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ABSTRACT

We propose a general framework for causal Imitation Learning (IL) with hidden
confounders, which subsumes several existing settings. Our framework accounts
for two types of hidden confounders: (a) variables observed by the expert but
not by the imitator, and (b) confounding noise hidden from both. By leveraging
trajectory histories as instruments, we reformulate causal IL in our framework
into a Conditional Moment Restriction (CMR) problem. We propose DML-IL, an
algorithm that solves this CMR problem via instrumental variable regression, and
upper bound its imitation gap. Empirical evaluation on continuous state-action
environments, including Mujoco tasks, demonstrates that DML-IL outperforms
existing causal IL baselines.

1 INTRODUCTION

Imitation Learning (IL) has emerged as a prominent paradigm in machine learning, where the objec-
tive is to learn a policy that mimics the behaviour of an expert by learning from their demonstrations.
While classical IL theory suggests that, with infinite data, the IL error should vanish (Ross et al.,
2011), practical implementations often yield suboptimal and unsafe behaviours (Lecun et al., 2005;
Kuefler et al., 2017; Bansal et al., 2018). Prior work attributes these failures to various factors, in-
cluding spurious correlations (de Haan et al., 2019; Codevilla et al., 2019; Pfrommer et al., 2023),
temporal noise (Swamy et al., 2022b), expert-exclusive knowledge (Choudhury et al., 2017; Chen
et al., 2019; Swamy et al., 2022a; Vuorio et al., 2022) and causal delusions (Ortega & Braun, 2008;
Ortega et al., 2021), which act as confounding variables unobserved by the imitator. Previous work
typically addresses these factors in isolation. In practice, however, these challenges can coexist,
making partial solutions insufficient. This calls for a holistic approach that accounts for multiple
confounding factors simultaneously.

We propose a general framework for causal imitation learning that models hidden confounders, i.e.,
variables present in the environment but not recorded in demonstrations. Importantly, we distinguish
between expert-observable confounders, which influence expert decisions but are not accessible
to the imitator, and expert-unobservable confounders, which introduce spurious correlations and
remain hidden from both the imitator and the expert. As a result, our framework generalises prior
settings and enables a broader, more realistic problem formulation. In previous work, it has been
shown that the application of an interactive IL algorithm such as DAgger (Ross et al., 2011), which
allows us to directly query the expert, can be effective in dealing with hidden confounders. However,
an interactive expert is not a realistic assumption in many domains and applications. Therefore, we
aim to develop approaches that solely rely on a fixed set of demonstrations.

Specifically, we propose an IL method that leverages trajectory histories as Instrumental Variables
(IVs) to mitigate spurious correlations caused by expert-unobservable confounders. Additionally, by
learning a history-dependent policy, we can infer information about expert-observable confounders,
which enables us to better imitate the expert despite lacking access to said variables. We show that
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IL in our framework can be reformulated as a Conditional Moment Restriction (CMR) problem—
a well-studied problem in econometrics and causal inference, which allows us to design practical
algorithms with theoretical guarantees on the imitation gap.

In summary, our main contributions are as follows:

• We introduce a framework for causal IL (Section 3) that incorporates both expert-observable
and expert-unobservable confounding variables to unify and generalise many of the settings in
previous work (e.g., Swamy et al. (2022b;a); Ortega et al. (2021); Vuorio et al. (2022)).

• We reformulate the problem of confounded IL in our framework as solving a CMR problem,
where we aim to learn a history-dependent policy by leveraging trajectory histories as instruments
to break the confounding (Section 4).

• We propose DML-IL, a novel IL algorithm in our framework, for which we prove an upper bound
on the imitation gap that recovers prior works’ results as special cases (Theorem 4.5).

• We empirically validate our algorithm in both custom and MuJoCo environments with both
expert-observable and expert-unobservable confounders and demonstrate that DML-IL outper-
forms existing causal IL baselines (Section 5). This highlights the need to explicitly account for
both types of hidden confounders.

1.1 RELATED WORKS

Causal Imitation Learning. Imitation learning considers the problem of learning from demon-
strations (Pomerleau, 1988; Lecun et al., 2005). Standard IL methods include Behaviour
Cloning (Pomerleau, 1988), inverse RL (Russell, 1998), and adversarial methods (Ho & Ermon,
2016). Interactive IL (Ross et al., 2011) extends standard IL by allowing the imitator to query an
interactive expert, facilitating recovery from mistakes. However, in this paper, we do not assume
query access to an interactive expert. Recently, it has been shown that IL from offline trajectories
can suffer from the existence of latent variables (Ortega et al., 2021; Bica et al., 2021), which cause
causal delusion. This can be resolved by learning an interventional policy. Following this discovery,
various methods (Vuorio et al., 2022; Swamy et al., 2022a) consider IL when the expert has access to
the full hidden context that is fixed throughout each episode, whereas the imitator does not observe
the hidden context. They aim to learn an interventional policy through on-policy IL algorithms that
require an interactive demonstrator and/or an interactive simulator (e.g., DAgger (Ross et al., 2011)).

Orthogonal to these works, Swamy et al. (2022b) consider latent variables unobserved by the expert,
which act as confounding noise that affects the recorded expert demonstrations, but not the transition
dynamics. To address this challenge, the problem is then cast into an IV regression problem. Our
work combines and generalises the above works (Vuorio et al., 2022; Swamy et al., 2022a;b) to
allow the latent variables to be (a) only partly known to the expert, (b) evolving through time in each
episode, and (c) directly affecting both the expert policy and the transition dynamics. Solving this
generalisation implies solving the above problems simultaneously.

Causal confusion (de Haan et al., 2019; Pfrommer et al., 2023) considers the situation where the
expert’s actions are spuriously correlated with non-causal features of the previous observable states.
While it is implicitly assumed that there are no latent variables present in the environment, we can
still model this spurious correlation as the existence of hidden confounders that affect both previous
states and current expert actions. Slight variations of this setting have been studied in Wen et al.
(2020); Spencer et al. (2021); Codevilla et al. (2019). In Appendix A, we explain and discuss how
these works can be reduced to special cases of our general framework. From the perspective of
causal inference (Kumor et al., 2021; Zhang et al., 2020), previous work has studied the theoretical
conditions on the causal graph under which the imitator can exactly match the expert performance
through backdoor adjustments (imitability). Hereto related, Ruan et al. (2023) extended such condi-
tions and backdoor adjustments to inverse RL. We instead consider a setting where exact imitation
is impossible and aim to minimise the imitation gap. Beyond backdoor adjustments, imitability has
also been studied theoretically using context-specific independence relations (Jamshidi et al., 2023).
Finally, Ruan et al. (2024) analyse IL under unobserved confounding and show that exact imitation
is impossible without additional assumptions. They develop robust IL algorithms tailored to such
partially identifiable regimes. In contrast, we adopt structural assumptions (finite-horizon and addi-
tive confounding noise) which induce a valid instrumental-variables relation in the trajectory history.

2



Published as a conference paper at ICLR 2026

These stronger assumptions avoid their impossibility result and yield point identification of the
history-dependent policy, although the expert’s latent variables themselves remain unidentifiable.

IV Regression and Conditional Moment Restrictions (CMRs). In this paper, we transform the
causal IL problem into solving a CMR problem through IVs, to which end we provide a brief
overview over IV regression and approaches for solving CMRs. The classic IV regression algo-
rithms mainly consider linear functions (Angrist et al., 1996) and non-linear basis functions (Newey
& Powell, 2003; Chen & Christensen, 2018; Singh et al., 2019). More recently, deep neural net-
works have been used for function approximation and methods such as DeepIV (Hartford et al.,
2017), DeepGMM (Bennett et al., 2019b), AGMM (Dikkala et al., 2020), DFIV (Xu et al., 2020)
and DML-IV (Shao et al., 2024) have been proposed. More generally, IV regression algorithms can
be generalised to solve CMRs (Liao et al., 2020; Dikkala et al., 2020; Shao et al., 2024), specifically
linear CMRs, where the restrictions are linear functionals of the function of interest. In our paper,
we derive linear CMRs for causal IL so that the above methods can be adopted.

2 PRELIMINARIES: IVS AND CMRS

We first introduce the concept of Instrumental Variables (IVs) and its connection to Conditional
Moment Restrictions (CMRs). Consider a structural model for outcome Y and treatment X:

Y = f(X) + ε(U) with E[ε(U)] = 0, (1)

where U is a hidden confounder that affects both X and Y so that E[ε(U) | X] ̸= 0. Due to the
presence of this hidden confounder, standard regressions (e.g., ordinary least squares) generally fail
to produce consistent estimates of the causal relationship between X on Y , i.e., f(X). If we only
have observational data, a classic technique for learning f is IV regression (Newey & Powell, 2003).
An IV Z is an observable variable that satisfies the following conditions:

• Unconfounded Instrument: Z ⊥⊥ U ;
• Relevance: P(X|Z) is not constant in Z;
• Exclusion: Z does not directly affect Y : Z ⊥⊥ Y | (X,U).

Using IVs, we are able to formulate the problem of learning f into a CMR problem (Dikkala et al.,
2020), where we aim to solve for f satisfying E[Y − f(X) | Z] = 0. In our work, we show that we
can use trajectory histories as instruments to learn the causal relationship between states and expert
actions by transforming the problem of causal IL into a CMR problem (Section 4).

