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Abstract

Identifying stop-and-go events (SAGs) in traffic flow presents an important avenue
for advancing data-driven research for climate change mitigation and sustainability,
owing to their substantial impact on carbon emissions, travel time, fuel consump-
tion, and roadway safety. In fact, SAGs are estimated to account for 33-50% of
highway driving externalities. However, insufficient attention has been paid to pre-
cisely quantifying where, when, and how often these SAGs take place—necessary
for downstream decision-making, such as intervention design and policy analysis.
A key challenge is that the data available to researchers and governments are typi-
cally sparse and aggregated to a granularity that obscures SAGs. To overcome such
data limitations, this study thus explores the use of traffic reconstruction techniques
for SAG identification. In particular, we introduce a kernel-based method for
identifying spatiotemporal features in traffic and leverage bootstrapping to quantify
the uncertainty of the reconstruction process. Experimental results on California
highway data demonstrate the promise of the method for capturing SAGs. This
work contributes to a foundation for data-driven decision-making to advance the
sustainability of traffic systems.

1 Introduction

Transportation is the most significant contributor to greenhouse gas (GHG) emissions, accounting
for 28 percent of the total in the U.S.. Traffic congestion on its own is estimated to cost the average
driver around 2000 USD in large cities and, to the United States alone, 305 billion USD in 2017
@1). “Stop-and-go”(SAG) traffic, a common phenomenon in congested traffic, happens when cars
traveling on a highway periodically form waves that propagate down the highway, leading cars to
constantly accelerate and brake unnecessarily. These SAG waves or events lead to up to 67% higher
fuel consumption, longer travel times, higher GHG emissions levels, and could be a safety hazard
(2). Concerningly, studies have found that SAGs can be responsible for 33-50% of highway driving
externalities, which are external costs such as carbon emissions, highway accidents, etc (3} 4)). To
mitigate climate change and improve air quality in human settlements, making road transportation
more environmentally sustainable and reducing SAG congestion should be a priority.

However, there is hope because SAGs are preventable, implying that a considerable portion of these
adverse effects and externalities of highway driving are avoidable. Multiple studies have proven the
potential of different technologies to alleviate SAGs using Autonomous Vehicles (AVs) (55165 [7;[8) ,
reinforcement learning (9), and variable speed limits (10), among others. Moreover, several studies
have provided insights into how these events form, propagate, and fade (55 165 [7; 18). It is clear that
in theory, we can make proactive efforts to enable and support these interventions if we are able to
identify when and where these SAGs occur.
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In particular, machine learning could play a pivotal role, as it has the capability to identify and predict
a broad range of events through techniques like image processing, kernel methods, and anomaly
detection. However, a major limitation of these models is that they require rich datasets to capture
the nuanced dynamics of vehicles, and there is very limited rich traffic data available. In contrast,
the generally available data, of which there is a large amount, is typically too sparse or noisy to
capture SAGs. In the US, for example, the highway dataset with the largest coverage is the Caltrans
Performance Measurement System (PeMS), but even in this best-case scenario, sensors are spaced
thousands of feet away and the data is both temporally and spatially sparse. The existing data, in its
current state, is not enough to capture the minute behaviors of stop-and-go events, especially at a
large scale.

In response, this paper proposes the use of traffic reconstruction as a way to fill in the gaps and
generate rich trajectory information to enable the deployment of complex ML techniques. We apply
this framework to a county in California and devise a kernel-based SAG identification method with
bootstrapping to provide robust insights into traffic behavior.

2 Related Work

The study of stop-and-go events (SAGs) in traffic has a longstanding history, dating back to the
1960s (11). While much of the literature has traditionally focused on fundamental analyses, there has
been a discernible shift toward identification methods (12), in part driven by challenges in obtaining
sufficient data for large-scale identification. On one hand, theoretical studies encompass dynamic
wave modeling, control mechanisms, instabilities, driving models, and other aspects that shed light
on triggers, formation, propagation, and dissipation of these waves (135165 [145 [155 1165 1175 1185 1195 205
215155 175 18).

On the other hand, empirical studies focus on identification through various techniques, such as
time series and signal processing methods, to identify SAG occurrences in space and time from the
observed traffic or vehicle-specific data (22} [23; 245 255 125 1265 27; 128)). These approaches typically
rely on rich trajectory data that only exists for very few stretches of highway, and only some of
them have sufficient resolution to incorporate spatiotemporal features. In contrast, most studies use
data from fixed and sparse sensors and identify SAGs using stationary wave processing techniques.
In particular, wavelet transformation has been a popular approach for SAG identification (125 20)),
matching a Mexican hat profile to the signal to identify where this behavior occurs.

