please refer to Appendix E.2 for more experiment details.
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Table 3: MSE and MAE results on the different motions.

dataset Predict
Length

IDOL TDRL CARD FITS MICN iTransformer TimesNet Autoformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
H

um
an

ev
a

G
100 0.0658 0.1623 0.0729 0.1806 0.0898 0.1999 0.0728 0.1758 0.0781 0.1896 0.0905 0.2013 0.0832 0.1949 0.1039 0.2232
125 0.0809 0.1916 0.0878 0.1993 0.0896 0.1985 0.0834 0.1994 0.0832 0.1990 0.0901 0.2000 0.0830 0.1934 0.1010 0.2195
150 0.0697 0.1754 0.0724 0.1796 0.0827 0.1894 0.0866 0.1950 0.0715 0.1789 0.0875 0.1965 0.0831 0.1942 0.1006 0.2192

J
125 0.1516 0.2479 0.2310 0.3392 0.2836 0.3486 0.3277 0.4058 0.1598 0.2587 0.2306 0.3258 0.2189 0.3071 0.3370 0.2532
150 0.1572 0.2632 0.2333 0.3431 0.3614 0.3936 0.3396 0.4142 0.1648 0.2713 0.2874 0.3673 0.2695 0.3526 0.3367 0.3199
175 0.1742 0.2786 0.2810 0.3710 0.3938 0.4246 0.3552 0.4329 0.1864 0.2945 0.3074 0.3841 0.3056 0.3707 0.3147 0.2934

TC
25 0.0060 0.0490 0.0086 0.0607 0.0101 0.0614 0.0116 0.0651 0.0086 0.0607 0.0104 0.0619 0.0147 0.0723 0.0254 0.1043
50 0.0128 0.0718 0.0151 0.0811 0.0172 0.0801 0.0142 0.0725 0.0158 0.0835 0.0138 0.0711 0.0219 0.0891 0.0263 0.1062
75 0.0175 0.0844 0.0191 0.0896 0.0228 0.0686 0.0146 0.0729 0.0185 0.0867 0.0136 0.0701 0.0203 0.0869 0.0279 0.1108

W
25 0.0670 0.1338 0.0968 0.1704 0.1010 0.1641 0.1094 0.2117 0.0967 0.1851 0.0604 0.1344 0.0958 0.1710 0.0940 0.1767
50 0.1183 0.1814 0.1461 0.2172 0.2387 0.2578 0.2152 0.3089 0.1521 0.2228 0.1245 0.2043 0.1730 0.2389 0.3093 0.3498
75 0.1977 0.2543 0.2091 0.2642 0.4777 0.3673 0.3156 0.3817 0.2124 0.2706 0.2239 0.2784 0.2202 0.2884 0.3854 0.4009

H
um

an

D
125 0.0071 0.0485 0.0074 0.0509 0.0080 0.0510 0.0085 0.0523 0.0080 0.0524 0.0076 0.0486 0.0097 0.0568 0.0104 0.0586
250 0.0094 0.0563 0.0096 0.0590 0.0117 0.0600 0.0114 0.0590 0.0107 0.0598 0.0112 0.0581 0.0133 0.0643 0.0134 0.0656
375 0.0102 0.0638 0.0106 0.0621 0.0138 0.0645 0.0124 0.0615 0.0109 0.0605 0.0126 0.0617 0.0152 0.0675 0.0141 0.0678

G
125 0.0120 0.0641 0.0167 0.0757 0.0197 0.0763 0.0239 0.0866 0.0144 0.0703 0.0137 0.0649 0.0195 0.0784 0.0217 0.0845
250 0.0158 0.0808 0.0218 0.0880 0.0283 0.0932 0.0298 0.0982 0.0203 0.0847 0.0217 0.0832 0.0277 0.0933 0.0287 0.0974
375 0.0226 0.0902 0.0234 0.0914 0.0295 0.0970 0.0304 0.1011 0.0233 0.0912 0.0263 0.0920 0.0311 0.0988 0.0319 0.1029

P
125 0.0203 0.0778 0.0233 0.0866 0.0247 0.0837 0.0327 0.0987 0.0237 0.0862 0.0228 0.0793 0.0308 0.0939 0.0400 0.1108
250 0.0296 0.1003 0.0303 0.1060 0.0407 0.1109 0.0426 0.1168 0.0358 0.1146 0.0434 0.1182 0.0554 0.1337 0.0546 0.1361
375 0.0324 0.1104 0.0333 0.1148 0.0480 0.1268 0.0509 0.1315 0.0364 0.1199 0.0495 0.1312 0.0595 0.1439 0.0638 0.1498

SD
125 0.0142 0.0709 0.0157 0.0777 0.0175 0.0772 0.0209 0.0889 0.0163 0.0802 0.0162 0.0735 0.0236 0.0948 0.0279 0.1086
250 0.0250 0.1046 0.0251 0.1050 0.0313 0.1113 0.0331 0.1176 0.0256 0.1069 0.0289 0.1064 0.0355 0.1212 0.0378 0.1302
375 0.0290 0.1150 0.0301 0.1186 0.0400 0.1296 0.0409 0.1335 0.0300 0.1186 0.0371 0.1246 0.0440 0.1379 0.0441 0.1424

W
125 0.0093 0.0490 0.0102 0.0590 0.0113 0.0616 0.0404 0.0941 0.0111 0.0612 0.0123 0.0610 0.0124 0.0623 0.0682 0.1127
250 0.0163 0.0728 0.0166 0.0729 0.0351 0.1033 0.0995 0.1441 0.0173 0.0742 0.0364 0.0981 0.0336 0.0947 0.0881 0.1381
375 0.0193 0.0778 0.0207 0.0798 0.0470 0.1188 0.1135 0.1548 0.0206 0.0804 0.0483 0.1126 0.0435 0.1080 0.1219 0.1617

WT
125 0.0129 0.0667 0.0135 0.0676 0.0195 0.0779 0.0646 0.1244 0.0145 0.0693 0.0180 0.0719 0.0216 0.0787 0.0733 0.1301
250 0.0206 0.0815 0.0217 0.0830 0.0449 0.1147 0.1127 0.1623 0.0211 0.0821 0.0437 0.1083 0.0425 0.1058 0.1041 0.1566
375 0.0233 0.0873 0.0248 0.0886 0.0552 0.1255 0.1149 0.1641 0.0245 0.0887 0.0474 0.1146 0.0456 0.1122 0.1165 0.1654

5.2.2 RESULTS AND DISCUSSION

Quantitative Results: Experiment results of the real-world datasets are shown in Table 3. We
also conduct the Wilcoxon signed-rank test Richard (2021) on the reported accuracies, our method
significantly outperforms the baselines, with a p-value threshold of 0.05. According to the experiment
results, our IDOL model significantly outperforms all other baselines on most of the human motion
forecasting tasks. Specifically, our method outperforms the most competitive baseline by a clear
margin of 4%-34% and promotes the forecasting accuracy substantially on complex motions like the
SittingDown (SD) and the Walking (W). This is because the human motion datasets contain more
complex patterns described by stable causal structures, and our method can learn the latent causal
process with identifiability guarantees. It is noted that our method achieves a better performance than
that of TDRL, which does not consider the instantaneous dependencies among latent variables. We
also find that our model achieves a comparable performance in the motion of CatchThrow (CT), this is
because the size of this dataset is too small for the model to model the distribution of the observations.
We further consider a more complex synthetic mixture of human motion forecasting, experiment
results are shown in Appendix E.2.2. Please refer to Appendix E.2.4 for the experiment results of
ablation studies. Moreover, we also investigate the proposed IDOL model on other high-dimension
datasets in Appendix G.1.

6 CONCLUSION

This paper proposes a general framework for time series data with instantaneous dependencies to
identify the latent variables and latent causal relations up to the Markov equivalence class. Further-
more, with mild assumption, the causal graph is also identifiable. Different from existing methods
that require the assumptions of grouping observations and interventions, the proposed IDOL model
employs the sparse latent process assumption, which is easy to satisfy in real-world time series data.
We also devise a variational-inference-based method with sparsity regularization to build the gap
between theories and practice. Experiment results on simulation datasets evaluate the effectiveness of
latent variables identification and latent directed acyclic graphs reconstruction. Evaluation in human
motion datasets with instantaneous dependencies reflects the practicability in real-world scenarios.
There are two main limitations in our work. First, our method is not for high-dimensional time series
data because modeling the complex dependencies through sparsity constraints is challenging. Second,
our method relies on the invertible mixing process, but it may not hold in real-world scenarios. How
to address these limitations and make our method more scalable will be an interesting direction.
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A RELATED WORKS

A.1 IDENTIFIABILITY OF CAUSAL REPRESENTATION LEARNING

To achieve the causal representation (Rajendran et al., 2024; Mansouri et al., 2023; Wendong et al.,
2024) for time series data, several researchers leverage the independent component analysis (ICA) to
recover the latent variables with identification guarantees (Yao et al., 2023; Schölkopf et al., 2021;
Liu et al., 2023; Gresele et al., 2020). Conventional methods assume a linear mixing function from
the latent variables to the observed variables (Comon, 1994; Hyvärinen, 2013; Lee & Lee, 1998;
Zhang & Chan, 2007). To relax the linear assumption, researchers achieve the identifiability of
latent variables via nonlinear ICA by using different types of assumptions like auxiliary variables
or sparse generation process (Zheng et al., 2022; Hyvärinen & Pajunen, 1999; Hyvärinen et al.,
2023; Khemakhem et al., 2020b; Li et al., 2023c). As for the methods that employ the auxiliary
variables, Khemakhem et al. (2020a) first achieve the identifiability by assuming the latent sources
with exponential family and introducing auxiliary variables e.g., domain indexes, time indexes, and
class labels (Khemakhem et al., 2020a; Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019).
To further relax the exponential family assumption, Kong et al. (2022); Xie et al. (2022b); Kong
et al. (2023); Yan et al. (2023); Xie et al. (2022b) achieve the component-wise identification results
for nonlinear ICA with a 2n+ 1 number of auxiliary variables for n latent variables. Recently, Li
et al. (2024) further relax to n+ 1 number of auxiliary variables and achieve subspace identifiability.
To seek identifiability in an unsupervised manner, researchers employ the assumption of structural
sparsity to achieve identifiability (Ng et al., 2024; Lachapelle et al., 2022; Zheng et al., 2022; Xu
et al., 2024a). Specifically, Lachapelle et al. (2023); Lachapelle & Lacoste-Julien (2022) proposed
mechanism sparsity regularization as an inductive bias to identify the causal latent factors and
achieve the identifiability on several scenarios like multi-task learning. They further show the
identifiability results up to the consistency relationship (Lachapelle et al., 2024a), which allows the
partial disentanglement of latent variables. Recently, (Zhang et al., 2024) use the sparse structures
of latent variables to achieve identifiability under distribution shift. Different from these methods
that assume sparsity exists in the generation process between the latent source and the observation,
we assume the sparse latent process, where sparsity exists in the transition of latent variables and is
common in real-world time series data.