3 A GENERAL CAUSAL IMITATION LEARNING FRAMEWORK

MDPs with Hidden Confounders. We now introduce a general framework for causal IL in the
presence of hidden confounders. We begin by introducing a Markov Decision Process (MDP) for-
mulation with hidden confounders, (S,A,U ,P, r, µ0, T ), where S is the state space,A is the action
space and U is the confounder space. Importantly, parts of the hidden confounder ut at time t may
be available to the expert but not to the imitator due to imperfect data logging or expert knowledge.
We model this by segmenting the hidden confounder at time t into two parts ut = (uo

t , u
ε
t ), where

uo
t is observable to the expert and uε

t is not. Intuitively, uo
t corresponds to the additional information

that only the expert observes and uε
t acts as confounding noise in the environment that affects both

the state and action.1 As a result, the transition function P(· | st, at, (uo
t , u

ε
t )) at time t depends on

both hidden confounders, but the reward function r(st, at, u
o
t ) only depends on the state, action, and

the observable confounder uo
t since the confounding noise only directly affects the state and actions.

Finally, µ0 is the initial state distribution and T is the time horizon. A causal graph illustrating these
relationships is provided in Figure 1. This nuanced distinction between uo

t and uε
t is crucial for

determining the appropriate method for IL, and we begin with an example to motivate our setting
and illustrate the importance of considering ut = (uo

t , u
ε
t ).

Example 3.1. Consider an airline ticket pricing scenario (Wright, 1928), where the goal is to learn
a pricing policy by imitating actual airline pricing based on expert-set profit margins. Suppose

1In our framework, we allow the actual actions taken in the environment to be affected by the noise. Noise
that only perturbs data records can be considered as a special case of our framework.
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Figure 1: A causal graph of MDPs with hidden confounders ut = (uo
t , u

ε
t ). The black dashed lines

represent the causal effect of the expert-observable confounder uo
t , which directly affects the expert

action at. It also directly affects st+1 and rt. The red dashed lines represent the causal effect of the
expert-unobservable uε

t , which acts as confounding noise and directly affects the states and actions.
uε
t does not directly affect rt (following Swamy et al. (2022b)) because the expert policy does not

take uε
t into account, and letting uε

t directly affect rt would only add noise to the expected return.

that seasonal patterns and external events are known only to experts, but missing from the dataset.
Hence, these latent variables serve as expert-observable confounders uo

t . Meanwhile, actual airline
prices are confounded (additively) by fluctuating operating costs, which are unknown to the experts
when they set the profit margin and are not contained in the dataset. Consequently, such fluctuating
operating costs act as confounding noise uε

t . We conduct experiments on a toy environment inspired
by this example in Section 5, and show that IL algorithms that do not distinguish between uo

t and uε
t

fail to correctly imitate the expert.

Causal Imitation Learning. We assume that an expert is demonstrating a task following some
expert policy πE (which we will specify in more detail later) and we observe a set of N ≥ 1 expert
demonstrations {d1, d2, ..., dN}. Each demonstration is a state-action trajectory (s1, a1, ..., sT , aT ),
where, at each time step t, we observe the state st and the action at taken in the environment. The
next state is sampled from the transition function P( · | st, at, (uo

t , u
ε
t )).

Let ht = (s1, a1, ..., st−1, at−1, st) ∈ H denote the trajectory history at time t, where H ⊆⋃T−1
i=0 (S × A)i × S is the set of all possible trajectory histories. Importantly, we observe nei-

ther the reward nor the confounders (uo
t , u

ε
t ) at time t. Given the observed trajectories, our goal

is to learn a history-dependent policy πh : H → ∆(A), where ∆(A) denotes the set of prob-
ability measures over A and the policy class πh ∈ Π is convex and compact. The Q-function
of a policy πh is Qπ(st, at, u

o
t ) = Eτ∼πh

[
∑T

t′=t r(st′ , at′ , u
o
t′)] and the value of a policy is

J(π) = Eτ∼πh
[
∑T

t′=1 r(st′ , at′ , u
o
t′)], where τ is the trajectory following πh.

In order to learn a policy πh that matches the performance of πE , we need to break the spurious cor-
relation between states and expert actions by inferring what the expert would do if we intervened and
placed them in state st when observing uo

t . Unfortunately, the causal inference literature (Shpitser
& Pearl, 2008) tells us that, without further assumptions, it is generally impossible to identify πE .
To determine the minimal assumptions that allow πE to be identifiable, we first observe that uε

t can
be correlated for all time steps t, making it impossible to distinguish between the intended actions of
the expert and the confounding noise. However, in practice, the confounding noise at far-apart time
steps is often independent. For example, the effect of the confounding noise uε

t at time t on future
states and actions often diminishes over time, which is typically the case for random environment
noise such as wind. In addition, when the confounding noise uε

t at time t becomes observable at a
future time t′, e.g., previous operating costs are observed eventually as in Example 3.1, the unob-
servable confounding noise at times t and t′ becomes independent. We formalise this intuition as
the notion of a confounding noise horizon k.

Assumption 3.2 (Confounding Noise Horizon). For every t, the confounding noise uε
t has a horizon

of k where 1 ≤ k < T . More formally, uε
t ⊥⊥ uε

t−k ∀t > k.
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This assumption is essential for decoupling the spurious correlation between the state and action
pairs. We also assume that the confounding noise is additive to the action, which is standard in
causal inference (Pearl, 2000; Shao et al., 2024). Without this assumption, the causal effect becomes
unidentifiable (see, e.g., Balke & Pearl (1994)) and the best we can do is to upper/lower bound it.
Assumption 3.3 (Additive Noise). The structural equation that generates the actions in the observed
trajectories is

at = πE(st, u
o
t ) + uε

t , (2)
where w.l.o.g. E[uε

t ] = 0 as any non-zero expectation of uε
t can be included as a constant in πE .

Next, we show that, with the above two assumptions, it becomes possible to identify the true causal
relationship between states and expert actions, and to imitate πE .

4 CAUSAL IL AS A CMR PROBLEM

In this section, we demonstrate that performing causal IL in our framework is possible using trajec-
tory histories as instruments. We show that the problem can be reformulated as a CMR problem and
propose an efficient algorithm to solve it.

The typical target for IL would be the expert policy πE itself. However, since the expert has access
to privileged information, namely uo

t , which the imitator does not, the best thing an imitator can
do is to learn a history-dependent policy πh that is the closest to the expert. A natural choice for a
learning objective is the conditional expectation of πE(st, u

o
t ) on the history ht:

πh(ht) := EP(uo
t |ht)[πE(st, u

o
t )] = E[πE(st, u

o
t ) | ht],

because the conditional expectation minimises the least squares criterion (Hastie et al., 2001) and
πh is the best predictor of πE given ht. In πh, the distribution P(uo

t | ht) captures the information
about uo

t that can be inferred from trajectory histories.
Remark 4.1. Learning πh is not trivial. Policies learnt naively using behaviour cloning, i.e., E[at |
ht], fail to match πE . To see this, note that, in view of Equation (2), we have

E[at | ht] = E[πE(st, u
o
t ) | ht] + E[u

ε
t | ht]

= πh(ht) + E[u
ε
t | ht], (3)

where E[uε
t | ht] ̸= 0 due to the spurious correlation between uε

t and the trajectory history ht. As a
result,E[at | ht] becomes biased, which can lead to arbitrarily worse performance compared to πE .

Derivation of the CMR Problem. Leveraging the confounding horizon from Assumption 3.2, we
are able to break the spurious correlation using the independence of uε

t and uε
t−k. We propose to

use the k-step history ht−k = (s1, a1, ..., st−k) as an instrument for the current state st.2 Taking the
expectation conditional on ht−k on both sides of Equation (3) yields

E[at | ht−k] = E [E[at | ht] | ht−k] = E[πh(ht) | ht−k] + E[E[u
ε
t | ht] | ht−k]

= E[πh(ht) | ht−k] + E[u
ε
t | ht−k]

= E[πh(ht) | ht−k] + E[u
ε
t ] = E[πh(ht) | ht−k],

where we use the fact that ht−k is σ(ht)-measurable because ht−k ⊆ ht, uε
t ⊥⊥ uε

t−k and E[uε
t ] = 0

by Assumption 3.2. As a result, the problem of learning πh reduces to solving for πh that satisfies
the following identity

E[at − πh(ht) | ht−k] = 0, (4)
which is a CMR problem as defined in Section 2. In this case, both at and ht are observed in the
confounded expert demonstrations, and ht−k acts as the instrument.

To ensure that the instrument ht−k is valid, we formally verify that the three IV conditions from
Section 2: uε

t ⊥⊥ ht−k, P(ht | ht−k) is not constant in ht−k, and ht−k doesn’t directly affect at,
are satisfied by ht−k in Appendix B.1. However, the strength of the instrument ht−k, representing
its correlation with ht, influences how well πh(ht) can be identified by solving the CMR problem
in Equation (4). As the confounding horizon k increases, this correlation weakens, making ht−k

a less effective instrument. We formally analyse this relationship in Proposition 4.3 and further
validate it experimentally in Section 5.

2Note that this requires prior knowledge (or an upper bound) of the confounding horizon k. We discuss this
assumption and practical ways to choose k, e.g., conditional independence tests, in Appendix F.
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Algorithm 1 Double Machine Learning for Causal Imitation Learning (DML-IL)

1: input Dataset DE of expert demonstrations, confounding noise horizon k

2: Initialize the roll-out model M̂ as a Gaussian mixture model
3: repeat
4: Sample (ht, at) from data DE

5: Fit the roll-out model (ht, at) ∼ M̂(ht−k) to maximize the log likelihood
6: until convergence
7: Initialize the expert model π̂h as a neural network
8: repeat
9: Sample ht−k from DE

10: Generate ĥt and ât using the roll-out model M̂
11: Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
12: until convergence
13: return A history-dependent imitator policy π̂h

4.1 PRACTICAL ALGORITHMS FOR CAUSAL IL

There are various techniques (Bennett et al., 2019a; Xu et al., 2020; Shao et al., 2024) for solving the
CMR problem E[at|ht−k] = E[πh(ht)|ht−k] in (4). Here, the CMR error that we aim to minimise
is given by √

E
[
E[at − π̂h(ht)|ht−k]2

]
= ∥E[at − π̂h(ht)|ht−k]∥2.

