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ABSTRACT

Convolution and self-attention, with their characteristics complementing each
other, are two powerful techniques in vision tasks. The ability of self-attention
to capture long-range dependencies compensates for the lack of convolution in
understanding global feature information. However, the quadratic computational
complexity of self-attention impedes their direct combination. This paper pro-
poses global spatial correlation attention (GSCA), a self-attention approximation
with linear computational complexity and no additional parameters. The aim is
to adjust the attention distribution in the global space by utilizing the input fea-
ture maps’ statistical relationships. We compress the key matrix into a vector,
evaluate the pairwise affinity of each pixel with the key vector in terms of the
cross-correlation coefficient, and apply the attention weights to the inputs using
the Hadamard product. A multi-head attention form is further built to enhance the
module’s ability to capture the feature subspace. Based on the above lightweight
operations, the proposed method can simply and effectively improve the aggrega-
tion capability of convolution for global information. We extensively evaluate our
GSCA module on image classification, object detection, and instance segmenta-
tion tasks. Parameter-free GSCA is lighter than state-of-the-arts while achieving
very competitive performance. It is combined with channel attentions, further
outperforming the original methods. The experiments also demonstrate the gen-
eralizability and robustness of GSCA. The source code is available at GSCA.

1 INTRODUCTION

In recent years, convolution (Krizhevsky et al., 2012) and self-attention (Vaswani et al., 2017) have
significantly progressed in computer vision. Convolution implements the aggregation function in the
local receptive field according to the weight of the convolution filter shared in the whole feature map.
By virtue of sliding window operation and translation invariance property (Goodfellow et al., 2016),
convolution equips with efficient sampling and high parameter utilization (Simoncelli & Olshausen,
2001). These allow convolution to be competent for almost all tasks in the field of computer vision
for years. Inductive biases are built into the structure of convolutional neural networks in the form of
two weight constraints: locality and weight sharing (D’Ascoli et al., 2021). Inductive biases make
convolution capable of robust local modeling but weaken its ability to capture global information.

Self-attention aggregates a larger range of overall contextual information of the feature map, which
remedies the bottleneck of convolution in global awareness. Specifically, it calculates aggregation
weights by measuring the affinity between dense pixel pairs. Then the weights are leveraged to
adaptively refine the feature map for enhancing vanilla representation. It enables self-attention to
capture long-range dependencies, thereby learning rich hierarchical information of feature associ-
ation in the global space (Liu et al., 2021c). Due to these, self-attention has achieved similar or
even higher performance than convolution (Kolesnikov et al., 2021; Wang et al., 2021). Although
self-attention equips several merits, its quadratic computational complexity for image size leads to
a huge computational overhead, especially for higher-resolution inputs. Thus, some variants try to
approximate self-attention at a lower computational cost (Geng et al., 2021; Qin et al., 2022).

Considering the advantages of convolution and self-attention and the complementarity between them
naturally motivates researchers to combine both. One method replaces spatial convolutional layers
of the traditional convolutional neural network with self-attention to build a new network structure,
e.g., SAN (Zhao et al., 2020), BoTNet (Srinivas et al., 2021), and ACMix (Pan et al., 2022). For
another thing, the attention mechanism can be regarded as an enhanced module of convolution has
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Figure 1: Illustration of global spatial correlation attention. The key vector k is obtained from
the input X by global average pooling (GAP), and the matrices V and Q are equal to X . Each
position in Q is cross-correlated with vector k to derive the correlation matrix CQk. The matrix CQk

normalized by a Sigmoid function is subtracted from 1 to reverse the attention to obtain the weight
matrix A. A is expanded to the size of V , and the Hadamard product of both is the final output.

been confirmed by earlier SENet (Hu et al., 2018) and CBAM (Woo et al., 2018), etc. Therefore,
some researchers use self-attention as a spatial attention module inserted in networks to enhance
the ability of convolution to understand the global scene, such as GCNet (Cao et al., 2019) and
CCNet (Huang et al., 2019). The above works prove the validity and feasibility of the combination
of convolution and self-attention. In summary, the existing works can be broadly classified into two
types. One uses self-attention instead of the original convolutional network blocks to reduce the
model size while enhancing the network performance. However, this approach drastically changes
the structure of the original network. The other enhances the convolution by adding sub-network
modules, but this introduces additional parameters and increases the model size. This paper aims
to design a parameter-free self-attention module to realize the combination of convolution and self-
attention while maintaining the original network structure.

With the above motivation, we propose a self-attention with linear complexity called global spatial
correlation attention (GSCA). We construct a novel, simple but effective lightweight self-attention
module, which aims to use the data laws of the input feature map itself for weight adjustment in
the global space. GSCA is illustrated in Figure 1. First, we use global average pooling (GAP) to
get the key vector k, which contains the spatial compression information of the feature map. The
matrices Q (query) and V (value) are identity maps of X . Next, the cross-correlation coefficient
matrix CQk is derived by calculating the correlation between each pixel of query Q and key k. Then
the weight matrix A is obtained by subtracting the normalized CQk from 1. At last, A is expanded
to the size of V , and the Hadamard product of both is the final output. Inspired by self-attention,
we build multi-head GSCA to enhance the expression of feature subspaces in section 3.2. GSCA
causes global pixels to interact, which enhances convolution’s ability to capture global information.
More importantly, GSCA is parameter-free and does not increase the original model size. To purely
validate the effectiveness of GSCA and avoid performance improvements due to changes in network
architecture, we do not replace network blocks. Instead, GSCA serves as a simple attention module
like SENet (Hu et al., 2018) to enhance convolution. In a word, the main contribution of this paper
can be summarized as follows:

• We propose a novel self-attention without adding additional parameters, called global spatial corre-
lation attention (GSCA), with O(N) complexity. We use the cross-correlation coefficient to evaluate
the similarity between pixel pairs and apply it to the construction of the attention mechanism.

• Multi-head GSCA is built to enhance the expression of feature subspace. Multi-head GSCA can
be used as a spatial attention module, plug-and-play, to enhance the ability of convolution to capture
global features.