A.2 NONLINEAR ICA FOR TIME SERIES DATA

Our work is also related to the temporally causal representation. Existing methods for temporally
causal representation (Yan et al., 2023; Huang et al., 2023; H"alv"a & Hyvarinen, 2020; Lippe
et al., 2022) usually rely on the conditional independence assumption, where the latent variables are
mutually independent conditional on their time-delayed parents. Specifically, Hyvarinen & Morioka
(2016) leverage the independent sources principle and the variability of data segments to achieve
identifiability on nonstationary time series data. They further use permutation-based contrastive
(Hyvarinen & Morioka, 2017) to achieve identifiability on stationary time series data. The recent
advancements in temporally causal representation include LEAP (Yao et al., 2021), TDRL (Yao
et al., 2022), which leverage the properties of independent noises and variability historical informa-
tion. However, this assumption is too strong to meet in real-world scenarios since instantaneous
dependencies are common in real-world scenarios like human motion. To solve this problem, re-
searchers introduce further assumptions. For example, Lippe et al. (2023) propose the i-Citris, which
demonstrates identifiability by assuming interventions on latent variables. In addition, Morioka &
Hyvärinen (2023) propose G-CaRL, which yields identifiability with the assumption of the grouping
of observational variables. However, these assumptions are still hard to meet in practice. Hence we
propose a more relaxed assumption, transition sparsity, to achieve identifiability under time series
data with instantaneous

A.3 CAUSAL DISCOVERY WITH LATENT VARIABLES

Several studies are proposed to discover causally related latent variables (Chen et al., 2024b;
Lachapelle et al., 2024b; Monti et al., 2020; Zhang & Hyvarinen, 2012; Tashiro et al., 2012).
Specifically, (Huang et al., 2022; Kong et al., 2024) leverage the vanishing Tetrad conditions or
rank constraints to identify latent variables in linear-Gaussian models. Xie et al. (2022a); Cai et al.
(2019) further draw upon non-Gaussianity in their analysis for linear, non-Gaussian scenarios. Other
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methods aim to reconstruct the hierarchical structures of the latent variables, like Xie et al. (2022a);
Huang et al. (2022). However, these methods usually use the linear assumption and can hardly handle
the real-world time series data with complex nonlinear relationships.

A.4 INSTANTANEOUS DEPENDENCEY OF TIME SERIES DATA

When the discrete time series data is sampled in a low-frequency or low-resolution manner, instanta-
neous dependence (Adak, 1996; Koutlis et al., 2019; Gersch, 1985; Jamaludeen et al., 2022; Wu et al.,
2023a) occurs where variables at each time step are not independent given their historical observa-
tions. Swanson & Granger (1997) first discuss the instantaneous dependence from the perspective
of noise. Lots of works investigate instantaneous dependency from the causal view. Specifically,
Hyvärinen et al. (2010) estimate both instantaneous and lagged effects via a non-Gaussian model.
Gong et al. (2015; 2017) discover causal structure with instantaneous dependency from subsampled
and aggregated data. Recently, Zhu et al. (2023) consider instantaneous dependency in reinforcement
learning.

A.5 TIME SERIES FORECASTING

Time series forecasting (Hyndman & Athanasopoulos, 2018; Box & Pierce, 1970) is one of the most
popular research problems in recent years. Recently, the deep-learning-based methods have made
great progress, which can be categorized according to different types of neural architectures like
the RNN-based methods (Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Salinas et al., 2020),
CNN-based models (Bai et al., 2018; Wang et al., 2022; Wu et al., 2022), and the methods based
on state-space model (Gu et al., 2022; 2021b;a). Recently, Transformer-based methods (Zhou et al.,
2021; Wu et al., 2021; Nie et al., 2022) further push the development of time series forecasting.
However, these methods seldom consider the instantaneous dependencies of time series data.

B PROOF OF THEORY

B.1 RELATIONSHIPS BETWEEN GROUND-TRUTH AND ESTIMATED LATENT VARIABLES

Theorem A1. (Identifiability of Temporally Latent Process) For a series of observations xt ∈
Rn and estimated latent variables ẑt ∈ Rn with the corresponding process f̂i, p̂(ϵ), ĝ, where ĝ
is invertible, suppose the process subject to observational equivalence xt = ĝ(ẑt). Let ct ≜
{zt−1, zt} ∈ R2n andMct

be the variable set of two consecutive timestamps and the corresponding
Markov network respectively. Suppose the following assumptions hold:

• A1 (Smooth and Positive Density): The conditional probability function of the latent variables ct
is smooth and positive, i.e., p(ct|zt−2) is third-order differentiable and p(ct|zt−2) > 0 over R2n,

• A2 (Sufficient Variability): Denote |Mct
| as the number of edges in Markov networkMct

. Let

w(m) =
(∂3 log p(ct|zt−2)

∂c2t,1∂zt−2,m
, · · · , ∂

3 log p(ct|zt−2)

∂c2t,2n∂zt−2,m

)
⊕

(∂2 log p(ct|zt−2)

∂ct,1∂zt−2,m
, · · · , ∂

2 log p(ct|zt−2)

∂ct,2n∂zt−2,m

)
⊕
( ∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m

)
(i,j)∈E(Mct )

,

(A1)

where ⊕ denotes concatenation operation and (i, j) ∈ E(Mct
) denotes all pairwise indice such

that ct,i, ct,j are adjacent inMct
. For m ∈ [1, · · · , n], there exist 4n+ |Mct

| different values of
zt−2,m, such that the 4n+ |Mct

| values of vector functions w(m) are linearly independent.

Then for any two different entries ĉt,k, ĉt,l of ĉt ∈ R2n that are not adjacent in the Markov network
Mĉt

over estimated ĉt,
(i) Each ground-truth latent variable ct,i of ct ∈ R2n is a function of at most one of ĉk and ĉl,
(ii) For each pair of ground-truth latent variables ct,i and ct,j of ct ∈ R2n that are adjacent inMct

over ct, they can not be a function of ĉt,k and ĉt,l respectively.
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Proof. We start from the matched marginal distribution to develop the relationship between zt and ẑt
as follows:

p(x̂t) = p(xt) ⇐⇒ p(ĝ(ẑt)) = p(g(zt)) ⇐⇒ p((g−1 ◦ ĝ)(ẑt)) = p(zt) ⇐⇒ p(hz(ẑt)) = p(zt), (A2)

where ĝ : Z → X denotes the estimated mixing function, and h := g−1 ◦ ĝ is the transformation
between the ground-truth latent variables and the estimated ones. Since ĝ and g are invertible, h is
invertible as well. Since Equation (A2) holds true for all time steps, there must exist an invertible
function hc such that p(hc(ĉt)) = p(ct), whose Jacobian matrix at time step t is

Jhc,t =

[
Jhz,t−1 0

0 Jhz,t

]
. (A3)

Then for each value of xt−2, the Jacobian matrix of the mapping from (xt−2, ĉt) to (xt−2, ct) can
be written as follows: [

I 0
∗ Jhc,t

]
,

where ∗ denotes any matrix. Since xt−2 can be fully characterized by itself, the left top and right
top block are 1 and 0 respectively, and the determinant of this Jacobian matrix is the same as |Jhc,t|.
Therefore, we have:

p(ĉt,xt−2) = p(ct,xt−2)|Jhc,t|. (A4)

Dividing both sides of Equation (A4) by p(xt−2), we further have:

p(ĉt|xt−2) = p(ct|xt−2)|Jhc,t|. (A5)

Since p(ct|xt−2) = p(ct|g(zt−2)) = p(ct|zt−2), and similarly p(ĉt|xt−2) = p(ĉt|ẑt−2), we have:

log p(ĉt|ẑt−2) = log p(ct|zt−2) + log |Jhc,t|. (A6)

Let ĉt,k, ĉt,l be two different variables that are not adjacent in the estimated Markov networkMĉt

over ĉt = {ẑt−1, ẑt}. We conduct the first-order derivative w.r.t. ĉt,k and have

∂ log p(ĉt|ẑt−2)

∂ĉt,k
=

2n∑
i=1

∂ log p(ct|zt−2)

∂ct,i
· ∂ct,i
∂ĉt,k

+
∂ log |Jhc,t|

∂ĉt,k
. (A7)

We further conduct the second-order derivative w.r.t. ĉt,k and ĉt,l, then we have:

∂ log p(ĉt|ẑt−2)

∂ĉt,k∂ĉt,l
=

2n∑
i=1

2n∑
j=1

∂2 log p(ct|zt−2)

∂ct,i∂ct,j
· ∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

+

2n∑
i=1

∂ log p(ct|zt−2)

∂ct,i
· ∂2ct,i
∂ĉt,k∂ĉt,l

+
∂ log |Jhc,t|
∂ĉt,k∂ĉt,l

.

