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Abstract

Label smoothing loss is a widely adopted technique to mitigate overfitting in deep neural
networks. This paper studies label smoothing from the perspective of Neural Collapse (NC),
a powerful empirical and theoretical framework which characterizes model behavior during
the terminal phase of training. We first show empirically that models trained with label
smoothing converge faster to neural collapse solutions and attain a stronger level of neural
collapse compared to those trained with cross-entropy loss. Furthermore, we show that at
the same level of NC1, models under label smoothing loss exhibit intensified NC2. These
findings provide valuable insights into the impact of label smoothing on model performance
and calibration. Then, leveraging the unconstrained feature model, we derive closed-form
solutions for the global minimizers under both label smoothing and cross-entropy losses.
We show that models trained with label smoothing have a lower conditioning number
and, therefore, theoretically converge faster. Our study, combining empirical evidence and
theoretical results, not only provides nuanced insights into the differences between label
smoothing and cross-entropy losses, but also serves as an example of how the powerful
neural collapse framework can be used to improve our understanding of DNNs.

1 Introduction

The effectiveness of a deep neural network (DNN) hinges significantly on the choice of the loss function
during training. While cross-entropy loss is one of the most popular choices for classification tasks, many
alternatives with improved empirical performance have been proposed. Among these, label smoothing
(Szegedy et al., 2016; Müller et al., 2019; Lukasik et al., 2020) has emerged as a common technique to enhance
the performance of DNNs. Instead of supervising the model training with one-hot key labels, label smoothing
introduces a soft target label by blending the hard target label with a uniform distribution over the labels.
This procedure is generally understood as a means of regularisation for improving the model’s generalizability.

In this paper, we examine the benefits of label smoothing from the perspective of neural collapse (Papyan
et al., 2020), a new and powerful framework for obtaining an improved understanding of DNNs.

Background and Related Work

Deep neural networks (DNNs) typically consist of a non-linear feature extractor and a linear classification layer.
Neural collapse, first observed in (Papyan et al., 2020), occurs in DNNs for classification tasks where the data is
balanced and cross-entropy loss is employed. It characterizes the geometric properties of the features produced
by the feature extractor and the weight vectors of the classifier during the terminal phase of training (TPT):

• NC1: The learned features of samples from the same class approach their respective class means.

• NC2: The collapsed features from different classes and the classification weight vectors approach
the vertices of a simplex equiangular tight frame (ETF).

• NC3: Up to rescaling, the linear classifier weights approach the corresponding class means, giving
a self-dual configuration.
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Other than cross-entropy loss, neural collapse phenomena have been observed and studied under the mean-
squared loss as well (Han et al., 2021; Poggio & Liao, 2020; Zhou et al., 2022a). Furthermore, research has
extended neural collapse investigations to scenarios involving imbalanced data (Fang et al., 2021; Hong &
Ling, 2023; Thrampoulidis et al., 2022; Dang et al., 2023; Hong & Ling, 2023) and cases with a large number
of classes (Jiang et al., 2023).

In addition to being observed empirically, neural collapse has also been proven to arise mathematically.
Beginning with Mixon et al. (2020), a series of studies have employed approximation models such as the
Unconstrained Feature Models (UFMs) Mixon et al. (2020) or layer-peeled models (Fang et al., 2021) to
provide theoretical evidence for the emergence of neural collapse. These optimization models simplify a DNN
by treating the last-layer features as free variables to optimize over, which is justified due to the expressiveness
of DNNs (Hornik, 1991; Cybenko, 1989; Lu et al., 2017; Shaham et al., 2018). Theoretical advancements in
neural collapse not only enhance our understanding of DNNs but also inspire new techniques to improve their
performance in diverse applications, such as imbalanced learning (Xie et al., 2023; Liu et al., 2023), transfer
learning (Galanti et al., 2021; Li et al., 2022), and continual learning (Yu et al., 2022; Yang et al., 2023), etc.

Several studies have explored UFMs under various loss functions and regularization strategies (Wojtowytsch
et al., 2020; Zhu et al., 2021; Dang et al., 2023; Lu & Steinerberger, 2022; Tirer & Bruna, 2022; Tirer et al.,
2023; Yaras et al., 2022; Zhou et al., 2022b). Particularly, Zhou et al.(Zhou et al., 2022b) established that
under the UFM model, the global minimizers for a wide range of loss functions, including cross-entropy
loss and label smoothing loss, have the idealized neural collapse properties and that the UFM model has
a benevolent landscape allowing the global minimizer to be effectively attained using iterative algorithms.
However, their investigation does not provide insights into why label smoothing consistently outperforms
cross-entropy loss, or why label smoothing converges faster during training. In this paper, leveraging the
neural collapse framework, we conduct an in-depth investigation of training under these loss functions,
aiming to explain the reasons behind the observed superiority of label smoothing loss over cross-entropy loss.

Our Contributions

Our study begins with a thorough empirical comparison between cross-entropy (CE) loss and label smoothing
(LS) loss during the training process. Specifically, we carefully study how the last layer features and linear
classifiers evolve during training. Our findings are as follows:

1. Compared with CE loss, models trained under LS loss exhibit accelerated convergence in terms
of training error, testing error, and neural collapse metrics. Furthermore, they converge to a more
pronounced level of NC1 and NC2.

2. Along with accelerated convergence, label smoothing loss maintains a distinct balance between
NC1 and NC2. Notably, as compared with CE loss, LS loss results in a more pronounced level of
NC2 when reaching a comparable level of NC1. We argue that this phenomenon originates from
the implicit inductive bias introduced by LS loss, which equalizes the logits of all non-target classes
and thus promotes the emergence of a simplex ETF structure in both the learned features and
classification weight. We posit that the emphasis on NC2 in label smoothing (LS), which promotes
maximally separable features between classes, enhances the model’s generalization performance.
Conversely, an excessive level of NC1 may cause the features to overly specialize in the training
data, hindering the model’s ability to generalize effectively.

3. Models trained with LS loss exhibit improved calibration Guo et al. (2017) by implicitly regularizing
classification weights and features during training. However, if temperature scaling Guo et al. (2017)
is applied as post-processing to counteract the regularization effect, label smoothing can lead to
deteriorated model calibration. This is because an excessive level of NC1 under label smoothing
can cause the model to be overconfident in its predictions, even when they are incorrect, thereby
negatively impacting model calibration.

Of equal importance to the empirical results, we perform a mathematical analysis of the convergence properties
of the UFM models under CE and LS losses. While Zhou et al. Zhou et al. (2022a) demonstrate that, for
a broad class of loss functions, including CE and LS losses, the global minimizers exhibit neural collapse
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properties, the authors neither derive the exact form of these global minimizers nor thoroughly examine the
landscape around them.

1. We first derive closed-form solutions for the global minimizers under both CE and LS loss functions,
which explicitly depend on the smoothing hyperparameter δ.

2. Utilizing these closed-form solutions, we conduct a second-order theoretical analysis of the
optimization landscape around their respective global optimizers. Within the UFM context, our
mathematical analysis reveals that LS exhibits a more well-conditioned landscape around the global
minimum, which facilitates the faster convergence observed in our empirical study.

This paper provides a significantly deeper understanding of why LS provides better convergence and
performance than CE loss. Additionally, the paper illustrates how the powerful framework of neural collapse
and its associated mathematical models can be employed to gain a more nuanced understanding of the “why”
of DNNs. However, we acknowledge that theoretical evidence about how neural collapse impacts model
generalization is lacking in this study. We hope that our work will inspire future research into the intricate
interplay between neural collapse, convergence speed, and model generalizability.

2 Preliminaries

2.1 The Problem Setup

A deep neural network is comprised of two key components: a feature extractor and a linear classifier. The
feature extractor ϕθ(·) is a nonlinear mapping that maps the input x to the corresponding feature embedding
h := ϕθ(x) ∈ Rd. Meanwhile, the linear classifier involves a weight matrix W = [w1, w2, · · · , wK ] ∈ Rd×K

and a bias vector b ∈ RK . Consequently, the architecture of a deep neural network is captured by the
following equation:

fΘ(x) := W ⊤ϕθ(x) + b, (1)

where Θ := {θ, W , b} represents the set of all model parameters. In this work, we consider training a deep
neural network using a balanced dataset denoted as {(xki, yki)}1≤k≤K,1≤i≤n. This dataset consists of samples
distributed across K distinct classes, with n samples allocated per class. Here, xki represents the i-th sample
from the k-th class, and yki is a one-hot vector with unity solely in the k-th entry. Our objective is to learn
the parameters Θ by minimizing the empirical risk over the total N = nK training samples:

min
Θ

1
N

K∑
k=1

n∑
i=1

l (fΘ(xki), yki) + λ

2 ∥Θ∥2
F , (2)

where l(·, ·) denotes the chosen loss function, and λ > 0 is the regularization parameter (i.e., the weight decay
parameter).

