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Abstract

We study a model-free federated linear quadratic regulator (LQR) problem where M agents
with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to
minimize an average quadratic cost while keeping their data private. To exploit the similarity
of the agents’ dynamics, we propose to use federated learning (FL) to allow the agents to
periodically communicate with a central server to train policies by leveraging a larger dataset
from all the agents. With this setup, we seek to understand the following questions: (i) Is the
learned common policy stabilizing for all agents? (ii) How close is the learned common policy
to each agent’s own optimal policy? (iii) Can each agent learn its own optimal policy faster
by leveraging data from all agents? To answer these questions, we propose the federated and
model-free algorithm FedLQR. Our analysis overcomes numerous technical challenges, such
as heterogeneity in the agents’ dynamics, multiple local updates, and stability concerns.
We show that FedLQR produces a common policy that, at each iteration, is stabilizing for
all agents. Moreover, we prove that when learning each agent’s optimal policy, FedLQR
achieves a sample complexity reduction proportional to the number of agents M in a low-
heterogeneity regime, compared to the single-agent setting.

1 Introduction

There has been significant progress in the application of model-free reinforcement learning (RL) methods to
fields such as video games (Mnih et al., 2015) and robotic manipulation (Rajeswaran et al., 2017; Levine et al.,
2016; Tobin et al., 2017). In particular, RL has recently been used in the fine-tuning of pretrained foundation
models (Ziegler et al., 2019). Although RL has shown impressive results in simulation, it often suffers from
poor sample complexity, thereby limiting its effectiveness in real-world applications (Dulac-Arnold et al.,
2019). To resolve the sample complexity issue and accelerate the learning process, federated learning (FL)
has emerged as a popular paradigm (Konečnỳ et al., 2016a; McMahan et al., 2017), where multiple similar
agents collaboratively learn a common model without sharing their raw data. The incentive for collaboration
arises from the fact that these agents are “similar” in some sense and hence end up learning a “superior”
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Figure 1: Illustration of the heterogeneous federated LQR setup involving M agents, where the i-th agent
interacts with its own LTI system characterized by the pair (Ai, Bi) for i ∈ [M ]. The agents communicate
via a central server in communication rounds n = 1, 2, . . . , N , and upload their locally computed control gain
matrices {K(i)

n }i∈[M ] in each round n. The server averages the agents’ gain matrices to compute a global
control policy Kn+1 that is broadcast to all agents to initiate the (n + 1)-th round.

model than if they were to learn alone. In the RL setting, Federated Reinforcement Learning (FRL) aims
to learn a common value function (Wang et al., 2024b) or produce a better policy from multiple RL agents
interacting with similar environments. In the survey paper by Qi et al. (2021), FRL has empirically shown
great success in reducing the sample complexity for autonomous driving (Liang et al., 2022), IoT devices (Lim
et al., 2020), and resource management in networking (Yu et al., 2020).

Lately, there has been a lot of interest in applying RL techniques to classical control problems such as the
linear quadratic regulator (LQR) problem (Anderson & Moore, 2007). In the standard control setting, the
dynamical model of the system is known and one seeks to obtain a controller that stabilizes the closed-loop
system and provides optimal performance. RL approaches such as policy gradient (Williams, 1992; Sutton
et al., 1999) (which we pursue here) differ in that they are “model-free”, i.e., a control policy is obtained
despite not having access to the model of the dynamics. Despite the lack of convexity in even simple problems,
policy gradient (PG) methods have been shown to be globally convergent for certain structured settings such
as the LQR problem (Fazel et al., 2018). While this is promising, a major challenge in applying PG methods
is that in general, one does not have access to exact deterministic policy gradients. Instead, one relies on
estimating such gradients via sampling based approaches. This typically leads to noisy gradients that can
suffer from high variance. As such, reducing the variance in PG estimates to achieve “good performance"
may end up requiring several samples.

Motivation. The main premise of this paper is to draw on ideas from the FL literature to alleviate the
high sample-complexity burden of PG methods (Agarwal et al., 2019; Wang et al., 2019; Liu et al., 2020),
with the focus being on model-free control. As a motivating example, consider a fleet of identical robots
produced by the same manufacturer. Each robot can collect data from its own dynamics and learn its own
optimal policy using, for instance, PG methods. Since the fleet of robots shares similar dynamics, and more
data can potentially lead to improved policy performance (via more accurate PG estimates), it is natural
to ask: Can a robot accelerate the process of learning its own optimal policy by leveraging the data of the
other robots in the fleet? The answer is not as obvious as one might expect since in reality, it is unlikely
that any two robots will have exactly the same underlying dynamics, i.e., heterogeneity in system dynamics
is inevitable. The presence of such heterogeneity makes the question posed above both interesting and non-
trivial. In particular, when the heterogeneity across agents’ dynamics is large, leveraging data from other
agents might degrade the performance of a single agent. Indeed, large heterogeneity may make it impossible
to learn a common stabilizing policy1. Moreover, even when such a stabilizing policy exists, it may deviate
from each agent’s local optimal policy, rendering poor performance and discouraging participation in the FL

1See Section 5 for more details on the underlying intuition and necessity behind the low heterogeneity regime.
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process. Thus, to understand whether more data2 helps or hurts, it is crucial to characterize the effects of
heterogeneity in the federated control setting.

With this aim in mind, we study a multi-agent model-free LQR problem based on policy gradient methods.
Specifically, there are M agents in our setup, each with its own distinct yet similar linear time-invariant
(LTI) dynamics. Inspired by the typical objective in FL, our goal is to find a common policy which can
minimize the average of the LQR costs across agents.3 In particular, we address the following questions.

Q1. Is this common policy stabilizing for all the systems? If so, under what conditions?

Q2. How far is the learned common policy from each agent’s locally optimal policy?

Q3. Can an agent use the common policy as an initial guess to fine-tune and learn its own optimal policy
faster (i.e., with fewer overall samples) than if it acted alone?

Challenges: There are several challenges to answering the above questions. First, even for the single agent
setting, the policy gradient-based LQR problem is non-convex, and requires a fairly intricate analysis (Fazel
et al., 2018). Second, a key distinction relative to standard federated supervised learning stems from the need
to guarantee stability at every averaging iteration – this problem is amplified in the heterogeneous multi-
agent scenario we consider. It remains an open problem to design an algorithm ensuring that policies are
simultaneously stabilizing for each distinct system. Third, to reduce the communication cost, FL algorithms
rely on the agents performing multiple local update steps between successive communication rounds. When
agents have non-identical loss functions, these local steps lead to a “client-drift" effect where each agent
drifts towards its own local minimizer (Charles & Konečnỳ, 2020a; 2021a). While several works in FL have
investigated this phenomenon (Li et al., 2020; Khaled et al., 2019a; 2020; Li et al., 2019a; Karimireddy et al.,
2020; Pathak & Wainwright, 2020a; Wang et al., 2020a; Acar et al., 2021; Gorbunov et al., 2021; Mitra et al.,
2021; Mishchenko et al., 2022; Laguel et al., 2021), the effect of “client-drift" on stability remains completely
unexplored. Unless accounted for, such drift effects can potentially lead to non-stabilizing controllers.