(A8)

Since ĉt,k, ĉt,l are not adjacent in Mĉt
, ĉt,k and ĉt,l are conditionally independent given

ĉt\{ĉt,k, ĉt,l}. Utilizing the fact that conditional independence can lead to zero cross derivative (Lin,
1997), for each value of ẑt−2, we have

∂2 log p(ĉt|ẑt−2)

∂ĉt,k∂ĉt,l
=
∂2 log p(ĉt,k|ĉt\{ĉt,k, ĉt,l}, ẑt−2)

∂ĉt,k∂ĉt,l
+
∂2 log p(ĉt,l|ct\{ĉt,k, ĉt,l}, ẑt−2)

∂ĉt,k∂ĉt,l

+
∂2 log p(ĉt\{ĉt,k, ĉt,l}|ẑt−2)

∂ĉt,k∂ĉt,l
= 0.

(A9)
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Bring in Equation (A9), Equation (A8) can be further derived as

0 =

2n∑
i=1

∂2 log p(ct|zt−2)

∂c2t,i
· ∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l︸ ︷︷ ︸

(i) i=j

+

2n∑
i=1

∑
j:(j,i)∈E(Mct )

∂2 log p(ct|zt−2)

∂ct,i∂ct,j
· ∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l︸ ︷︷ ︸

(ii)ct,i and ct,j are adjacent in Mct

+

2n∑
i=1

∑
j:(j,i)/∈E(Mct )

∂2 log p(ct|zt−2)

∂ct,i∂ct,j
· ∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l︸ ︷︷ ︸

(iii)ct,i and ct,j are not adjacent in Mct

+

2n∑
i=1

∂ log p(ct|zt−2)

∂ct,i
· ∂2ct,i
∂ĉt,k∂ĉt,l

+
∂ log |Jhc,t|
∂ĉt,k∂ĉt,l

,

(A10)

where (j, i) ∈ E(Mct
) denotes that ct,i and ct,j are adjacent inMct

. Similar to Equation (A9), we
have ∂2p(ct|zt−2)

∂ct,i∂ct,j
= 0 when ct,i, ct,j are not adjacent inMct

. Thus, Equation (A10) can be rewritten
as

0 =

2n∑
i=1

∂2 log p(ct|zt−2)

∂c2t,i
· ∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l

+

2n∑
i=1

∑
j:(j,i)∈E(Mc)

∂2 log p(ct|zt−2)

∂ct,i∂ct,j
· ∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

+

2n∑
i=1

∂ log p(ct|zt−2)

∂ct,i
· ∂2ct,i
∂ĉt,k∂ĉt,l

+
∂ log |Jhc,t|
∂ĉt,k∂ĉt,l

.

(A11)

Then for each m = 1, 2, · · · , n and each value of zt−2,m, we conduct partial derivative on both sides
of Equation (A11) and have:

0 =

2n∑
i=1

∂3 log p(ct|zt−2)

∂c2t,i∂zt−2,m
· ∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l

+

2n∑
i=1

∑
j:(j,i)∈E(Mc)

∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m
· ∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

+

2n∑
i=1

∂2 log p(ct|zt−2)

∂ct,i∂zt−2,m
·

∂c2t,i
∂ĉt,k∂ĉt,l

,

(A12)

Finally we have

0 =

2n∑
i=1

∂3 log p(ct|zt−2)

∂c2t,i∂zt−2,m
· ∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l

+

2n∑
i=1

∂2 log p(ct|zt−2)

∂ct,i∂zt−2,m
·

∂c2t,i
∂ĉt,k∂ĉt,l

+
∑

i,j:(j,i)∈E(Mc)

∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m
·
(
∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

+
∂ct,j
∂ĉt,k

· ∂ct,i
∂ĉt,l

) . (A13)

According to Assumption A2, we can construct 4n+ |Mc| different equations with different values
of zt−2,m, and the coefficients of the equation system they form are linearly independent. To ensure
that the right-hand side of the equations are always 0, the only solution is

∂ct,i
∂ĉt,k

· ∂ct,i
∂ĉt,l

=0, (A14)

∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

+
∂ct,j
∂ĉt,k

· ∂ct,i
∂ĉt,l

=0, (A15)

∂c2t,i
∂ĉt,k∂ĉt,l

=0. (A16)
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Bringing Eq A14 into Eq A15, at least one product must be zero, thus the other must be zero as well.
That is,

∂ct,i
∂ĉt,k

· ∂ct,j
∂ĉt,l

=0. (A17)

According to the aforementioned results, for any two different entries ĉt,k, ĉt,l ∈ ĉt that are not
adjacent in the Markov networkMĉt

over estimated ĉt, we draw the following conclusions.
(i) Equation (A14) implies that, each ground-truth latent variable ct,i ∈ ct is a function of at most
one of ĉt,k and ĉt,l,
(ii) Equation (A17) implies that, for each pair of ground-truth latent variables ct,i and ct,j that are
adjacent inMct over ct, they can not be a function of ĉt,k and ĉt,l respectively.

B.2 EXTENSION TO MULTIPLE LAGS AND SEQUENCE LENGTHS

For the sake of simplicity, we consider only one special case with τ = 1 and L = 2 in Theorem A2.
Our identifiability theorem can be actually extended to arbitrary lags and subsequences easily. For
any given τ , and subsequence which is centered at zt with previous lo and following hi steps, i.e.,
ct = {zt−lo, · · · , zt, · · · , zt+hi} ∈ R(lo+hi+1)×n. In this case, the vector function w(i, j,m) in
Sufficient Variability Assumption should be modified as

w(i, j,m) =
(∂3 log p(ct|zt−lo−1, · · · , zt−lo−τ )

∂c2t,1∂zt−lo−1,m
, · · · , ∂

3 log p(ct|zt−lo−1, · · · , zt−lo−τ )

∂c2t,2n∂zt−lo−1,m

)
⊕

(∂2 log p(ct|zt−lo−1, · · · , zt−lo−τ )

∂ct,1∂zt−lo−1,m
, · · · , ∂

2 log p(ct|zt−lo−1, · · · , zt−lo−τ )

∂ct,2n∂zt−lo−1,m

)
⊕(∂3 log p(ct|zt−lo−1, · · · , zt−lo−τ )

∂ct,i∂ct,j∂zt−lo−1,m

)
(i,j)∈E(Mct )

.

(A18)

Besides, 2 × n × (lo + hi + 1) + |Mct
| values of linearly independent vector functions in zt′,m

for t′ ∈ [t − lo − 1, · · · , t − lo − τ ] and m ∈ [1, · · · , n] are required as well. The rest part of the
theorem remains the same, and the proof can be easily extended in such a setting.

B.3 IDENTIFIABLITY OF LATENT VARIABLES

Theorem A2. (Component-wise Identification of Latent Variables with instantaneous dependen-
cies.) Suppose that the observations are generated by Equation (1)-(2), andMct

is the Markov
network over ct = {zt−1, zt, zt+1} ∈ R3n. Except for the assumptions A1 and A2 from Theorem 1,
we further make the following assumption:

• A3 (Sparse Latent Process): For any zt,i ∈ zt, the intimate neighbor set of zt,i is an empty set.

When the observational equivalence is achieved with the minimal number of edges of estimated
Markov network ofMĉt

, then we have the following two statements:

(i) The estimated Markov networkMĉt
is isomorphic to the ground-truth Markov networkMct

.

(ii) There exists a permutation π of the estimated latent variables, such that zt,i and ẑt,π(i) is
one-to-one corresponding, i.e., zt,i is component-wise identifiable.

Proof. First, we demonstrate that there always exists a row permutation for each invertible matrix
such that the permuted diagonal entries are non-zero (Zhang et al., 2024). By contradiction, if the
product of the diagonal entry of an invertible matrix A is zero for every row permutation, then we
have Equation

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

aσ(i),i

)
, (A19)

by the Leibniz formula, where Sn is the set of n-permutations. Thus, we have
n∏

i=1

aσ(i),i = 0, ∀σ ∈ Sn, (A20)
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which indicates that det(A) = 0 and A is non-invertible. It contradicts the assumption that A is
invertible, and a row permutation where the permuted diagonal entries are non-zero must exist. Since
hz is invertible, there exists a permuted version of the estimated latent variables, denoted as ẑπt , such
that

∂zt,i
∂ẑt,π(i)

̸= 0, i = 1, · · · , n. (A21)

Since ct = {zt−1, zt, zt+1}, by applying π on each timestamp, we have π′ such that

∂ct,i
∂ĉt,π′(i)

̸= 0, i = 1, · · · , 3n. (A22)

Second, we demonstrate thatMct
is identical toMĉπ′

t
, whereMĉπ′

t
denotes the Markov network of

the permuted version of cπ
′

t .

On the one hand, for any pair of (i, j) such that ct,i, ct,j are adjacent inMct
while ct,π′(i), ct,π′(j)

are not adjacent inMĉπ′
t

, according to Equation (A17), we have ∂ct,i
∂ct,π′(i)

· ∂ct,j
∂ct,π′(j)

= 0, which is a
contradiction with how π′ is constructed. Thus, any edge presents inMct

must exist inMĉπ′
t

. On
the other hand, since observational equivalence can be achieved by the true latent process (g, f, pct

),
the true latent process is clearly the solution with minimal edges.

Under the sparsity constraint on the edges ofMĉπ′
t

, the permuted estimated Markov networkMĉπ′
t

must be identical to the true Markov networkMct
. Thus, we claim that

(i) the estimated Markov networkMĉt
is isomorphic to the ground-truth Markov networkMct .

Sequentially, we further give the proof that under the same permutation zπt (which corresponds to cπ
′

t ),
zt,i is only the function of zt,π(i). Since the permutation happens on each timestamp respectively, the
cross-timestamp disentanglement is prevented clearly.

Now let us focus on instantaneous disentanglement. Suppose there exists a pair of indices i, j ∈
{1, · · · , n}. According to Equation (A21), we have ∂zt,i

∂ẑt,π(i)
= 0 and ∂zt,j

∂ẑt,π(j)
= 0. Let us discuss it

case by case.