2.2 Training Losses

To simplify the notation, we use z = W ⊤ϕθ(x) + b to represent the network’s output logit vector for a
given input x, and p = Softmax(z) to denote the predicted distribution from the model. The cross-entropy
between the target distribution y and the predicted distribution p is defined as lCE(y, p) = −

∑
k yk log(pk),

where y is a one-hot vector with a value of 1 in the dimension corresponding to the target class. In contrast,
LS loss minimizes the cross-entropy between the smoothed soft label yδ and the predicted distribution p,
denoted as lCE(yδ, p), where the soft label yδ = (1 − δ)y + (δ/K)1K combines the hard ground truth label
y with a uniform distribution over the labels. Here 1K denotes the K-dimensional vector of all ones. The
hyper-parameter δ determines the degree of smoothing.

For simplicity, we use the following formulation to represent both CE loss and LS loss:

lCE(yδ, p) = −
∑

k

yδ
k log(pk), (3)
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where yδ
k = (1 − δ)yk + δ/K. The provided loss corresponds to CE loss when δ = 0, and for any other value

of δ ∈ (0, 1), it represents LS loss.

3 Empirical Analysis of Cross-Entropy and Label Smoothing Losses

This section conducts a comprehensive empirical comparison between cross-entropy (CE) loss and label
smoothing (LS) loss from the perspective of neural collapse. In Section 3.1, we examine the convergence
of the model to neural collapse solutions under both CE and LS losses. Our results demonstrate that while
models under both loss functions converge to neural collapse, LS loss induces faster convergence and reaches
a more pronounced level of neural collapse. Beyond convergence rates, Section 3.2 delves into the dynamics
of convergence, revealing that LS loss introduces a bias toward solutions with a symmetric simplex ETF
structure, thereby enforcing NC2. In Section 3.3, we attempt to understand the impact of label smoothing on
model calibration from the perspective of neural collapse. In addition, we also investigate how the smoothing
hyperparameter δ influences neural collapses during the model training in the appendix B.4.

Experiment Setup. We conducted experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, and
STL-10 (Coates et al., 2011). For consistency with prior studies (Papyan et al., 2020; Zhu et al., 2021), we
adopt ResNet-18 (He et al., 2016) as the backbone network for CIFAR-10 and ResNet-50 (He et al., 2016)
as the backbone for CIFAR-100 and STL-10.

To focus on the behaviors associated with neural collapse and minimize the influence of other factors, we
adopt standard preprocessing techniques without introducing any data augmentation for the training data.
To comprehensively analyze the models’ behavior during TPT, we extend the training period to 800 epochs.
For all datasets, we employ a default batch size of 128, stochastic gradient descent with a momentum of
0.9, and a learning rate that is initialized at 0.05 and undergoes multi-step decay, decreasing by a factor
of 0.1 at epochs 150 and 350. We use a default weight decay of 5 × 10−4, except for the experiments in
Section 3.3, where a weight decay value of 1 × 10−4 is used.

Metrics for Measuring NC. We assess neural collapse in the last-layer features and the classifiers using
metrics based on the properties introduced in Section 1, with metrics similar to those presented in (Papyan
et al., 2020). For convenience, we denote the global mean and class mean of the last-layer features as:

hG = 1
N

K∑
k=1

n∑
i=1

hki, h̄k = 1
n

n∑
i=1

hki, (1 ≤ k ≤ K).

Within class variability (NC1) measures the relative magnitude of the within-class covariance
matrix ΣW := 1

N

∑K
k=1

∑n
i=1(hki − h̄k)(hki − h̄k)⊤ compared to the between-class covariance matrix

ΣB := 1
K

∑K
k=1(h̄k − hG)(h̄k − hG)⊤ of the last-layer features. It is formulated as:

NC1 = 1
K

trace
(

ΣW Σ†
B

)
, (4)

where Σ†
B denotes the pseudo inverse of ΣB .

Distance to simplex ETF (NC2) quantifies the difference between the product of the classifier weight
matrix and the centered class mean feature matrix, and a simplex ETF, defined as follows1:

NC2 :=

∥∥∥∥∥ W ⊤H∥∥W ⊤H
∥∥

F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥∥
F

, (5)

where H = [h̄1 − hG, · · · , h̄K − hG] ∈ Rd×K represents centered class mean matrix.

Self-duality (NC3) measures the distance between the classifier weight matrix W and the centered
class-means H:

NC3 :=

∥∥∥∥∥ W

∥W ∥F

− H∥∥H
∥∥

F

∥∥∥∥∥
F

. (6)

1When the bias b is an all-zero vector or a constant vector, NC2 = 0 implies that the average logit matrix, defined as
Z = W ⊤H + b1T

K , satisfies Z = a
(

I − 1
K

1K1⊤
K

)
for some constant a, i.e., Z is a simplex ETF.
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It is evident that when NC2 in (5) and NC3 in (6) both reach zero, the matrices W and H form the same
simplex ETF up to some scaling factor. Thus, our definitions of NC1-NC3 capture the same concepts as
the definitions in (Papyan et al., 2020) and (Zhu et al., 2021). We say that neural collapse occurs if NC1,
NC2, and NC3 collectively approach zero during the Terminal Phase of Training (TPT).

3.1 Terminal Phase Training under Label Smoothing and Cross-Entropy Loss

In this section, we investigate the distinct behaviors exhibited by models trained under cross-entropy (CE)
and label smoothing (LS) losses during TPT. We conduct experiments on CIFAR10, CIFAR100, and STL10
datasets, with LS loss employing a default smoothing hyperparameter of δ = 0.05. We visualize the training
process in Figure 1.

The leftmost column in Figure 1 (with a detailed view provided in Figure 5 in the Appendix) illustrates
the progression of training and testing errors throughout the training process. As expected, models trained
under LS loss exhibit lower testing errors compared to those under CE loss for all datasets, showcasing an
improvement in model generalizability with LS loss. Furthermore, models trained with LS loss exhibit faster
convergence for both training and testing errors. Figure 1 additionally presents the three neural collapse
metrics for models trained under both cross-entropy and label smoothing losses. While the values of NC3,
representing the alignment of W and H, remain consistently low and comparable under both loss functions,
models with LS loss exhibit faster convergence in both NC1 and NC2 and eventually reach lower levels for both
NC1 and NC2. We provide a theoretical explanation for these empirical findings in Section 4. Additionally,
in Section 3.3, we establish a connection between NC1 and model calibration under both loss functions.
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Figure 1: Neural collapse with cross-entropy and label smoothing losses. Columns from left to
right represent the model’s error rate (Train/Test), NC1, NC2, and NC3 under CE and LS losses.

3.2 Label Smoothing Induces Enhanced NC2

Along with the faster convergence to neural collapse under LS loss, we further observe that LS loss maintains a
distinct balance between NC1 and NC2 throughout training. Specifically, we find that for the same level of NC1,
LS consistently provides a more pronounced manifestation of NC2 compared to CE Loss. Figure 2 provides
scatter plots of NC1 and NC2 under both loss functions, with the NC metrics recorded every 10 training
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Figure 2: Scatter plots for NC1 vs. NC2 under CE/LS losses with colors indicating the testing error
rate, for CIFAR10 (left), CIFAR100 (middle), and STL10 (right) datasets.

epochs. Across all three datasets, the data points under LS loss consistently position to the left of those for CE
loss. This observation suggests that at equivalent levels of NC1, LS loss induces an intensified level of NC2.

To gain insight into this phenomenon, we now closely examine the formulations of cross-entropy and label
smoothing loss. Given an input x, the output logit and the predicted distribution are equal to z = fΘ(x)
and p = Softmax(z), respectively. As per Equation 3, assuming the observation x is from the k-th class, CE
loss is formulated as lCE = − log(pk). To minimize cross-entropy loss, the emphasis is solely on making the
logit of the target class larger than the logits of non-target classes without constraining the logit variation
among the non-target classes.

On the other hand, LS with smoothing hyperparameter δ is given by

lLS = −

(1 − K − 1
K

δ

)
log(pk) + δ

K

∑
l ̸=k

log(pl)

 .

According to Jensen’s inequality, we have

1
K − 1

∑
l ̸=k

log(pl) ≤ log

 1
K − 1

∑
l ̸=k

pl

 = log (1 − pk) ,

with equality achieved only if pl = pl′ (for l, l′ ̸= k). This implies that LS loss reaches its minimum only if the
predicted probabilities for non-target classes are all equal. Thus, LS loss strengthens the inductive bias towards
equalizing the logits of the non-target classes. This property aligns with the definition of NC2 in (5), explaining
why label smoothing loss reinforces NC2. As demonstrated in Section B.1 in the appendix, for deep neural
networks with L2 regularization, the convergence of NC2 as defined in (5) to zero indicates that both the classifi-
cation weight W and class mean features H converge to a simplex ETF structure. The convergence of classifier
weights and class mean features towards a simplex ETF promotes the development of maximally separable
features and classifiers, a critical factor for enhancing overall model performance. We posit that the improve-
ment in model generalizability observed with LS loss can be attributed to the prioritization of enhancing NC2
over NC1 during the training process. Nonetheless, this observation primarily serves as supporting evidence.
Theoretical evidence and more rigorous validation of the benefits of NC2 remain topics for future research.