• Extensive experiments on ImageNet-1k and MS COCO have proved that GSCA has lower com-
plexity than state-of-the-arts and has achieved very competitive performance. GSCA also improves
the original performance of channel attentions in various vision tasks. Relevant experiments also
prove that GSCA has strong generalization and robustness.
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2 RELATED WORKS

Lightweight Self Attention. The ability of self-attention to model global features is effective in var-
ious vision tasks. NonLocal (Wang et al., 2018) constructs spatial feature maps using a self-attention
form and verifies the accuracy and validity. However, the quadratic complexity of self-attention will
bring a large computational overhead, so some variants try to lighten it. AANet (Bello et al., 2019)
proposes a two-dimensional relative self-attention mechanism by encoding positions. A2-Net (Chen
et al., 2018) gathers and distributes features through bilinear pooling and matrix multiplication to
capture long-range feature interdependencies. Researchers find that NonLocal has almost the same
global modeling context for different query locations. A simplified network based on a query in-
dependent formulation is created, which is called GCNet (Cao et al., 2019). CCNet (Huang et al.,
2019) obtains global information and reduces complexity by cyclically performing row and col-
umn attention. EANet (Guo et al., 2021) proposes External Attention, which constructs learnable,
lightweight, and shared key and value vectors through linear layers. DANet (Fu et al., 2019) per-
forms well in semantic segmentation tasks by adding position and channel self-attention at the end of
the backbone. Similarly, the modified self-attention PSA (Liu et al., 2021a) is successfully applied
to 2D human pose estimation and semantic segmentation tasks. SimA (Koohpayegani & Pirsiavash,
2022) proposes a simple self-attention that replaces softmax with ℓ1-norm. Some methods adopt
sparse matrices to lightweight self-attention (Kitaev et al., 2020; Zaheer et al., 2020).

Attention Mechanism Modules. Attention mechanism modules have been proven to be a poten-
tial means to enhance convolution. SENet (Hu et al., 2018) proposes an effective channel attention
mechanism module, which inspires a series of subsequent works. In ECANet (Wang et al., 2020),
1D convolution is used to determine the interaction between channels, reducing the parameters and
improving efficiency compared with SENet. FcaNet (Qin et al., 2021) analyzes GAP in the fre-
quency domain and proves that GAP is a special form of discrete cosine transform (DCT). FcaNet
achieves extremely outstanding performance as channel attention. NAM (Liu et al., 2021b) based
on normalization theory, which suppresses less salient weights and applies weight sparsity penalty
to the attention module. SGE (Li et al., 2019a) divides the feature map into semantic groups and
adjusts the importance by generating an attention factor for each spatial position. CBAM (Woo
et al., 2018), BAM (Park et al., 2018), and scSE (Roy et al., 2018) use 2D convolution kernels to
adjust spatial weights and combine them with channel attention. SKNet (Li et al., 2019b) proposes
a branch attention with automatic selection of convolution kernel size. Similar split attention mech-
anisms include ResNeSt (Zhang et al., 2022) and EPSANet (Zhang et al., 2021). In this paper, our
method is used as a spatial attention module to enhance the expression of convolution.

Application of Cross-correlation Coefficient. The cross-correlation coefficient is a powerful ana-
lytical tool in signal processing (Zhai et al., 2020), neurophysiology (Rodu et al., 2018), and other
fields (Chatterjee et al., 2018). In vision fields, researchers utilize the cross-correlation coefficient
to evaluate the similarity of pictures before and after transformation for solving deformable image
registration tasks (Balakrishnan et al., 2019). The cross-correlation coefficient uses the statistical
relationship between the two variables to measure the correlation. Recently, some works have used
statistical information for the design of attention modules. SRM (Lee et al., 2019) combines mean
and standard deviation pooling to enhance the capability of feature fusion of modules and performs
well in style transfer results. As a variant of SENet, GSoPNet (Gao et al., 2019) uses the covariance
matrix in the squeeze module to enhance its ability to model higher-order statistical information.

3 METHOD

In this section, we first briefly review original self-attention. Then we elaborate on the details of
general and multi-head GSCA. Finally, the effect of GSCA is visualized.

3.1 SELF ATTENTION AND GSCA

We first review the original self-attention (see Figure 2). Given an input X ∈ RN×C , where N =
H ×W and C are the number of pixels and channels, respectively. Self-attention linearly projects
X to generate a query matrix Q, a key matrix K, and a value matrix V . The weight matrix A is
formulated as:

A = Softmax
(
QKT

)
, (1)

Xout = AV. (2)
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Figure 2: Illustration of the principles of GSCA and self-attention. The number of pixels is N , and
the channel dimension is C. GSCA allows O(N) computational complexity with C ≪ N .

aij is a term of A, which denotes the cosine similarity between the i-th and j-th positions in the
feature map. A ∈ RN×N indicates the affinities between all pixel pairs in the spatial dimension.
According to Eq. (2), Xout is obtained by applying A to V . Self-attention allows the network to
find and focus on important regions in the global space, but its quadratic complexity O(N2) about
image size is an obvious shortcoming, which leads to a huge computational overhead.

Next, we present the details of global spatial correlation attention (GSCA). GSCA differs from the
original self-attention in terms of query, key and value generation, similarity matching, and the way
weights act. Given an input X ∈ RH×W×C , it can be reshaped as X ∈ RN×C as a sequence. We
choose a 3D format to illustrate our method visually. We implement GAP to obtain the key vector
k, i.e., k = 1

WH

∑W,H
i=1,j=1 Xij and k ∈ RC . The matrices Q and V are generated using identical

mappings, i.e., Q = V = X . Unlike the cosine similarity used in self-attention, GSCA uses the
cross-correlation coefficient to evaluate the similarity between each location in query Q and key k.
The correlation matrix CQk is calculated from the following equation.

CQk =

∑C
i=1 [Q:,:,i − Q̄][ki − k̄]√∑C
i=1 [Q:,:,i − Q̄]

2
[ki − k̄]

2
, (3)

where Q̄ is the mean value of query Q in the channel dimension. k̄ is the mean of vector k. The
matrix CQk ∈ RH×W×1, and CQk(i, j) denotes the cross-correlation coefficient, i.e., similarity,
between pixels in row i and column j of Q and k. We consider that the key k obtained by GAP
obscures the feature representation of the object of interest. Thus, to highlight the positions in V that
represent unique features, we utilize the reverse correlation calculation to gain attention. Generally
speaking, positions more correlated with k are given lower weights. Conversely, positions less
relevant to k are given more attention. As in Eq. (4), the weight matrix A is obtained by subtracting
the normalized CQk from 1.