In Algorithm 1, we introduce DML-IL, an algorithm adapted from the IV regression algorithm
DML-IV (Shao et al., 2024), which solves our CMR problem by minimising the above CMR error.3
The first part of the algorithm (lines 3-7) learns a roll-out model M̂ that generates a trajectory k steps
ahead given ht−k. Then, π̂h takes the generated trajectory ĥt from M̂(ht−k) as input and minimises
the mean square error to the next action (lines 8-13).

Using generated trajectories is crucial for breaking the spurious correlation caused by uε
t , and the

trajectory history before ht−k allows the imitator to infer information about uo
t . In particular, the

expert’s future trajectory after ht−k is confounded with the current state and action through the
unobserved noise uε

t , so it does not represent draws from the conditional distribution of future
histories given ht−k. Rolling out from ht−k with M̂ removes this dependence and yields the correct
conditional distribution needed for the CMR moment. We refer to Appendix F for a discussion of
the theoretical convergence rate guarantees of DML-IL and the choice of the confounding noise
horizon k as input.

Moreover, once we set the learning objective as the conditional πh(ht) := E[πE(st, u
o
t )|ht], we can

learn πh(ht) for both continuous and discrete action spaces as the derivation of the CMR problem
in (4) remains valid for both. However, in the algorithm and the subsequent theoretical analysis of
the imitation gap, we implicitly assume that at is continuous such that πh(ht) is a valid action by
the imitator. In practice, if the action space is discrete, we require a mapping that maps πh(ht) to
the action space, e.g., treating πh(ht) as the logits output to the action space.

4.2 THEORETICAL ANALYSIS

In this section, we derive theoretical guarantees for our algorithm, focusing on the imitation gap and
its relationship to existing work. All proofs in this section are deferred to Appendix B.

On a high level, in order to bound the imitation gap of the learnt policy π̂h, i.e., J(πE)− J(π̂h), we
need to control:

(i) the amount of information about the hidden confounders that can be inferred from trajectory
histories ht;

3DML stands for double machine learning (Chernozhukov et al., 2018), which is a statistical technique to
ensure a fast convergence rate for two-step regression, as is the case in Algorithm 1.
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(ii) the ill-posedness (or identifiability) of our CMR problem, which intuitively measures the
strength of the instrument ht−k;

(iii) the disturbance of the confounding noise to the states and actions at test time.

These factors are all determined by the environment and the expert policy. To control (i), we measure
how much information about uo

t is captured by the trajectory history ht by analysing the Total
Variation (TV) distance between the distribution of uo

t and E[uo
t |ht] along the trajectories of πE . To

control (ii) and (iii), we need to introduce the following two key concepts.
Definition 4.2 (Ill-Posedness of CMRs (Dikkala et al., 2020)). Given the derived CMR problem
in Equation (4), the ill-posedness ν(Π, k) of the policy space Π with confounding noise horizon k is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

The ill-posedness ν(Π, k) measures the strength of the instrument, where a higher ν(Π, k) indicates
a weaker instrument. It bounds the ratio between the L2 error of the imitator to the expert policy,
and the learning error of the imitator following our CMR objective.

As discussed previously, intuitively, the strength of the instrument would decrease as the confound-
ing horizon k increases. This is confirmed by the following proposition.
Proposition 4.3. ν(Π, k) is monotonically increasing as the confounded horizon k increases.

Next, we introduce the notion of c-TV stability.
Definition 4.4 (c-Total Variation Stability (Bassily et al., 2021; Swamy et al., 2022b)). Let P (X)
be the distribution of a random variable X : Ω→ X . P (X) is c-TV stable if for all a1, a2 ∈ X and
∆ > 0,

∥a1 − a2∥ ≤ ∆ =⇒ δTV (a1 +X, a2 +X) ≤ c∆,

where ∥·∥ is some norm defined on X and δTV is the TV distance.

A wide range of distributions are c-TV stable. For example, standard normal distributions are 1
2 -TV

stable. We apply this notion to the distribution over uε
t to bound the disturbance it induces in the

trajectory and the expected return.

With the notion of ill-posedness and c-TV stability, we can now analyse and upper bound the imita-
tion gap J(πE)− J(π̂h) by controlling the three previously discussed components (i) – (iii).
Theorem 4.5 (Imitation Gap Bound). Let π̂h be the learnt policy with CMR error ε and let ν(Π, k)
be the ill-posedness of the problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is
c-TV stable and πE is deterministic. Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k) + 2δ

)
= O

(
T 2(δ + ε)

)
.

This upper bound scales at the rate of T 2, which aligns with the expected behaviour of imitation
learning without an interactive expert (Ross & Bagnell, 2010). Next, we show that the upper bounds
on the imitation gap from prior work (Swamy et al., 2022b;a) are special cases of Theorem 4.5. The
proofs are deferred to Appendix B.4.
Corollary 4.6. In the special case that uo

t = 0, i.e., there are no expert-observable confounders, or
uo
t = EπE

[uo
t |ht], i.e., uo

t is σ(ht)-measurable (all information about uo
t is contained in the history),

the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k)

)
= O

(
T 2ε

)
,

which coincides with Theorem 5.1 of Swamy et al. (2022b).

In the other extreme case, when there are no hidden confounders, i.e., uε
t = 0, our framework is

reduced to that of Swamy et al. (2022a). However, Swamy et al. (2022a) provided an abstract bound
that directly uses the supremum of key components in the imitation gap over all possible Q-functions
to bound the imitation gap. We further extend and concretise the bound using the learning error ε
and the TV distance bound δ instead of relying on the supremum.

7



Published as a conference paper at ICLR 2026

(a) MSE in log scale, lower is better. (b) Average reward, higher is better.

Figure 2: Plane Ticket Environment (Example 3.1): On the left, the MSE in log scale between the
learnt policy and the expert. On the right, the average reward of our approach and baselines.

Corollary 4.7. In the special case that uε
t = 0, if the learnt policy has optimisation error ε, the

imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2

(
2√

dim(A)
ε+ 2δ

)
,

where dim(A) denotes the dimension ofA. This is a concrete bound that extends the abstract bound
in Theorem 5.4 of Swamy et al. (2022a).
Remark 4.8. If both uε

t and uo
t are zero, we then recover the classic setting of IL without con-

founders (Ross & Bagnell, 2010), and the imitation gap bound is T 2ε, where ε is the optimisation
error of the algorithm.

5 EXPERIMENTS

We empirically evaluate the performance of Algorithm 1 (DML-IL) on the toy environment mod-
elling the ticket pricing scenario with continuous state and action spaces introduced from Exam-
ple 3.1 and the Mujoco environments (Todorov et al., 2012): Ant, Half Cheetah and Hopper. We
compare with the following existing methods: Behavioural Cloning (BC), which naively minimises
E[− log π(at|st)]; BC-SEQ (Swamy et al., 2022a), which learns a history-dependent policy to han-
dle expert-observable hidden confounders; ResiduIL (Swamy et al., 2022b), which we here adapt to
our setting by providing ht−k as instruments to learn a history-independent policy; and the noised
expert, which is the performance of the expert in the confounded environment, and corresponds to
the maximally achievable performance. In Appendix C.1, we include additional evaluations when
using other IV regression algorithms, including DFIV (Xu et al., 2020) and DeepGMM (Bennett
et al., 2019b), as the core CMR solver, but found inconsistent and subpar performance. In Ap-
pendix C.2, we also provide further discussion and empirical evaluations of DML-IL under mis-
specification of the confounding noise horizon k.

We train imitators with 20000 samples (40 trajectories of 500 steps each) of the expert trajectory
using each algorithm and report the average reward when tested online in their respective environ-
ments. The reward is scaled such that 1 is the performance of the un-noised expert, and 0 is that of
a random policy. We also report the Mean Squared Error (MSE) between the imitator’s and expert’s
actions. The purpose of evaluating the MSE is to assess how well the imitator learnt from the expert,
and importantly whether the confounding noise problem is mitigated. When the confounding noise
uε
t is explicitly handled, we should expect to observe a much higher MSE. All results are plotted

with one standard deviation as a shaded area. In addition, we vary the confounding noise horizon k
from 1 to 20 in order to increase the difficulty of the problem with weaker instruments ht−k.

5.1 PLANE TICKET PRICING ENVIRONMENT

Experimental Setup. We first consider the plane ticket pricing environment described in Exam-
ple 3.1. Here, the expert-unobservable confounding noise uε corresponds to operating costs and the

8
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expert-observable confounder uo
t models seasonal demand patterns and events. We set uo

t to con-
tinuously vary with a rate of change of approximately every 30 steps. A detailed description of this
environment is provided in Appendix D.1.

Results. The results are presented in Figure 2. DML-IL performed best with the lowest MSE
and the highest average reward that is closest to the expert, especially when the uε

t horizon is 1.
This implies that DML-IL is successful in handling both uε

t and uo
t . ResiduIL is able to reduce the

confounding effect of uε
t , evident by the lower MSE compared to the two other methods that do not

deal with uε
t . However, since it does not explicitly consider uo

t , the imitator has no information on
uo
t and the best it can do is to assume some average value (or expectation) of uo

t . Therefore, while
ResiduIL still achieves some reward, its considerable performance gap to DML-IL can be explained
by its ignorance of uo

t . Both BC and BC-SEQ fail entirely in the presence of confounding noise
uε
t , with orders of magnitude higher MSE and average reward close to a random policy. From the

similar performance of BC-SEQ and BC, we see that using trajectory histories to infer uo
t is not

helpful when the confounding noise is not handled explicitly. This demonstrates that only partially
accounting for the effect of uε

t or uo
t is insufficient to learn a good imitator.