3.3 Label Smoothing and Model Calibration

DNN models often suffer from poor calibration, where the assigned probability values to class labels tend
to overestimate the actual likelihood of correctness. This issue arises from the high capacity of DNN models,
making them prone to overfitting the training data. Guo et al. (Guo et al., 2017) introduced the expected
calibration error (ECE) as a metric for assessing model calibration. Additionally, they proposed temperature
scaling as an effective post-processing technique for improving calibration, which involves dividing a network’s
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logits by a scalar T > 0 before applying softmax, thereby softening (for T > 1) or sharpening (for T < 1)
the predicted probability to make it more aligned with the true confidence levels.
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Figure 3: Plots of ECE Pre/Post temperature scaling (left
column), alongside feature and classification vector norms
and optical T (right column) for CIFAR10 and CIFAR100
datasets with varying values of δ.

Previous studies (Müller et al., 2019) have
highlighted the effectiveness of label smoothing
in improving model calibration. Conversely,
our empirical study reveals intriguing findings:
without temperature scaling, label smoothing
(with properly tuned smoothing parameter
δ) enhances model calibration compared to
cross-entropy loss, but when temperature scaling
is applied as post-processing, label smoothing leads
to inferior model calibration. This inconsistency
motivates us to investigate the underlying reason.
In this section, we provide an explanation from
the perspective of neural collapse.

Regularization effect of label smoothing
on weight and feature norms. We trained
ResNet18 on CIFAR10 and ResNet50 on CI-
FAR100 using label smoothing loss with various
smoothing hyperparameters ranging from 0 to
0.3. Then, we evaluated models’ testing ECE
both before and after temperature scaling, as
depicted in Figure 3. Our observations reveal
that compared to cross-entropy loss (δ = 0), LS
loss with properly chosen δ lead to lower model calibration error (ECE), while larger values of δ may degrade
model calibration. This is because tuning the smoothing hyperparameter δ has a similar effect to tuning
temperature T in temperature scaling. Particularly, as shown empirically in the right column Figure 3 and
theoretically in Theorem 4.1, increasing δ decreases both the feature and classification vector norms 2, thereby
reducing the confidence level of model predictions. Consequently, the corresponding optimal temperature
T decreases alongside the increase in δ. In fact, there exists a smoothing hyperparameter δ∗ for which the
optimal T equals 1, making temperature scaling post-processing unnecessary. Selecting δ > δ∗ results in
an excessively low confidence level in the model’s predictions, leading to a notable increase in test ECE.

However, if we apply temperature scaling to counteract the regularization effect of LS loss on feature and
classification weight, models trained with LS loss demonstrate higher test ECE (Post ECE as shown in
the left column of Figure 3) compared to models trained with CE loss. We further investigate how this
phenomenon is attributed to the more pronounced level of NC1 under LS loss.

Excessive NC1 adversely impacts model calibration. To investigate the impact of NC1 on model calibra-
tion, we analyze how miscalibration occurs during training, using CIFAR10 data with CE and LS loss (δ = 0.05)
as examples. We specifically partition the test set into two subgroups: those correctly classified and those
incorrectly classified by the model. In Figure 4, the left column illustrates the average CE loss and the average
entropy of the model predictions for both subgroups of test samples. The middle section of the figure showcases
the NC1 metric for the entire test dataset, as well as for each of the subgroups individually. Meanwhile, the right
column of Figure 4 presents the training and testing misclassification errors, accompanied by the test set ECE.

In Figure 4, models trained with CE and LS losses show similar trends. For correctly classified test samples,
both test loss and average entropy exhibit a consistent decreasing trend, indicating the model’s increasing
confidence in its correct predictions. Conversely, for incorrectly classified test samples, although the average
loss starts to increase after 350 epochs, the overall downward trend of entropy suggests the model’s growing
confidence in its incorrect predictions. Moreover, the middle plot in Figure 4 indicates that NC1 for both

2The feature norm is computed as the average norm of each class mean feature, represented by
∑K

k=1 ∥h̄k − hG∥/K. The
classification vector norm is determined as the mean norm of the weight vector for each class given by

∑K

k=1 ∥wk∥/K, where
wk ∈ Rd represents the k-th column of the classifier weight W .
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Figure 4: Leftmost plot: average error and entropy for correctly and incorrectly classified test samples.
Middle plot: NC1 for the training set, testing set, and correctly/incorrectly classified testing samples. Right
plot: model classification error rate and the test ECE before and after temperature scaling.

correctly and incorrectly classified test samples consistently decreases during training. For misclassified
samples, a smaller NC1 indicates that their feature vectors align more closely with the mean of the incorrectly
predicted class, making the model more confident about its incorrect predictions. 3 As a result, the entropy
for misclassified test samples continues to decrease, and the test ECE starts to rise during TPT. And if we
apply temperature scaling to counteract the regularization effect of LS loss on feature and classification vector
norms, LS loss results in higher ECE due to its stronger NC1.

4 Theoretical Analysis

4.1 Unconstrained Feature Model

Analyzing deep neural networks poses significant challenges because of the non-linearities and complex
interactions between layers in the feature mapping h := ϕθ(x). The Unconstrained Feature Model (UFM)
(Fang et al., 2021) simplifies DNN models by treating the features of the last layer as free optimization
variables. This choice is motivated by the idea that over-parameterized DNN models are able to approximate
any continuous functions (Hornik, 1991; Cybenko, 1989; Lu et al., 2017; Shaham et al., 2018).

Recall that the dimension of a feature vector h is denoted by d. Let H = {hki}1≤k≤K,1≤i≤n ∈ Rd×N be
the feature matrix of all training samples with hki denoting the ((k − 1)n + i)-th column of H. Under the
UFM, we investigate regularized empirical risk minimization, a variant of the formulation in Equation 2:

min
W ,H,b

1
N

K∑
k=1

n∑
i=1

lCE(W ⊤hki + b, yδ
k) + λW

2 ∥W ∥2
F + λH

2 ∥H∥2
F + λb

2 ∥b∥2, (7)

where yδ
k = (1 − δ)ek + (δ/K)1K is the soft label for class k with a smoothing parameter δ. Here ek a

one-hot vector with the k-th element equal to 1, and λW , λH , λb > 0 are the regularization parameters.

Let Y = [e11⊤
n , · · · , eK1⊤

n ] ∈ RK×N represent the matrix form of the (hard) ground truth labels. Conse-
quently, the matrix form of the soft labels can be represented as Y δ = (1 − δ)Y + δ

K 1K1⊤
N . The empirical

3For misclassified test samples, we assess the within-class variance relative to the incorrectly predicted class.
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risk minimization in (7) has an equivalent matrix form:

min
W ,H,b

L(W , H, b) := 1
N

lCE(W ⊤H + b1⊤
N , Y δ) + λW

2 ∥W ∥2
F + λH

2 ∥H∥2
F + λb

2 ∥b∥2, (8)

where lCE(W ⊤H + b1⊤
N , Y δ) computes the cross-entropy column-wise and takes the sum.

4.2 Theoretical Results

Within the UFM framework, Zhou et al. (Zhou et al., 2022b) demonstrate that, under a wide range of loss
functions, including CE loss and LS loss, all the global minimizers satisfy neural collapses properties, and in
particular H and W form aligned simplex ETFs. Moreover, they show that every critical point is either
a global minimizer or a strict saddle point, which implies that these global minimizers can be effectively
attained through iterative algorithms. However, their work does not provide the exact expression of the
global minimizers, nor does it provide a landscape analysis (condition number) across different loss functions,
which is critical for understanding the model’s convergence behavior. In contrast, our work derives the
exact solutions of both W and H for UFM models with CE and LS losses. Furthermore, based on these
solutions, we employ conditioning number analysis to closely compare the optimization landscape of the
models surrounding their respective global minimizers, and thereby provide an explanation for the accelerated
convergence observed under LS loss. The proofs of our theorems can be found in the Appendix.

Let λZ :=
√

λW λH and let aδ be defined by

(i) if
√

KNλZ + δ ≥ 1, then aδ = 0;

(ii) if
√

KNλZ + δ < 1, then

aδ = log
(

K√
KNλZ + δ

− K + 1
)

.

Theorem 4.1. (Global Optimizer). Assume that the feature dimension d is greater than or equal to the
number of classes K, i.e., d ≥ K, and the dataset is balanced. Then any global optimizer of (W , H, b) of (8)
satisfies the following condition:

There is a semi-orthogonal matrix P ∈ Rd×K (i.e., P ⊤P = IK) such that:

(i) The classification weight matrix W is given by

W =
(

nλH

λW

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

. (9)

(ii) The matrix of last-layer features H is given by

H =
(

λW

nλH

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

Y . (10)

(iii) The bias b is a zero vector, i.e. b = 0.

The above theorem provides an explicit closed-form solution for the global minimizer (W , H, b). Notably,
our findings indicate that an increase in δ is associated with a decrease in the norm of W and H. This
observation aligns closely with the empirical results detailed in Section 3.3.