A = (1− σ (CQk))
α
, (4)

where σ(·) is a Sigmoid function, the exponent α is used to enlarge numerical differences to enhance
feature expression. Inspired by SENet and CBAM, etc., GSCA uses Sigmoid to normalize CQk.
GSCA tends to highlight a region rather than a single position in the spatial dimension. Softmax is
unsuitable for GSCA due to its near one-shot output (Chen et al., 2020). In contrast, Sigmoid does
not inhibit the expression of other sites when it emphasizes a single position, which is more in line
with the mechanism of GSCA. As in Eq. (5), A ∈ RW×H×1 is expanded along the channel to the
size of V ∈ RW×H×C , and the final output Xout is obtained by making a Hadamard product of A
and V .

Xout = expand(A) ◦ V. (5)
Eq. (6) shows the generic form of GSCA. As analyzed in Figure 2, GSCA has a linear complexity
O(N) to the number of pixels. Furthermore, GSCA has no learnable operations, such as linear
projection, and no extra parameters are added.

GSCA (Q, k, V ) = expand [(1− σ (CQk))
α
] ◦ V. (6)

Figure 2 indicates that, although the details of GSCA differ from self-attention, the principles of
both are similar in nature. Their process is divided into two steps. First, generating spatial attention
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weights by similarity comparison. Second, the weights are applied to the value V to adjust the
distribution of the feature maps. Self-attention generates weights based on the cosine similarity
between all pixel pairs. GSCA gets weights by the correlation between each pixel and the key k.
Self-attention acts A on V (by X linear projection) by matrix multiplication. The output of GSCA
is a Hadamard product of A and V (V = X). Both establish interrelationships among all pixels of
the feature map and give different levels of attention to each region in the global spatial context.

3.2 MULTI-HEAD GSCA
In Transformer (Kolesnikov et al., 2021), self-attention is calculated in different sub channels in the
feature map rather than in the whole channel, which is called multi-head attention. Multi-head atten-
tion allows the network to conduct self-attention at different positions of the channel simultaneously
to improve the ability of self-attention to capture different feature subspaces. Inspired by this, we
also built a multi-head GSCA in this subsection in a similar way.

Q =
[
Q1, . . . , Qh

]
, k =

[
k1, . . . , kh

]
, V =

[
V 1, . . . , V h

]
. (7)

MultiHead (Q, k, V ) = Concat (head1, . . . , headh) ,

headi = GSCA
(
Qi, ki, V i

)
.

(8)

As in Eq. (7), Q, k, V are equally divided in the channel dimension, respectively, and h is the
number of heads, where ki ∈ RC/h and Qi, V i ∈ RH×W×C/h. According to Eq. (8), all headi
are sequentially concatenated along the channel to obtain the final output. In this paper, we fixed
the number of channels per head to respond flexibly to different feature map sizes. Single-head
size ablation studies are reported in section 4.2, which validates the effectiveness of the multi-head
operation.

3.3 VISUALIZATION

Image ResNet50 GSCA-50 Image ResNet50 GSCA-50 Image ResNet50 GSCA-50

Figure 3: Sample visualization on ImageNet-1k val split generated by GradCAM.

As in Figure 3, we visualize the images in the ImageNet-1k (Russakovsky et al., 2015) validation
set using GradCAM (Selvaraju et al., 2017) in order to show the effect of GSCA intuitively. We
take ResNet50 as the baseline network and create heat maps before the classification layer. Figure
3 clearly shows that the heat maps of GSCA cover a larger target area. It indicates that GSCA can
motivate the model to focus on more feature details of the recognized objects, to better utilize the
information in the target object regions and to aggregate features from them, which is beneficial
for image classification (Woo et al., 2018). The above results demonstrate qualitatively that GSCA
enhances the baseline network’s ability to capture global spatial features.

4 EXPERIMENTS

In this section, we first state the details of our experiments. Second, we show ablation studies about
GSCA. Third, we evaluate GSCA on image classification, object detection, and instance segmenta-
tion tasks. At last, we analyze the robustness of GSCA by zero-shot tests.

4.1 EXPERIMENTAL SETUP

To evaluate the performance of GSCA on image classification tasks, we compare GSCA with other
methods on Imagenet-1k, taking ResNet (He et al., 2016) families as the backbones. We also apply
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GSCA to MobileNetV2 (Sandler et al., 2018), ShuffleNetV2 (Ma et al., 2018) and ResNeXt (Xie
et al., 2017) to verify its generalization. For object detection and instance segmentation tasks, we
evaluate GSCA on MS COCO using Faster R-CNN (Ren et al., 2015), Mask R-CNN (He et al.,
2017) and RetinaNet (Lin et al., 2017b) with pre-trained ResNet-50 and ResNet-101 as the back-
bones and Feature Pyramid Network (FPN) (Lin et al., 2017a) as the neck. We implement all de-
tectors by using MMDetection toolkit (Chen et al., 2019) and employ the default setting. For fair
comparisons, the models trained by all methods adopt the same settings, including the number of
training epochs, batch size, optimizer, learning rate schedule, weight decay, momentum, and data
augmentation strategies. Experiment details are described in Appendix A.1.

4.2 ABLATION STUDY

Table 1: Ablation experiments on Mini-ImageNet with baseline ResNet-50. Reverse indicates
whether σ (CQk) is subtracted from 1 in Eq. (4). Position represents the different positions in
the ResNet block where GSCA is inserted. Specifically, #1 is after the 3×3 convolution, #2 is after
BN layer of the 3×3 convolution, and #3 is before the shortcut connection (position of SENet).