Our Contributions: In response to the above challenges, we propose a policy gradient method called
FedLQR to solve the (model-based and model-free) federated LQR problem, and provide a rigorous finite-
time analysis of its performance that accounts for the interplay between system heterogeneity, multiple local
steps, client-drift effects, and stability. Our specific contributions in this regard are as follows.

• Iterative stability guarantees. We show via a careful inductive argument that under suitable require-
ments on the level of heterogeneity across systems, the learning rate schedule can be designed to ensure that
FedLQR provides a stabilizing controller at every iteration for all systems. Theorem 1 provides a proof in the
model-based setting, and Theorem 2 provides the model-free result.

• Bounded policy gradient heterogeneity in the LQR problem. We prove in Lemma 3 that, for
each pair of agents i, j ∈ [M ], the policy gradient direction (in the model-based setting) of agent i is close
to that of agent j, if their dynamics are similar (i.e., Definition 1). This is the first result to observe and
characterize this bounded gradient heterogeneity phenomenon in the multi-agent LQR setting.

• Quantifying the gap between FedLQR’s output and each system’s optimal policy. Building on
Lemma 3, we prove that when the agents’ dynamics are similar, the common policy returned by FedLQR is
close to each agent’s optimal policy; see Theorem 1. In other words, we can leverage the federated formulation
to help each agent find its own optimal policy up to some accuracy depending on the level of heterogeneity.
Moreover, we prove that FedLQR finds a controller that is close to the average’s cost optimal solution up to
a heterogeneity bias (Corollary 1). Our work is the first to provide a result of this flavor.

• Linear speedup. As our main contribution, we prove that in the model-free setting, FedLQR converges
to a solution that is in a neighborhood of each agent’s optimal policy, using M -times fewer samples relative
to when each agent just uses its own data (see Theorem 2). The radius of this neighborhood captures
the level of heterogeneity across the agents’ dynamics. The key implication of this result is that in a low-

2In accordance with both FL & FRL frameworks, the agents in our problem do not exchange their private data (e.g., rewards,
states, etc.). Instead, each agent only transmits its policy gradient.

3While one can certainly consider other FL objective functions, we study the average LQR cost formulation here since a
comprehensive analysis of this setting is missing in the current literature.
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heterogeneity regime, FedLQR (in the model-free setting) reduces the sample-complexity by a factor of M
w.r.t. the centralized setting (Fazel et al., 2018; Malik et al., 2019), highlighting the benefit of collaboration.4
Simply put, FedLQR enables each agent to quickly find an approximate locally optimal policy; as in standard
FL (Collins et al., 2022), the agent can fine-tune this policy based on its own data.

In summary, we provide a new theoretical framework that quantitatively characterizes the interplay between
the price of heterogeneity and the benefit of collaboration for model-free control.

2 Related Work

There has been a line of work that explores various RL algorithms for solving the model-free LQR problem
(Fazel et al., 2018; Malik et al., 2019; Hambly et al., 2021; Mohammadi et al., 2021; Gravell et al., 2020; Jin
et al., 2020; Ju et al., 2022). However, their analysis is limited to the single-agent setting. Most recently,
Ren et al. (2020) solve the model-free LQR tracking problem in a federated manner and achieve a linear
convergence speedup with respect to the number of agents. However, they consider a simplified setting
where all agents follow the same dynamics. As such, the stability analysis of Ren et al. (2020) follow from
arguments for the centralized setting. In sharp contrast, to establish the linear speedup for FedLQR, we need
to address the key technical challenges arising from the effect of heterogeneity and local steps on the stability
of distinct systems. This requires new analysis tools that we develop. For related work on multi-agent RL
(that do not specifically look at the control setting) we point the reader to Lin et al. (2021); Zhang et al.
(2021) and the references therein. Below we highlight the relevant work related to our problem setting.

• Federated Learning (FL): In this work, we employ the federated learning (FL) paradigm to
facilitate collaborative learning among systems without the need to share raw data with other
participants or a server (Konečnỳ et al., 2016a; McMahan et al., 2017; Konečnỳ et al., 2016b;
Bonawitz et al., 2019). Despite FL being a relatively recent approach, it has already gained significant
attention and boasts a wealth of literature.
Federated averaging (FedAvg) stands as the pioneering and most widely adopted algorithm in FL.
Originally proposed in McMahan et al. (2017), FedAvg has demonstrated its effectiveness in ho-
mogeneous settings (Stich, 2018; Wang & Joshi, 2021; Spiridonoff et al., 2020; Reisizadeh et al.,
2020; Haddadpour et al., 2019) where all participating clients aim to minimize the same objective
function. However, ensuring convergence guarantees for FedAvg becomes notably more challenging
in the presence of heterogeneity (Khaled et al., 2019b; 2020; Haddadpour & Mahdavi, 2019; Li et al.,
2019b), thus necessitating additional assumptions on gradient and Hessian dissimilarity bounds (Li
et al., 2019b; Li & Orabona, 2019; Khaled et al., 2019b; Karimireddy et al., 2020). This difficulty
arises primarily due to a “client-drift” effect, which is inherent to the FedAvg algorithm and has a
detrimental impact on its convergence performance (Charles & Konečnỳ, 2020b; 2021b). As a result
of the challenges posed by FedAvg, several alternative algorithms have been proposed to address
its limitations. Notable examples include FedProx (Li et al., 2020), Scaffold (Karimireddy et al.,
2020), FedSplit (Pathak & Wainwright, 2020b), FedDR (Tran Dinh et al., 2021), FedADMM (Wang
et al., 2022a), FedLin (Mitra et al., 2021), and S-Local-SVRG (Gorbunov et al., 2021). Each of them
introduces unique techniques and modifications to the original FedAvg algorithm, aiming to enhance
convergence guarantees while handling communication cost concerns, statistical heterogeneity, client
dropout, and sample complexity more effectively.
Applying federated learning (FL) to control systems introduces a novel research direction that comes
with its own set of challenges. Control systems exhibit unique characteristics, such as non-iid and
non-isotropic data, as well as system instability, which arise due to the dynamic nature of the systems.
These characteristics pose specific challenges when attempting to leverage data from multiple systems
for tasks such as system identification (Wang et al., 2022b) or control synthesis (Ren et al., 2020).
Although Ren et al. (2020) address the model-free LQR tracking problem in a multi-agent setting,
it focuses on a significantly simpler scenario where all agents follow identical dynamics (i.e., homo-

4Throughout this paper, we use the terms “centralized" and “single-agent" interchangeably.
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geneous). In contrast, our work introduces new analysis techniques to achieve linear speedup when
dealing with heterogeneous systems and multiple local updates per communication round.5

• Policy Gradient (PG): The policy gradient (PG) approach is a fundamental component of the
success of reinforcement learning (RL) and plays a crucial role in policy optimization (PO). This
approach directly optimizes the policy to improve system-level performances through gradient ascent
steps. The concept of policy optimization has been influential in RL (Sutton et al., 1999) with
some well-known algorithms such as REINFORCE (Williams, 1992), trust-region policy optimization
TRPO (Schulman et al., 2015), actor-critic methods (Konda & Tsitsiklis, 1999), and proximal policy
optimization PPO (Schulman et al., 2017). We highlight an important difference between standard
MDP models and control models in RL. In control, one requires the policy to provide closed-loop
stability, i.e., all trajectories of the system must converge for a given policy. In contrast, there are
no analogous stability concerns in finite state-action MDP settings studied in RL.