Our observations in Section 3 reveal that LS loss demonstrates accelerated convergence in terms of the NC
metrics and training error. To better understand this phenomenon, we analyze the optimization landscape
under the UFM. Note that condition number of the Hessian matrix, representing the ratio of the largest to
the smallest eigenvalue, plays a crucial role in convergence rate analysis (Nocedal & Wright, 1999; Trefethen
& Bau, 2022). In the vicinity of the local minimizer, a smaller condition number typically signifies a faster
convergence rate. We now present our main theoretical result, which, to the best of our knowledge, is the
first result providing insight into the convergence rate to the optimal solution under UFM models.

9
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Theorem 4.2. (Optimization Landscape). Assume the feature dimension d is greater than or equal to the
number of classes K (d ≥ K) and the dataset is balanced. In addition, assume the regularization parameters
and the smoothing parameter satisfy

√
KNλW λH + δ < 1. Then, at the global minimizer (as provided in

Equation 9-10), the Hessian of the empirical loss with respect to W when H is fixed (also the Hessian w.r.t.
H when W is fixed) has smaller condition number under label smoothing loss (0 < δ < 1 −

√
KNλW λH)

than under cross-entropy loss (δ = 0).

This theorem suggests that the LS loss results in a better-conditioned optimization landscape in the vicinity
of the global minimizers, facilitating faster convergence behavior, as observed in Section 3.1. It is noteworthy
that while the theorem primarily analyzes the local landscape around the global minimizer, experimental
results demonstrate that gradient descent with random initialization indeed converges faster to the global
solution of neural collapse under label smoothing loss.

5 Discussion

We conducted a comprehensive empirical comparison of CE loss and LS loss during the training process. We
found that models trained under LS loss exhibit accelerated convergence in terms of training error and neural
collapse metrics. Furthermore, they converge to a more pronounced level of NC1 and NC2. Along with the
accelerated convergence, we found that label smoothing maintains a distinct balance between NC1 and NC2.
We posit that the emphasis on NC2 in LS enhances the model’s generalization performance. Additionally,
we investigated the impact of LS on model calibration from the perspective of neural collapse, revealing
that label smoothing has a regularization effect on the classifier weight and feature norms, and excessively
small NC1 values may adversely affect model calibration.

We performed a mathematical analysis of the convergence properties of the UFM models under CE and
LS losses. We first derived closed-form solutions for the global minimizers under both loss functions. Then
we conducted a second-order theoretical analysis of the optimization landscape around their respective global
optimizers, which reveals that LS exhibits a better-conditioned optimization landscape around the global
minimum, which facilitates the faster convergence observed in our empirical study.

This paper provides a significantly deeper understanding of why LS excels in terms of convergence, performance,
and model calibration compared to CE loss. Additionally, it illustrates how the powerful framework of neural
collapse and its associated mathematical models can be employed to gain a more nuanced understanding
of the "why" of DNNs. We expect that these results will inspire future research into the interplay between
neural collapse, convergence speed, and model generalizability.
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A Appendix

B Additional Experiments

B.1 Metrics for Measuring NC

We introduced the metrics for measuring neural collapse in Section 3. For convenience, we restate them
here, providing additional details about the subtle differences between our definitions and those used in prior
works (Zhu et al., 2021; Zhou et al., 2022b). We denote the global mean and classwise means of the last-layer
features as:

hG = 1
N

K∑
k=1

n∑
i=1

hki, h̄k = 1
n

n∑
i=1

hki, (1 ≤ k ≤ K),

where hG is the global mean and h̄k represents the mean of class k. The metrics for neural collapse are then
defined as follows:

(NC1) Within class variability collapse measures the relative magnitude of the within-class co-
variance ΣW := 1

N

∑K
k=1

∑n
i=1(hki − h̄k)(hki − h̄k)⊤ compared to the between-class covariance matrix

ΣB := 1
K

∑K
k=1(h̄k − hG)(h̄k − hG)⊤ of the last-layer features. It is formulated as:

NC1 = 1
K

trace
(

ΣW Σ†
B

)
,

12
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where Σ†
B denotes the pseudo inverse of ΣB .

(NC2) Convergence to simplex ETF quantifies the difference between the normalized classifier weight
matrix and the centered class mean features in comparison to a normalized simplex ETF, defined as follows:

NC2 :=

∥∥∥∥∥ W ⊤H∥∥W ⊤H
∥∥

F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥∥
F

, (11)

where H = [h̄1 − hG, · · · , h̄K − hG] ∈ Rd×K represents centered class mean matrix.

This definition differs slightly from those in (Zhu et al., 2021; Zhou et al., 2022b). However, it can be
shown that the convergence of NC2 in Equation (11) to zero indicates the simultaneous convergence of
both W and H towards the simplex ETF structure. Specifically, when the bias b is an all-zero vector or a
constant vector, NC2 as defined in (11) approaching zero indicates that the average logit matrix, formulated
as Z = W ⊤H + b1T

K , satisfies the condition Z = a
(
I − 1

K 1K1⊤
K

)
for some constant a. Remarkably, this

matrix aligns with the simplex-encoding label (SEL) matrix introduced in (Thrampoulidis et al., 2022), up to
a scaling factor a.

From Proposition C.4, we have

min
W ⊤H=Z

1
2
(
λW ∥W ∥2

F + λH∥H∥2
F

)
≥ ∥Z∥∗

where ∥Z∥∗ represents the nuclear norm of Z and the equality holds only when H = HY and
H =

√
λW /nλHW , indicating the self-duality of the class mean feature and the classification vector.

Consequently, during the model training with an L2 penalty on both W and H (with the norm of H
implicitly penalized by penalizing the model parameters Θ), the convergence of NC2 as defined in (11) to
zero indicates the simultaneous convergence of both W and H towards the simplex ETF structure.

(NC3) Convergence to self-duality measures the distance between the classifier weight matrix W and
the centered class-means H:

NC3 :=

∥∥∥∥∥ W

∥W ∥F

− H∥∥H
∥∥

F

∥∥∥∥∥
F

. (12)

B.2 Experiment Setup

In this section, we provide with more details for reproducing the experiments presented in the paper. In
particular, we emphasize that the datasets involved in the paper, namely CIFAR10, CIFAR100, and STL10,
are all publicly available for academic usage: CIFAR10 and CIFAR100 datasets are made available under the
MIT license. All experiments are conducted on a single RTX3090 GPU with 24GB memory. For consistency
with prior studies (Papyan et al., 2020; Zhu et al., 2021), we adopt ResNet-18 (He et al., 2016) as the
backbone network for CIFAR-10 and ResNet-50 (He et al., 2016) as the backbone for CIFAR-100 and STL-10.

To focus on behaviors associated with neural collapse and minimize the influence of other factors, we adopted
standard preprocessing techniques without introducing any data augmentation for the training data. We
extended the training period to 800 epochs to analyze the model’s behavior during the terminal phase of
training. For all datasets, we used a default batch size of 128, stochastic gradient descent with a momentum
of 0.9, and a learning rate initialized at 0.05, which undergoes multi-step decay, decreasing by a factor of 0.1
at epochs 150 and 350. We considered two different scenarios for model regularization:

• Model with Weight Decay. For the default setting, we trained the models with weight decay
regularization set at 5 × 10−4. It’s worth noting that the norm of H is implicitly penalized by the
weight decay on the model parameters Θ.

• Simulated UFM Model. To simulate the unconstrained feature model, we turn off the weight
decay and add an L2 penalty on the classifier parameters W and b and the last-layer feature H
to the cross-entropy (CE) or label smoothing (LS) loss. This setting was only used in Section B.6
to validate the theoretical results.
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B.3 Neural Collapses under Cross-Entropy Loss and Label Smoothing Loss
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Figure 5: Comparison of training (top row) and testing (bottom row) error rates using cross-entropy (CE)
and label smoothing (LS) losses.

This section presents additional visualizations supporting the conclusions drawn in the main paper. Figure
5 provides a detailed zoom-in plot illustrating the progression of training and testing errors throughout the
model training process for the CIFAR-10, CIFAR-100, and STL-10 datasets, under both cross-entropy and
label smoothing losses. Notably, the visualization suggests that models trained with label smoothing exhibit
a more rapid convergence in both training and testing errors compared to their cross-entropy counterparts.

B.4 Impact of the Smoothing Hyperparameter

In Section 3.1 and 3.2, a default smoothing hyperparameter of δ = 0.05 is utilized. This section explores
how the choice of δ impacts the model’s convergence to neural collapse and its generalizability. Specifically,
we consider various values for δ within the interval [0, 1).

Figure 6 presents the results of the experiments. The experiments yield several important insights. Firstly,
the smoothing hyperparameter significantly influences the model’s convergence to neural collapse. The curves
of NC1 and NC2 as a function of δ (2nd column in Figure 6) reveal a U-shaped trend, with the levels of
NC3 remaining relatively consistent across different values of δ. Exceptionally small and large values of
δ result in reduced collapse for both NC1 and NC2.