GSCA Reverse Position #1 Position #2 Position #3 Top-1
80.55

✓ ✓ ✓ 81.18
✓ ✓ 80.12
✓ ✓ ✓ 81.59
✓ ✓ ✓ 81.17

Analysis of reverse and position. For experimental efficiency, the reverse operation and the posi-
tion of GSCA are explored on Mini-ImageNet (Ravi & Larochelle, 2017) with baseline ResNet-50.
Mini-ImageNet is a subset of ImageNet-1k, with 100 classes and 60,000 images, of which the train-
ing and validation sets are 50,000 and 10,000 images, respectively. Appendix A.1.2 describes the
experimental details. As in Table 1, GSCA with the reverse operation all improve the performance of
the baseline, and position #2 is optimal. The position #2 without reverse is weaker than the baseline,
which verifies the plausibility of Eq. (4). The comparison of positions #1 and #2 illustrates that the
data distribution after BN layers is more beneficial to GSCA. The results of #2 and #3 indicate that
the positions of down-sampling or extracting local features are more applicable to GSCA to capture
spatial information. It is not limited to the 3×3 convolution in ResNet, but also includes the group
convolution in ResNeXt (Xie et al., 2017) block and the depthwise separable (DW) convolution in
MobileNetV2 (Sandler et al., 2018) and ShuffleNetV2 (Ma et al., 2018) block. Hence in this paper,
we insert GCSA after BN layers of all these convolutions to enhance their representations.

Next, we further conduct ablation studies for multi-head attention and exponent α on ImageNet-1k
with baseline ResNet50.

Table 2: Ablation experiments for n and α on
ImageNet-1k (Top-1 at baseline is 77.28).

n Top-1

No 77.75
16 77.97
32 77.92
64 78.03

(a)

α Top-1

1.0 78.03
1.5 77.86
2.0 78.08
2.5 77.79

(b)

Analysis of the per head channels n. We
perform ablation experiments on the number
of channels per head n to respond flexibly to
different backbone architectures. An attempt
is made to explore the effect of n on GSCA
experimentally. For ResNet, since the mini-
mum number of channels in its block is 64, we
set n = 16, 32, 64 respectively for our experi-
ments. Table 2(a) shows the impact of n with
Top-1 as the evaluation, and the first row of the table indicates that no multi-head attention is used.
Obviously, the multi-head attention enhances the performance of GSCA, while the value of n has
almost no influence on the accuracy. We finally set n = 64 in the multi-head GSCA, corresponding
to the number of heads h = 1, 2, 4, 8 for four stages in ResNet, respectively.

Table 3: The impact of α on object detection task.

α AP AP50 AP75 APS APM APL

1.0 38.8 60.2 42.0 22.7 42.5 49.8
2.0 39.0 60.3 42.2 23.5 42.6 49.7

Analysis of the exponent α. As mentioned in
section 3.1, the exponent α is used to increase
the numerical differences of the weights. Ta-
ble 2(b) shows the effect of α. Clearly, the frac-
tional α is unfriendly, whereas performance on
the classification task is slightly facilitated at α = 2. Considering the small difference in accuracy
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Table 4: Comparison of different attention methods on ImageNet-1k. All results are reproduced and
trained with the same training setting except AANet and A2-Net, which have no official code.

Method Backbone Parameters + Param. FLOPs Inference Top-1 Top-5

ResNet (He et al., 2016) 25.56M 0 4.11G 1879 77.28 93.53
SENet (Hu et al., 2018) 28.07M 2.51M 4.12G 1510 77.86 93.87
CBAM (Woo et al., 2018) 28.07M 2.51M 4.12G 1286 78.24 93.81
A2-Net (Chen et al., 2018) 33.00M 7.44M 6.50G - 77.00 93.50
GSoPNet1 (Gao et al., 2019) 28.29M 2.73M 6.39G 1359 79.01 94.35
AANet (Bello et al., 2019) ResNet-50 25.80M 0.24M 4.15G - 77.70 93.80
ECANet (Wang et al., 2020) 25.56M 80 4.12G 1769 77.99 93.85
FcaNet (Qin et al., 2021) 28.07M 2.51M 4.12G 1453 78.57 94.10
GSCA 25.56M 0 4.11G 1644 78.08 93.95
GSCA-SENet 28.07M 2.51M 4.12G 1410 78.31 94.15
GSCA-ECANet 25.56M 80 4.12G 1442 78.25 94.00
GSCA-FcaNet 28.07M 2.51M 4.12G 1256 78.69 94.29

ResNet (He et al., 2016) 44.55M 0 7.83G 1129 78.72 94.30
SENet (Hu et al., 2018) 49.29M 4.74M 7.85G 960 79.19 94.50
AANet (Bello et al., 2019) 45.40M 0.85M 8.05G - 78.70 94.40
ECANet (Wang et al., 2020) 44.55M 165 7.84G 1003 79.09 94.38
FcaNet (Qin et al., 2021) ResNet-101 49.29M 4.74M 7.85G 933 79.63 94.63
GCSA 44.55M 0 7.83G 968 79.42 94.64
GSCA-SENet 49.29M 4.74M 7.85G 896 79.60 94.69
GSCA-ECANet 44.55M 165 7.84G 934 79.49 94.45
GSCA-FcaNet 49.29M 4.74M 7.85G 808 79.65 94.66

ResNet (He et al., 2016) 60.19M 0 11.56G 805 79.39 94.74
SENet (Hu et al., 2018) 66.77M 6.58M 11.58G 758 79.84 94.82
AANet (Bello et al., 2019) ResNet-152 61.60M 1.41M 11.90G - 79.10 94.60
ECANet (Wang et al., 2020) 60.19M 250 11.57G 785 79.86 94.80
FcaNet (Qin et al., 2021) 66.77M 6.58M 11.58G 713 80.02 94.89
GSCA 60.19M 0 11.56G 764 79.99 94.87

at α = 1 and α = 2, we further compared their results on the object detection task based on Faster
R-CNN (Ren et al., 2015). As shown in Table 3, α = 2 has a 0.2 higher AP on the downstream
task. We believe that the numerical enhancement of spatial attention has a greater impact on the
downstream localization task compared to the classification task. Considering these considerations,
we select α = 2 as the default setting for GSCA.