• If zt,i is not adjacent to zt,j , we have ẑt,π(i) is not adjacent to ẑt,π(j) as well according to the
conclusion of identical Markov network. Using Equation (A14), we have ∂zt,i

∂ẑt,π(i)
· ∂zt,i
∂ẑt,π(j)

=

0, which leads to ∂zt,i
∂ẑt,π(j)

= 0.

• If zt,i is adjacent to zt,j , we have ẑt,π(i) is adjacent to ẑt,π(j). When the Assumption A3
(Sparse Latent Process) is assured, i.e., the intimate neighbor set of zt,i is empty, there exists
at least one index k such that zt,k is adjacent to zt,i but not adjacent to zt,j . Similarly, we have
the same structure on the estimated Markov network, which means that ẑt,π(k) is adjacent
to ẑt,π(i) but not adjacent to ẑt,π(j). Using Equation (A17) we have ∂zt,k

∂ẑt,π(k)
· ∂zt,i
∂ẑt,π(j)

= 0,

which leads to ∂zt,i
∂ẑt,π(j)

= 0.

In conclusion, we always have ∂zt,i
∂ẑt,π(j)

= 0. Thus, we have reached the conclusion that

(ii) there exists a permutation π of the estimated latent variables, such that zt,i and ẑt,π(i) is one-to-one
corresponding, i.e., zt,i is component-wise identifiable.

B.4 GENERAL CASE FOR COMPONENT-WISE IDENTIFICATIONS

In this part, we briefly give the proof for a more general case of our theorem.

Corollary A1. (General Case for Component-wise Identification.) Suppose that the observations
are generated by Equation (1)-(2), and there exists ct = {zt−a, · · · , zt, · · · , zt+b} ∈ R(a+b+1)×n
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(a) Directed acyclic graph (b) Markov Network

Figure A5: An example of DAG (a) and Markov Network (b).

with the corresponding Markov networkMct
. Suppose assumptions A1 and A2 hold true, and for

any zt,i ∈ zt, the intimate neighbor set of zt,i is an empty set. When the observational equivalence is
achieved with the minimal number of edges of estimated Markov network ofMĉ, there must exist a
permutation π of the estimated latent variables, such that zt,i and ẑt,π(i) is one-to-one corresponding,
i.e., zt,i is component-wise identifiable.

Proof. The proof is similar to that of Theorem A2. The only difference is that given a different
subsequence, the variables that are used to make intimate neighbors empty might be different. The
rest part of the theorem remains the same.

Here we further discuss the idea behind the Sparse Latent Process. For two latent variables zt,i, zt,j
that are entangled at some certain timestamp, the contextual information can be utilized to recover
these variables. Intuitively speaking, when zt,i is directly affected by some previous variable, says
zt−1,k, while zt,j is not. In this case, the changes that happen on zt−1,k can be captured, which helps
to tell zt,i from zt,j . Similarly, if zt,i directly affects zt+1,k while zt,j does not, we can distinguish
zt,i from zt,j as well. When all variables are naturally conditionally independent, no contextual
information will be needed. One more thing to note is that, even though the sparse latent process is
not fully satisfied, as long as some structures mentioned above exist, the corresponding entanglement
can be prevented.

B.5 IDENTIFIABILITY OF LATENT CAUSAL PROCESS

Building on the results of Theorem 2, the latent variables are component-wise identifiable, which
directly implies the identifiability of the latent causal process up to the Markov equivalence class.
Leveraging temporal information allows one to further refine this identification beyond the equivalence
class. If each latent variable zt has at least one temporal ancestor, one can establish full identifiability
of the graph over the latent processes.

Corollary A2. (Identification of Latent Causal Process.) Suppose that the observations are
generated by Equation (1)-(2), and thatMct

is the Markov network over ct = {zt−1, zt} ∈ R2n.
Suppose that all assumptions for Theorem 2 hold. We further make the following assumption: for any
pair of adjacent latent variables zt,i, zt,j at time step t, their time-delayed parents are not identical,
i.e., Pad(zt,i) ̸= Pad(zt,j). Then the causal graph of the latent causal process is identifiable.

Proof. Since all assumptions for Theorem 2 hold, latent variable zt is component-wise identifiable,
i.e., there exists a permutation π and invertible functions hi such that zt,i = hi(ẑt,π(i)). As ct is
nothing but a concatenation of zt from different time steps, ct is also component-wise identifiable
with corresponding π′ and h′i. Therefore, their conditional independence relationships are consistent:

ct,i ⊥ ct,j | {ct,k | k ∈ S} ⇒ ĉt,π′(i) ⊥ ĉt,π′(j) | {ĉt,π′(k) | k ∈ S} (A23)

for all S ⊆ {1, 2, · · · , 2n}\{i, j}. In this way, we transform the problem of causal discovery for
latent variables into a problem of causal discovery for observable variables.

We first prove that the skeleton of the estimated causal graph is identical to the true skeleton.
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Figure A6: The example of dataset A whose causal graph is identifiable.

• On the one hand, if ct,i and ct,j are not adjacent, there exists a d-separation set Sd such that
ct,i ⊥ ct,j | {ct,k | k ∈ Sd}. Meanwhile, we have ĉt,π′(i) ⊥ ĉt,π′(j) | {ĉt,π′(k) | k ∈ Sd}.
Thus, ĉt,π′(i) and ĉt,π′(j) are not adjacent as well.

• On the other hand, if ct,i and ct,j are adjacent, there will be no d-separation set for
ĉt,π′(i), ĉt,π′(j), meaning that ĉt,π′(i) and ĉt,π′(j) are adjacent in this case.

In conclusion, the skeleton is identifiable.

Then we prove that the time-delayed edges can be identified. Consider any ct,i from zt−1 and ct,j
from zt. Similarly, we have ĉt,π′(i) from ẑt−1 and ĉt,π′(j) from ẑt. Since the skeleton is identified
and the direction is implied by temporal information, specifically going from time step t − 1 to t,
there exists an edge from ĉt,π′(i) to ĉt,π′(j) if and only if ct,i points to ct,j . Thus the temporally latent
causal process can be identified.

Finally, we determine the direction of instantaneous edges. Since the skeleton is already identifiable,
we only need to determine the direction. Consider any pair of ct,i and ct,j from zt, where ct,i → ct,j .
Since Pad(ct,i) ̸= Pad(ct,j), there exists at least one ct,k from zt−1 such that ct,k points to exactly
one of ct,i or ct,j . We proceed with a case-by-case analysis.

• In case 1, we have ct,k → ct,i → ct,j where ct,k, ct,j are not adjacent, and ct,i is in the
d-seperation of ct,k and ct,j . Meanwhile, in the estimated skeleton, ĉt,π′(i) is also in the
d-seperation of ĉt,π′(k) and ĉt,π′(j). Since the direction of time-delayed edge ĉt,π′(k) →
ĉt,π′(i) is the known in the estimated skeleton ĉt,π′(k) − ĉt,π′(i) − ĉt,π′(j), we deduce
ĉt,π′(i) → ĉt,π′(j) based on the d-seperation.

• In case 2, we have ct,i → ct,j ← ct,k where ct,k, ct,i are not adjacent. Similarly, we
have that ĉt,π′(j) is not in the d-seperation of ĉt,π′(k) and ĉt,π′(i), and it can be shown that
ĉt,π′(i) → ĉt,π′(j).

In conclusion, the identifiability of the instantaneous latent causal graph is established. Consequently,
the entire latent causal process, encompassing both the time-delayed and instantaneous components,
is identifiable up to the causal graph.

Discussion: To further illustrate this Corollary, we use dataset A as an example, whose causal graph
is shown in Figure A6. Since the skeleton and directions of time-delayed edges are straightforward to
determine, we primarily focus on analyzing the directions of instantaneous edges within zt. Since
zt−1,3 → zt,3 ← zt,2 is a v-structure, zt,3 ← zt,2 can be determined. Since zt−1,1 → zt,1 → zt,2 is
a chain, zt−1,1 and zt,2 are not adjacent, and zt−1,1 → zt,1 is known, we have zt,1 → zt,2. Thus, the
causal graph is identifiable. As shown in Figure 4, the model can learn the true causal graph.

B.6 MARKOV NETWORK

A Markov network (or Markov random field) is a graphical model that represents the joint distribution
of a set of random variables using an undirected graph.
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Definition 3 (Markov Network). Markov network is an undirected graph G = (V,E) with a set of
random variables Xv∈V , where any two non-adjacent variables are conditionally independent given
all other variables. That is,

Xa ⊥ Xb|XV \{a,b}, ∀(a, b) /∈ E. (A24)

Markov Networks and Directed Acyclic Graphs (DAGs) are both graphical models employed to
represent joint distributions and to illustrate conditional independence properties. As shown in
Figure A5, both of them are utilized to describe the latent causal process, yet they do not have to be
equivalent.

B.7 ISOMORPHISM OF MARKOV NETWORKS

Definition 4 (Isomorphism of Markov networks). We let the V (·) be the vertical set of any graphs,
an isomorphism of Markov networks M and M̂ is a bijection between the vertex sets of M and M̂

f : V (M)→ V (M̂)

such that any two vertices u and v of M are adjacent in G if and only if f(u) and f(v) are adjacent
in M̂ .

B.8 ILLUSTRATION OF INTIMATE NEIGHBOR SET

Here, we provide an example for a better understanding of the Intimate Neighbor Set. Take Fig-
ure A5(b) as an example. If we consider only one time step, says, zt, {zt,1, zt,2, zt,3} forms a clique.
Thus we have Ψ(zt,1) = {zt,2, zt,3}, since zt,2 is adjacent to zt,1 and all other neighbours of zt,1,
i.e., zt,3. Similarily, we have Ψ(zt,1) = {zt,1, zt,3},Ψ(zt,1) = {zt,1, zt,2} as well. In this case, none
of them is identifiable. In contrast, if we take all 3 time steps into consideration, the Intimate set of
all latent varibles becomes empty. For example, zt,2 is adjacent to zt,1 but not adjacent to at least one
neighbour of zt,1, i.e., zt−1,1, thus zt,2 ̸∈ Ψ(zt,1). Similarly, do this test for all other pairs variables,
and the conclusion can be achieved.