Moreover, as the confounding noise horizon k increases (x-axis), the performance of DML-IL de-
creases. This supports our intuition and theoretical results that the instrument becomes weaker, and
less information about uo

t can be inferred from ht−k, as k increases. When k = 20, we find that
the performance of DML-IL is close to that of ResiduIL, which does not consider the effect of uo

t ,
because very limited information about the current expert-observable confounder uo

t can be inferred
based on the history from 20 steps ago.
5.2 MUJOCO ENVIRONMENTS

Experimental Setup. In Figure 3, we consider the Mujoco tasks. While the original environment
implementations (Todorov et al., 2012) do not have hidden confounding variables, we modify the
environment to introduce uε

t and uo
t . Specifically, instead of travelling as fast as possible, the goal

is to control the agent to travel at a target speed that is varying throughout an episode. This target
speed is uo

t , which is observed by the expert but not recorded in the dataset. In addition, we add
confounding noise uε

t to st and at to mimic confounding noise such as wind. Additional details
about the modification made to the environments are provided in Appendix D.2.

Results. DML-IL outperforms other methods in all three Mujoco environments as shown in Fig-
ure 3. Similarly to the plane ticket environment, ResiduIL is effective in removing the confounding
noise but fails to match the average reward of DML-IL as it does not account for expert-observable
confounders uo

t . BC and BC-SEQ have much higher MSE and fail to learn meaningful policies. As
the confounding horizon of uε

t increases, the performance of DML-IL drops, which is expected as
the instruments weaken and less information about uo

t can be inferred from the histories. This is
most visible in the Ant and Half Cheetah environments.

6 DISCUSSION

We proposed a framework for causal imitation learning with hidden confounders that unifies sev-
eral previous causal IL settings. Specifically, we considered IL from a fixed set of confounded
expert demonstrations without further interactions with the confounded MDP, where the hidden
confounders are partially observable to the expert. We demonstrated that causal IL under this frame-
work can be reduced to a CMR problem when using the histories as instruments. We proposed a
novel algorithm, DML-IL, to solve the CMR problem and imitate the expert, and provided upper
bounds on the imitation gap of DML-IL that subsume previous results. Finally, we empirically
evaluated DML-IL on multiple tasks, including Mujoco environments, and demonstrated improved
imitation performance against other causal IL algorithms in the presence of expert-observable and
expert-unobservable confounding.

Limitations. One limitation is the explicit assumptions made in Section 3, which are essential for
the expert policy to be identifiable. Therefore, it is important for practitioners to validate that their
specific environment and task satisfy these assumptions. We provided in the paper some examples
where these assumptions are known to hold (e.g., drone and ticket sales), while we acknowledge that
our method is not applicable to all scenarios, especially in the healthcare domain where non-linear

9
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(a) MSE in log scale in Ant. (b) Average reward in Ant.

(c) MSE in Half Cheetah. (d) Average reward in Half Cheetah.

(e) MSE in Hopper. (f) Average reward in Hopper.

Figure 3: MuJoCo: On the left, the MSE in log scale between the learnt policy and the expert (lower
MSE is better). On the right, the average reward in the MuJoCo environments Ant, Half Cheetah
and Hopper (higher values are better). The confounding horizon increases along the x-axis.

confounding is typical. However, causal identification comes at a cost — it requires non-trivial
assumptions that don’t hold in all real-world applications.

In addition, we assume knowledge of the confounding noise horizon k or an upper bound on it
for Algorithm 1. Unfortunately, the value of k generally cannot be verified empirically. However,
there exist tests that can indirectly check whether a candidate IV is valid, such as conditional inde-
pendence tests (Gretton et al., 2005), which we discuss in Appendix F.

Future Works. There are many active research fronts that consider causal identification with non-
additive noise, partially observable covariates and invalid instruments. They are beyond the scope of
this paper and are orthogonal to our work. It would be an interesting research direction to consider
our confounded MDP framework in these problem settings.

10
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Statistique, pp. 25, 2005. ISSN 0769489X. doi: 10.2307/20777569.

Lars Peter Hansen. Large sample properties of generalized method of moments estimators. Econo-
metrica, 50:1029, 7 1982. ISSN 00129682. doi: 10.2307/1912775.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for
counterfactual prediction. Proceedings of the 34th International Conference on Machine Learn-
ing, 2017. doi: 10.5555/3305381.3305527.

Jason Hartford, Victor Veitch, Dhanya Sridhar, and Kevin Leyton-Brown. Valid causal inference
with (some) invalid instruments. Proceedings of Machine Learning Research, 139:4096–4106, 6
2020. ISSN 26403498. URL https://arxiv.org/pdf/2006.11386.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural
Information Processing Systems, pp. 4572–4580, 6 2016. ISSN 10495258. URL https://
arxiv.org/abs/1606.03476v1.

Guido W. Imbens and Whitney K. Newey. Identification and estimation of triangular simul-
taneous equations models without additivity. Econometrica, 77:1481–1512, 9 2009. ISSN
1468-0262. doi: 10.3982/ECTA7108. URL /doi/pdf/10.3982/ECTA7108https:
//onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7108https:
//onlinelibrary.wiley.com/doi/10.3982/ECTA7108.

Fateme Jamshidi, Sina Akbari, and Negar Kiyavash. Causal imitability under context-specific inde-
pendence relations. 6 2023. URL https://arxiv.org/abs/2306.00585v2.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. Interna-
tional Conference on Machine Learning, 2002.

Zhaobin Kuang, Frederic Sala, Nimit Sohoni, Sen Wu, Aldo Córdova-Palomera, Jared Dunnmon,
James Priest, and Christopher Ré. Ivy: Instrumental variable synthesis for causal inference.
Proceedings of Machine Learning Research, 108:398–410, 4 2020. ISSN 26403498. URL
https://arxiv.org/pdf/2004.05316.

Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating driver behavior
with generative adversarial networks. IEEE Intelligent Vehicles Symposium, Proceedings, 5:204–
211, 1 2017. doi: 10.1109/IVS.2017.7995721. URL https://arxiv.org/abs/1701.
06699v1.

12

https://dx.doi.org/10.1162/REST_a_00139
https://arxiv.org/abs/1905.11979v2
https://arxiv.org/abs/2006.07201v1
https://link.springer.com/chapter/10.1007/11564089_7
https://link.springer.com/chapter/10.1007/11564089_7
https://arxiv.org/pdf/2006.11386
https://arxiv.org/abs/1606.03476v1
https://arxiv.org/abs/1606.03476v1
/doi/pdf/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/10.3982/ECTA7108
/doi/pdf/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/10.3982/ECTA7108
/doi/pdf/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7108 https://onlinelibrary.wiley.com/doi/10.3982/ECTA7108
https://arxiv.org/abs/2306.00585v2
https://arxiv.org/pdf/2004.05316
https://arxiv.org/abs/1701.06699v1
https://arxiv.org/abs/1701.06699v1


Published as a conference paper at ICLR 2026

Daniel Kumor, Junzhe Zhang, and Elias Bareinboim. Sequential causal imitation learning with
unobserved confounders. Proceedings of the 35th Conference on Neural Information Processing
Systems, 8 2021. URL https://arxiv.org/abs/2208.06276v1.

Yann Lecun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road obstacle avoidance
through end-to-end learning. Advances in Neural Information Processing Systems, 18, 2005.
URL http://yann.lecun.com.

Luofeng Liao, You Lin Chen, Zhuoran Yang, Bo Dai, Zhaoran Wang, and Mladen Kolar. Prov-
ably efficient neural estimation of structural equation model: An adversarial approach. Advances
in Neural Information Processing Systems, 2020-December, 7 2020. ISSN 10495258. URL
https://arxiv.org/abs/2007.01290v3.

Whitney K. Newey and James L. Powell. Instrumental variable estimation of nonparametric models.
Econometrica, 71:1565–1578, 9 2003. ISSN 1468-0262. doi: 10.1111/1468-0262.00459.

Pedro A. Ortega and Daniel A. Braun. A minimum relative entropy principle for learning and
acting. Journal of Artificial Intelligence Research, 38:475–511, 10 2008. ISSN 10769757. doi:
10.1613/jair.3062. URL https://arxiv.org/abs/0810.3605v3.
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Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. Journal of Machine Learning Research, 15:
627–635, 11 2011. ISSN 15324435.

Kangrui Ruan, Junzhe Zhang, Xuan Di, and Elias Bareinboim. Causal imitation learning via inverse
reinforcement learning. Proceedings at the International Conference on Learning Representa-
tions, 2023.

Kangrui Ruan, Junzhe Zhang, Xuan Di, and Elias Bareinboim. Causal imitation for markov decision
processes: A partial identification approach. Advances in neural information processing systems,
37:87592–87620, 2024.

Stuart Russell. Learning agents for uncertain environments (extended abstract). In The Eleventh
Annual Conference on Computational Learning Theory, 1998.

J. D. Sargan. The estimation of economic relationships using instrumental variables. Econometrica,
26:393, 7 1958. ISSN 00129682. doi: 10.2307/1907619.

Daqian Shao, Ashkan Soleymani, Francesco Quinzan, and Marta Kwiatkowska. Learning deci-
sion policies with instrumental variables through double machine learning. Proceedings of the
International Conference on Machine Learning, 2024.

13

https://arxiv.org/abs/2208.06276v1
http://yann.lecun.com
https://arxiv.org/abs/2007.01290v3
https://arxiv.org/abs/0810.3605v3
https://arxiv.org/abs/2110.10819v1
https://arxiv.org/abs/2307.15980v3
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


Published as a conference paper at ICLR 2026

Daqian Shao, Ashkan Soleymani, Francesco Quinzan, and Marta Kwiatkowska. Double machine
learning for conditional moment restrictions: Iv regression, proximal causal learning and beyond.
arXiv:2506.14950, 6 2025. URL https://arxiv.org/pdf/2506.14950.

Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy. Journal
of Machine Learning Research, 9:1941–1979, 2008. ISSN 1533-7928. URL http://jmlr.
org/papers/v9/shpitser08a.html.

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. Ad-
vances in Neural Information Processing Systems, 32, 6 2019. ISSN 10495258.

Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J. Andrew Bagnell.
Feedback in imitation learning: The three regimes of covariate shift. 2 2021. URL https:
//arxiv.org/abs/2102.02872v2.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and Zhiwei Steven Wu. Sequence model
imitation learning with unobserved contexts. Advances in Neural Information Processing Systems,
35, 8 2022a. ISSN 10495258.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and Zhiwei Steven Wu. Causal imita-
tion learning under temporally correlated noise. Proceedings of Machine Learning Research,
162:20877–20890, 2 2022b. ISSN 26403498. URL https://arxiv.org/abs/2202.
01312v1.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Risto Vuorio, Johann Brehmer, Hanno Ackermann, Daniel Dijkman, Taco Cohen, and Pim de Haan.
Deconfounded imitation learning. 11 2022. URL https://arxiv.org/abs/2211.
02667v1.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting copycat agents
in behavioral cloning from observation histories. Advances in Neural Information Processing Sys-
tems, 2020-December, 10 2020. ISSN 10495258. URL https://arxiv.org/abs/2010.
14876v1.

Philip G. Wright. The tariff on animal and vegetable oils. https://doi.org/10.1086/254144, 38:
619–620, 10 1928. ISSN 0022-3808. doi: 10.1086/254144.

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, and Arthur Gret-
ton. Learning deep features in instrumental variable regression. ICLR 2021 - 9th International
Conference on Learning Representations, 10 2020. URL https://arxiv.org/abs/2010.
07154v4.

Junkun Yuan, Anpeng Wu, Kun Kuang, Bo Li, Runze Wu, Fei Wu, and Lanfen Lin. Auto iv:
Counterfactual prediction via automatic instrumental variable decomposition. ACM Transactions
on Knowledge Discovery from Data, 16:1–20, 1 2022. doi: 10.1145/3494568. URL http:
//arxiv.org/abs/2107.05884http://dx.doi.org/10.1145/3494568.

Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
confounders. Proceedings of the 34th Conference on Neural Information Processing Systems, 8
2020. URL https://arxiv.org/abs/2208.06267v1.

14

https://arxiv.org/pdf/2506.14950
http://jmlr.org/papers/v9/shpitser08a.html
http://jmlr.org/papers/v9/shpitser08a.html
https://arxiv.org/abs/2102.02872v2
https://arxiv.org/abs/2102.02872v2
https://arxiv.org/abs/2202.01312v1
https://arxiv.org/abs/2202.01312v1
https://arxiv.org/abs/2211.02667v1
https://arxiv.org/abs/2211.02667v1
https://arxiv.org/abs/2010.14876v1
https://arxiv.org/abs/2010.14876v1
https://arxiv.org/abs/2010.07154v4
https://arxiv.org/abs/2010.07154v4
http://arxiv.org/abs/2107.05884 http://dx.doi.org/10.1145/3494568
http://arxiv.org/abs/2107.05884 http://dx.doi.org/10.1145/3494568
https://arxiv.org/abs/2208.06267v1


Published as a conference paper at ICLR 2026

A REDUCING OUR UNIFYING FRAMEWORK TO RELATED LITERATURE

In this section, we discuss how the various previous works can be obtained as special cases of our
unifying framework.

A.1 TEMPORALLY CORRELATED NOISE (SWAMY ET AL., 2022B)

The Temporally Correlated Noise (TCN) proposed in Swamy et al. (2022b) is a special case of our
setting where uo = 0 and only the confounding noise uε is present. Following Equation 14-17
of Swamy et al. (2022b), their setting can be summarised as

st = T (st−1, at−1)

= T (st−1, πE(st−1) + ut−1 + ut−2)

at = πE(st) + ut + ut−1,

where T is the transition function and ut are the TCN. It can be seen that TCN is the confounding
noise uε since the expert policy doesn’t take it into account, and it affects (or confounds) both the
state and action.

It can be seen that this is a special case of our framework when uo
t = 0, where at = πE(st) + ε(uε

t )
from Equation (2), and more specifically when the confounding noise horizon in Theorem 3.2 is 2.
In addition, the theoretical results in Swamy et al. (2022b) can be deduced from our main results as
shown in Corollary 4.7.

A.2 UNOBSERVED CONTEXTS (SWAMY ET AL., 2022A)

The setting considered by Swamy et al. (2022a) is a special case of our setting when uε = 0 and
only uo are present. Following Section 3 of Swamy et al. (2022a), their setting can be summarised
as

T : S ×A× C → D(S)

∇ : S ×A× C → [−1, 1]
at = πE(st, c)

where c ∈ C is the context, which is assumed to be fixed throughout an episode. There are no
hidden confounders in this setting and the context c is included in uo under our framework. Note
that in our setting we also allow uo to vary throughout an episode. In addition, the theoretical results
in Swamy et al. (2022a) can be deduced from our main results, as shown in Corollary 4.6.

A.3 IMITATION LEARNING WITH LATENT CONFOUNDERS (VUORIO ET AL., 2022)

The setting considered by Vuorio et al. (2022) is also a special case of our setting when uε = 0
and only uo are present, which is very similar to Swamy et al. (2022a). In Section 2.2 of Vuorio
et al. (2022), they introduced a latent variable θ ∈ Θ that is fixed throughout an episode and at =
πE(st, θ). There are no hidden confounders in this setting and the latent variable θ is included in
uo in our framework. No theoretical imitation gap bounds are provided in Vuorio et al. (2022).
However, Corollary 4.6 can be directly applied to their setting and bound the imitation gap.

A.4 CAUSAL DELUSION AND CONFUSION (ORTEGA ET AL., 2021; DE HAAN ET AL., 2019;
PFROMMER ET AL., 2023; SPENCER ET AL., 2021; WEN ET AL., 2020)

The concept of causal delusion (Ortega et al., 2021) and confusion is widely studied in the liter-
ature (de Haan et al., 2019; Pfrommer et al., 2023; Spencer et al., 2021; Wen et al., 2020) from
different perspectives. A classic example of causal confusion is learning to brake in an autonomous
driving scenario. The states are images with a full view of the dashboard and the road conditions.
The brake indicator in this scenario is the confounding variable that correlates with the action of
braking in subsequent steps, which causes the imitator to learn to brake if the brake indicator light
is already on. Therefore, another name for this problem is the latching problem, where the imitator
latches to spurious correlations between current action and the trajectory history. In the setting of Or-
tega et al. (2021), this is explicitly modelled as latent variables that affect both the action and state,
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causing spurious correlation between them and confusing the imitator. In other settings (de Haan
et al., 2019; Pfrommer et al., 2023; Spencer et al., 2021; Wen et al., 2020), there are no explicit un-
observed confounders, but the nuisance correlation between the previous states and actions can be
modelled as the existence of hidden confounders uε in our framework. Specifically, in de Haan et al.
(2019), xt−1 and at−1 are considered confounders that affect the state variable xt, which causes a
spurious correlation between previous state action pairs and at. The spurious correlation between
variables is typically modelled as the existence of a hidden confounder uε that affects both variables
in causal modelling. For example, the actual hazard or event that causes the expert to brake will be
the hidden confounder uε that affects both the brake and the brake indicator.

However, despite the fact that this setting can be considered a special case of our general framework,
we stress that the concrete and practical problems considered in de Haan et al. (2019); Pfrommer
et al. (2023); Spencer et al. (2021); Wen et al. (2020) are different from ours, where they assumed
implicitly that the hidden confounders uε are embedded in the observations or outright observed.

B PROOFS OF MAIN RESULTS

In this section, we provide the proofs for the main results and corollaries in this paper.

B.1 IV CONDITIONS FOR ht−k

In this section, we verify that ht−k is a valid instrument. Firstly, we derive uε
t ⊥⊥ ht−k. This follows

from standard d-separation rules for causal graphs (Pearl, 2000). To establish this, we must verify
that all paths from ht−k = (s1, a1, ..., st−k) to uε

t are blocked in the graph, meaning that ht−k is
d-separated from uε

t , which implies ht−k ⊥⊥ uε
t . From our causal graph in Figure 1, we see that any

paths from ht−k to uε
t must pass through a collider structure, specially through either st → at ← uε

t
or at → st+1 ← uε

t . Furthermore, potential paths through hidden confounders are ruled out because
there are no direct causal paths between uε

t−k and uε
t , as required by Assumption 3.2. Thus, all

paths from ht−k to uε
t are blocked by d-separation, and we can conclude that ht−k ⊥⊥ uε

t . Secondly,
P(ht | ht−k) is not constant in ht−k because we can assume that the environment is non trivial and
the past state have an impact on future states. Finally, ht−k doesn’t directly affect at, specifically
ht−k ⊥⊥ at | (st, uε

t , u
o
t ), by the Markov property — the next action at and the trajectory history

are conditionally independent given the current state st.

B.2 PROOF OF PROPOSITIONS

Proposition 4.3: The ill-posedness ν(Π, k) is monotonically increasing as the confounded horizon
k increases.