The extensive body of literature on policy optimization for reinforcement learning (RL) and its
adaptability to the model-free setting paves the way for leveraging policy gradient methods in the
pursuit of learning optimal control policies for classical control problems (Hu et al., 2022; Perdomo
et al., 2021). Despite the non-convex nature of the formulation involved in policy gradient methods,
recent work (Fazel et al., 2018; Malik et al., 2019; Hambly et al., 2021; Mohammadi et al., 2021;
Gravell et al., 2020; Jin et al., 2020; Ju et al., 2022; Perdomo et al., 2021; Lamperski, 2020; Toso
et al., 2024b; 2025) has demonstrated global convergence in solving the model-free LQR problem
via policy gradient methods in different settings. This global convergence is achieved due to certain
properties of the quadratic cost function inherent in the LQR problem (e.g., smoothness and gradient
dominance) as established in Fazel et al. (2018). In contrast to the aforementioned work, which
exclusively focus on the centralized control setting, our paper offers convergence guarantees for the
multi-agent setting. In this context, each agent follows different dynamics, thereby distinguishing it
from the simpler scenario proposed in Ren et al. (2020).

• Federated Reinforcement Learning (FRL): The flexibility of policy gradient methods in the
model-free RL setting has paved the way for a relatively recent research direction known as federated
reinforcement learning (FRL), which aims to address practical implementation challenges of RL
through the use of federated learning (Qi et al., 2021). FRL focuses on learning a common value
function (Wang et al., 2024b; Fabbro et al., 2023) or improving the policy by leveraging multiple RL
agents interacting with similar environments (Woo et al., 2023; Wang et al., 2024a). The empirical
evidence presented in the survey paper (Qi et al., 2021) demonstrates the significant success of
FRL in reducing sample complexity across various applications such as autonomous driving (Liang
et al., 2022), IoT devices (Lim et al., 2020), resource management in networking (Yu et al., 2020),
and communication efficiency (Gatsis, 2022). The FRL literature can be broadly grouped into two
categories: (i) The homogeneous setting, where all agents interact with the same MDP (Khodadadian
et al., 2022; Woo et al., 2023; Lan et al., 2023; Shen et al., 2023; Liu & Olshevsky, 2023; Fabbro
et al., 2023; Tian et al., 2024; Salgia & Chi, 2024; Dal Fabbro et al., 2025), and (ii) the heterogeneous
setting, where the agents’ MDPs can potentially differ in their reward functions and/or probability
transition kernels (Jin et al., 2022; Xie & Song, 2023; Wang et al., 2024b; Zhang et al., 2024; Wang
et al., 2024a; Zhu et al., 2024; Mangold et al., 2024; Labbi et al., 2024; 2025). In particular, federated
variants of policy gradient methods are analyzed in Xie & Song (2023); Lan et al. (2023); Wang et al.
(2024a); Zhu et al. (2024); Labbi et al. (2025); Zhang et al. (2025). It is important to note that all
the papers in FRL discussed above consider MDPs with finite state and action spaces, where there
is no notion of stability. In sharp contrast, our work considers a federated control problem involving
dynamical systems with continuous state-action spaces, where we need to tackle the challenge of
finding a common, stabilizing policy for all the agents at every iteration.

5In the time since this work was first made available online it has been used to develop new results on multi-task LQR
design, including studies on meta-learning linear quadratic regulators (Toso et al., 2024c; Pan et al., 2025; Aravind et al., 2024),
asynchronous federated LQR design (Toso et al., 2024a; Zhao et al., 2025), learning LQR controllers from proxy systems (Ye
et al., 2024), and domain randomization for the LQR problem (Fujinami et al., 2025).
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3 Notation

Given a set of matrices {S(i)}M
i=1, we denote ||S||max := maxi ||S(i)||, and ||S||min := mini ||S(i)||. All vector

norms are Euclidean and matrix norms are spectral, unless otherwise stated.

4 Problem Setup

Classical control approaches aim to design optimal controllers from a well-defined dynamical system model.
The model-based LQR problem is well understood and admits a convex solution. In this work, we consider
the LQR problem but in the model-free setting. Moreover, we consider a federated model-free LQR problem in
which there are M agents, each with their own distinct but “similar” dynamics. Our goal is to collaboratively
learn an optimal controller that minimizes an average quadratic cost. We seek to characterize the optimality
of our solution as a function of the “difference” across the agent’s dynamics. In what follows, we formally
describe our problem of interest.

Federated LQR: Consider a system with M agents. Associated with each agent is a linear time-invariant
(LTI) dynamical system of the form

x
(i)
t+1 = A(i)x

(i)
t + B(i)u

(i)
t , x

(i)
0 ∼ D, for all i ∈ [M ],

where [M ] := 1, . . . , M , and A(i) ∈ Rnx×nx , B(i) ∈ Rnx×nu . We assume each initial state x
(i)
0 is randomly

generated from the same distribution D. In the single-agent setting, the optimal LQR control policy is known
to be linear and static. We denote the policy by u

(i)
t = −K∗

i x
(i)
t , where for each agent, K⋆

i solves

K∗
i = arg min

K

{
C(i)(K) := E

[ ∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]}
s.t. x

(i)
t+1 = A(i)x

(i)
t + B(i)u

(i)
t , u

(i)
t = −Kx

(i)
t , x

(i)
0 ∼ D, (1)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are known positive definite matrices. In our federated setting, the
objective is to find an optimal common policy {ut}∞

t=0 to minimize the average cost of all the agents
Cavg(K) := 1

M

∑M
i=1 C(i)(K) without knowledge of the system dynamics, i.e., (A(i), B(i)). As mentioned

above, classical results (Anderson & Moore, 2007) from optimal control theory show that, given the system
matrices A(i), B(i), Q and R, the optimal policy can be written as a linear function of the current state.
Thus, we consider a common policy of the form u

(i)
t = −Kx

(i)
t . The objective of the federated LQR problem

can be written as:

K∗ = arg min
K

{
Cavg(K) := 1

M

M∑
i=1

E

[ ∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]}
s.t. x

(i)
t+1 = A(i)x

(i)
t + B(i)u

(i)
t , u

(i)
t = −Kx

(i)
t , x

(i)
0 ∼ D. (2)

The rationale for finding K∗ is as follows. Intuitively, when all agents have similar dynamics, K∗ will be
close to each K∗

i . Thus, K∗ will serve to provide a good common initial guess from which each agent i can
then fine-tune/personalize (using only its own data) to converge exactly to its own locally optimal controller
K∗

i . The key here is that the initial guess K∗ can be obtained quickly by using the collective data of all the
agents. We will formalize this intuition in Theorem 2.