C THE IMPORTANCE OF CONSIDERING INSTANTANEOUS DEPENDENCE

Here, we provide an example as shown in Figure A7 to show why instantaneous dependence is
important in time-series modeling. As shown in Figure A7 (a), without considering the instantaneous
dependencies of a knee and an ankle, an abnormal motion might be generated, where the leg is bent
at a distorted angle. Meanwhile, by taking the instantaneous dependencies into account as shown in
Figure A7 (b), the predicted motion complies with human physiological structure.

D IMPLEMENTATION DETAILS

D.1 PRIOR LIKELIHOOD DERIVATION

We first consider the prior of ln p(z1:t). We start with an illustrative example of stationary latent
causal processes with two time-delay latent variables, i.e. zt = [zt,1, zt,2] with maximum time lag
L = 1, i.e., zt,i = fi(zt−1, ϵt,i) with mutually independent noises. Then we write this latent process
as a transformation map f (note that we overload the notation f for transition functions and for the
transformation map):  zt−1,1

zt−1,2

zt,1
zt,2

 = f


 zt−1,1

zt−1,2

ϵt,1
ϵt,2


 .

By applying the change of variables formula to the map f , we can evaluate the joint distribution of
the latent variables p(zt−1,1, zt−1,2, zt,1, zt,2) as

p(zt−1,1, zt−1,2, zt,1, zt,2) =
p(zt−1,1, zt−1,2, ϵt,1, ϵt,2)

|det Jf |
, (A25)
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Knee AnkleAbnormal Motion Normal Motion

Latent Variables

Observed Variables

Latent Variables

Observed Variables

(a) Motion Prediction without
Instantaneous Dependencies

(b) Motion Prediction with
Instantaneous Dependencies

Figure A7: An example of human motion forecasting, where joints can be considered as latent
variables and the latent skeleton decides the motion.

where Jf is the Jacobian matrix of the map f , where the instantaneous dependencies are assumed to
be a low-triangular matrix:

Jf =


1 0 0 0
0 1 0 0

∂zt,1
∂zt−1,1

∂zt,1
∂zt−1,2

∂zt,1
∂ϵt,1

0
∂zt,2

∂zt−1,1

∂zt,2
∂zt−1,2

∂zt,2
∂ϵt,1

∂zt,2
∂ϵt,2

 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
∏

i
∂zt,i
ϵt,i

. Fur-
thermore, because the noise terms are mutually independent, and hence ϵt,i ⊥ ϵt,j for j ̸= i and
ϵt ⊥ zt−1, so we can with the RHS of Equation (A25) as follows

p(zt−1,1, zt−1,2, zt,1, zt,2) = p(zt−1,1, zt−1,2)×
p(ϵt,1, ϵt,2)

|Jf |
= p(zt−1,1, zt−1,2)×

∏
i p(ϵt,i)

|Jf |
. (A26)

Finally, we generalize this example and derive the prior likelihood below. Let {ri}i=1,2,3,··· be a set of
learned inverse transition functions that take the estimated latent causal variables, and output the noise
terms, i.e., ϵ̂t,i = ri(ẑt,i, {ẑt−τ}). Then we design a transformation A → B with low-triangular
Jacobian as follows:

[ẑt−L, · · · , ẑt−1, ẑt]
⊤︸ ︷︷ ︸

A

mapped to [ẑt−L, · · · , ẑt−1, ϵ̂t,i]
⊤︸ ︷︷ ︸

B

, with JA→B =

[
Ins×L 0

∗ diag
(

∂ri,j
∂ẑt,j

) ]
.

(A27)
Similar to Equation (A26), we can obtain the joint distribution of the estimated dynamics subspace
as:

log p(A) = log p(ẑt−L, · · · , ẑt−1) +

ns∑
i=1

log p(ϵ̂t,i)︸ ︷︷ ︸
Because of mutually independent noise assumption

+ log(|det(JA→B)|) (A28)

Finally, we have:

log p(ẑt|{ẑt−τ}Lτ=1) =

ns∑
i=1

p(ϵ̂t,i) +

ns∑
i=1

log | ∂ri
∂ẑt,i

| (A29)

Since the prior of p(ẑt+1:T |ẑ1:t) =
∏T

i=t+1 p(ẑi|ẑi−1) with the assumption of first-order Markov
assumption, we can estimate p(ẑt+1:T |ẑ1:t) in a similar way.
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D.2 EVIDENT LOWER BOUND

In this subsection, we show the evident lower bound. We first factorize the conditional distribution
according to the Bayes theorem.

ln p(x1:T ) = ln
p(x1:T , z1:T )

p(z1:T |x1:T )
= Eq(z1:T |x1:T ) ln

p(x1:T , z1:T )q(z1:T |x1:T )

p(z1:T |x1:T )q(z1:T |x1:T )

≥ Eq(z1:T |x1:T ) ln p(x1:T ||z1:T )︸ ︷︷ ︸
Lr

−DKL(q(z1:T |x1:T )||p(z1:T ))︸ ︷︷ ︸
LKLD

= ELBO
(A30)

As for the time-series forecasting task, we let x1:t and xt+1:T be the historical and future observed
variables, then the ELBO can be further derived as follows:

ln p(xt+1:T ,x1:t) = ln
p(xt+1:T , z1:T ,x1:t)

p(z1:T |x1:t,xt+1:T )
= ln

p(xt+1:T , z1:t, zt+1:T ,x1:t)

p(z1:T |x1:T )

≥Eq(z1:T |x1:t) ln
p(xt+1:T |zt+1:T )p(x1:t|z1:t)p(z1:T )

q(z1:T |x1:t)

=Eq(z1:T |x1:t) ln p(x1:t|z1:T )︸ ︷︷ ︸
Lr

+Eq(z1:T |x1:t) ln p(xt+1:T |z1:T )︸ ︷︷ ︸
Lpre

−DKL(q(z1:T |x1:t)||p(z1:T ))︸ ︷︷ ︸
LKLD

,

(A31)

where Lr denotes the reconstruct loss of historical data, Lpre denotes the forecasting loss of future
data.

D.3 MODEL DETAILS

We choose MICN Wang et al. (2022) as the encoder backbone of our model on real-world datasets.
Specifically, given the MICN extracts the hidden feature, we apply a variational inference block and
then an MLP-based decoder. Architecture details of the proposed method are shown in Table A4.

D.3.1 REPRODUCIBILITY OF SIMULATION EXPERIMENTS.

For the implementation of baseline models, we utilized publicly released code for TDRL and iCRITIS.
However, since the author did not release the code for G-CaRL, we implemented it ourselves based
on the paper. It is important to note that the original code of iCRITIS only accepts images as input.
To adapt it to our needs, we replaced the encoder and decoder with a Variational Autoencoder, with
the same hyperparameters used in IDOL. Our code is modified based on the code of TDRL, and
shared hyperparameters remain the same.

When calculating the MCC for all methods, we use the mean value from the VAE encoder. Regarding
the latent causal graph, we employ different approaches depending on the method. For IDOL, TDRL,
and G-CaRL, we utilize the Jacobian matrix as a proxy for capturing the causal process. On the other
hand, for iCRITIS, we rely on the "get_adj_matrix()" function provided in its original code to obtain
the latent causal graph.

D.3.2 REPRODUCIBILITY OF REAL-WORLD EXPERIMENTS.

The model details of our method are shown in Table A4. For a fair comparison, we employ the
official implementations and use the default hyperparameters. Since our model is modified from the
official implementations of TDRL, both our model and the baselines share the same hyperparameters.
To achieve the results from the well-fit baselines, we employed the default hyper-parameters and
tried different values of learning rate for the best models. Please refer to Table A5 to A11 for the
implementation details of the baselines.
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Table A4: Architecture details. T , length of time series. |xt|: input dimension. n: latent dimension.
LeakyReLU: Leaky Rectified Linear Unit. Tanh: Hyperbolic tangent function.

Configuration Description Output

ϕ Latent Variable Encoder

Input:x1:t Observed time series Batch Size×t× x dimension
Dense |xt| neurons Batch Size×t×|xt|
Concat zero concatenation Batch Size×T×|xt|
Dense n neurons Batch Size×T×n

ψ Decoder

Input:z1:T Latent Variable Batch Size×T×n
Dense |xt| neurons, Tanh Batch Size×T×|xt|

r Modular Prior Networks

Input: z1:T Latent Variable Batch Size×(n+1)
Dense 128 neurons,LeakyReLU (n+1)×128
Dense 128 neurons,LeakyReLU 128×128
Dense 128 neurons,LeakyReLU 128×128
Dense 1 neuron Batch Size×1
Jacobian Compute Compute log(det(J)) Batch Size

Table A5: TDRL architecture details. T : length of time series. |xt|: input dimension. n: latent
dimension. LeakyReLU: Leaky Rectified Linear Unit. Tanh: Hyperbolic tangent function.

Configuration Description Output

ϕ Latent Variable Encoder
Input:x1:t Observed time series Batch Size×t× X dimension
Dense |xt| neurons Batch Size×t×|xt|
Concat zero concatenation Batch Size×T×|xt|
Dense n neurons Batch Size×T×n

ψ Decoder
Input:z1:T Latent Variable Batch Size×T×n
Dense |xt| neurons,Tanh Batch Size×T×|xt|

r Modular Prior Networks
Input:z1:T Latent Variable Batch Size×(n+1)
Dense 128 neurons,LeakyReLU (n+1)×128
Dense 128 neurons,LeakyReLU 128×128
Dense 128 neurons,LeakyReLU 128×128
Dense 1 neuron Batch Size×1
JacobianCompute Compute log(det(J)) Batch Size

Table A6: CARD architecture details. T : length of time series. |xt|: input dimension. p: patch
number. n: patch length.