Proof. From definition, we have that

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

We would like to show for each π ∈ Π, ∥πE−π∥2

∥E[at−π(ht)|ht−k]∥2
is increasing as k increases, which

would imply that ν(Π, k) is increasing. For each π ∈ Π, we see that the numerator is constant
w.r.t the horizon k. Therefore, it is enough to check that for each π ∈ Π, the denominator ∥E[at −
π(ht)|ht−k]∥2 decreases as k increases. For any two integer horizon k1 > k2,

E[at − π(ht)|ht−k1 ]
2 = E[E[at − π(ht)|ht−k2 ]|ht−k1 ]

2 (5)

≤ E[E[at − π(ht)|ht−k2
]2|ht−k1

] (6)

= E[at − π(ht)|ht−k2 ]
2 (7)

by the tower property of conditional expectation as σ(ht−k1
) ⊆ σ(ht−k2

), Jensen’s inequality for
conditional expectations, and the fact that E[at − π(ht)|ht−k2

]2 is ht−k1
measurable, respectively

for each line. Therefore, we have that E[at − π(ht)|ht−k] is decreasing, which implies ∥E[at −
π(ht)|ht−k]∥2 is decreasing and ν(Π, k) is increasing as k increases, which completes the proof.
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B.3 MAIN RESULTS FOR GUARANTEES ON THE IMITATION GAP

Theorem 4.5: Let π̂h be the learnt policy with CMR error ε and let ν(Π, k) be the ill-posedness of
the problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is c-TV stable and πE is
deterministic. Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2(cεν(Π, k) + 2δ) = O(T 2(δ + ε)).

Proof of Theorem 4.5. Recall that J(π) is the expected reward following π, and we would like to
bound the performance gap J(πE) − J(π̂h) between the expert policy πE and the learned history-
dependent policy π̂h. Let Qπ̂h

(st, at, u
o
t ) be the Q-function of π̂h. Using the Performance Differ-

ence Lemma (Kakade & Langford, 2002), we have that for any Q-function Q̃(ht, at) that takes in
the trajectory history ht and action at,

J(πE)− J(π̂h) = Eτ∼πE
[

T∑
t=1

Qπ̂h
(st, at, u

o
t )− Ea∼π̂h

[Qπ̂h
(st, a, u

o
t )]]

=

T∑
t=1

Eτ∼πE
[Qπ̂h

(st, at, u
o
t )− Q̃(ht, at) + Q̃(ht, at)− Ea∼π̂h

[Qπ̂h
− Q̃+ Q̃]]

=

T∑
t=1

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]] (8)

We first bound the second part of Equation (8). Denote by δTV the total variation distance. For
two distributions P,Q, recall the property of total variation distance for bounding the difference in
expectations:

|EP [f(x)]− EQ[f(x)]| ≤ ∥f∥∞δTV (P,Q).

In order to bound the second part of Equation (8), for any Q function, consider inferred Q̃ using the
conditional expectation of uo on the history h,

Q̃(ht, at) := Q(st, at,Eτ∼πE
[uo

t |ht]),

where note that st ∈ ht. We have that, when the transition trajectory (st, u
o
t , u

ε
t , rt) ∼ πE follows

the expert policy, for any action ȧ ∼ π following some policy π (in our case, it can be πE or π̂h),

|Eτ∼πE ,ȧ∼π[Q(st, ȧ, ut)− Q̃(ht, ȧ)]| = |Eτ∼πE ,ȧ∼π[Q(st, ȧ, u
o
t )−Q(st, ȧ,Eτ∼πE

[uo
t |ht]])]|

=
∣∣Euo

t∼πE
[EπE ,π[Q(st, ȧ, u

o
t )|uo

t ]− Euo
t |ht∼πE

[EπE ,π[Q(st, ȧ, u
o
t )|uo

t ]
∣∣

(9)
≤ ∥EπE ,π[Q(st, ȧ, u

o
t )|uo

t ]∥∞δTV (u
o
t ,EπE

[uo
t |ht]) (10)

≤ T · δTV (u
o
t ,EπE

[uo
t |ht]) (11)

≤ Tδ (12)

where Equation (9) uses the tower property of expectations, Equation (10) uses the total variation
distance bound for bounded functions, Equation (11) uses the fact that the Q function is bounded
by T and Equation (12) uses the condition that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ in the theorem statement.

Since Equation (8) holds for any choice of Q̃, we choose Q̃π̂h
(ht, at) := Qπ̂h

(st, at,Eτ∼πE
[uo

t |ht])
such that we can apply Equation (12) twice to bound the second part of Equation (8):

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] ≤ Eτ∼πE
[Qπ̂h

− Q̃π̂h
+ |Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]|]
= Eτ∼πE

[Qπ̂h
− Q̃π̂h

] + |Est,ut∼πE ,a∼π̂h
[Qπ̂h

− Q̃π̂h
]|

≤ |Eτ∼πE
[Qπ̂h

− Q̃π̂h
]|+ Tδ (13)

≤ 2Tδ

where Equation (13) holds by applying Equation (12) because the expectation of the trajectories
(and their transitions) are over πE , and the actions which are used only as arguments into the Q
function are sampled from π̂h.
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Next, we bound the first part of Equation (8). Recall that the ill-posedness of the problem for a
policy class Π is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

where ∥πE − π∥2 is the RMSE and ∥E[at − π(st)|st−k]∥2 is the CMR error from our algorithm.
Since the learned policy π̂h has a CMR error of ε, we have that

∥πE − π̂h∥2 ≤ ν(Π, k)∥E[at − π̂h(ht)|ht−k]∥2 ≤ ν(Π, k)ε

Next, recall that c-total variation stability of a distribution P (uε) where uε ∈ A for some space A
implies for two elements a1, a2 ∈ A,

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1 + uε, a2 + uε) ≤ c∆.

Since P (uε
t ) is c-TV stable w.r.t the action space A, we have that for all history trajectories ht ∈ H

(note that st ∈ ht)

δTV (πE(st) + uε
t , π̂h(ht) + uε

t ) ≤ c∥πE(st)− π̂h(ht)∥2.

Then, we have that by Jensen’s inequality,

Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )]

2 ≤ Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )

2]

=⇒ Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )] ≤

√
Eht∼πE

[δTV (πE(st) + uε
t , π̂h(ht) + uε

t )
2]

≤
√

c2Eht∼πE
[∥πE(st)− π̂h(ht)∥22]

= c∥πE − π̂h∥2 ≤ cεν(Π, k)

Therefore, by applying the total variation distance bound for expectations of Q̃π̂h
over different

distributions of action at, we have that

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (14)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st) + uε
t )]− E[Q̃π̂h

(ht, π̂h(ht) + uε
t )]]
(15)

≤ ∥Q̃π̂h
∥∞Eht∼πE

[δTV (F (πE(st) + uε
t ), F (π̂h(ht) + uε

t ))] (16)
≤ Tcεν(Π, k) (17)

Combining all of above, we see that from Equation (8), by selecting Q̃π̂h
(ht, at) :=

Qπ̂h
(st, at,Eτ∼πE

[uo
t |ht]), the imitation gap can be bounded by

J(πE)− J(π̂h) =

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]]

(18)

≤
T∑

t=1

Tcεν(Π, k) +

T∑
t=1

2Tδ (19)

≤ T · (Tcεν(Π, k) + 2Tδ) (20)

= T 2(cεν(Π, k) + 2δ) = O(T 2(ε+ δ)), (21)

which concludes the proof.

B.4 PROOFS OF COROLLARIES

Corollary 4.6: In the special case that uo
t = 0, meaning that there is no confounder observable to

the expert, or uo
t = EπE

[uo
t |ht], meaning that uo

t is σ(ht) measurable (all information regarding
uo
t is represented in the history), the imitation gap bound is T 2(cεν(Π, k)), which coincides with

Theorem 5.1 of Swamy et al. (2022b).
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Proof. If uo
t = 0, then we have uo

t = EπE
[uo

t |ht] since uo
t is a constant. If uo

t = EπE
[uo

t |ht], we
have that

δTV (u
o
t ,EπE

[uo
t |ht]) = δTV (u

o
t , u

o
t ) ≤ 0

By plugging δ = 0 into Theorem 4.5, we have that J(πE)− J(π̂h) ≤ T 2(cεν(Π, k)), which is the
same as the imitation gap derived in Swamy et al. (2022b) and completes the proof.

Corollary 4.7: In the special case that uε
t = 0, if the learned policy via supervised BC has error

ε, then the imitation gap bound is T 2( 2√
dim(A)

ε + 2δ), which is a concrete bound that extends the

abstract bound in Theorem 5.4 of Swamy et al. (2022a).

Proof. In Theorem 5.4 of Swamy et al. (2022a), for the offline case, which is the setting we are
considering (as opposed to the online settings), they defined the following quantities for bounding
the imitation gap in a very general fashion,

εoff := sup
Q̃

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]]

δoff := sup
Q×Q̃

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]].

The imitation gap by Theorem 5.4 in Swamy et al. (2022a) under the assumption that uε
t = 0 is

T 2(εoff + δoff), which can also be deduced from Equation (8) by naively applying the above supre-
mum. To obtain a concrete bound, we can provide a tighter bound for Eτ∼πE

[Q̃π̂h
−Ea∼π̂h

[Q̃π̂h
]],

which is the first part of Equation (8), given that uε
t = 0.

For two elements a1, a2 ∈ A, we have that by Cauchy–Schwarz,

δTV (a1 + 0, a2 + 0) =
1

2
∥a1− a2∥1 ≤

√
dim(A)

2
∥a1− a2∥2.