We make the standard assumption that for each agent, (A(i), B(i)) is stabilizable. In addition, we make the
following assumption on the distribution of the initial state:
Assumption 1. Given µ > 0, for any i ∈ [M ], the initial state x

(i)
0 ∼ D and distribution D satisfy

E
x

(i)
0 ∼D[x(i)

0 ] = 0, E
x

(i)
0 ∼D[x(i)

0 x
(i)⊤
0 ] ≻ µIdx

, and ∥x(i)
0 ∥ ≤ H almost surely.

We quantify the heterogeneity in the agent’s dynamics through the following definition:
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Definition 1. (Bounded system heterogeneity) There exist positive constants ϵ1 and ϵ2 such that

max
i,j∈[M ]

∥A(i) −A(j)∥ ≤ ϵ1, and max
i,j∈[M ]

∥B(i) −B(j)∥ ≤ ϵ2.

We assume that ϵ1 and ϵ2 are finite. Similar bounded heterogeneity assumptions are commonly made in
FL (Karimireddy et al., 2020; Khaled et al., 2020; Reddi et al., 2020). However, unlike typical FL works
where one directly imposes heterogeneity assumptions on the agents’ gradients, in our setting, we need to
carefully characterize how heterogeneity in the system parameters (A(i), B(i)) translates to differences in the
policy gradients; see Lemma 3.

On the meaning of system similarity: The notion of heterogeneity introduced in Definition 1 measures
similarity in terms of parameter deviations between system matrices. It is important to emphasize that
similarity in the system parameters (A(i), B(i)) does not in general imply similar closed-loop behavior (see
Propositions 1 and 2). Even a small perturbation in system parameters can produce significant differences
in the set of stabilizing controllers, and may not guarantee the existence of a common stabilizing controller
across agents. Recent work (Stamouli et al., 2025) has proposed a refined similarity measure based on
bisimulation-type metrics that quantify closed-loop heterogeneity rather than parameter differences, and the
main results of our paper extend to their setting.

Before providing our solution to the federated LQR problem, we first recap existing results on model-free
LQR in the single-agent setting.

Single-agent setting: When there is only one agent, i.e., M = 1, let us denote the system matrix as (A, B)
and likewise, the cost functional by C(K). If (A, B) is known, the optimal controller K∗ can be computed
by solving the discrete-time algebraic Riccati equation (ARE) (Anderson & Moore, 2007).

Strikingly, Fazel et al. (2018) show that policy gradient methods can find the globally optimal LQR policy
K∗ despite the non-convexity of the problem. The policy gradient of the LQR problem can be expressed as:

∇C(K) = 2EKΣK = 2
((

R + B⊤PKB
)

K −B⊤PKA
)

ΣK ,

where PK is the positive definite solution to the Lyapunov equation: PK = Q+K⊤RK +(A−BK)⊤PK(A−
BK), EK :=

(
R + B⊤PKB

)
K − B⊤PKA, and ΣK := Ex0∼D[

∑∞
t=0 xtx

⊤
t ]. The policy gradient method

K ← K−η∇C(K) will find the global optimal LQR policy, i.e., K → K∗, provided that Ex0∼D[x0x⊤
0 ] is full

rank and an initial stabilizing policy is used. When the model is unknown, the analysis technique employed
by Fazel et al. (2018) is to construct near-exact gradient estimates from reward samples and show that the
sample complexity of such a method is bounded polynomially in the parameters of the problem.

In contrast to the single-agent setting, the heterogeneous, multi-agent scenario we consider here is consid-
erably more difficult to analyze. First, designing an algorithm satisfying the iterative stability guarantees
becomes a complex task. Second, since each agent in the system has its own unique dynamics and gradient
estimates, it can be difficult to aggregate these directions in a manner that ensures the updating direction
moves toward the average optimal policy K∗. Nonetheless, in the sequel, we will overcome these challenges
and provide a finite-time analysis of FedLQR.

5 Necessity of the Low Heterogeneity Requirement

In our main theorems, we require certain bounds on the parameters ϵ1 and ϵ2 that define the heterogeneity
of the M dynamical systems we work with. Here, we point out that, unlike standard federated learning
settings, these bounds are necessary for convergence. From a control and dynamical systems viewpoint,
these bounds are perhaps intuitive: if the systems are too different, then there is no reason to believe there
exists a common stabilizing controller, i.e., there is no solution to the problem (2). In what follows, we will
formalize this point. To do so, let us define an “instance" of our FedLQR problem via a parameter M that
characterizes the number of agents/systems and the set of corresponding system matrices {A(i), B(i)}i∈[M ].6

6Although technically the cost matrices Q and R are also part of a FedLQR problem formulation, they are not needed to
establish the necessity of a low-heterogeneity requirement. As such, we do not include them here.
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We now prove a couple of simple impossibility results. Our first result shows that even when the input
matrices are identical across agents, heterogeneity in the state transition matrices can lead to the non-
existence of simultaneously stabilizing controllers, thereby rendering the FedLQR problem infeasible.
Proposition 1. There exists an instance of the FedLQR problem with M = 2 and ϵ2 = 0, such that if ϵ1 > 2,
then it is impossible to find a common state-feedback gain K that simultaneously stabilizes both systems.

Proof: Consider an instance with just two scalar systems defined by:

x
(1)
t+1 = αx

(1)
t + u

(1)
t and x

(2)
t+1 = −αx

(2)
t + u

(2)
t ,

for some α > 0. By simple inspection, note that in this case ϵ1 = 2α and ϵ2 = 0. Thus, ϵ1 > 2 ⇒ α > 1.
Now for a controller u

(i)
t = −kx

(i)
t to stabilize both systems, the spectral radius conditions are |α − k| < 1

and |α + k| < 1. Trivially, there exists no gain k that satisfies both these requirements when α > 1.

To complement the above result, we now show that the effect of heterogeneity is not just limited to the
state transition matrices. In particular, even when the state transition matrices are identical across agents,
(arbitrarily small) heterogeneity in the input matrices can also lead to the non-existence of simultaneously
stabilizing control gains. We formalize this below.
Proposition 2. There exists an instance of the FedLQR problem with M = 2 and ϵ1 = 0, such that if ϵ2 > 0,
then it is impossible to find a common state-feedback gain K that simultaneously stabilizes both systems.