Finally, while research links stop-and-go waves to negative effects such as increased fuel emissions,
safety risks, and driver distress (27; 185 129; [7), SAG quantification has not been conducted at scale. A
unique example in quantifying the number of SAGs is a study estimating that 20% of traffic jams in
the Netherlands could be stop-and-go waves (30). The significance of this estimation is underscored
by its inclusion as a priority in the national plan of Intelligent Transportation Technologies (ITS)
Netherlands. Yet, this is an anomaly, as most countries, including the United States, do not treat
stop-and-go mitigation as a priority due to a lack of quantitative evidence.

Unlike previous literature, our work makes use of both spatiotemporal features in traffic data and
broadly available data, which is sparse in nature.

3 Traffic Feature Identification Framework

To leverage available yet sparse data, we propose a technique to augment raw traffic data with
physics-based traffic simulations to build a richer, more continuous data representation, with the
goal of enabling ML pipelines for stop-and-go identification. Our raw data source is the Caltrans
Performance Measurement System (PeMS) dataset, which consists of roughly 39,000 induction
loop detectors (electromagnetic highway sensors) that capture traffic flow, occupancy, and speed
aggregated every 30 seconds on most freeways in major metropolitan areas of California. The key
concern with PeMS is that the dataset is too sparse to draw conclusions about traffic events or have
a complete understanding of vehicle trajectories. As a result, we seek to fill in these data gaps via
traffic reconstruction while using PeMS as our ground truth data.
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Figure 1: Pipeline for traffic feature identification. Our contribution is boxed in green.

3.1 Traffic Reconstruction

We leverage a traffic reconstruction model built as part of a safety analysis framework, which
simulates traffic scenarios at a fine-grain level to build individual vehicle trajectories. It does so by
combining micro-level dynamics of driving behavior on California highways, captured by highway
video data, with macro-level data obtained by induction loop detectors.

At the large scale, we represent the entire road network as a graph G = (F, V). The goal is to recover
the optimal flow through every edge e at time ¢ such that the routes of the vehicles align closely to
the ground-truth traffic data while still being realistic. We model this flow estimation problem as a
maximum flow problem. At the smaller scale, we create a driver model that relies on the widely used
“Intelligent Driver Model” (IDM) (31). In our traffic reconstruction framework, the driver model
is calibrated to digital video footage of California highways to better capture behaviors commonly
seen in that region (32). Both the driver model and the estimated vehicle routes are then combined
in Simulation of Urban MObility (SUMO), a traffic simulator, to extrapolate detailed trajectories
of traffic. The outcome is a rich representation of an entire highway network, that has information
about every vehicle at every point in space and time. A more comprehensive overview of this traffic
reconstruction method is currently in preparation.

3.2 Uncertainty Quantification

With a continuous, time-space representation of traffic, we can now extract salient features. However,
each reconstruction of traffic may have deviations, so relying on a single reconstruction for predictions
could inflate or erase certain behaviors. This prompts us to question: given a single simulation, how
certain are we in an observed event or behavior? Instead, we want a robust measure of confidence
in our identification of features. To accomplish this, we use a technique known as bootstrapping
and leverage our traffic reconstruction as a distribution sampler, which allows us to estimate the
distribution of speeds for a point in time and space (33). We replicate the traffic reconstruction k
times and build a distribution of average vehicle speed at position = and time ¢: ps(s|t, z). In each
replication, we randomly sample (with replacement) stochastic elements of the reconstruction, such
as speed deviations, offsets in departure times, and vehicle driving dynamics.

To provide a measure of certainty, we want to know the probability that an event of interest, A,
occurs at (¢,x). We define A as a function of speeds, S; ., s0 pa(Alt, z) = ps(f(St,zs .., V)|E, ).
Hyperparameters of f are denoted as v. In the next section, we show how to leverage this formulation
for robustly identifying stop-and-go events.

4 Application to Stop-and-Go Event Identification

Using the individual trajectories from the traffic reconstruction, we build a rich time-space repre-
sentation of traffic that encodes meaningful features. This representation, known as a time-space
diagram, is commonly used in the transportation community to visualize vehicle behaviors as they
move through time (x-axis) and space (y-axis). The color of the diagram encodes the aggregated
speed of the vehicles across all lanes.

In our study, we reconstruct 100 variations of traffic for the entire Los Angeles County from 11:15 to
11:30 a.m.. We focus our analysis below on a 0.5 km segment of the 110-N freeway.
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Figure 2: (a) Schematic of possible reconstructed trajectories that fill the gaps between ground-truth
readings. These trajectories vary in each replication. (b-e) 4 varying time-space diagrams out of 100.

A stop-and-go event is defined by an alternating wave of deceleration and acceleration, or high speeds
and low speeds. Despite the minimal work done on identification specifically, extensive research has
focused on explaining and characterizing this oscillating pattern using fundamental traffic models,
such as the Lighthill-Whitham—Richards (LWR) model [35). We know, for example, that in a
time-space representation, they appear as waves with a negative slope, as seen by the red slants in
Figure 2(b-e) (13). Additionally, empirical studies have recorded concrete properties of SAGs: for
example, during rush hour on US-101, the average width of a SAG was recorded to be 7 min with
an average amplitude of 15 km/hr (13)). We capture these known behaviors with a parameterized
spatiotemporal kernel.