Configuration Description Output
Input:x1:t Observed time series Batch Size×t× X dimension
Permute Matrix Transpose BS×|xt| × t
unfold unfold BS×|xt| × p×n
Add random add BS×|xt|×p×n
Dense d neurons, dropout BS×|xt|×p×d
Concat random concatenation BS×|xt|×(p+1)×d
Dense Attenion BS×|xt|×(p+1)×d
reshape reshape BS×|xt|×((p+1)×d)
Dense (T-t) neurons BS×|xt|×(T-t)
Permute Matrix Transpose BS×(T-t)×|xt|
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Table A7: iTransformer architecture details. T : length of time series. |xt|: input dimension.
Configuration Description Output
Input:x1:t Observed time series Batch Size×t× X dimension
Permute Matrix Transpose BS×|xt|×t
Dense Embedding BS×|xt|×d
Dense Attention BS×|xt|×d
Dense T-t neurons BS×|xt|×(T-t)
Permute Matrix Transpose BS×(T-t)×|xt|

Table A8: Auoformer architecture details. T : length of time series. |xt|: input dimension.
Configuration Description Output

Input:x1:t Observed time series Batch Size×t× X dimension
seasonal, trend AvgPool1d BS×t×|xt|
seasonal concat zero concatenation BS×T×|xt|
trend concat x_mean concatenation BS×T×|xt|
seasonal Embedding BS×T×d

Input:x1:t Observed time series Batch Size×t× X dimension
Dense Embedding BS×t×d
x_enc Attention BS×t×d

Input:x_enc, seasonal Conv1d BS×T×d
Dense Conv1d BS×T×|xt|
Add trend Add BS×T×|xt|

Table A9: TimesNet architecture details. T : length of time series. |xt|: input dimension.
Configuration Description Output
Input:x1:t Observed time series Batch Size×t× X dimension
Dense Embedding BS×t×d
Permute Matrix Transpose BS×d×t
Dense T neurons BS×d×T
Permute Matrix Transpose BS×T×d
Dense Conv1d,LayerNorm BS×T×d
Dense |xt| neurons BS×T×|xt|

Table A10: MICN architecture details. T : length of time series. |xt|: input dimension. LeakyReLU:
Leaky Rectified Linear Unit. Tanh: Hyperbolic tangent function.

Configuration Description Output
Input:x1:t Observed time series Batch Size×t× X dimension
seasonal, trend AvgPool1d BS×t×|xt|
seasonal concat zero concatenation BS×T×|xt|
trend permute Matrix Transpose BS×|xt|×t
trend (T-t) neurons BS×|xt|×(T-t)
trend permute Matrix Transpose BS×(T-t)×|xt|
seasonal d neurons BS×T×d
seasonal Conv1d,LayerNorm,Tanh BS×T×d
seasonal |xt| neurons BS×T×|xt|
seasonal add trend Add BS×(T-t)×|xt|
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Table A11: FITS architecture details. T : length of time series. |xt|: input dimension. p: patch
number. n: patch length.

Configuration Description Output
Input:x1:t Observed time series Batch Size×t× X dimension
FFT rfft BS×(t/2+1)×|xt|
Permute Matrix Transpose BS×|xt|×(t/2+1)
Dense T/2+1 neurons BS×|xt|×(T/2+1)
Permute Matrix Transpose BS×(T/2+1)×|xt|
IFFT irfft BS×T×|xt|

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table A12: Standard Deviation results on simulation data.
Datasets IDOL TDRL G-CaRL iCITRIS β−VAE SlowVAE iVAE FactorVAE PCL TCL

A 0.029 0.045 0.003 0.105 0.014 0.025 0.064 0.025 0.011 0.008
B 0.013 0.022 0.004 0.039 0.013 0.005 0.011 0.035 0.073 0.028
C 0.002 0.028 0.003 0.039 0.031 0.010 0.024 0.027 0.021 0.038
D 0.006 0.003 0.051 0.010 0.028 0.074 0.034 0.027 0.033 0.007
E 0.037 0.005 0.001 0.021 0.015 0.002 0.009 0.002 0.039 0.016
F 0.029 0.018 0.004 - 0.165 0.134 0.014 0.031 0.018 0.007

Table A13: MCC results of IDOL and IDOL-S with mean and standard deviation.
IDOL IDOL-S

MCC 0.8595 (0.0599) 0.8498 (0.0481)

E EXPERIMENT DETAILS

E.1 SIMULATION EXPERIMENT

E.1.1 DATA GENERATION PROCESS

As for the temporally latent processes, we use MLPs with the activation function of LeakyReLU to
model the sparse time-delayed and instantaneous relationships of temporally latent variables. For all
datasets, we set sequence length as 5 and transition lag as 1. That is:

zt,i = (LeakyReLU(Wi,: · zt−1, 0.2) + V<i,i · zt,<i) · ϵt,i + ϵt,i,

where Wi,: is the i-th row of W and V<i,i is the first i− 1 columns in the i-th row of V . Moreover,
each independent noise ϵt,i is sampled from the distribution of normal distribution. We further let the
data generation process from latent variables to observed variables be MLPs with the LeakyReLU
units.

We provide 6 synthetic datasets, with 3,5,8,8,8,16 latent variables from A to F. For dataset A, we
have WA = [[1, 1, 0], [0, 1, 0], [0, 0, 1]]. For dataset B, we have WB as an eye matrix with 2 extra
nonzero entries. For dataset C,F , we have WC ,WF as eye matrices. For datasets D and E, WD

and WE are dense matrices with all nonzero entries, which are generated by the data generator of
TDRL(Yao et al., 2022). When it comes to V , we have and only have Vi−1,i = 1 ∀i > 0 for dataset
A,B,C,E, F . We also set VD = 0, which means that there are no instantaneous effects.

The total size of the dataset is 100,000, with 1,024 samples designated as the validation set. The
remaining samples are the training set.

E.1.2 EVALUATION METRICS.

To evaluate the identifiability performance of our method under instantaneous dependencies, we
employ the Mean Correlation Coefficient (MCC) between the ground-truth zt and the estimated ẑt.
A higher MCC denotes a better identification performance the model can achieve. In addition, we
also draw the estimated latent causal process to validate our method. Since the estimated transition
function will be a transformation of the ground truth, we do not compare their exact values, but only
the activated entries.

E.1.3 MORE SIMULATION EXPERIMENT RESULTS

We run each experiment 3 times, with seeds 769, 770, 771. Standard deviation results of the simulation
datasets are shown in Table A12.

E.1.4 ABLATION STUDY

To further illustrate the significance of sparsity, we compare our IDOL model with its variant that
lacks a sparsity constraint (IDOL-S). The experimental results on the synthetic dataset are presented
in Table A13. The result shows that sparsity constraint is crucial to the model.
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Table A14: MSE and MAE results of different methods on the transformed HumanEva-I datase.
dataset Predict

Length
IDOL TDRL CARD FITS MICN iTransformer TimesNet Autoformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

D
125 0.082 0.196 0.084 0.202 0.127 0.251 0.108 0.237 0.083 0.201 0.106 0.227 0.111 0.235 0.133 0.267
250 0.101 0.226 0.134 0.274 0.204 0.319 0.141 0.273 0.107 0.236 0.161 0.287 0.192 0.312 0.188 0.326
375 0.113 0.244 0.144 0.288 0.230 0.342 0.180 0.306 0.115 0.247 0.193 0.315 0.226 0.344 0.224 0.352

G
125 0.091 0.220 0.097 0.235 0.098 0.227 0.168 0.305 0.095 0.225 0.097 0.223 0.117 0.247 0.141 0.283
250 0.103 0.254 0.139 0.285 0.144 0.274 0.183 0.320 0.130 0.272 0.123 0.260 0.134 0.271 0.154 0.300
375 0.138 0.276 0.155 0.296 0.179 0.310 0.182 0.321 0.154 0.295 0.146 0.286 0.165 0.308 0.161 0.308

P
125 1.195 0.680 1.337 0.834 1.531 0.787 2.306 1.027 1.259 0.786 1.488 0.793 1.905 0.911 2.941 1.210
250 1.961 1.045 2.411 1.307 3.124 1.346 3.221 1.293 2.498 1.346 3.152 1.383 3.908 1.513 4.169 1.633
375 2.326 1.164 2.514 1.326 3.948 1.558 4.020 1.537 2.377 1.274 4.075 1.631 4.315 1.662 4.951 1.815

SD
125 0.365 0.405 0.373 0.418 0.512 0.482 0.595 0.543 0.379 0.425 0.517 0.490 0.523 0.501 0.785 0.632
250 0.551 0.526 0.573 0.540 0.874 0.671 0.923 0.710 0.569 0.532 0.813 0.655 0.815 0.656 1.061 0.769
375 0.649 0.579 0.653 0.581 0.980 0.720 1.075 0.781 0.655 0.587 0.959 0.721 0.966 0.726 1.193 0.826

W
125 0.045 0.162 0.047 0.164 0.122 0.254 0.288 0.431 0.046 0.162 0.124 0.257 0.067 0.184 0.314 0.405
250 0.104 0.256 0.143 0.302 0.333 0.434 0.589 0.618 0.141 0.302 0.340 0.438 0.170 0.292 0.629 0.614
375 0.150 0.313 0.167 0.331 0.431 0.508 0.691 0.673 0.175 0.341 0.425 0.506 0.253 0.370 1.048 0.761

WT
125 0.062 0.189 0.078 0.214 0.118 0.262 0.227 0.385 0.071 0.204 0.115 0.256 0.131 0.271 0.223 0.361
250 0.127 0.277 0.152 0.311 0.297 0.421 0.407 0.520 0.153 0.312 0.287 0.414 0.195 0.338 0.395 0.509
375 0.151 0.305 0.171 0.328 0.365 0.473 0.425 0.530 0.169 0.327 0.313 0.441 0.289 0.431 0.430 0.538