Secondly, the average norms of the classifier vectors and the class mean features decrease as δ increases. This
observation aligns with intuition: given features and classifier vectors that form a simplex ETF structure,
decreasing their norms softens the output probabilities. For LS loss, a higher smoothing parameter δ
corresponds to smoother target labels, and consequently, the features and classification vectors with lower
norms can achieve close-to-zero label smoothing loss. This observation was also supported by the closed-form
expressions for W and H provided in Theorem 4.1. Thirdly, the trend of the test error also exhibits a
U-shape, underscoring the necessity of selecting an appropriate δ. When δ approaches 1, the nearly uniform
smoothed labels do not provide effective training signals to update the parameters. Additionally, the norm
of both classification vectors and the last-layer features decrease towards zero, causing the classifier to be
dominated by noise, leading to rapid deterioration in model performance. Finally, we observe a surprising
robustness in both neural collapse metrics and model performance for the choice of δ ∈ [0.02, 0.8]. For
classification tasks with a larger number of classes, such as CIFAR-100, opting for a relatively large δ is
viable.
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Figure 6: The effect of the smoothing hyperparameter δ. The columns from left to right visualize
(a) NC metrics vs. δ, (b) Average norm of classification weight vectors and mean features vs. δ, and (c)
Testing performance (test error rate) vs. δ.

B.5 Weight and Feature Regularization Improve Model Calibration

As mentioned in Section 3.3, label smoothing loss (with properly chosen δ) can improve model calibration.
This improvement is due to the regularization effect of label smoothing on the classification vector norm
and last-layer feature norm, which leads to predictions with lower confidence. To support this, Figure 7
presents a 20-bin reliability plot (Niculescu-Mizil & Caruana, 2005) for models trained under CE and LS
losses for CIFAR-10, with a default smoothing hyperparameter of 0.05. Additionally, we include a plot
showing the percentage of samples in each confidence bin. Clearly, LS loss exhibits less confidence in its
predictions and better model calibration compared to CE loss without temperature scaling. In the right
column of Figure 7, we employ temperature scaling to calibrate the model, with the hyperparameter T
selected through cross-validation. Notably, after temperature scaling, models trained with CE loss achieve
even better calibration than those trained with LS loss. This is because temperature scaling counteracts the
regularization effect of label smoothing on the classification vector norm and feature norm. Consequently, LS
loss can result in worse test expected calibration error (ECE) due to an excessive level of NC1.

B.6 Empirical Validation of Theoretical Results

In Theorem 4.1, we derive closed-form solutions for both the mean feature matrix H and the classifier
weight matrix W , both exhibiting a simplex ETF structure. To validate these theoretical findings, we train
ResNet18 models on CIFAR10 dataset with varying smoothing parameters δ. To ensure consistency with
the UFM model, we adopted the simulated UFM model as introduced in Section B.2, where weight decay is
disabled, and L2 regularization is applied to the last-layer features and classification parameters, ensuring
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Figure 7: Reliability plots with 20 bins (top row) and the percentage of samples in each bin (bottom row) for
models trained with cross-entropy (CE) and label smoothing (LS) losses, both pre- (left column) and post-
(right column) temperature scaling. The results are based on the CIFAR-10 dataset.

exact regularization effects. We set the regularization parameters as follows: λW = 10−3, λH = 10−6, and
λb = 10−2. Under these settings, we compare the trained average feature norm ∥h∥ =

∑K
k=1 ∥h̄k − hG∥/K

and average classification vector norm ∥w∥ =
∑K

k=1 ∥wk∥/K with their theoretical counterparts derived from
Theorem 4.1 which can be represented as

∥h∥∗ =
√

(K − 1)aδ/K

(
nλH

λW

)−1/4
, ∥w∥∗ =

√
(K − 1)aδ/K

(
nλH

λW

)1/4
.

Figure 8 illustrates the differences between the trained predictions ∥h∥ and ∥w∥ and their theoretical solutions
for models trained under LS loss with different δ. The plot shows a clear decreasing trend in the relative
error between the empirical and theoretical values for both the feature and classification vector norms, with
differences reducing to below 0.01 across all cases. These results demonstrate that the empirical findings
align with the theoretical predictions, thereby verifying Theorem 4.1.
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Figure 8: Relative error of classification vector norm ∥w∥ and feature norm ∥h∥ compared to their theoretical
results over epochs for ResNet-18 on CIFAR10.

According to Theorem 4.2, models trained with label smoothing loss (satisfying
√

KNλZ + δ < 1) converges
faster than models trained with cross-entropy loss. In Figure 9, we train ResNet18 and ResNet50 on CIFAR10
and CIFAR100, respectively, with a default weight decay value of 5 × 10−4. Comparing models trained with
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Figure 9: Comparison of model convergence under weight decay regularization. From left to right, the figures
display the models’ training error rate, NC1, NC2, and NC3 with varying smoothing hyperparameters δ.

different smoothing hyperparameters, we observe that for a wide range of δ values, models with larger δ
converge faster in terms of both training error and NC metrics.

Furthermore, we investigate model convergence under the simulated UFM model, where weight decay is
disabled, and L2 regularization is added. As illustrated in Figure 10, across a wide range of δ such that√

KNλZ + δ < 1, we observe faster convergence for larger δ values.
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Figure 10: Comparison of model convergence under simulated UFM model. From left to right, the figures
display the models’ training error rate, NC1, NC2, and NC3 with varying smoothing hyperparameters δ.

C Proofs

The first key observation of the phenomenon of neural collapse, that is (NC1), refers to a type of collapse
that involves the convergence of the feature of samples from the same class to a unique mean feature vector.
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The second key observation of neural collapse, namely (NC2), involves these unique mean feature vectors
(after recentering by their global mean) as they form an equiangular tight frame (ETF), i.e., they share the
same pairwise angles and length. Before providing the theoretical poof, we first formally define the rank K
canonical simplex ETF in the definition below.

C.1 Basics

Definition C.1. (K-simplex ETF) A K-simplex ETF is a collection of points in Rd specified by the columns
of the matrix

M =
√

K

K − 1P

(
IK − 1

K
1K1⊤

K

)
,

where IK ∈ RK×K is the identity matrix and 1K ∈ RK is the ones vector, and P ∈ Rd×K(d ≥ K) is a
partial-orthogonal matrix such that P ⊤P = IK .

Note that the matrix M satisfies:

M⊤M = K

K − 1

(
IK − 1

K
1K1⊤

K

)
.

Next, we prove a series of lemmas that will prove crucial upon establishing our main theorems.
Lemma C.2. (Young’s Inequality) Let p, q be positive numbers satisfying 1

p + 1
q = 1. Then for any a, b ∈ R,

we have
|ab| ≤ |a|p

p
+ |b|q

q
,

where the equality holds if and only if |a|p = |b|q. The case for p = q = 2 is just the AM-GM inequality which
is |ab| ≤ 1

2
(
a2 + b2), where the equality holds if and only if |a| = |b|

Lemma C.3. For any fixed Z ∈ RK×N and α > 0, we have

min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
= ∥Z∥∗. (13)

Here ∥Z∥∗ denotes the nuclear norm of Z:

∥Z∥∗ :=
∑

k

σk(Z) = trace(Σ), with Z = UΣV ⊤,

where {σk}min(K,N)
k=1 denote the singular values of Z, and Z = UΣV ⊤ is the singular value decomposition

(SVD) of Z.

Proof. Let Z = UΣV ⊤ be the SVD of Z. From the fact that UU⊤ = I, V V ⊤ = I, and trace
(
A⊤A

)
=

∥A∥2
F , we have

∥Z∥∗ = trace(Σ) = 1
2
√

α
trace

(√
αU⊤UΣ

)
+

√
α

2 trace

(
1√
α

ΣV ⊤V

)
= 1

2
√

α

(∥∥∥α1/4UΣ1/2
∥∥∥2

F
+ α

∥∥∥α−1/4Σ1/2V ⊤
∥∥∥2

F

)
.

This implies that there exists some W = α1/4Σ1/2U⊤ and H = α−1/4Σ1/2V ⊤, such that ∥Z∥∗ =
1

2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
, which further indicates that

∥Z∥∗ ≥ min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
. (14)
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On the other hand, for any W ⊤H = Z, we have

∥Z∥∗ = trace(Σ) = trace(U⊤ZV ) = trace(U⊤W ⊤HV )

≤ 1
2
√

α

∥∥U⊤W ⊤∥∥2
F

+
√

α

2 ∥HV ∥2
F = 1

2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
,

where the first inequality is guaranteed by Young’s inequality in Lemma C.2, and equality only holds when
W U =

√
αHV . The last equality follows because UU⊤ = I and V V ⊤ = I . Therefore, we have

∥Z∥∗ ≤ min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
. (15)

Combining the results in (14) and (15), we complete the proof.

Proposition C.4. Consider matrics H = [H1, · · · , Hn] ∈ Rd×N and Z = [Z1, · · · , Zn] ∈ RK×N , where
Hi ∈ Rd×K and Zi ∈ RK×K with N = nK. Let H = 1

n

∑
i Hi and Z = 1

n

∑
i Zi. Then Z = W ⊤H

indicates Z = W ⊤H. If Z is a symmetric matrix, then we have

min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
= min

Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + αn∥H∥2
F

)
= ∥Z∥∗, (16)

with the minimum is reached only if Hi = H (for ∀i = 1, · · · , n) and W =
√

αnH.

