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1 Introduction1

Protein-protein interactions (PPIs) are critical to several biological functions, from regulating2

metabolic activities to several disease-causing pathways [1]. With limited success in using small3

molecules and large biologics to disrupt clinically relevant PPIs, peptides continue to garner further4

therapeutic interest [2, 3]. As of 2021, around 80 peptides were approved for clinical use worldwide,5

apart from more than 160 in various stages of clinical trials [4].6

Peptides constitute of amino acid monomers, arranged usually in a linear fashion, but also found as7

macrocycles and other non-linear topologies [5, 6]. The chemical diversity arising from both the8

amino acid composition and their spatial arrangement [7], synthetic accessibility [8, 9], and potential9

for cell penetration [10, 11], have made them increasingly sought after modalities in drug discovery.10

High-throughput screening for peptides that bind to desired target proteins is often carried out by11

using libraries made by genetically-encoded or chemical synthesis approaches, such as phage display12

[12, 13], mRNA display [14, 15], or affinity selection-mass spectrometry [16, 17]. A key challenge13

in genetically-encoded libraries for screening lies in the limitation of this approach to generate14

L-peptides, since cells can produce peptides with naturally occurring amino acids. Recent approaches15

have resulted in libraries with non-canonical amino acids, however, a majority of drug discovery16

efforts still uses L-peptide libraries [18, 19].17

While L-peptide-based libraries are the workhorse of high throughput screening, peptides with18

non-canonical or unnatural amino acids have been shown to have similar or higher activity and19

proteolytically more stable [20, 21]. Thus, it is highly desirable to obtain non-canonical variants20

for L-peptides. Unfortunately, flipping the stereochemistry for each amino acid, and obtaining a21

D-peptide analogue of the L-peptide, does not work for most cases, necessitating further investigation22

into developing chemically similar non-canonical variants.23

In this work, we developed a method to translate L-peptides into non-canonical linear and macrocylic24

peptides. We used a genetic algorithm with a hierarchical dual-objective function, mutating the seed25

peptide sequence to be chemically similar to the reference L-peptide, while ensuring that the binding26

affinity remains same or is higher than the seed sequence. Using DRD2 kinase inhibitor as the target27

protein, we obtained both linear and macrocyclic peptides with non-canonical amino acids with28

higher activity than observed by random sampling of L-peptides.29

2 Results and Discussion30

2.1 L-peptides data set generation31

To simulate a data set of L-peptides, as the one that can be obtained from macrophage display, we32

randomly sampled individual L-amino acids, dipeptides, and tripeptides (Figure 1A). We docked these33

peptides against DRD2 kinase inhibitor to calculate their respective binding affinities characterized34
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Figure 1: Outline of the approach for translating L-peptides into non-canonical linear and
macrocyclic peptides. A. The data set was generated by random sampling, and docking of L-peptides
to DRD2 kinase inhibitor. B. Amino acid positional frequency plot, resulting from the weighted
multiple-sequence alignment of peptides in the data set was computed for the peptides in the data
set. C. An overview of the genetic algorithm involving hierarchical similarity and docking for
optimization of the seed sequence is shown.

by the docking scores. From the data set, we selected the tripeptide YWY, with a docking score of35

-10.3 kcal/mol as the reference peptide (or, the hit compound) for further optimization. We used the36

Python-based DOCKSTRING interface, with AutoDock Vina, for the generation of our initial data37

set, and for later evaluation during the genetic algorithm experiments [22, 23].38

As a method of evaluating how these peptide binders compared with their small molecule analogues,39

we computed a weighted multiple-sequence alignment of the sequences in the data set [24]. The40

weights were based on the docking scores, with a higher docking score resulting in a directly41

proportional weight, and vice-versa. Visualizing the results using an amino acid positional frequency42

plot, we noted that amino acids with aryl groups, such as Y, tyrosine, and W, tryptophan, were in43

abundance (Figure 1B). The results are aligned to the observation of the interacting phenyl groups in44

small molecules binding to DRD2 kinase [25, 26].45

2.2 Representation of peptide46

Peptides were converted to molecular structures, and represented using circular fingerprints. Molecu-47

lar structure representations for both linear and macrocyclic peptides, with L- and D-amino acids,48

were obtained by converting amino acid sequences to simplified molecular-input line-entry system49

(SMILES) strings using RDKit [27]. Bit-based and count-based circular fingerprints, with radius 3,50

size 128 and active chirality, were calculated using RDKit [28].51

2.3 Genetic algorithm and optimization52

Genetic algorithm was set up with a hierarchical objective of (1) achieving high chemical similarity53

to the reference peptide, and (2) increasing binding affinity with the target protein (Figure 1C).54

For mutations, random insertion, deletion, and swapping of amino acids in the seed sequence were55

performed. The ability to mutate in the discrete monomer space, using a pool of L- and D-amino acids,56

helped in increasing the diversity of the peptides, without any worry of synthetic accessibility. In the57

case of macrocyclic peptides, we mutated on the seed peptide string, and then defined a SMILES58

arbitrary target specification (SMARTS) based intra-molecular cyclization reaction to cyclize the59

linear peptides by a head-to-tail amide bond.60
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Figure 2: Optimization for non-canonical linear and macrocylic peptides. Sequence information,
chemical structure, docking score against DRD2 kinase, and the docked pose of the peptide in the
protein are shown for A. linear yGwFp, and B. macrocyclic gvhW peptides.