Proof: Consider an instance with two scalar systems defined by:

x
(1)
t+1 = x

(1)
t + βu

(1)
t and x

(2)
t+1 = x

(2)
t − βu

(2)
t ,

for some β. By simple inspection, note that in this case ϵ1 = 0 and ϵ2 = 2β. Thus, ϵ2 > 0 ⇒ β > 0.
Now for a controller u

(i)
t = −kx

(i)
t to stabilize both systems, the spectral radius conditions are |1− βk| < 1

and |1 + βk| < 1. Trivially, there exists no gain k that satisfies both these requirements when β > 0. This
concludes the proof.

The above example suggests that in certain settings, we can tolerate no heterogeneity whatsoever in the
input matrices. More generally, the main take-home message from this section is that the requirement of a
“low-heterogeneity regime” is fundamental to the problem and not merely an artifact of our analysis. We
formally define a low heterogeneity regime in the sequel.

6 The FedLQR algorithm

In this section, we introduce our algorithm FedLQR, formally described by Algorithm 1, to solve for K∗ in (2).
First, we impose the following assumption regarding the algorithm’s initial condition K0:
Assumption 2. We can access an initial stabilizing controller, K0, which stabilizes all systems
{(A(i), B(i))}M

i=1, i.e., the spectral radius ρ(A(i) −B(i)K0) < 1 holds for all i ∈ [M ].

Algorithm description: At a high level, FedLQR follows the standard FL algorithmic template: a server
first initializes a global policy, K0, which it sends to the agents. Each agent proceeds to execute multiple
PG updates using their local data. Once the local training is finished, agents transmit their model update to
the server. The server aggregates the models and broadcasts an averaged model to the clients. The process
repeats until a termination criterion is met. Prototypical FL algorithms that adhere to this structure include,
for instance, FedAvg (Khaled et al., 2020) and FedProx (Li et al., 2020).

With this template in mind, we now dive into the details: FedLQR initializes the server and all agents with
K

(i)
0,0 = K0 – a controller that stabilizes all agent’s dynamics.7 In each round n, starting from a common global

policy Kn, each agent i independently samples ns trajectories from its own system at each local iteration
l and performs approximate policy gradient updates using the zeroth-order optimization procedure (Fazel

7To establish notation, K
(i)
n,l

refers to the local controller associated to agent i after n rounds of averaging, and after lth local
iteration of policy gradient updates.
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et al., 2018) which we denote ZO; see line 7. For clarity, we present the explicit steps of using the zeroth-
order method to estimate the true gradient in Algorithm 2, which will be discussed shortly. Between every
communication round, each agent updates their local policy L times. Such an L is chosen to balance
between the benefit of information sharing and the cost of communication. After L local iterations, each
agent i uploads its local policy difference ∆(i)

n (line 10) to the server. Once all differences are received, the
server averages these differences {∆(i)

n } (line 12) to construct a new global policy Kn+1. The whole process
is repeated N times.

Algorithm 1 Model-free Federated Policy Learning for the LQR (FedLQR)
1: Input: initial policy K0, local step-size ηl and global step-size ηg.
2: Initialize the server with K0 and ηg

3: for n = 0, . . . , N − 1 do
4: for each system i ∈ [M ] do
5: for l = 0, · · · , L− 1 do
6: Agent i initializes K

(i)
n,0 = Kn

7: Agent i estimates ∇̂C(i)(K(i)
n,l) = ZO(K(i)

n,l, i) and updates local policy as
8: K

(i)
n,l+1 = K

(i)
n,l − ηl∇̂C(i)(K(i)

n,l)
9: end for

10: send ∆(i)
n = K

(i)
n,L −Kn back to the server

11: end for
12: Server computes and broadcasts global model Kn+1 = Kn + ηg

M

∑M
i=1 ∆(i)

n

13: end for

Zeroth-order optimization (Conn et al., 2009; Nesterov & Spokoiny, 2017) provides a method of optimization
that only requires oracle access to the function being optimized. Here, we briefly describe the details of our
zeroth-order gradient estimation step8 in Algorithm 2. To obtain a gradient estimate at a given policy K, we
sample trajectories from the i-th system ns times. At each time s, we use the perturbed policy K̂s (line 3)
and a randomly generated initial point x0 ∼ D to simulate the i-th closed-loop system for τ steps. Thus, we
can approximately calculate the cost by adding the stage cost from the first τ time steps on this trajectory
(line 4), and then estimating the gradient as in line 6.

Discussion of Assumption 2: Assumption 2 is commonly adopted in the LQR (Fazel et al., 2018; Dean
et al., 2020; Agarwal et al., 2019; Ren et al., 2020) and robust control literature (Boyd et al., 1994; Lu et al.,
1996; Doyle et al., 1989). In addition, there exist efficient ways to find such a stabilizing policy K0; (Boyd
et al., 1994) that addresses the model-based setting, while (Lamperski, 2020; Perdomo et al., 2021; Zhao
et al., 2022; Toso et al., 2025) each addresses the problem in the single-agent model-free setting. Moreover,
it is well-known that the sample complexity of finding an initial stabilizing policy only adds a logarithmic
factor to that for solving the single-agent LQR problem (Zhao et al., 2022). More recently, Fujinami et al.
(2025) have shown that solving a sequence of discounted LQR problems using the average Cavg(K) cost
yields a common stabilizing controller for all systems under low heterogeneity conditions.

Choice of the number of local updates: The parameter L controls the standard communication, drift
trade-off encountered in federated optimization. Executing more local steps before aggregation reduces
communication frequency, but at the cost of amplifying the deviation between the aggregated update and
the true global gradient direction. Conversely, choosing a smaller L keeps the local iterates closer to the global
descent direction and improves agreement with the centralized update, albeit requiring more communication
rounds. In our setting, this trade-off becomes particularly delicate because drift between local controllers
directly affects stability. We refer the reader to Lemmata 10 and 11 for additional details on how the number
of local updates enters our analysis.

Challenges in FedLQR analysis: Although FedLQR is similar in spirit to FedAvg (Li et al., 2019b; McMahan
et al., 2017) (in the supervised learning setting), it is significantly more difficult to analyze the convergence
of FedLQR for the following reasons.

8See Appendix A.5 for more details on zeroth-order optimization.
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Algorithm 2 Zeroth-order gradient estimation (ZO)
1: Input: K, number of trajectories ns, trajectory length τ , smoothing radius r, dimension nx and nu,

system index i.
2: for s = 1, . . . , ns do
3: Sample a policy K̂s = K + Us, with Us drawn uniformly at random over matrices whose (Frobenius)

norm is r.
4: Simulate the i-th system for τ steps starting from x0 ∼ D using policy K̂s. Let Ĉs be the empirical

estimate: Ĉs =
∑τ

t=1 ct, where ct := x⊤
t

(
Q + K̂⊤

s RK̂s

)
xt on this trajectory.