Proof. From Lemma C.2, we have ∥H∥2
F =

∑
i ∥Hi∥2

F ≥ n∥H∥2
F , with the equality hold only when Hi = Hj

for any i ̸= j . Consequently, this yields the following result:

min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + α∥H∥2
F

)
= min

Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + αn∥H∥2
F

)
.

Utilizing Lemma C.3, we further deduce:

min
Z=W ⊤H

1
2
√

α

(
∥W ∥2

F + αn∥H∥2
F

)
= ∥Z∥∗.

This minimum is achieved only when W =
√

αnH, thus completing the proof.

D Proof of Theorem 4.1

D.1 Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1 in Section 4, which we restate as follows.
Theorem D.1. (Global Optimizer). Assume that the feature dimension d is no less than the number of
classes K, i.e., d ≥ K, and the dataset is balanced. Then any global optimizer of (W , H, b) of

min
W ,H,b

L(W , H, b) := 1
N

lCE(W ⊤H + b1⊤
N , Y δ) + λW

2 ∥W ∥2
F + λH

2 ∥H∥2
F + λb

2 ∥b∥2 (17)

satisfies the following properties:

The classification weight matrix W is given by

W =
(

λHn

λW

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

. (18)

The matrix of last-layer feature H can be represented as

H = HY , H =
(

λW

λHn

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

. (19)
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The bias b is a zero vector, i.e. b = 0.

Here, P ∈ Rd×K(d ≥ K) is a partial orthogonal matrix such that P ⊤P = IK and aδ satisfies:

(i) if
√

KNλZ + δ ≥ 1, then aδ = 0;

(ii) if
√

KNλZ + δ < 1, then

aδ = log
(

K√
KNλZ + δ

− K + 1)
)

.

with λZ =
√

λW λH .

Proof. The main idea of proving Theorem 4.1 is first to connect the problem (17) to its corresponding convex
counterpart. This allows us to derive the precise form of the global minimizer for the convex optimization
problem. Subsequently, we can further characterize the specific structures of W and H based on the acquired
global minimizer.

Connection of (17) to a Convex Problem. Let Z = W ⊤H ∈ RK×N represent the output logit matrix
with N = nK and α = λH

λW
. Utilizing Lemma C.3, we get:

min
W ⊤H=Z

λW ∥W ∥2
F + λH∥H∥2

F =
√

λW λH min
W ⊤H=Z

1√
α

(
∥W ∥2

F + α∥H∥2
F

)
(20)

= 2
√

λW λH∥Z∥∗,

where ∥Z∥∗ represent nuclear norm of Z. Additionally from Lemma C.3, the minimum is attained only when
H = HY and W =

√
αnH =

√
λH

λW n H.

Let λZ :=
√

λW λH , then Equation (17) becomes:

min
Z,b

L(Z, b) := 1
N

lCE(Z + b1⊤
N , Y δ) + λZ∥Z∥∗ + λb

2 ∥b∥2, (21)

which is a convex optimization problem.

Characterizing the Optimal Solution of (17) based on the Convex Program (21): We first derive
the exact form of the global minimizer for the convex optimization problem (21). Particularly, we first
establish that the predicted logit vectors within each class collapse to their sample means, i.e., Z = ZY
(Lemma D.3). Subsequently, we derive the closed-form solution of Z in Lemma D.5.

Furthermore, from Lemma C.3, we establish that the minimum in (20) is attained only if H = HY and
W =

√
λH

λW n H . Since Z = W ⊤H , combining the above result with Lemma D.5 yields the global minimizer
(W , H, b) of (17), satisfying:

W =
(

λHn

λW

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

, (22)

H = HY , H =
(

λW

λHn

)1/4 √
aδP

(
IK − 1K1⊤

K/K
)

, (23)

and
b = 0,

where P ∈ Rd×K(d ≥ K) is a partial orthogonal matrix such that P ⊤P = IK and aδ is defined per the
specifications in Lemma D.5.

Hence, we conclude the proof.
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D.2 Supporting Lemma

Lemma D.2. (Optimality Condition) The first-order optimality condition of L(Z, b) in Equation (21) is

N−1 (Y δ − P
)

∈ λZ∂∥Z∥∗, N−1 (Y δ − P
)

1N = λbb, (24)

where P is the prediction matrix defined as

P = {pki}1≤k≤K,1≤i≤n ∈ RK×N , pki := exp(zki + b)
⟨exp(zki + b), 1K⟩

, (25)

Y δ is the matrix of the smoothed soft target defined as

Y δ = (1 − δ)Y + δ

K
1K1⊤

N , Y = [e11⊤
n , · · · , eK1⊤

n ] ∈ RK×N , (26)

and ∂∥Z∥∗ represents the subdifferential of the nuclear norm of Z.

Proof. Consider
L(Z, b) = 1

N
lCE(Z + b1⊤

N , Y δ) + λZ∥Z∥∗ + λb

2 ∥b∥2

in (21). Define

ϕ(Z, b) = 1
N

lCE(Z + b1⊤
N , Y δ) = 1

N

K∑
k=1

n∑
i=1

lCE(zki + b, yδ
k), (27)

where yδ
k = (1 − δ)ek + δ

K 1K is the smoothed target. The gradient of ϕ is

∂ϕ

∂zki
= 1

N

(
pki − yδ

k

)
,

∂ϕ

∂b
= 1

N

∑
k,i

(
pki − yδ

k

)
,

whose matrix form is:
∂ϕ

∂Z
= 1

N

(
P − Y δ

)
,

∂ϕ

∂b
= 1

N

(
P − Y δ

)
1N .

Hence the gradient (subgradient) of L is

∂L
∂Z

= N−1(P − Y δ) + λZ∂∥Z∥∗,
∂L
∂b

= N−1(P − Y δ)1N + λbb,

where ∂∥Z∥∗ is the subdifferential of the nuclear norm at Z. Thus, (Z, b) is a global minimizer of L if its
gradient (subgradient) is equal to zero, i.e.

N−1(Y δ − P ) ∈ λZ∂∥Z∥∗, N−1(Y δ − P )1N = λbb.

Lemma D.3. Assume that the number of classes K is less than the feature dimension d, i.e., K ≤ d, and
the dataset is balanced. Then the prediction vectors, formulated as zki = fΘ(xki), (1 ≤ k ≤ K, 1 ≤ i ≤ n)
within each class collapse to their sample means z̄k:

zki = z̄k, 1 ≤ i ≤ n, (28)

In other words, the prediction matrix Z can be written as the following factorized form:

Z = ZY ∈ RK×N (29)

where
Z = [z̄1, . . . , z̄K ], Y = [e11⊤

n , · · · , eK1⊤
n ].
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Proof. The proof follows from the convexity of the loss function. Recall that the loss function in (21) was
given by

L(Z, b) := ϕ(Z, b) + λZ∥Z∥∗ + λb

2 ∥b∥2,

where ϕ(Z, b) is the Cross-Entropy (CE) or Label Smoothing (LS) loss (depending on the value of the
smoothing parameter δ) as defined in (27). Recalling that {zik}n

i=1 belong to the same class and z̄k =
n−1∑n

i=1 zki is their respective sample mean. From Jensen’s inequality, we have

ϕ(Z, b) = 1
Kn

K∑
k=1

n∑
i=1

lCE(zki + b, yδ
k)

≥ 1
K

K∑
k=1

lCE

(
1
n

n∑
i=1

(zki + b), yδ
k

)

= 1
K

K∑
k=1

lCE(z̄k + b, yδ
k)

where the inequality becomes equality only when zki = z̄k.

In the rest of the proof, we employ a permutation argument. Let Zl = [z1l, · · · , zKl] for 1 ≤ l ≤ n and
Z̃ = [Z1, · · · , Zn]. Let Γi represent a distinct permutation of n. Consider Z̃Γi = Z̃ΠΓi , where ΠΓi is a
permutation matrix rearranging Z̃ so that the elements Zl are ordered according to Γi. Then

∥Z̃Γi
∥∗ = ∥Z̃∥∗ = ∥Z∥∗.

Since ∥ · ∥∗ is a convex function, we deduce

∥Z∥∗ = 1
n!

(∑
i

∥∥Z̃Γi

∥∥
∗

)
≥

∥∥∥∥∥ 1
n!
∑

i

Z̃Γi

∥∥∥∥∥
∗

,

where the inequality becomes equality only when Zl = Z(1 ≤ l ≤ n) or equivalently zki = z̄k. As a result, it
holds that

L(Z, b) = ϕ(Z, b) + λZ∥Z∥∗ + λb

2 ∥b∥2

≥ 1
K

K∑
k=1

lCE(z̄k + b, yδ
k) + λZ∥Z∥∗ + λb

2 ∥b∥2

= 1
N

lCE

(
ZY + b1⊤

N , Y δ
)

+ λZ∥Z∥∗ + λb

2 ∥b∥2.