Table A15: Standard deviation of MSE and MAE results on the different motion.
dataset Predict

Length
IDOL TDRL CARD FITS MICN iTransformer TimesNet Autoformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

H
36

M

G
100 0.0008 0.0004 0.0018 0.0026 0.0008 0.0010 0.0008 0.0010 0.0007 0.0027 0.0016 0.0019 0.0038 0.0049 0.0008 0.0015
125 0.0009 0.0012 0.0009 0.0010 0.0006 0.0008 0.0005 0.0008 0.0017 0.0033 0.0008 0.0009 0.0004 0.0015 0.0012 0.0012
150 0.0021 0.0022 0.0026 0.0029 0.0004 0.0005 0.0002 0.0003 0.0002 0.0008 0.0001 0.0003 0.0033 0.0023 0.0012 0.0011

J
125 0.0144 0.0217 0.0115 0.0085 0.0499 0.0263 0.0026 0.0004 0.0032 0.0081 0.0256 0.0131 0.0872 0.0296 0.0238 0.0171
150 0.0099 0.0161 0.0088 0.0083 0.0108 0.0050 0.0023 0.0010 0.0106 0.0135 0.0183 0.0116 0.0837 0.0325 0.0085 0.0089
175 0.0003 0.0038 0.0126 0.0123 0.0478 0.0130 0.0030 0.0010 0.0088 0.0129 0.0355 0.0200 0.0289 0.0109 0.0603 0.0133

TC
25 0.0001 0.0005 0.0009 0.0028 0.0009 0.0034 0.0009 0.0022 0.0001 0.0010 0.0001 0.0004 0.0015 0.0023 0.0026 0.0055
50 0.0004 0.0022 0.0011 0.0023 0.0018 0.0038 0.0003 0.0010 0.0003 0.0013 0.0001 0.0004 0.0017 0.0046 0.0021 0.0042
75 0.0005 0.0026 0.0007 0.0022 0.0019 0.0030 0.0001 0.0002 0.0004 0.0015 0.0002 0.0004 0.0029 0.0078 0.0031 0.0066

W
25 0.0019 0.0039 0.0016 0.0020 0.0053 0.0046 0.0061 0.0069 0.0005 0.0012 0.0018 0.0015 0.0023 0.0027 0.0887 0.0796
50 0.0003 0.0009 0.0020 0.0019 0.0432 0.0136 0.0009 0.0004 0.0005 0.0005 0.0022 0.0023 0.0064 0.0078 0.0660 0.0419
75 0.0154 0.0217 0.0011 0.0019 0.0630 0.0131 0.0033 0.0025 0.0009 0.0014 0.0033 0.0017 0.0320 0.0169 0.0499 0.0349

H
um

an
E

VA
-I

D
125 0.0002 0.0028 0.0011 0.0015 0.0012 0.0020 0.0013 0.0013 0.0010 0.0017 0.0015 0.0015 0.0048 0.0037 0.0007 0.0008
250 0.0012 0.0016 0.0024 0.0024 0.0067 0.0038 0.0002 0.0005 0.0010 0.0013 0.0009 0.0006 0.0128 0.0089 0.0044 0.0042
375 0.0056 0.0062 0.0001 0.0009 0.0109 0.0064 0.0003 0.0004 0.0020 0.0026 0.0033 0.0021 0.0063 0.0012 0.0043 0.0030

G
125 0.0043 0.0090 0.0066 0.0111 0.0026 0.0030 0.0058 0.0050 0.0064 0.0105 0.0053 0.0054 0.0016 0.0019 0.0076 0.0066
250 0.0095 0.0174 0.0105 0.0147 0.0093 0.0059 0.0027 0.0022 0.0016 0.0021 0.0063 0.0071 0.0006 0.0018 0.0003 0.0002
375 0.0014 0.0017 0.0005 0.0006 0.0059 0.0034 0.0013 0.0004 0.0037 0.0047 0.0085 0.0079 0.0035 0.0036 0.0046 0.0043

P
125 0.0311 0.0277 0.0951 0.0434 0.0465 0.0229 0.0169 0.0062 0.0333 0.0277 0.0251 0.0032 0.2698 0.0744 0.0700 0.0013
250 0.0719 0.0225 0.0601 0.0318 0.1735 0.0154 0.0317 0.0086 0.0155 0.0069 0.0123 0.0024 0.5525 0.0976 0.0708 0.0093
375 0.2728 0.0168 0.0889 0.0335 0.1108 0.0319 0.0051 0.0907 0.0382 0.0171 0.0222 0.0034 0.0472 0.0040 0.0880 0.0243

SD
125 0.0056 0.0031 0.0119 0.0116 0.0045 0.0038 0.0043 0.0027 0.0157 0.0155 0.0131 0.0099 0.0219 0.0167 0.0362 0.0235
250 0.0024 0.0002 0.0075 0.0077 0.0415 0.0176 0.0008 0.0011 0.0229 0.0146 0.0064 0.0029 0.0172 0.0069 0.0061 0.0017
375 0.0149 0.0145 0.0072 0.0079 0.0107 0.0044 0.0025 0.0014 0.0050 0.0020 0.0110 0.0057 0.0105 0.0051 0.0336 0.0100

W
125 0.0029 0.0043 0.0078 0.0150 0.0034 0.0041 0.0037 0.0039 0.0016 0.0034 0.0062 0.0087 0.0028 0.0032 0.1585 0.1221
250 0.0082 0.0105 0.0236 0.0300 0.0157 0.0127 0.0002 0.0006 0.0125 0.0142 0.0130 0.0101 0.0105 0.0107 0.1344 0.0748
375 0.0089 0.0108 0.0273 0.0296 0.0035 0.0053 0.0019 0.0014 0.0212 0.0225 0.0121 0.0088 0.0081 0.0067 0.2889 0.0771

WT
125 0.0031 0.0029 0.0065 0.0106 0.0059 0.0066 0.0032 0.0035 0.0019 0.0022 0.0021 0.0027 0.0056 0.0042 0.0453 0.0455
250 0.0014 0.0030 0.0044 0.0066 0.0123 0.0102 0.0007 0.0010 0.0054 0.0085 0.0113 0.0111 0.0554 0.0523 0.0168 0.0152
375 0.0146 0.0188 0.0020 0.0027 0.0431 0.0283 0.0019 0.0014 0.0029 0.0027 0.0077 0.0054 0.0328 0.0246 0.0054 0.0043
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Table A16: Sample number of different datasets.
Dataset Size

Humaneva

Gestures 1686
Jog 2050

ThrowCatch 1021
Walking 2454

Human

Discussion 13759
Greeting 8416
Purchases 7480

SittingDown 16438
Walking 16257

WalkTogether 10658

E.2 REAL-WORLD EXPERIMENTS

E.2.1 REAL-WORLD DATASET DESCRIPTION

Human3.6M Dataset is collected over 3.6 million different human poses, viewed from 4 differ-
ent angles, using an accurate human motion capture system. The motions were executed by 11
professional actors, and cover a diverse set of everyday scenarios including conversations, eating,
greeting, talking on the phone, posing, sitting, smoking, taking photos, waiting, walking in various
non-typical scenarios. We randomly use four motions, i.e., Gestures (Ge), Jog (J), CatchThrow
(CT), and Walking (W), for the task of the human motion forecasting. The data is obtained from the
joint angles (provided by Vicon’s skeleton fitting procedure) by applying forward kinematics on the
skeleton of the subject. The parametrization is called relative because there is a specially designated
joint, usually called the root (roughly corresponding to the pelvis bone position), which is taken as
the center of the coordinate system, while the other joints are estimated relative to it.

In this dataset, the joint positions can be considered as latent variables. And the kinematic representa-
tion can be considered as the observed variables. The kinematic representation (KR) considers the
relative joint angles between limbs. We consider the process from joint position to joint angles as a
mixture process.

HumanEva-I dataset comprises 3 subjects each performing several action categories. Each pose has
15 joints with three axis. We choose 6 motions, i.e., : Discussion (D), Greeting (Gr), Purchases (P),
SittingDown (SD), Walking (W), and WalkTogether (WT) for the task of human motion forecasting.
Specifically, the ground truth motion of the body was captured using a commercial motion capture
(MoCap) system from ViconPeak.5 The system uses reflective markers and six 1M-pixel cameras to
recover the 3D position of the markers and thereby estimate the 3D articulated pose of the body. We
consider the joints as latent variables and the signals recorded from the system as observations.

The sample number of different datasets are shown in Table A16.

E.2.2 MORE EXPERIMENTS RESULTS

We further consider a more complex mixture process. To achieve is, we further apply a transformation
on the observed variables, i.e., x̄t = fo(xt), where fo is a linear transformation. Then we can consider
the sensors as latent variables with instantaneous dependencies and conduct motion forecasting on
the transformed datasets. Experiment results on the transformed HumanEva-I dataset are shown in
Table A14.

E.2.3 QUALITATIVE RESULTS

To further show the effectiveness of the proposed method, we also randomly select a batch of test
samples and visualize the forecasting results of different baselines. Visualization results in Figure
A9 show the predicted results of “Discussion”, “Greeting”, and “Purchases”, respectively, which
illustrate how the forecasting results align the ground-truth motions, where the red lines denote the
ground-truth motions and the lines in other colors denote the forecasting results of different methods.
According to the experiment results, we can find that the forecasting results of our method achieve
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Figure A8: Ablation study on the Jog motion. we explore the impact of different loss terms.

MICN

TDRL

iTransformer TimesNet

FITSCARD

IDOL

Autoformer

Figure A9: The illustration of visualization of different methods of Walking. The red lines denote the
ground-truth motions, those lines in other colors denote the prediction motions of different methods.

the best alignment of the ground truth. In the meanwhile, the other methods that do not consider the
instantaneous dependencies of latent variables may generate some exaggerated body movements, for
example, the hyperflexed knee joint and the actions that violate the physics rules, which reflects the
importance of considering the instantaneous dependencies of latent causal process of time series data.