4.3 IMAGE CLASSIFICATION ON IMAGENET-1K

Performance comparison with other methods. Table 4 shows the comparison of our GSCA with
the state-of-the-art methods using ResNet-50 (He et al., 2016), ResNet-101, and ResNet152 back-
bones on ImageNet-1k, including SENet (Hu et al., 2018), CBAM (Woo et al., 2018), A2-Net (Chen
et al., 2018), GSoP-Net1 (Gao et al., 2019), AANet (Bello et al., 2019), ECANet (Wang et al., 2020),
and FcaNet (Qin et al., 2021). The evaluation metrics include both efficiency (i.e., network param-
eters, added parameters, floating point operations per second (FLOPs), and inference speed) and
effectiveness (i.e., Top-1/Top-5 accuracy). Generally speaking, all attention modules can improve
the baseline models with a clear margin. Our parameter-free GSCA-50 has achieved performance
close to or even higher than most modules with parameters. CBAM, GSoP-Net1, and FcaNet are
better than GSCA, but all add more than 2.5M extra parameters. GSoP-Net1’s GLOPs are even 1.5
times higher than GSCA. Moreover, GSCA does not add any parameters to the existing model, which
is a great advantage over other modules. GSCA-101 surpasses all competitors except FcaNet-101,
but FcaNet-101 increases the size of the baseline model by more than 4.5M. GSCA-152 is almost
identical to FcaNet-152 (top-1 accuracy differed by only 0.03%). Two obvious conclusions exist
from the above analysis. First, the larger the baseline network, the more parameters are added by
other modules. Take SENet and FcaNet for example, adding 2.5M, 4.7M and, 6.5M parameters
from ResNet50 to ResNet152, respectively. In contrast, GSCA is parameter-free and has no such
shortcomings. Second, the enhancement effect of GSCA becomes stronger as the network deepens.
Perhaps GSCA is better suited for large networks. The principle of GSCA is to adjust the weights
according to the data pattern of the original feature map itself, so a deeper network will gain more
prior knowledge to facilitate the performance of GSCA. GSCA can be considered a spatial attention
module. We try to combine GSCA with channel attention, including SENet, ECANet, and FcaNet
on ResNet50 and 101. GSCA has only a weak boost to FcaNet. We consider that FcaNet creates a
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Table 5: Object detection results of different methods on COCO val 2017.

Method Detector Parameters FLOPs AP AP50 AP75 APS APM APL

ResNet-50 41.53M 207.07 36.4 58.2 39.2 21.8 40.0 46.2
SENet-50 44.02M 207.18 37.7 60.1 40.9 22.9 41.9 48.2
ECANet-50 41.53M 207.18 38.0 60.6 40.9 23.4 42.1 48.0
FcaNet-50 Faster-RCNN 44.02M 207.18 39.0 61.1 42.3 23.7 42.8 49.6
GSCA 41.53M 207.07 39.0 60.3 42.2 23.5 42.6 49.7
GSCA-SENet50 44.02M 207.18 39.5 61.2 42.9 23.7 43.5 50.6
GSCA-ECANet50 41.53M 207.18 39.3 61.2 42.6 23.3 43.3 49.9
GSCA-FcaNet50 44.02M 207.18 39.4 61.0 42.6 24.4 43.1 50.2

ResNet-101 60.52M 283.14 38.7 60.6 41.9 22.7 43.2 50.4
SENet-101 65.24M 283.33 39.6 62.0 43.1 23.7 44.0 51.4
ECANet-101 60.52M 283.32 40.3 62.9 44.0 24.5 44.7 51.3
FcaNet-101 Faster-RCNN 65.24M 283.33 41.2 63.3 44.6 23.8 45.2 53.1
GSCA 60.52M 283.14 41.2 62.5 45.0 25.0 45.3 53.2
GSCA-SENet101 65.24M 283.33 41.3 62.8 45.2 24.7 45.4 53.5
GSCA-ECANet101 60.52M 283.32 41.6 62.7 45.3 25.0 46.3 53.3
GSCA-FcaNet101 65.24M 283.33 41.5 62.8 45.2 24.6 46.0 53.6

ResNet-50 44.17M 260.14 37.2 58.9 40.3 22.2 40.7 48.0
SENet-50 46.66M 260.25 38.7 60.9 42.1 23.4 42.7 50.0
ResNet-50+1NL 52.57M 268.54 39.0 61.1 41.9 - - -
ECANet-50 44.17M 260.25 39.0 61.3 42.1 24.2 42.8 49.9
FcaNet-50 Mask-RCNN 46.66M 260.25 40.3 62.0 44.1 25.2 43.9 52.0
GSCA 44.17M 260.14 39.5 60.5 43.1 23.0 42.9 50.8
GSCA-SENet50 46.66M 260.25 40.5 61.6 44.2 24.3 44.2 51.9
GSCA-ECANet50 44.17M 260.25 40.0 61.5 43.6 23.8 44.0 51.2
GSCA-FcaNet50 46.66M 260.25 40.4 61.7 44.0 24.5 43.7 52.0

ResNet-50 37.74M 239.32 35.6 55.5 38.2 20.0 39.6 46.8
SENet-50 40.23M 239.43 37.1 57.2 39.9 21.2 40.7 50.0
ECANet-50 RetinaNet 37.74M 239.43 37.3 57.7 39.6 21.9 41.3 48.9
GSCA 37.74M 239.32 37.5 56.9 39.9 21.5 41.1 49.3
GSCA-SENet50 40.23M 239.43 38.6 58.0 41.2 22.5 42.2 50.4
GSCA-ECANet50 37.74M 239.43 38.2 57.8 40.6 22.6 42.0 50.1

certain degree of incompatibility with the role of GSCA when performing 2D DCT. For SENet and
ECANet, GSCA significantly improves their behavior. GSCA-SENet50 outperforms CBAM with
fewer parameters, which confirms that GSCA can optimize the network in the spatial dimension.

Table 6: Performance comparisons of GSCA
application on different backbone architectures.