Then, we have that

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1, a2) ≤
2√

dim(A)
∆

so that by Theorem 4.5,

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (22)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st))]− E[Q̃π̂h
(ht, π̂h(ht))]] (23)

≤ ∥Q̃π̂h
∥∞

2√
dim(A)

∥πE − π∥2 (24)

≤ T
2√

dim(A)
ε, (25)

since when uε
t = 0 the learning error via supervised learning is ε := ∥πE − π∥2. Therefore, the

final imitation bound following Theorem 4.5 is

J(πE)− J(π̂h) =

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]]

(26)

≤
T∑

t=1

T
2√

dim(A)
ε+

T∑
t=1

2Tδ (27)

= T 2(
2√

dim(A)
ε+ 2δ). (28)

This bound is a concrete bound, obtained through detailed analysis of the problem at hand, that
coincides with the abstract bound T 2(εoff + δoff) provided in Theorem 5.4 of Swamy et al. (2022b).
Note that this bound is independent of the ill-posedness ν(Π, k) and the c-TV stability of uε

t , which
are present in the bound of Theorem 4.5, because of the lack of hidden confounders uε

t .
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Figure 4: Additional results for the MSE between learnt policy and expert, and the average reward,
in the plane ticket environment (Example 3.1), with DFIV and DeepGMM as the CMR solver.

Figure 5: Additional results for the MSE between learnt policy and expert, and the average reward,
Ant Mujoco environment, with DFIV and DeepGMM as the CMR solver.

C ADDITIONAL EXPERIMENTS

C.1 ADOPTING OTHER IV REGRESSION ALGORITHMS

In this paper, we have transformed causal IL with hidden confounders into a CMR problem as de-
fined in Equation (4). Therefore, in principle, many IV regression algorithms can be adopted to
solve our CMR problem. We also experimented with other IV regression algorithms that have been
previously shown to be practical (Shao et al., 2024) for different tasks and high-dimensional input.
Specifically, we experimented with DFIV (Xu et al., 2020), which is an iterative algorithm that inte-
grates the training of two models that depend on each other, and DeepGMM (Bennett et al., 2019b),
which solves a minimax game by optimising two models adversarially. Note that DeepIV (Hartford
et al., 2017) can be considered a special case of DML-IV (Shao et al., 2024), so we did not evaluate
it.

The additional results for using DFIV and DeepGMM as the CMR solver are provided in Figure 4
and Figure 5. It can be seen from Figure 4 that only DFIV achieves good performance in the
airline ticket pricing environment, surpassing the performance of ResiduIL. For the Ant Mujoco task
in Figure 5, both DFIV and DeepGMM fail to learn good policies, with only slightly lower MSE than
BC and BC-SEQ. We think this is mainly due to the high-dimensional state and action spaces and the
inherent instability in the DFIV and DeepGMM algorithms. For DFIV, the interleaving of training
of two models causes highly non-stationary training targets for both models, and, for DeepGMM,
the adversarial training procedure of two models is similar to that of generative adversarial networks
(GANs), which are known to be unstable and difficult to train. In addition, when the CMR problem
is weakly identifiable, as in the case of a weak instrument, the algorithms may converge to local
minima that are far away from the true solution in the face of instabilities in the algorithm.

We conclude that solving our CMR problem can be sensitive to the choice of solver as well as
to the choice of hyperparameters. In addition, some IV regression algorithms do not work well
with high-dimension inputs. Our IV algorithm of choice, DML-IV, provides a robust base for the
DML-IL algorithm that demonstrated good performance across all tasks and environments. This
demonstrates the benefit of using double machine learning, which can debias two-stage estimators
and provide good empirical and theoretical convergence.
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C.2 PERFORMANCE UNDER MISSPECIFICATION OF k

When past unobservable confounders uε
t−k are weakly correlated with the current uε

t , the uncon-
founded instrument condition for a valid IV is mildly violated. Empirically, when the violation is
mild, it typically induces small bias. This is especially true if the correlation between the IV and
hidden confounder is weak relative to IV strength (Hahn & Hausman, 2005), i.e., the correlation be-
tween ht−k and the current state st. It is also often observed that there is a threshold effect (Kuang
et al., 2020), where once the violation rises above a certain threshold, IV regression begins to induce
large bias.

However, to the best of our knowledge, there is no theoretical framework that can analyse IV regres-
sion bias with respect to IV violation with guarantees. In fact, in a theoretical worst-case, a weak
correlation between the IV and the hidden confounder could potentially cause the causal effect to be
unidentifiable, rendering causal inference tools ineffective.

That being said, there also exist methods that can combine weak or mildly invalid IVs to synthesise
valid IVs (Kuang et al., 2020; Hartford et al., 2020; Yuan et al., 2022) and it would be possible to
combine the trajectory history ht−k, which may contain invalid IVs, into a valid IV.

To empirically evaluate this, we conduct additional experiments where the true confounding horizon
is 10, but DML-IL is given the misspecified k = 1 to 9. With k = 10 as the baseline without
misspecification, performance (avg reward) in Half Cheetah stays within 5% of the baseline down
to k = 6, and remains acceptable down to k = 8 in the plane ticket task, after which DML-IL
starts to induce larger bias. We report the average reward together with its standard deviation (in
parentheses).

Misspecified k Half Cheetah Plane Ticket
k=10 (no misspecification) 0.7183 (0.1789) 0.6181 (0.0356)

k=9 0.7108 (0.1193) 0.5973 (0.0242)
k=8 0.7209 (0.1717) 0.5546 (0.0325)
k=7 0.6675 (0.1595) 0.4801 (0.0614)
k=6 0.6903 (0.1393) 0.3944 (0.0682)
k=5 0.3471 (0.1989) 0.3241 (0.0773)
k=4 0.3243 (0.2329) 0.1561 (0.0961)
k=3 0.2749 (0.1643) 0.1076 (0.1310)
k=2 0.1082 (0.2155) 0.0801 (0.1469)
k=1 0.0896 (0.3080) 0.0656 (0.1227)

Table 1: Performance across misspecified k values for Half Cheetah and Plane Ticket.

D ENVIRONMENTS AND TASKS

D.1 DYNAMIC AEROPLANE TICKET PRICING

Here, we provide details regarding the dynamic aeroplane ticket pricing environment introduced in
Example 3.1. The environment and the expert policy are defined as follows:

S := R (29)
A := [−1, 1] (30)
st = sign(s) · uo

t − uε
t (31)

πE = clip(−s/uo
t ,−1, 1) (32)

at = πE + 10 · uε
t (33)

uo
t = mean(pt ∼ Unif[−1, 1], pt−1, ....pt−M ) (34)

uε
t = mean(qt ∼ Normal(0, 0.1 ·

√
k), qt−1, ..., qt−k+1) (35)

where M is the influence horizon of the expert-observable uo, which we set to 30. The states st are
the profits at each time step, and the actions at are the final ticket price. uo

t represent the seasonal
patterns, where the expert πE will try to adjust the price accordingly. uε

t represent the operating
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costs, which are additive both to the profit and price. Both uo
t and uε

t are the mean over a set of
i.i.d samples, qt and pt, and vary across the time steps by updating the elements in the set at each
time step. This construction allows uε

t and uε
t−k to be independent since all set elements qt will be

re-sampled from time step t− k to t. We multiply the standard deviation of qt by
√
k to make sure

uε
t , which is the average over k i.i.d. variables, has the same standard deviation for all choices of k.

D.2 MUJOCO ENVIRONMENTS

We evaluate DML-IL on three Mujoco environments: Ant, Half Cheetah, and Hopper. The original
tasks do not contain hidden variables, so we modify the environment to introduce uε and uo. We
use the default transition, state, and action space defined in the Mujoco environment. However, we
changed the task objectives by altering the reward function and added confounding noise to both the
state and action. Specifically, instead of controlling the ant, half cheetah, and hopper, respectively,
to travel as fast as possible, the goal is to control the agent to travel at a target speed that is varying
throughout an episode. This target speed is uo, which is observed by the expert but not recorded in
the dataset. In addition, we add confounding noise uε

t to st and at to mimic the environmental noise
such as wind noise. In all cases, the target speed uo

t , confounding noise uε
t , and the action at are

generated as follows:

at = πE + 20 · uε
t (36)

uo
t = mean(pt ∼ Unif[−2, 4], pt−1, ....pt−M ) (37)

uε
t = mean(qt ∼ Normal(0, 0.01 ·

√
k), qt−1, ..., qt−k+1) (38)

where M = 30, the state transitions follow the default Mujoco environment and the expert policy
πE is learned online in the environment. uo

t and uε
t follow the aeroplane ticket pricing environment

to be the average over a queue of i.i.d. random variables. The reward is defined to be the 1healthy −
(current velocity − uo

t )
2 − control loss, where 1healthy gives reward 1 as long as the agent is in a

healthy state as defined in the Mujoco documentation. The second penalty term penalises deviation
between the current agent’s velocity and the target velocity uo

t . The control loss term is also as
defined in default Mujoco, which is 0.1 ∗

∑
(a2t ) at each step to regularize the size of actions.

D.2.1 ANT

In the Ant environment, we follow the gym implementation 4 with an 8-dimensional action space
and a 28-dimensional observable state space, where the agent’s position is also included in the state
space. Since the target speed uo

t is not recorded in the trajectory dataset, we scale the current position
of the agent with respect to the target speed, pos′t = post−1 +

post−post−1

uo
t

, and use the new agent
position pos′t in the observed states. This allows the imitator to infer information regarding uo

t from
trajectory history, namely from the rate of change in the past positions.

D.2.2 HALF CHEETAH

In the Half Cheetah environment, we follow the gym implementation 5 with a 6-dimensional action
space and an 18-dimensional observable state space, where the agent’s position is also included
in the state space. Similarly to the Ant environment, we scale the current position of the agent
to pos′t = post−1 + post−post−1

uo
t

such that the imitator can infer information regarding uo
t from

trajectory history.