E.2.4 ABLATION STUDY

To evaluate the effectiveness of individual loss terms, we also devise the two model variants. 1)
IDOL-K: remove the KL divergence restriction of prior estimation. 2) IDOL-S: remove sparsity
restriction of latent dynamics. Experiment results on the Jog dataset are shown in Figure A8. We can
find that the sparsity restriction of latent dynamics plays an important role in the model performance,
reflecting that the restriction of latent dynamics can benefit the identifiability of latent variables. We
also discover that incorporating the KL divergence has a positive impact on the overall performance
of the model, which shows the necessity of identifiability.

F COMPLEXITY ANALYSIS

F.1 WALL-CLOCK TRAINING TIMES

To evaluate the computational complexity of our method, we provide the wall-clock training times of
different methods. Specifically, we use a consistent hardware setup including the same GPU, CPU,
and memory configurations for each model to ensure comparability. Sequentially, in our codes, we
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Table A17: Mean and standard deviation of wall-clock training times for one epoch.
Methods IDOL TDRL CARD FITS MICN iTransformer TimesNet Autoformer

Second 65.960(7.556) 33.902(5.781) 62.994(3.035) 92.941(0.715) 45.547(13.034) 38.155(6.441) 324.941(25.286) 51.648(15.673)

(a) Model Efficiency on the Low-
dimension Dataset (Human Dataset).

(b) Model Efficiency on the High-
dimension Dataset (MoCap Dataset).

Figure A10: Model efficiency comparison for one training step on different datasets.

wrap the training process in a timer to measure the actual elapsed time from start to finish of one
epoch. For each method, we repeat three different times and further report the mean and standard
deviation. The wall-clock training times are shown in Table A17.

Based on the experimental results, we draw the following conclusions:

• Compared to our baseline model TDRL, the wall-clock training time of the proposed IDOL
is nearly twice as slow. Theoretically speaking, the primary computational difference is that
IDOL calculates the Jacobian matrix for both time-delayed and instantaneous relationships,
while TDRL only calculates the time-delayed component.

• Compared to other mainstream baselines, our IDOL method is slower than some models
like MICN and iTransformer. However, our method is still faster than models like FITS.

F.2 MODEL EFFICIENCY ANALYSIS

To evaluate the model efficiency, we provide model efficiency comparison on the low-dimension
dataset (e.g., the Human dataset) and the high-dimension dataset (the MoCap dataset) by evaluating
the model efficiency from three aspects: forecasting performance, training speed, and memory
footprint. As shown in Figure A10, in low-dimensional datasets, IDOL performs nearly as effi-
ciently as top methods like Autoformer and MICN and outperforms others like CARD. However, in
high-dimensional datasets (117 observations), IDOL requires more training time due to the added
complexity of Jacobian calculations for instantaneous effects.

G MORE DISCUSSIONS

G.1 ANALYSIS OF HIGH-DIMENSIONAL DATA

Identifying causal relationships in high-dimensional latent variable settings is a well-recognized
challenge in the causal inference community (Lopez et al., 2022; Cheng et al., 2024). As the
dimensionality increases, the complexity of identifying causal structures grows due to the expanding
search space. We conduct experiments on both synthetic and real-world datasets to verify it and
propose a potential solution.

G.1.1 SIMULATION EXPERIMENTS

As for the experiment on the synthetic datasets, we follow the same data generation process to
generate simulation datasets with latent variable dimensions of 8, 16, 24, and 32. All these datasets
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Table A18: Experiments results of IDOL on simulation data on different dimensions of latent
variables.

Dimension 8 16 24 32

MCC 0.9801(0.002) 0.9747 (0.0029) 0.9243 (0.0173) 0.8640 (0.0071)

Table A19: Experiment results of the CMU MoCap datasets.
Motion Predicted

Length IDOL TDRL CARD FITS MICN iTransformer TimesNet Autoformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Running 50-25 0.110 0.082 0.448 0.108 0.998 0.135 0.076 0.064 0.658 0.135 0.458 0.106 2.616 0.202 1.033 0.179
50-50 0.286 0.109 1.779 0.167 2.217 0.153 0.266 0.103 0.978 0.161 1.831 0.170 4.720 0.252 3.944 0.283

Soccer 50-25 0.022 0.043 0.026 0.047 0.206 0.082 0.076 0.065 0.057 0.066 0.032 0.051 0.063 0.068 0.211 0.105
50-50 0.079 0.071 0.084 0.073 0.397 0.108 0.265 0.103 0.284 0.120 0.133 0.082 0.392 0.107 0.452 0.143

share a similar latent causal process: chain-like instantaneous effects and ono-to-one temporal effects.
We then measured the Mean Correlation Coefficient (MCC) between the ground truth zt and the
estimated ẑt. The experimental results are presented in Table A18. According to the experiment
result, as the dimension of latent variables increases, the value of MCC is still acceptable, despite
possible performance loss in high-dimensional problems.

G.1.2 REAL-WORLD EXPERIMENTS

For the real-world datasets, we consider the CMU-MoCap dataset3. It contains various motion capture
recordings and 117 skeleton-based measurements, which is a higher dimensionality compared to the
Human dataset. We choose the Running and Soccer motions and take the input-prediction length
as 50-25 and 50-50, respectively. As shown in Table A19, the IDOL model achieved a comparable
forecasting performance in the high-dimensional dataset Running.

G.1.3 POTENTIAL SOLUTION FOR HIGH-DIMENSION DATA

To better address this challenge, here we propose several potential solutions to more effectively
address the challenges of high-dimensional time-series data. One idea is to make use of the divide-
and-conquer strategy. One possible way is to leverage independent relations in the measure of time
series data, if any. For instance, if processes X1 := {xt,1|t ∈ T} and X2 := {xt,2|t ∈ T} happen to
be independent of processes X3 and X4, then we can just learn the underlying processes for (X1, X2)
and (X3, X4) separately. Another potential way is to use the conditional independent relations in
the measured time series data. For example, if processes X1 and X2 are independent from X3 and
X4 given X5 and X6, then we can just learn the underlying processes for (X1, X2, X5, X6) and
(X3, X4, X5, X6) separately. In this way, we can reduce the search space and further reduce the
complexity even in high-dimensional time series data. We hope that some other developments in
reducing the computational load in deep learning can also be helpful.

G.2 NOISY ENVIRONMENTS

In some real-world scenarios, it is possible for the mixing process not to be invertible, for example, if
the mixing process is highly noisy in each observed process, which might be the case in financial data
(Hu & Schennach, 2008). There are some developments relying on the additive noise assumptions. If
one makes strong assumptions on the noise, such as assuming an additive noise model, it is possible
to develop a certain type of identifiability just like the extension of nonlinear ICA to the additive noise
model case in (Khemakhem et al., 2020a). However, general approaches to deal with non-parametric
noise terms to developed in this field in the future. To further evaluate the insight of this potential
solution, we have conducted experiments on synthetic data. Specifically, we first follow Equation (2)
to generate latent variables with temporal and instantaneous dependencies and generate observed
variables by xt = g(zt, ε), where ε is the noise introduced to the mixing process. Experiment results
in Table A20 show that our method can still achieve relatively good identifiability results even in a
noisy environment, proving the potential of our insight.

3http://mocap.cs.cmu.edu/
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Table A20: The mean and standard deviation of MCC of the IDOL model under noise environment
with different noise scales. The noise scale is defined as the ratio of the noise variance to the
observation variance, expressed as a percentage.

Noise Scale 0.1 0.3 0.5 0.7
MCC 0.9257 0.8362 0.7381 0.6095

Table A21: The mean and standard deviation of MCC on subsets of dataset A with different sizes.
Sample Size 1,000 10,000 25000 50,000 100,000

MCC 0.853(0.102) 0.884(0.011) 0.912(0.025) 0.945(0.023) 0.965(0.029)

G.3 ANALYSIS OF SAMPLE SIZE

To assess the impact of sample size on identification performance, we conduct an ablation study
focusing on sample size. Specifically, we create subsets of Dataset A containing 1,000, 10,000,
25,000, and 50,000 samples. For each dataset, we used the same hyperparameters, such as learning
rate, random seed, and batch size. We repeated the experiment three times with different random
seeds and reported the values of mean and standard deviation. The results in Table A21 show that as
the sample size decreases, the performance of the model gradually declines. However, even with just
1k samples, our method achieves relatively good performance, demonstrating its robustness in small
sample scenarios.

G.4 SUBSAMPLED TIME SERIES

Sequentially, we consider another case where the time series data are sampled with low resolutions.
When the time series data is sampled with low frequency, additional edges are introduced into
the Markov network, making it denser. We can further assume a sparse mixing process Zheng
et al. (2022) to achieve identifiability. Specifically, When conditioned on historical information that
provides sufficient changes, the sparse mixing procedure assumption imposes structural constraints
on the mapping from estimated to true latent variables. This compensates for potentially insufficient
distribution changes, enabling identifiability even when the time series data with low-sample regimes.
To further evaluate this insight, we also conduct experiments on synthetic datasets with low-sample
regimes. Specifically, we first generate time series data with temporal and instantaneous dependencies.
Then we randomly subsample the synthetic time series data. To enforce the sparsity of the estimated
mixing process, we add an extra L1 constraint regarding the partial differential between the estimated
observed and latent variables, i.e. |∂x̂t

∂ẑt
|1. Experiment results are shown in Table A22.

Table A22: The mean and standard deviation of MCC between the standard IDOL and the IDOL with
sparse mixing constraint.

Model IDOL+Sparse Mixing Constraint IDOL

MCC 0.837(0.078) 0.786(0.085)

From the experimental results, we can draw the following conclusions: 1) When time series data is
sampled at low frequency, the identifiable performance of the IDOL model decreases. This is because
the causal process between latent variables becomes dense, which is consistent with our theoretical
results. 2) by employing a sparse mixing constraint, we found that the identifiability performance of
the model has been significantly improved, which proves that the above insight is effective.
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