Method Parameters Top-1 Top-5

ResNeXt-50
+GSCA

25.03M 78.35 94.11
25.03M 78.89 94.47

MobileNetV2
+GCSA

3.50M 67.09 87.92
3.50M 67.89 88.40

ShuffleNetV2
+GSCA

2.28M 65.45 86.54
2.28M 65.87 86.72

Application on other backbones. To verify the
generalization of GSCA on other backbone struc-
tures, we apply GSCA to ResNeXt (Xie et al.,
2017), MobileNetV2 (Sandler et al., 2018) and
ShuffleNetV2 (Ma et al., 2018). See the ap-
pendix A.2 for the implementation and setting
of different backbones by GSCA. Table 6 shows
the results. Without any additional parameters,
it is surprising that GSCA still steadily improves
the performance of the baselines in the face of
lightweight networks like MobileNetV2 and ShuffleNetV2. At a deeper level, the results of
ResNeXt, MobileNetV2 and ShuffleNetV2 demonstrate the adaptability of GSCA to group con-
volution, deepwise separable convolution, and channel shuffling operations, respectively. The gen-
eralizability of GSCA to different backbone architectures is further proved.

4.4 OBJECT DETECTION ON MS COCO

We evaluate our GSCA on object detection task using Faster R-CNN (Ren et al., 2015), Mask R-
CNN (He et al., 2017) and RetinaNet (Lin et al., 2017b) as detectors and ResNet with FPN as the
backbone. SENet, CBAM, NL (Wang et al., 2018) and ECANet are used for comparison. GSCA’s
performance on object detection task is exciting. As shown in Table 5, GSCA achieves almost the
most advanced performance. Specifically, on the two-stage detector Faster R-CNN, GSCA achieves
the same performance as the SOTA method FcaNet without extra parameters. On Mask R-CNN
detector, except FcaNet, GSCA exceeds other modules with parameters, including NL, which is
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also a form of self-attention. GSCA works best on the single-stage detector RetinaNet. We also
complete experiments combining GSCA with channel attentions. FcaNet is weakly augmented for
reasons consistent with those described in section 4.3. SENet and ECANet are greatly enhanced.
Specifically, SENet and ECANet are boosted by 1.5-1.8% and 0.9-1.3% of AP, respectively.

4.5 INSTANCE SEGMENTATION ON MS COCO

Table 7: Instance segmentation results of different methods
using Mask R-CNN on COCO val 2017.

Method AP AP50 AP75 APS APM APL

ResNet-50 34.1 55.5 36.2 16.1 36.7 50.0
SENet-50 35.4 57.4 37.8 17.1 38.6 51.8
ResNet-50+1NL 35.5 58.0 37.4 - - -
ECANet-50 35.6 58.1 37.7 17.6 39.0 51.8
FcaNet-50 36.2 58.6 38.1 - - -
GSCA 35.8 57.5 38.3 16.8 38.7 51.3
GSCA-SENet50 36.4 58.5 38.4 17.8 39.5 52.1
GSCA-ECANet50 36.3 58.4 38.7 17.8 39.8 51.5
GSCA-FcaNet50 36.3 58.5 38.4 18.2 39.1 52.9

For instance segmentation task, we
take Mask R-CNN as the detector for
evaluation and the results are shown in
Table 7. Similar to the object detec-
tion task results, GSCA outperforms
most methods, including NL, which is
also a self-attention module. GSCA is
slightly inferior to FcaNet, but GSCA
is more lightweight. Regarding the
combination with channel attentions,
FCANet has a weak performance im-
provement due to the previously men-
tioned compatibility issues. In addition, SENet and ECANet receive AP increases of 1.0 and 0.7,
respectively.

4.6 ROBUSTNESS EXPERIMENT

Table 8: Robustness of trained networks to rotation and flipping of images at test time. Numbers in
the parentheses show the relative performance drop compared to testing on original images with no
manipulation (lower is better).

Method ResNet-50 GSCA-50
Top-1 Top-5 Top-1 Top-5

no rotation 77.28 93.53 78.08 93.95
clockwise 90° 52.27 (25.01) 74.91(18.62) 54.79 (23.29) 77.13(16.82)
clockwise 180° 52.86 (24.42) 77.31(16.22) 55.10 (22.98) 79.18(14.77)
clockwise 270° 52.36 (24.92) 75.28(18.25) 54.89 (23.19) 77.12(16.83)
upside-down 52.68 (24.60) 77.12(16.41) 54.99 (23.09) 79.12(14.83)

We conduct zero-shot tests to explore the role of GSCA on the robustness of the baseline network.
In this subsection, we rotate or flip images of the ImageNet val set in one of four ways: clockwise
90◦, clockwise 180◦, clockwise 270◦, and upside down flip about the horizontal axis. As a reminder,
the above transformations are not used in the training process. As in Table 8, all model performance
deteriorated in the zero-shot tests. Nevertheless, in terms of accuracy, GSCA still outperforms
ResNet by a net 2.24-2.53% and 1.84-2.22% on top-1 and top-5 accuracy, respectively. Furthermore,
the GSCA is less vulnerable than the baseline network when suffering from image transformation.
The data in parentheses indicate a lower drop in GSCA, specifically, 1.44-1.73% and 1.42-1.80%
net lower than ResNet on top-1 and top-5 accuracy, respectively. In a word, the ability of GSCA
to capture global information has advantages over baseline networks in terms of both accuracy and
robustness for disturbed images.

5 CONCLUSION

In this paper, we propose a parameter-free self-attention with linear computational complexity called
global spatial correlation attention (GSCA). It compresses the key matrix into a vector and evaluates
the pairwise affinities of each pixel with the key vector in terms of the cross-correlation coefficient.
The aim is to adjust the attention distribution in the global space by utilizing the input feature maps’
statistical relationships. GSCA can serve as a spatial attention module that enhances the ability of
convolution to capture global spatial information. The designed GSCA is simple, yet it has proven
to have a strong performance without any projection operation, which is used to generate query,
key, and value in self-attention. Therefore, we boldly predict that GSCA has great potential for the
design of lightweight network architectures. In the future, we consider adding more nonlinearity
to GSCA and borrowing from Transformer architecture to design a lightweight network applied to
edge devices.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 IMAGENET-1K

Recall that we compare GSCA with other methods on ImageNet-1k taking ResNet (He et al., 2016)
families as the backbones. We also apply GSCA to MobileNetV2 (Sandler et al., 2018), Shuf-
fleNetV2 (Ma et al., 2018) and ResNeXt (Xie et al., 2017) to verify its generalization. For all
backbone networks, we employ exactly the same data augmentation and hyperparameter settings as
in (He et al., 2016) and Hu et al. (2018). Specifically, the input images are randomly cropped to
224×224 with random horizontal flipping. We use an SGD optimizer with a momentum of 0.9 and
a weight decay of 1e-4. The initial learning rate is set to 0.1 for a batch size of 256 (using 4 GPUs
with 64 images per GPU) with the linear scaling rule (Goyal et al., 2017) and a linear warm-up of 5
epochs. All models are trained within 100 epochs with cosine learning rate decay and label smooth-
ing following FcaNet (Qin et al., 2021). We use the Nvidia APEX mixed precision training toolkit
for training efficiency. For the testing on the validation set, the shorter side of an input image is first
resized to 256, and a center crop of 224 × 224 is used for evaluation.