D.2.3 HOPPER

In the Hopper environment, we follow the gym implementation 6 with a 3-dimensional action space
and a 12-dimensional observable state space, where the agent’s position is also included in the state
space. Similarly to the Ant environment, we scale the current position of the agent to pos′t =

4Ant environment: https://www.gymlibrary.dev/environments/mujoco/ant/
5Half Cheetah environment: https://www.gymlibrary.dev/environments/mujoco/half_

cheetah/
6Hopper environment: https://www.gymlibrary.dev/environments/mujoco/hopper/

22

https://www.gymlibrary.dev/environments/mujoco/ant/
https://www.gymlibrary.dev/environments/mujoco/half_cheetah/
https://www.gymlibrary.dev/environments/mujoco/half_cheetah/
https://www.gymlibrary.dev/environments/mujoco/hopper/


Published as a conference paper at ICLR 2026

Table 2: Network architecture for DML-IL. For mixture of Gaussians output, we report the number
of components. No dropout is used.

(a) Roll-out model M̂

Layer Type Configuration
Input state dim × 3

FC + ReLU Out: 256
FC + ReLU Out: 256

MixtureGaussian 5 components; Out: state dim × k
(b) Policy model π̂h

Layer Type Configuration
Input state dim× (k+3)

FC + ReLU Out: 256
FC + ReLU Out: 256

FC Out: action dim

post−1 + post−post−1

uo
t

such that the imitator can infer information regarding uo
t from trajectory

history.

E IMPLEMENTATION DETAILS

Experiments are carried out on a Linux server (Ubuntu 18.04.2) with two Intel Xeon Gold 6252
CPUs, and each experiment run uses a single NVIDIA GeForce RTX 2080 Ti GPU for neural net-
work training.

E.1 EXPERT TRAINING

The expert in the aeroplane ticket pricing environment is explicitly hand-crafted. For the Mujoco
environments, we used the Stable-Baselines3 (Raffin et al., 2021) implementation of soft actor-critic
(SAC) and the default hyperparameters for each task outlined by Stable-Baseline3. The expert policy
is an MLP with two hidden layers of size 256 and ReLU activations, and we train the expert for 107
steps.

E.2 IMITATOR TRAINING

With the expert policy πE , we generate 40 expert trajectories, each of 500 steps, following our previ-
ously defined environments. Specifically, the confounding noise is added to the state and actions and
crucially uo

t is not recorded in the trajectories. The naive BC directly learnsE[at | st] via supervised
learning. ResiduIL mainly follows the implementation of Swamy et al. (2022b), where we adapt it to
allow a longer confounding horizon k > 1. For DML-IL and BC-SEQ, a history-dependent policy
is used, where we fixed the look-back length to be k + 3, where k is the confounding horizon. BC-
SEQ then just learns E[at | ht] via supervised learning, and DML-IL is implemented with K-fold
following Algorithm 2. The policy network architecture for BC, BC-SEQ, and ResiduIL are 2 layer
MLPs with 256 hidden size. The policy network π̂h and the mixture of Gaussians roll-out model
M̂ for DML-IL have a similar architecture, with details provided in Table 2. We use the AdamW
optimizer with a weight decay of 10−4 and a learning rate of 10−4. The batch size is 64 and each
model is trained for 150 epochs, which is sufficient for their convergence.

E.3 IMITATOR EVALUATION

The trained imitator is then evaluated for 50 episodes, each 500 steps in the respective confounded
environments. The average reward and the mean squared error between the imitator’s action and the
expert’s action are recorded.
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F PRACTICAL CONSIDERATIONS FOR DML-IL

DML-IL can also be implemented with K-fold cross-fitting, where the dataset is partitioned into
K folds, with each fold alternately used to train π̂h and the remaining folds to train M̂ . This
ensures unbiased estimation and improves the stability of training. The base IV algorithm DML-IV
with K-fold cross-fitting is theoretically shown to converge at the rate of O(N−1/2) (Shao et al.,
2024), where N is the sample size, under regularity conditions. DML-IL with K-fold cross-fitting
(see Appendix G for details) will thus inherit this convergence rate guarantee.

Discussion on the Confounding Noise Horizon. Note that Algorithm 1 requires the confounding
noise horizon k as input. Although the exact value of k can be difficult to obtain in practice, any
upper bound k̄ of k is sufficient to guarantee the correctness of Algorithm 1, since ht−k̄ is also a
valid instrument. Ideally, we would like a data-driven approach to determine k. Unfortunately, the
confounding horizon k, or equivalently the validity of ht−k as an IV, generally cannot be definitively
verified using empirical data, especially the unconfounded instrument condition (i.e., ht−k ⊥⊥ uε

t ).

Therefore, we rely on the user to provide a sensible choice of k̄ based on the environment that does
not substantially overestimate k, informed by domain knowledge about the task. However, there
exist tests that can indirectly check whether a candidate IV is valid, such as the overidentification
tests (Hansen, 1982; Sargan, 1958), conditional independence tests between the instrument and the
residual (Gretton et al., 2005; Fukumizu et al., 2008), and sensitivity analysis (Conley et al., 2012).
It would be interesting future work to incorporate these methods to help identify k. In Appendix C.2,
we additionally evaluate the performance and sensitivity of DML-IL under misspecification of k.

Discussion on the Additive Noise Assumption. The additive noise assumption in Theorem 3.3 is
a key identification assumption and is standard in IV regression (Pearl, 2000). If the additive noise is
misspecified, e.g., multiplicative or complex non-linearity, then the derivation of the CMR in Equa-
tion (4) breaks down. However, this limitation of DML-IL arises from the fact that, with non-additive
confounding noise and without further assumptions, the causal effect is generally unidentifiable (Im-
bens & Newey, 2009). Therefore, while the additive noise assumption may be simplistic in complex
settings such as healthcare, it is the best we can do without further assumptions.

The validity of additive noise can often be justified through domain knowledge. For example, in
physical systems such as drones or aircraft, directional environmental noises such as wind and vi-
brations affect the position of a drone or plane additively. In econometrics applications, confounding
noises, when quantified in monetary terms, naturally aggregate additively into total cost or revenue.
Finally, it is worth noting that this assumption only requires the expert action (i.e., the outcome) to
have additive noise, whereas the relationship between the confounding noise and the state (i.e., the
treatment) is unrestricted.

G BACKGROUND ON DML AND DML-IL WITH K-FOLD CROSS-FITTING

Double Machine Learning (DML) (Chernozhukov et al., 2018) is a statistical technique that debiases
two-stage regressions. In the DML framework, a function of interest f is estimated in two stages. In
the first stage, some parameters (which can be infinite-dimensional functionals) that are necessary
for the second stage estimation are estimated. In the second stage, first stage estimators are plugged
in to estimate the function of interest f . Shao et al. (2024) utilised the DML framework to propose
DML-IV, which is a two-stage IV regression algorithm. DML-IV is also a general CMR solver (see
DML-CMR, a generalisation of DML-IV proposed by Shao et al. (2025)) that can be used to solve
general CMR problems. In Shao et al. (2025), a score (criterion) function that describes general
CMR problems was proposed; the score function guarantees Neyman orthogonality for estimating
solutions to CMR problems. Our CMR objective E[at − πh(ht) | ht−k] = 0 fits directly into the
CMR framework of DML-CMR. In our adaptation in Algorithm 1, the rollout model M̂ serves as
the nuisance component, and the second stage estimates πh using this orthogonal score.

In Shao et al. (2025), the authors show that DML-CMR can achieve a O(N−1/2) convergence rate,
where N is the sample size, if implemented with K-fold cross-fitting under some standard DML
conditions. Next, we introduce Algorithm 2, which is a version of DML-IL with K-fold cross-
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Algorithm 2 DML-IL with K-fold cross-fitting

Input: Dataset DE of expert demonstrations, Confounding noise horizon k, number of folds K
for cross-fitting
Output: A history-dependent imitator policy π̂h

Get a partition (Ik)
K
k=1 of dataset indices [N ] of trajectories

for k = 1 to K do
Ick := [N ] \ Ik
Initialize the roll-out model M̂i as a mixture of Gaussians model
repeat

Sample (ht, at) from data {(DE,i) : i ∈ Ick}
Fit the roll-out model (ht, at) ∼ M̂i(ht−k) to maximize log likelihood

until convergence
end for
Initialize the expert model π̂h as a neural network
repeat

for k = 1 to K do
Sample ht−k from {(DE,i) : i ∈ Ik}
Generate ĥt and ât using the roll-out model M̂i

Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
end for

until convergence

fitting, and discuss the specific conditions required for DML-IL to achieve O(N−1/2) convergence
rate.

G.1 DML-IL WITH K-FOLD CROSS-FITTING

Here, we outline DML-IL with K-fold cross-fitting. The algorithm is shown in Algorithm 2. The
dataset is partitioned into K folds based on the trajectory index. For each fold, we use the leave-out
data, that is, indices Ick := [N ]\Ik, to train separate roll-out models M̂i for i ∈ [1..K]. Then, to train
a single expert model π̂h, we sample the trajectory history ht−k from each fold and use the roll-out
model trained with the leave-out data to complete the trajectory and train π̂h. This technique is very
important in Double Machine Learning (DML) literature (Shao et al., 2025; Chernozhukov et al.,
2018) for it provides both empirical stability and O(N−1/2) convergence rate guarantees.

The conditions required for this root-N consistency are standard DML-CMR conditions ((Shao
et al., 2025), Condition 4), which includes identifiability conditions, orthogonality and a nuisance
convergence rate of o(N−1/4). The identifiability conditions are satisfied if we have a valid instru-
ment, and the orthogonality is guaranteed by the score function in Shao et al. (2025). The nuisance
rate requires that our nuisance parameter converges at ||M̂ −M ||2 = o(N−1/4), which is usually
achieved by density estimation models such as mixture Gaussian (see discussion before Theorem 6
in Shao et al. (2025)). Therefore, DML-IL with K-fold cross-fitting will thus inherit this conver-
gence rate guarantee if all the above conditions are satisfied.
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