We take into account both the dip in speed over time and the backward movement over space by
designing a 2-D kernel based on the Sobel operator for diagonal edge detection (36). However, the
behavior of a SAG depends on many factors such as the time of day or road conditions, so not all
SAGs appear the same on a time-space diagram. To capture SAGs with different oscillation periods,
we parameterize the width of the kernel. It is important to note that other properties of the kernel,
such as the slope of propagation or the magnitude of the dip (which corresponds to the amplitude
of the wave) can also vary depending on the setting. Here, we only specify the width, i.e. the wave
period, as a parameter.

An example of the kernel K with width = 4 seconds is as follows:

0 -1 -1 -1 -1 0 2 2
K4H=1{2 0 -1 -1 -1 -1 0 2
2 2 0 -1 -1 -1 —1 0

We convolve this kernel K (w) across neighborhoods of speeds, Sy ,, in the time-space diagram and
normalize these values from —1 to 1. Sy z(m,n) = {St4i04; : Vi € [-m,m],j € [—n,n]}
is a neighborhood of speeds surrounding s:,. We define this convolution as the function
fsac(Ste, wlt, ) = norm_y 1)(K(w) * St 2 (w, 1)), which we also refer to as the "Kernel Acti-
vation Value". The Kernel Activation Value provides a measure of how strongly the behavior at (¢, x)
matches the kernel.

Then, we define C; , as the event that a SAG occurs at (¢, ), which is 1 when fsag (S, ., w|t, z) > €
and O otherwise. This e controls how steep the stop-and-go behavior should be in order to be
considered a SAG event. For our study, we use a threshold of ¢ = 0.30. We consider € as a
hyperparameter, as it can be tuned to accommodate different settings. We build an indicator variable

C’im defined by the occurrence of a SAG in trial 7 at (¢, ). Then, we estimate the probability of a
SAG occurring at (¢, x) by using the Ctj,x as samples of the probability distribution:

100
1 .
p(ct,w = 1|t7$> = ps(fSAG(St,z7w|t7$) > €|ta$) = 100 ;CZ@@U»E)

Using the continuous time-space representation and our kernel-based method, we are able to detect
and visualize stop-and-go traffic in time and space, as shown by the blue diagonal lines in the first



row of Figure 3. The probabilities in the second row of Figure 3 create hotspots that we know are
more prone to SAGs. As a result, we can quantify how certain we are that a SAG detected in a single
trial is not simply variance or noise. This probabilistic analysis allows us to extrapolate the observed
traffic patterns in data to the real world and provides a measure of uncertainty, which is crucial for
real-world decision-making and intervention.
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Figure 3: fgaq for kernels of different widths applied to a single trial (same trial as Figure 2(b)) are
shown in the first row. Values classified as SAG ( > ¢) are boosted for visual reference. The second
row shows the probability (combined across all 100 simulations) of a SAG occurring. U represents
the percentage of the heatmap for which the detector is uncertain, i.e. 0.25 < psag < 0.75.

When considering the impact of stop-and-go events, each one has a social cost (i.e., an aggregate
measure of air quality, GHG emission, travel time, and safety measures) associated with it. In Figure
3, a greater likelihood of a SAG at any point indicates a greater chance of incurring that social cost.
While a proper social cost estimation requires further research, we could interpret this representation
as a map of where avoidable congestion and avoidable social costs are most likely present.

5 Conclusion

Stop-and-go wave mitigation is a significant opportunity for making highway driving more sustain-
able. This paper presents a novel traffic reconstruction framework, offering a rich spatio-temporal
representation that effectively and robustly detects traffic behaviors, particularly stop-and-go events.
Our visual representation enables the creation of comprehensive traffic datasets, while the success
of our kernel method in capturing SAG patterns demonstrates the potential for more complex ML
methods to leverage this data. With local SAG identification, policy-makers can pinpoint when and
where SAGs are likely to occur in their communities, empowering the design and deployment of
targeted interventions. Through SAG identification at scale, we can quantify how much of the total
highway congestion is avoidable. This would concretely motivate the need for smart infrastructure
and other technology-based interventions and is a crucial step toward convincing decision-makers to
take action at a national level.

Future research directions include the development of sequential ML tools for time-series analysis,
extending to other features such as safety measures, causal analysis via individual trajectories,
behavior analysis, and prediction through supervised learning. A key goal in the future will be to
validate the traffic reconstruction more quantitatively. We plan to compare reconstructed trajectories
to the available ground truth by testing the pipeline on a richer dataset, such as a vehicle trajectory
dataset or highway camera footage. Finally, scaling the SAG identification process for the full
California highway system and for longer periods of time is a promising step towards at-scale SAG
intervention and more sustainable roadways.
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