A.1.2 MINI-IMAGENET

For Mini-ImageNet dataset (Ravi & Larochelle, 2017), we only use it for the ablation studies of
GSCA in section 4.2. The experimental details are similar but slightly different from ImageNet-1k.
Precisely, the input images are randomly cropped to 224×224 with random horizontal flipping. We
use an SGD optimizer with a momentum of 0.9 and a weight decay of 1e-4. The initial learning rate
is set to 0.1 for a batch size of 100 (using 2 GPUs with 100 images per GPU) with a linear warm-up
of 5 epochs. All models are trained within 100 epochs with cosine learning rate decay. Due to the
small dataset, we do not use the Nvidia APEX mixed precision training toolkit on Mini-ImageNet.
For the testing on the validation set, the shorter side of an input image is first resized to 256, and a
center crop of 224 × 224 is used for evaluation.

A.1.3 MS COCO
Recall that we use MMDetection toolkit (Chen et al., 2019) for experiments on MS COCO dataset
with the pre-trained ResNet-50 and ResNet-101 as the backbones for the detector. We select the
mainstream Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017) detectors with Fea-
ture Pyramid Networks (FPNs) (Lin et al., 2017a) as the necks to build the basic object detection and
instance segmentation systems. For fair comparisons, we do not insert GSCA into the convolution
layers in the FPN neck and adopt the same experimental settings. Specifically, the shorter side of
the input image is resized to 800. The SGD optimizer has a weight decay of 1e-4, a momentum of
0.9, and a batch size of 8 (4 GPUs with two images per GPU) within 12 epochs. The learning rate
is initialized to 0.01 and is decreased by the factor of 10 at the 8th and 11th epochs, respectively. In
validation, we report the standard Average Precision (AP) under IOU thresholds ranging from 0.5 to
0.95 in increments of 0.05. We also retain AP scores for small, medium and large objects.

A.2 GSCA SETTINGS ON OTHER BACKBONES

ResNeXt We illustrate with ResNeXt-50 (32×4d) as an example. As mentioned in section 4.2,
we insert GSCA after the BN layer of the group convolution in all blocks of ResNeXt. For the head
count of GSCA, since the ResNeXt and ResNet structures are similar, the experience of ResNet can
be directly applied to ResNeXt. The output channel of grouped convolution in ResNeXt is double
that of ResNet. We still fix 64 channels per head, and for four stages of ResNeXt, the head numbers
are 2, 4, 8, and 16 respectively.

MobileNetV2 For illustration purposes, Table 9 shows the structure table of MobileNetV2, with
GSCA head count added in its last column. We only insert GSCA after the BN layer of the depthwise
separable (DW) convolution in the bottleneck. The output of Mobilenetv2’s DW convolution is not
an integer multiple of 64. Thus we make the number of channels per head of GSCA approximately
equal to 64. Specifically, for each bottleneck, we set h to 1, 1, 2, 3, 4, 8, 15 respectively.

ShuffleNetV2 The setting of GSCA in the ShuffleNetV2 is similar to that of MobileNetV2. We
still only insert GSCA after the BN layer of the DW convolution in the block. Notably, We do not
use GSCA for the DW convolution in the shortcut branch. For the three stages of ShuffleNetV2, we
set the number of GSCA head to 2, 4, 8 respectively.
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Table 9: MobileNetV2 : Each line describes a sequence of 1 or more identical (module stride) layers,
repeated n times. All layers in the same sequence have the same number c of output channels. The
first layer of each sequence has a stride s and all others use stride 1. All spatial convolutions use 3 ×
3 kernels. The expansion factor t is always applied to the input size. h is the head count of GSCA.

Input Operator t c n s h

2242×3 conv2d - 32 1 2 -
1122×32 bottleneck 1 16 1 1 1
1122×16 bottleneck 6 24 2 2 1
562×24 bottleneck 6 32 3 2 2
282×32 bottleneck 6 64 4 2 3
142×64 bottleneck 6 96 3 1 4
142×96 bottleneck 6 160 3 2 8
72×160 bottleneck 6 320 1 1 15
72×320 conv2d 1×1 - 1280 1 1 -

72×1280 avgpool 7×7 - - 1 - -
1×1×1280 conv2d 1×1 - k - - -

A.3 CODE OF GSCA

GSCA module is extremely simple to implement. As in Figure 4, we give a reference implementa-
tion of GSCA in PyTorch. Multi-head GSCA simply adds one dimension to the input and adjusts
the dimension index of the calculation.

Figure 4: PyTorch code of the proposed GSCA module

A.4 DISCUSSION OF THE CROSS-CORRELATION COEFFICIENT AND THE COSINE-SIMILARITY

In this subsection we review and discuss the cross-correlation coefficient and the cosine-similarity.
Given two sets of vectors x ∈ RN and y ∈ RN .

Cross-correlation coefficient The population cross-correlation coefficient ρx,y is defined as the
quotient of the covariance and standard deviation between the two variables.