5: end for
6: Return the estimate: ∇̂C(K) = 1

ns

∑ns

s=1
nxnu

r2 ĈsUs.

• First, the problem we study is non-convex. Unlike most existing non-convex FL optimization re-
sults (Karimireddy et al., 2020) which only guarantee convergence to stationary points, our work
investigates whether FedLQR can find a globally optimal policy.

• Second, standard convergence analyses in FL (McMahan et al., 2017; Karimireddy et al., 2020; Wang
et al., 2020b; Li et al., 2020) rely on a “bounded gradient-heterogeneity" assumption. For the LQR
problem, it is not clear a priori whether similar bounded policy gradient dissimilarity still holds. In
fact, this is something we prove in Lemma 3.

• Third, the randomness in FL usually comes from only one source: the data obtained by each agent
are drawn i.i.d. from some distribution; we call this sample randomness. However, in FedLQR, there
are randomness in the initial condition, and randomness from the smoothing matrices that show up
in the gradient estimation process outlined in Algorithm 2. To reason about these different forms of
randomness (that are intricately coupled), we provide a careful martingale-based analysis.

• Finally, we need to determine whether the solution given by FedLQR is meaningful, i.e., to decide
whether the policy generated at each (local and global) iteration will stabilize all the systems.

To tackle these difficulties, we first define a stability region in our setting comprising of M heterogeneous
systems as:
Definition 2. (The stabilizing set) The stabilizing set is defined as G0(β) := ∩M

i=1G(i)(β) where

G(i)(β) :=
{

K : C(i)(K)− C(i)(K∗
i ) ≤ β

(
C(i)(K0)− C(i)(K∗

i )
)}

.

As in Malik et al. (2019), G0(β) is defined as the intersection of sub-level sets containing points K whose
cost gap is at most β times the initial cost gap for all systems. We drop the dependence on β when it is clear
from the analysis and context. It was shown in Hu et al. (2022) that this is a compact set. Each sub-level
set corresponds to a cost gap to agent i’s optimal policy K∗

i , which is at most β times the initial cost gap
C(i)(K0)−C(i)(K∗

i ). Note that β can be any positive finite constant. Since any finite cost function indicates
that K is a stabilizing controller, we conclude that any K ∈ G0(β) stabilizes all the systems. Following from
Assumption 2, there exists a constant β such that G0(β) is nonempty. Moreover, it is worth remarking that
the LQR cost function in the single-agent setting is coercive. That is, the cost acts as a barrier function,
ensuring that the policy gradient update remains within the feasible stabilizing set G(i)(β). By defining the
stabilizing set G0(β) as above, the cost function C(i)(K) retains its coerciveness on G0(β) for the federated
setting considered in this paper. We also note that for our per-iteration stability analysis in Lemma 10, β is
properly set and kept fixed over iterations.

In order to solve the federated LQR problem and provide convergence guarantees for FedLQR, we first need
to recap some favorable properties of the LQR problem in the single-agent setting that enables PG to find
the globally optimal policy.

10
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7 Background on the centralized LQR using PG

In the single-agent setting, it was shown that policy gradient methods (i.e., model-free) can produce the
global optimal policy despite the LQR problem being non-convex (Fazel et al., 2018). We summarize the
properties that make this possible and which we also exploit in our analysis.
Lemma 1. (Local Cost and Gradient Smoothness) Suppose K ′ is such that ∥K ′ − K∥ ≤ h∆(K) < ∞.
Then, the cost and gradient function satisfy:

|C (K ′)− C(K)| ≤ hcost(K)∥K ′ −K∥,
∥∇C (K ′)−∇C(K)∥ ≤ hgrad (K)∥∆∥ and ∥∇C (K ′)−∇C(K)∥F ≤ hgrad(K)∥∆∥F ,

respectively, where h∆(K), hcost(K) and hgrad(K) are positive scalars depending on C(K).
Lemma 2. (Gradient Domination) Let K∗ be an optimal policy. Then,

C(K)− C (K∗) ≤ ∥ΣK∗∥
4µ2σmin(R)∥∇C(K)∥2

F

holds for any stabilizing controller K, i.e., any K satisfying the spectral radius ρ(A−BK) < 1.

For simplicity, we skip the explicit expressions in these lemmas for h∆(K), hcost(K), and hgrad(K) as
functions of the parameters of the LQR problem. Interested readers are referred to the appendix for full
details. With Definition 2 of the stabilizing set in hand, we can define the following quantities:

h̄grad := sup
K∈G0

hgrad(K), h̄cost := sup
K∈G0

hcost(K), and h∆ := inf
K∈G0

h∆(K).

With these quantities, we can transform the local properties of the LQR problem discussed in Lemmas 1–2
into properties that hold over the global stabilizing set G0. For convenience, we use letters with(under and
over) bars such as h̄grad to denote the global parameters. We are now ready to present our main results of
FedLQR in the next section.

8 Main results

To analyze the performance of FedLQR in the model-free case, we first need to examine its behavior in the
model-based case. Although this is not our end goal, these results are of independent interest.

8.1 Model-based setting

When (A(i), B(i)) are available, exact gradients can be computed, and so the ZO estimation scheme is no
longer needed. In this case, the updating rule of FedLQR (Algorithm 1, line 12) reduces to

Kn+1 = Kn −
η

ML

M∑
i=1

L−1∑
l=0
∇C(K(i)

n,l),

where η := Lηgηl. Intuitively, if two systems are similar, i.e., satisfy Assumption 1, their exact policy gradient
directions should not differ too much. We formalize this intuition as follows.
Lemma 3. (Policy gradient heterogeneity) For any i, j ∈ [M ] and K ∈ G0, we have:

||∇C(i)(K)−∇C(j)(K)|| ≤ ϵ1h1
het(K) + ϵ2h2

het(K), (3)

where h1
het(K) and h2

het(K) are positive bounded functions depending on the parameters of the LQR problem.9

9For simplicity, we write h1
het, h2

het as a function of only K since only K changes during the iterations while other parameters
remain fixed.
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Figure 2: Illustration of the dynamics of the FedLQR algorithm for a setting with M = 3 agents. Recall
from Definition 2 that G(i) represents the set of stabilizing policies for the i-th agent, and G0 =

⋂3
i=1 G(i)

is the common stabilizing set. In a low-heterogeneity regime, the agents’ policy gradients are “close" to one
another (as formalized by Lemma 3), causing the sequence/trajectory of policies (controllers) generated by
FedLQR to also evolve close to each other during the course of the algorithm. These trajectories {K(i)

n,l}i∈[3]
are illustrated by the black arrows. Crucially, initializing these trajectories within G0 causes them to always
remain within G0, i.e., the set G0 is forward-invariant for the trajectories generated by FedLQR - a fact
established rigorously in Lemma 10. This forward invariance property is the key to showing that the policies
generated by FedLQR remain stabilizing for all systems.