In our experiments, we used a hierarchical approach of optimizing for similarity, followed by61

optimization for docking scores, motivated by the hypothesis that higher similarity to reference62

peptide will lead to better docking. Briefly, we approached the problem with the idea that if we could63

match the chemical similarity of the reference peptide with the mutated sequence, we could optimize64

further for a better docking score. We often started with simpler peptides, such as AAA and GGG,65

since initial experiments seeding with the reference peptide and other peptides with high docking66

scores did not result in any improvement beyond their initial scores. Additionally, we observed that67

while keeping the computational capacity the same (Dual-core Intel i5, with 8GB memory), chemical68

similarity between two peptides could be computed in microseconds, while docking took 1-3 minutes.69

This observation supported our hypothesis from a computational cost/time standpoint.70

2.4 Optimizing for non-canonical linear and macrocyclic peptides71

To benchmark different approaches, we set up two distinct experiments, first, optimizing for similarity72

and docking score, and another optimizing for docking score alone. In the first experiment, the73

chemical similarity for the mutated peptide to the reference peptide was computed, and the selection74

for further docking was based on the higher similarity between the seed or mutated peptide to the75

reference. Similar to the similarity evaluation, if the mutated peptide had a higher docking score,76

it was carried over to the next iteration, or else, the seed peptide was mutated again. In the second77

experiment, there was no similarity optimization done. In both cases, the seed peptide was mutated78

for at least 10 times, before being evaluated for docking. The genetic algorithm was run for 5079

iterations, thus, a minimum of 500 mutations of the seed sequence was done for each experiment.80

The chemical similarity was computed by evaluating Tanimoto similarity between the fingerprints of81

the reference and mutated peptides [29]. We noted that similarity between the bit-based fingerprints,82

with active and inactive bits for different molecular fragments, led to similarity score of 1.0 within83

10-20 iterations. Such behavior arises from the bit-based fingerprints capturing individual fragments84

alone, irrespective of their position and number of occurrences [30]. As an alternative, we used the85

count-based fingerprints to compute chemical similarity. However, we noted that the docking scores86

of the resulting peptides at the end of experiments based on different fingerprint types were similar.87
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We optimized the seed sequences for both linear and macrocyclic peptides with non-canonical amino88

acids to be similar to the reference peptide YWY with a score of -10.3 kcal/mol, and dock against89

DRD2 kinase protein. The best linear peptide was yGwFp with a docking score of -11.2 kcal/mol,90

while the best macrocyclic peptide was gvhW with a docking score of -10.4 kcal/mol (Figure 2). In the91

optimization run, only the sequence composition could change, while the topology, linear or cyclic,92

had to remain constant for all iterations. We pursued the optimization for both linear and macrocyclic93

peptides through the similarity-docking and docking-only objective functions, and benchmarking94

both bit-based and count-based fingerprints.95

For a particular experiment invovling non-canonical linear peptides, we set the seed to tripeptide aaa96

with a docking score of -7.0 kcal/mol, and the seed of the random generator to 0, and noted how the97

genetic algorithm proceeded. With the bit-based fingerprints, at 21 iterations, the mutated sequence,98

yMwFp, with a docking score of -11.2 kcal/mol, surpassed the docking score of the reference peptide99

sequence, and a Tanimoto similarity of 0.73. In further iterations, the sequence was mutated to yGwFp,100

although the docking score remained unchanged. With the count-based fingerprints, we noted that the101

docking score was surpassed at 3 iterations, with sequence yaNFY having a docking score of -10.7102

kcal/mol and a Tanimoto similarity of 0.54. Ultimately, the sequence got mutated to yaVFY with a103

docking score of -11.1 kcal/mol. In multiple experiments, with different seed sequences and different104

numbers for the random seed generator, we observed similar trends, with the docking score being105

surpassed sooner when the similarity was computed using count-based fingerprints. We attribute this106

observation to the finer granularity of count-based fingerprints, and the Tanimoto similarity thereof.107

Using the docking-only objective function, without any reference peptide sequence, the seed sequence,108

aaa, could mutate to RFEaa with a docking score of -9.2 kcal/mol, which is worse than that of the109

reference sequence. Thus, this experiment underscores the need of a similarity objective function, to110

guide the evolution of the sequence towards a high-affinity sequence, and then optimize the docking111

even further.112

3 Limitations, Future Work and Conclusion113

Our work discussed the development of a genetic algorithm-based method to translate linear L-114

peptides, commonly obtained through high-throughput library screening, to non-canonical linear and115

macrocylic peptides. With a dual objective function of similarity matching to a high-affinity reference116

peptide and maximization of the docking score against the target protein, we were able to obtain117

non-canonical peptides with better docking scores in less than 30 iterations. In the current state, the118

work is limited in its applicability to other target proteins. We aim to to include more proteins and119

evaluate our approach in the near future. Additionally, we look forward to working on experimental120

data sets to translate L-peptides therein or optimize the non-canonical peptides further. We strongly121

believe that this approach can accelerate drug discovery efforts, by enabling the development of more122

stable peptides with similar or higher activity, which can ultimately benefit patients.123
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