ρx,y =
cov(x, y)

σxσy
=

E[(x− µx)(y − µy)]

σxσy
, (9)

where cov(x, y) is the covariance of x and y, and σx, σy are the standard deviations of x and y,
respectively. Estimating the covariance and standard deviation of the samples, the sample cross-
correlation coefficient Cx,y is obtained as:

Cx,y =

∑n
i=1 (xi − x̄) (y − ȳ)√∑n

i=1 (xi − x̄)
2 ∑n

i=1 (y − ȳ)
2

(10)

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi. In this paper, we use the above equation to evaluate the

pairwise affinity between pixels.
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Cosine-similarity According to Euclid’s dot product formula

x · y = ∥x∥ ∥y∥ cos θ, (11)

the cosine-similarity Cosx,y between the two vectors is obtained

Cosx,y = cos θ =
x · y

∥x∥ ∥y∥
=

∑n
i=1 xiyi√∑n

i=1 xi
2
∑n

i=1 yi
2
. (12)

Comparing Eq. (10) and Eq. (12) to obtain Eq. (13), it shows that the cross-correlation coefficient is
the cosine-similarity after the data centering process. Therefore, the cross-correlation coefficient is
less sensitive to fluctuations in the data than the cosine-similarity.

Cx,y =

∑n
i=1 (xi − x̄) (y − ȳ)√∑n

i=1 (xi − x̄)
2 ∑n

i=1 (y − ȳ)
2
=

(x− x̄) · (y − ȳ)

∥x− x̄∥ ∥y − ȳ∥
= Cosx−x̄,y−ȳ (13)

Since ∥x∥ ∥y∥ in Eq. (12) would complicate the computation, x·y√
d

is used as an alternative in self-
attention mechanism to evaluate the similarity between paired vectors, where d points to the vectors’
dimensions. Eq. (11) shows that for larger values of d, the larger dot product’s magnitude will affect
the similarity representation and push the softmax function to the regions with extremely small
gradients (Vaswani et al., 2017). To counteract this effect, self-attention scale the dot product by
1√
d

. The dot product in self-attention is implemented by highly optimized matrix multiplication
code to achieve high parallelism. In contrast, in GSCA architecture, each position in Q is only
required to match the similarity with a single k vector, which has high parallelism. Therefore, the
cross-correlation coefficient with low sensitivity to data is allowed to be applied as an indicator of
pairwise affinity.

Table 10: Comparison experiments of different evaluation methods with ResNet50 as baseline.

Method ImageNet-1k (Top-1) Mini-ImageNet (Top-1)

Baseline 77.28 80.55
Dot product cosine-similarity 75.69 80.32
Cross-correlation coefficient 78.08 81.59

In addition, we experimentally verified the superiority of the cross-correlation coefficient over the
dot product cosine-similarity in GSCA architecture. We experiment on ImageNet-1k and Mini-
ImageNet datasets by replacing the cross-correlation coefficient with dot product. Table 10 demon-
strates that dot product similarity does not work well in GSCA. It shows that using the dot product
to calculate the similarity to assess the affinity between Q and vector k is insufficient. The cross-
correlation coefficient is a better choice.

A.5 ANALYSIS OF COMPUTATIONAL COMPLEXITY

This subsection provides a brief analysis of the computational complexity of self-attention and
GSCA with the input X ∈ RH×W×C .

Computational complexity of self-attention Section 3.1 mentions that self-attention generates
query Q, key K, and value V through three linear projection layers, respectively. The computa-
tional complexity of generating Q, K, and V is

OQKV = O
(
3HWC2

)
. (14)

Secondly, the self-attention obtains the weight A and acts A on V by matrix multiplication. The
computational complexity of these two processes is

OAttn = O
(
2(HW )

2
C
)
. (15)

Finally, the aggregated feature also needs to pass through a linear projection layer generally with the
complexity of

OProj = O
(
HWC2

)
. (16)

Thus, the overall computational complexity of self-attention is

OSelf - attention = OQKV +OAttn +OProj = O
(
4HWC2 + 2(HW )

2
C
)
. (17)
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Computational complexity of GSCA Unlike self-attention, query Q and value V of GSCA are
obtained utilizing an identical mapping of X , i.e., OQ = OV = 0. The computational complexity
of k vector obtained by GAP is

Ok = O (HWC) . (18)
We estimate the correlation coefficient matrix Eq. (3) to obtain the computational complexity of
generating the weight A

OCross = O
(
HW

(
C + C2

))
. (19)

The computational complexity of acting A on V via the Hadamard product is

OAct = O (HWC) . (20)

Thus, the overall computational complexity of GSCA is

OGSCA = Ok +OCross +OAct = O
(
3HWC +HWC2

)
. (21)

Compared with self-attention, GSCA has linear complexity for the number of pixels.

A.6 EXPLANATION OF REVERSE OPERATION

Figure 5: ResNet-50 visualization of GSCA module at layer2.3. (a)-(c) with reverse and (d)-(f)
without reverse. (a)(d), (b)(e), and (c)(f), each group represents the input, the attention weight, and
the output of GSCA, respectively.

As described in section 3.1, the key matrix K of self-attention is obtained by linear projection, while
GSCA gets the key vector k by the feature map’s global average pooling (GAP). It causes GSCA to
work differently than the intuition that comes from self-attention. Specifically, GAP is challenging
to capture the complex information in the feature maps and misses most of the detailed features (Qin
et al., 2021). In contrast to the general features in the global scope represented by GAP, we believe
that spatial attention should enhance special features, such as texture details. Intuitively, enhancing
special detail features is helpful for visual recognition tasks. Therefore, we use the reverse operation
to enhance the specificity features rather than features similar to the k vector generated by GAP.

To intuitively discuss the necessity of the reverse operation in the system, the feature map of GSCA
module is visualized in Figure 5. Figures 5 (a) and (d) show the inputs of GSCA module in layer
2.3. Both are generally similar, and with the network optimized iteratively, the feature maps have
the same attention to the target and the background. Figures 5 (b) and (e) show the attention weights
obtained from the cross-correlation calculation in GSCA, which have opposite results. The reverse
operation drives GSCA to focus almost on the object itself, while GSCA without reverse focuses
almost exclusively on the background region. It proves that the reverse operation directly affects
the region of attention of GSCA. Naturally, in Figures 5(c) and (f), the final outputs show that the
GSCA without reverse tends to focus on the background. The reversed GSCA drives the network to
focus on the object, which is more beneficial for visual tasks.
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