By Lemma 3 (the proof of which is deferred to Appendix A.4), if K belongs to a bounded set, the right-hand
side of Eq. (3) is of the order O(ϵ1 + ϵ2). In other words, the exact gradient direction of agent i can be
well-approximated by the gradient direction of agent j when the heterogeneity constants ϵ1 and ϵ2 are small.
This justifies why it is beneficial to use other agents’ data under the low-heterogeneity setting. Moreover,
we can immediately conclude that the exact update direction of our FedLQR algorithm is also close to each
agent’s policy gradient direction based on Lemma 3. This fact is crucial for analyzing the convergence of
FedLQR since we can map the convergence of FedLQR to that of the centralized LQR problem (with only
one agent). However, Lemma 3 alone is not sufficient to provide the final guarantees since we still need to
consider the impact of multiple local updates i.e., L > 1 (Algorithm 1, line 5) and stability concerns with
heterogeneous systems – i.e., is ρ(A(i)−B(i)KN ) < 1 for all agents i ∈ [M ] and all n ∈ [N ]? Nevertheless, by
overcoming these difficulties, we establish the convergence of FedLQR in the model-based setting as follows:
Theorem 1. (Optimality in each agent’s cost function) When the heterogeneity level satisfies10

(ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het , there exist constant step-sizes ηg and ηl such that FedLQR enjoys the follow-

ing performance guarantees over N rounds:

C(i)(KN )−C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) + cuni,1 × B(ϵ1, ϵ2),

with B(ϵ1, ϵ2) :=
υ
∥∥ΣK∗

i

∥∥
4µ2σmin(R) (ϵ1h1

het + ϵ2h2
het)2, where h̄1,2

het := supK∈G0 h1,2
het(K), υ := min{nx, nu}, and cuni,1

is a universal constant. Moreover, we have Kn ∈ G0 for all n = 0, · · · , N .

Main Takeaways: Theorem 1 reveals that the output Kn of FedLQR can stabilize all M systems at each
round n. However, FedLQR can only converge to a ball of radius B(ϵ1, ϵ2) around each system’s optimal
controller K∗

i , regardless of the choice of the step-sizes. The term B(ϵ1, ϵ2) captures the effect of heterogeneity
10The notation h̄3

het is a positive scalar depending on the parameters of the LQR problem; see Appendix A.4.2 for full details.
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and becomes zero when each agent follows the same system dynamics, i.e., ϵ1 = ϵ2 = 0. When there is no
heterogeneity, the convergence rate matches the rate of the centralized setting (Fazel et al., 2018) up to
a constant factor. But, since there is no noise introduced by the zeroth-order gradient estimate, there
is no expectation of obtaining a benefit from collaboration. Nonetheless, understanding the model-based
setting provides valuable insights for exploring the model-free setting. The proof of Theorem 1 is given in
Appendix A.4.2. We are now ready to provide the convergence guarantees for FedLQR with respect to solving
Eq. (2) – the average cost.

Corollary 1. (Optimality in average cost function) When the heterogeneity level satisfies11 (ϵ1h̄1
het +

ϵ2h̄2
het)2 ≤ h̄3

het, after N rounds, FedLQR enjoys the following optimality gap in average cost function across
all M agents:

Cavg(KN )− Cavg(K∗) ≤
(

1− ηµ2σmin(R)
maxi ∥ΣK∗

i
∥

)N

sup
i∈[M ]

(C(i)(K0)− C(i)(K∗
i )) + cuni,1 × B(ϵ1, ϵ2).

The main message conveyed by Corollary 1 is that FedLQR can converge to a ball around the average optimal
controller K∗ with a linear convergence rate. The size of the ball depends on the system heterogeneity level,
i.e., ϵ1 and ϵ2. Combining Theorem 1 and Corollary 1, we infer that FedLQR not only approximates each
system’s optimal controller K∗

i but also approximately converges toward the average optimal controller K∗

when the underlying M systems are close (in the sense of Definition 1). The primary distinction between
converging to K∗

i and K∗ lies in the linear convergence rate. Compared to converging to K∗
i , where the

linear converge rate depends only on system i’s parameter
∥∥ΣK∗

i

∥∥, the rate in converging to K∗ depends on
all systems’ parameters, i.e.,

{∥∥ΣK∗
i

∥∥}N

i=1. See Appendix A.4.3 for a comprehensive proof.

How to ensure FedLQR’s stability? We briefly discuss our proof technique for ensuring the iterative
stability guarantees. The main idea is to leverage an inductive argument. We start from a stabilizing global
policy Kn ∈ G0. We aim to show that the next global policy Kn+1 is stabilizing; see Fig. 2 for an illustration.
This is achieved by demonstrating that Kn+1 can reduce each system’s cost function compared to Kn. To
achieve this goal, we take the following steps: (1) at each iteration, initiate from the globally stabilizing
controller computed at the previous iterate, (2) determine a small global step-size such that inequalities
in Section 7 can be applied; (3) use Lemma 3 to provide a descent direction to reduce each system’s cost
function; (4) bound the drift term 1

ML

∑M
i=1
∑L−1

l=0 ∥K
(i)
n,l − Kn∥2. Step (4) can be accomplished using a

small local step-size ηl such that each local policy is a small perturbation of the global policy Kn.

On the role of control variates for local drift mitigation: Control-variate techniques such as proposed
in Scaffold (Karimireddy et al., 2020) are designed to correct the optimization drift that arises in federated
optimization under non-IID data by making each local update an approximately unbiased estimator of the
global gradient. However, we emphasize that such methods do not eliminate the intrinsic gap between the
minimizer of the averaged LQR cost Cavg(K) and the individual optima K⋆

i when the underlying dynamical
systems differ. This limitation reflects a fundamental distinction between control-variate methods in classical
FL and their applicability to our setting of dynamical systems. In standard FL, bias correction can ensure
that the global iterates closely follow an “idea” gradient-descent step on a strongly convex objective, enabling
the use of gradient-domination inequalities to guarantee fast convergence. In contrast, for heterogeneous
LQR systems, the averaged cost Cavg(K) does not, in general, correspond to the LQR cost of any single
“averaged” dynamical system, and hence, one cannot directly appeal to gradient-domination properties like
in the optimization setting to achieve fast linear rates. An important exception arises when all agents share
identical dynamics but differ only through their cost matrices: in that case, Cavg reduces to the LQR cost
associated with (A, B, Q̄, R̄), where Q̄ = (1/M)

∑
i∈[M ] Qi and R̄ = (1/M)

∑
i∈[M ] Ri, making gradient-

domination applicable and mitigating the local drift as discussed in Zhu et al. (2024).