The global optimality of L(Z, b) implies that Z = ZY , i.e., zki = z̄k for 1 ≤ k ≤ n.

Lemma D.4. Assume zki = z̄k, for 1 ≤ k ≤ K, 1 ≤ i ≤ n and ⟨z̄k, 1K⟩ = 0, then it holds that

N−1
(

(1 − δ)IK + δ

K
JK − P

)
= λZ

(
n−1/2

[(
ZZ⊤)†]1/2

Z + R

)
,

n

N

(
(1 − δ)IK + δ

K
JK − P

)
1K = λbb,

where JK ∈ RK×K is the ones matrix, Z = [z̄1, · · · , z̄K ] ∈ RK×K , and R satisfies RZ⊤ = 0, Z⊤R = 0, and
∥R∥ ≤ n−1/2.

In particular, if Z is of rank K − 1, then

N−1
(

(1 − δ)IK + δ

K
JK − P

)
= λZ√

n

([(
ZZ⊤)†]1/2

Z

)
.
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Proof. Under the assumption, zki = z̄k, 1 ≤ i ≤ n, and ⟨z̄k, 1K⟩ = 0, we have Z = ZY and P = P Y , where
P is defined as

P = [p̄1, · · · , p̄K ]
with p̄k as the probability vector w.r.t. the z̄k + b. Then the optimality condition in (24) reduces to

N−1
(

(1 − δ)IK + δ

K
JK − P

)
Y ∈ λZ∂∥Z∥∗. (30)

Let Z = UΣV ⊤ be the SVD of Z, then we have:

∂∥Z∥∗ = {UV ⊤ + R : ∥R∥ ≤ 1, U⊤R = 0, RV = 0},

where
UV ⊤ =

[(
ZZ⊤)†]1/2

Z.

Since Z = ZY and Y Y ⊤ = nIK , we further get:

UV ⊤ = n−1/2
[(

ZZ⊤)†]1/2
ZY .

Then (30) is equivalent to:

N−1
(

(1 − δ)IK + δ

K
JK − P

)
Y = λZ

(
n−1/2

[(
ZZ⊤)†]1/2

ZY + R

)
,

where R is in the form of
R = RY , R = [r̄1, · · · , r̄K ]

such that
RY

(
ZY

)⊤ = nRZ⊤ = 0, Z⊤R = 0, ∥n1/2R∥ ≤ 1.

This further leads to

N−1
(

(1 − δ)IK + δ

K
JK − P

)
= λZ

(
n−1/2

[(
ZZ⊤)†]1/2

Z + R

)

where RZ⊤ = 0, Z⊤R = 0 and ∥R∥ ≤ n−1/2.

For b, it is easy to see that the optimality condition in equation 24 reduces to

λbb = N−1 (Y δ − P
)

1N = n

N

(
(1 − δ)IK + δ

K
JK − P

)
1K .

Now, if Z is of rank K − 1, since 1⊤
KZ = 0, the columns of R are parallel to 1K . Moreover, P is a positive

left stochastic matrix with P ⊤1K = 1K , and therefore IK − P is also of rank K − 1. The left stochasticity
of P further deduces that (IK − P )T 1K = 0. In other words, 1K is in the left null space of IK − P , which
in turn implies R = 0. This leads to

N−1
(

(1 − δ)IK + δ

K
JK − P

)
= λZ√

n

([(
ZZ⊤)†]1/2

Z

)
.

Lemma D.5. Assume that the number of classes K is less than or equal to the feature dimension d, i.e.,
K ≤ d, and the dataset is balanced. Then the global minimizer (Z, b) of (21) satisfies the following properties:

Z = ZY , Z = aδ(IK − JK/K), b = 0. (31)

In Particular, we have
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(i) if
√

KNλZ + δ ≥ 1, then aδ = 0;

(ii) if
√

KNλZ + δ < 1, then

aδ = log
(

K√
KNλZ + δ

− K + 1)
)

Proof. From Lemma D.3, we have Z = ZY . Moreover, according to Lemma 8 in (Zhou et al., 2022b), there
exists a constant a such that the global optimum of (21) satisfies:

Z = a
(
IK − 1K1⊤

K/K
)

Y , b = 0.

Equivalently, we have Z = a
(
IK − 1K1⊤

K/K
)
. Further, we define P = [p̄1, · · · , p̄K ] with p̄k as the probability

vector w.r.t. the logit zk + b. Then,

P = JK + (ea − 1)IK

K − 1 + ea
, (32)

and

(1 − δ)IK + δ

K
JK − P = (1 − δ)IK + δ

K
JK − JK + (ea − 1)IK

K − 1 + ea

=
(

K

K − 1 + ea
− δ

)(
IK − 1

K
JK

)

Recall that the first-order optimality condition as expressed in Lemma D.2 indicates that:

(1 − δ)IK + δ

K
JK − P = NλZ

(
n−1/2

[(
ZZ⊤)†]1/2

Z + R

)
(33)

= NλZ

(
sign(a)

√
1
n

(IK − JK/K) + R

)
. (34)

Suppose a ̸= 0, then Z has rank K − 1 and we have R = 0. Thus the above optimality condition implies:(
K

K − 1 + ea
− δ

)
(IK − JK/K) = sign(a)

√
KNλZ(IK − JK/K),

which is equivalent to
K

K − 1 + ea
− δ = sign(a)

√
NKλZ .

For a > 0, the above equation has the following solution:

a = log
(

K√
NKλZ + δ

− K + 1
)

if
√

NKλZ + δ < 1.

If
√

NKλZ + δ ≥ 1, then we select a = 0, and noting that in that case P = K−1JK , we have that the
optimality condition in (33) implies that R satisfies

(1 − δ)IK + δ − 1
K

JK = NλZR.

We get

R = 1
NλZ

[
(1 − δ)IK + δ − 1

K
JK

]
,

where ∥R∥ ≤ n−1/2 meets the requirement of the optimality condition.
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E Proof of Theorem 4.2

In this section of the appendices, we prove Theorem 4.2.

Proof. To provide insight into the accelerated convergence of the model under label smoothing loss, we
examine the Hessian matrix of the empirical loss function, defined as follows:

min
W ,H

ϕ(W , H) := 1
N

lCE(W ⊤H, Y δ). (35)

Under commonly used deep learning frameworks, the model parameters are updated iteratively, and it is
common and often practical to analyze the Hessian matrix with respect to H, W individually rather than
considering the full Hessian. Particularly, we demonstrate that the Hessian of the empirical loss concerning
W when H is fixed and the Hessian w.r.t. H when W is fixed are positive semi-definite at the global
optimizer under both cross-entropy and label smoothing losses. Furthermore, we establish that the condition
numbers of these Hessian matrices are notably lower under the LS loss in comparison to the CE loss.

Hessian matrix with respect to Z. Let Z = W ⊤H ∈ RK×N represent the prediction logit matrix. In
the proof of Lemma D.2, we obtained the first-order partial derivatives of the loss ϕ:

∂ϕ

∂zki
= 1

N

(
pki − yδ

k

)
,

∂ϕ

∂b
= 1

N

∑
k,i

(
pki − yδ

k

)
,

where pki is the prediction for the i-th sample that belongs to the k-th class and yδ
k is the soft label for class

k with a smoothing parameter δ. These partial derivatives lead to the corresponding second-order partial
derivatives of the loss ϕ:

∂2ϕ

∂z2
ki

= 1
N

(
diag(pki) − pkip

⊤
ki

)
,

∂2ϕ

∂zki∂zk′i′
= 0, ∀(k, i) ̸= (k′, i′),

∂2ϕ

∂b2 = 1
N

∑
k,i

(
diag(pki) − pkip

⊤
ki

)
,

∂2ϕ

∂zki∂b
= 1

N

(
diag(pki) − pkip

⊤
ki

)
.

From Theorem 4.1, we have the global optimizer satisfies z2
ki = z̄k and p2

ki = p̄k, 1 ≤ k ≤ K, 1 ≤ i ≤ n.
Consequently, it follows that ∂2ϕ

∂z2
ki

= ∂2ϕ
∂z2

ki′
(∀1 ≤ i, i′ ≤ n). To simply the notation, we denote

Dk = diag(p̄k) − p̄kp̄⊤
k . (36)

Then we have ∂2ϕ
∂z2

ki

= Dk/N .

The closed-form solution for P in (32) yields the expression:

p̄k = 1
K − 1 + eaδ

(
(eaδ

− 1)ek + 1K

)
. (37)

To simplify the notation, we denote

pt = eaδ

/(K − 1 + eaδ

), pn = 1/(K − 1 + eaδ

), (38)

where pt (pn) is the predicted probability for the target (non-target) class at the global optimal solution.
Under this notation, we have pt + (K − 1)pn = 1 and p̄k = (pt − pn)ek + pn1K .

For any 1 ≤ k ≤ K, pkp⊤
k is a positive matrix and the associated Laplacian Dk is positive-semidefinite

with all eigenvalues non negative. The smallest eigenvalue of the Laplacian matrix Dk is σ1 = 0 with the
corresponding eigenvector v1 = 1K/∥1K∥.
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Define
v2 = (Ke1 − 1K)/∥Ke1 − 1K∥,

then we have

Dkv2 = diag (p̄k) v2 − p̄kp̄⊤
k v2

= Kptpnv2,

from which we get Kptpn is an eigenvalue of Dk with the corresponding eigenvector v2.

Consider the outer-product matrix pkp⊤
k , its largest eigenvalue is ∥pk∥2 with the eigenvector pk/∥pk∥. Its

null space is of dimension K − 1. Particularly, we can find a set of the basis vectors for Null(pkp⊤
k ) as follows:

{o1, · · · , oK−1 : span(o1, pk) = span(ek, pk)}, (39)

which means the vectors o1 and pk span the same 2D space as ek and pk.

Note that
span(ek, pk) = span(v1, v2),

where v1, v2 are the eigenvector for Dk.

Then we can show that o2 · · · , oK−1 are eigenvectors of Dk with the corresponding eigenvalue as σ3 = pn.
Particularly, with ol orthonormal to both p̄k and ek, we have

Dkol = diag (p̄k) ol − p̄kp̄⊤
k ol

= diag (p̄k) ol

= pnol,

for ol(2 ≤ l ≤ K − 1) defined in (39).

To summarize the unique eigenvalues of the matrix D are

σ1 = 0, σ2 = pn, σ3 = Kptpn (40)

with pt and pn defined in (38).

Hessian matrix with respect to H. The gradient of ϕ with respect to hki is

∂ϕ

∂hki
= ∂zki

∂hki

∂ϕ

∂zki
= W

∂ϕ

∂zki
.

Further, we can easily get the corresponding Hessian:

∂2ϕ

∂h2
ki

= W
∂2ϕ

∂z2
ki

W ⊤ = 1
N

W DkW ⊤,
∂2ϕ

∂hki∂hk′i′
= 0, (41)

where Dk is the Laplacian matrix as defined in (36).

From Theorem 4.1, we have

W =
(

λHn

λW

)1/4 √
aδP (IK − JK/K) .

For simplicity, we denote aδ
W = (λHn/λW )1/4

√
aδ, then W = aδ

W P (IK − JK/K). Under this notation, we
have

1
N

W DkW ⊤ = (aδ
W )2

N
P (IK − JK/K)Dk(IK − JK/K)P ⊤ (42)

= (aδ
W )2

N
P DkP ⊤. (43)
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Note that P ∈ Rd×K , (d > K) is a partial orthogonal matrix. Given the eigenvalues of Dk in (40), the
eigenvalues for (42) are:

λ1 = 0, λ2 = (aδ
W )2

N
pn, λ3 = (aδ

W )2

N
Kptpn (44)

with the corresponding multiplicities m(λ1) = 1 + d − K, m(λ2) = K − 2, m(λ3) = 1.

From (47), the hessian of ϕ with respect to h = vec(H) is a block diagonal matrix which can be expressed as

∂2ϕ

∂h2 = 1
N

blkdiag(W D1W ⊤, · · · , W D1W ⊤, · · · , W DKW ⊤, · · · , W DKW ⊤). (45)

The unique eigenvalues of the Hessian matrix ∂2ϕ
∂h2 are the same as provided in (44). Given that the Hessian

matrix contains a zero eigenvalue, our analysis centers on its condition number within the non-zero eigenvalue
space. This is calculated as follows:

κ(∇2
hϕ) = λ3/λ2 = Kpt (46)

Considering the formula for pt given in (38), an increase in δ leads to a decrease in pt, subsequently resulting
in a smaller condition number.

Hessian matrix with respect to W . The gradient of ϕ with respect to wl(l = 1, · · · , K) is

∂ϕ

∂wl
= ∂zki

∂wl

∂ϕ

∂zki
.

Further, we get the corresponding Hessian:

∂2ϕ

∂wl∂wl′
=
∑
k,i

∂zki

∂wl′

∂2ϕ

∂z2
ki

(
∂zki

∂wl

)⊤

=
∑
k,i

hkie
⊤
l′

∂2ϕ

∂z2
ki

elh
⊤
ki

=
∑
k,i

Dk(l′, l)hkih
⊤
ki

= n
∑

k

Dk(l′, l)h̄kh̄⊤
k

where Dk(l′, l) is (l′, l)-th element in Dk and h̄k is the k-th column vector in H as defined in 19. From the
defination of Dk in (36), we have

∂2ϕ

∂wl∂wl′
=
{

nH
[
diag(p̄l) − diag(p̄l)2]H⊤ if l = l′

nH [−diag(p̄l)diag(p̄l′)] H⊤ if l ̸= l′

where p̄l is the average prediction vector as defined in (37). Particularly, the l-th element of p̄l equals pt and
the others equal pn.

From (19), we have

H =
(

λW

λHn

)1/4 √
aδP (IK − JK/K) .

Hence, the Hessian of ϕ w.r.t. the w = vec(W ) can be written as:

∂2ϕ

∂w2 = n

(
λW

λHn

)1/2
aδDP DΠSDΠD⊤

P (47)

where
DP = blkdiag(P , · · · , P ) ∈ RKd×K2

, (48)
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DΠ = blkdiag(Π, · · · , Π) ∈ RK2×K2
, Π = IK − 1K1⊤

K

K
(49)

and

S =

Λ1
. . .

ΛK

−

Λ1
...

ΛK

 [Λ1 · · · ΛK

]
(50)

with Λl = diag (p̄l).

Since P is a partial orthogonal matrix, the condition number of (47) is the same as the condition number of
the following matrix:

B = DΠSDΠ. (51)
Subsequently, we proceed to derive the eigenvalues for the above matrix B.

First, considering an eigenvector v of B, let ∆ be a K × K matrix such that v = vec(∆). Considering any ∆
satisfying ∆Π = 0 or ∆⊤Π = 0, for the corresponding v = vec(∆) we get DΠv = 0 and v⊤DΠ = 0, wich
further yields Bv = 0. Since rank(Π) = K − 1, it follows that λ1 = 0 is an eigenvalue of B with multiplicity
2K − 1.

On the other hand, consider any ∆ that satisfies the conditions:

diag(∆) = 0, ∆1K = ∆⊤1K = 0. (52)

It is noteworthy that from ∆1K = ∆⊤1K = 0, the corresponding vector v satisfies DΠv = v. If ∆ further
satisfies diag(∆) = 0 then Sv = pnv. Consequently, we deduce that

Bv = DΠSDΠv = DΠSv = DΠpnv = pnv

We can conclude that pn is an eigenvalue of B with multiplicity K2 − K − (2K − 1) = K2 − 3K + 1.

Next, let us consider the matrix ∆ = Πdiag(u)Π, where u is a vector satisfying u⊤1K = 0. The vectorized
form of ∆ can be denoted as

v = vec(∆) =


Π⊤diag(u)Π1
Π⊤diag(u)Π2

...
Π⊤diag(u)ΠK

 ,

where Πk represents the k-th column of the matrix Π. Due to the properties Π = Π⊤ and Π2 = Π, it follows
that DΠv = v. Additionally, given u⊤1K = 0, we obtain Sv = λ2v with λ2 = (1 − pt + pn) · pn+(K−1)pt

K .
Consequently, we conclude that λ2 = (1 − pt + pn) · pn+(K−1)pt

K is an eigenvalue of B with a multiplicity
equal to the degrees of freedom of u, which is K − 1.

Lastly, considering v = vec(Π), we observe that DΠv = v. Further, we have Sv = Kptpnv. Hence, we
obtain

Bv = DΠSDΠv = DΠSv = Kptpnv.

Therefore, v = vec(Π) is an eigenvector of B with eigenvalue λ3 = Kptpn.

In summary, we identify the distinct eigenvalues of the matrix B as defined in (51) as follows:

λ0 = 0, λ1 = pn, λ2 = (1 − pt + pn) · pn + (K − 1)pt

K
, λ3 = Kpnpt (53)

with the corresponding multiplicities 2K − 1, K2 − 3K + 1, K − 1, and 1, respectively.

Since the matrix B has zero eigenvalues, we consider its condition number within the non-zero eigenvalue
subspace, which is given by λ3/λ1 = Kpt. Consequently, we straightforwardly determine the condition
number of the Hessian ∂2ϕ

∂w2 as defined in (47) is

κ(∇2
wϕ) = Kpt. (54)
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From the formula of pt given in (38), it is evident that increasing δ leads to a decrease of pt, and consequently
a reduction in the condition number.

By combining (46) and (54), we demonstrate that the Hessian matrices, ∇2
W ϕ(W , H) and ∇2

Hϕ(W , H), are
positive semi-definite at the global optimizer. Moreover, the condition numbers of these Hessian matrices are
notably lower under the label smoothing loss (with 0 < δ < 1 −

√
KNλW λH) compared to the cross-entropy

loss (with δ = 0). This observation suggests that the optimization landscape of the empirical loss function is
better conditioned around its global minimizer under label smoothing loss, thus completing our proof.
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