Equipped with these model-based results, we are ready to present our main results of the model-free setting.

11The notation h̄3
het is a positive scalar depending on the parameters of the LQR problem; see Appendix A.4.2 for full details.
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8.2 Model-free setting

We now analyze FedLQR’s convergence in the model-free setting, where the policy gradient steps are approx-
imately computed using zeroth-order optimization (Algorithm 2), without knowing the true dynamics, i.e.,
A(i), B(i) are not available and so ∇C(i)(K(i)) can’t be directly computed. The key point in this setting is
to bound the gap between the estimated gradient and the true gradient. In the centralized setting (Fazel
et al., 2018), the gap can be made arbitrarily accurate with enough trajectory samples ns, sufficiently long
trajectory length τ , and small smoothing radius r.

We aim to achieve a sample complexity reduction for each agent by utilizing data from other similar but
non-identical systems with the help of the server. This presents a significant challenge, as averaging gradient
estimates from multiple agents may not necessarily reduce the variance even for homogeneous systems due
to the high correlation between local gradient estimates. This challenge is compounded in our case as the
gradient estimates are not only correlated but also come from non-identical systems. As a result, the variance
reduction and sample complexity reduction for the FedLQR algorithm is not obvious a priori. After addressing
these challenges using a martingale-based analysis, we show that one can establish variance reduction for
our setting as well. This is formalized in the next result:
Lemma 4. (Variance Reduction) Suppose the smoothing radius r and trajectory length τ from Algo-
rithm 2 satisfy r ≤ hr

(
ϵ
4
)

and τ ≥ hτ

(
rϵ

4nxnu

)
, respectively.12 Moreover, suppose the sample size satisfies:13

ns ≥
hsample,trunc

(
ϵ
4 , δ

ML , H2

µ

)
ML

. (4)

Then, when Kn ∈ G0, with probability 1− δ, the estimated gradients satisfy:∥∥∥∥∥ 1
ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
]∥∥∥∥∥

F

≤ ϵ.

We prove this result and provide the definition of the parameters of hsample,trunc in Appendix A.6. The
most important information conveyed by our variance reduction lemma is that each agent at each local step
only needs to sample 1

ML fraction of samples required in the centralized setting. Notably, this lemma plays
an important role in showing that FedLQR can help improve the sample efficiency. Equipped with Lemma 4,
we now present the main convergence guarantees for FedLQR:

Theorem 2. (Model-free) Suppose the trajectory length satisfies τ ≥ hτ

(
rϵ′

4nxnu

)
, the smoothing radius

satisfies r ≤ h′
r

(
ϵ′

4

)
, and the sample size of each agent ns satisfies Eq. (4) with ϵ′ =

4
∥∥ΣK⋆

i

∥∥
µ2σmin(R) ϵ. When

the heterogeneity level satisfies (ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het, then, given any δ ∈ (0, 1), with probability 1 − δ,

there exist constant step-sizes ηg and ηl, which are independent of ϵ′, such that FedLQR enjoys the following
performance guarantees:

1. (Stability of the global policy) The global policy at each round n is stabilizing, i.e., Kn ∈ G0;

2. (Stability of the local policies) The local policies satisfy K
(i)
n,l ∈ G0 for all i and l;

3. (Convergence rate) After N ≥
∥∥ΣK∗

i

∥∥
ηµ2σmin(R) log

(
2(C(i)(K0)−C(i)(K∗

i ))
ϵ′

)
rounds, we have

C(i)(KN )− C(i)(K∗
i ) ≤ ϵ′ + 2B(ϵ1, ϵ2),∀i ∈ [M ], (5)

where B(ϵ1, ϵ2) is defined in Theorem 1.
12The notation hr, hτ , hsample,trunc and h′

r in Lemma 4 and Theorem 2 are polynomial functions of the LQR problem,
depending on ϵ. For simplicity, we defer their definition to the appendix.

13For the convenience of comparison with existing literature, we use the same notation as in Fazel et al. (2018).
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This theorem establishes the finite-time convergence guarantees for FedLQR. The first two points in Theorem 2
provide the iterative stability guarantees of FedLQR, i.e., the trajectories of FedLQR will always stay inside
the stabilizing set G0. The third point implies that when heterogeneity is small, i.e., B(ϵ1, ϵ2) is negligible,
FedLQR converges to each system’s optimal policy with a linear speedup w.r.t. the number of agents M ,
which we discuss further next.

Discussion: For a fixed desired precision ϵ, we denote N to be the number of rounds such that the first
term ϵ′ in Eq (5) is smaller than ϵ. In what follows, we focus on analyzing the total sample complexity of
FedLQR for each agent, which can be calculated by N×L×ns. Note that N , in our case, is in the same order
as the centralized setting. However, in terms of the sample size ns requirement at each local step, it is only
a 1

ML -fraction of that needed in the centralized setting, as presented in the variance reduction Lemma 4.
Therefore, in a low-heterogeneity regime, where B(ϵ1, ϵ2) is negligible, our FedLQR algorithm reduces the
sample complexity of learning the optimal LQR policy by Õ( 1

M ) of the centralized setting (Fazel et al., 2018;
Malik et al., 2019).14 Specifically, FedLQR improves the sample cost required by each agent from Õ( 1

ϵ2 ) to
Õ( 1

Mϵ2 ) up to a small heterogeneity bias term. This result is highly desirable since the number of agents in
FL is usually large; leading to a significant speedup due to collaboration.

It is important to mention that our results also capture the cost of federation embedded in the term B(ϵ1, ϵ2).
That is when two systems exhibit significant differences from each other, leveraging data across them may
not be beneficial in finding a common stabilizing policy that applies to both. In summary, Eq. (4)–(5)
provide an explicit interplay between the price of heterogeneity and the benefit of collaboration. The trade-off
in Theorem 2 is explored in the simulation study presented in the next section.

9 Numerical Results

The following section describes the experimental setup and results for FedLQR in the model-free setting15.

9.1 System Generation

Numerical experiments are conducted to illustrate and evaluate the effectiveness of FedLQR (Algorithm 1).
The simulations involve different and unstable dynamical systems described by discrete-time linear time-
invariant (LTI) models, as in (4), where each system has nx = 3 states and nu = 3 inputs. To generate
different systems while respecting the bounded heterogeneity assumption (Assumption 1), the following steps
are followed:

1. Given nominal system matrices (A0, B0), generate random variables γ
(i)
1 ∼ U(0, ϵ1) and γ

(i)
2 ∼

U(0, ϵ2), ∀i ∈ [M ], with ϵ1 and ϵ2 being predefined dissimilarity parameters.

2. The random variables generated above are combined with modification masks Z1 ∈ R3×3 and Z2 ∈
R3×3 to generate the different systems matrices (A(i), B(i)) for all i ∈ [M ].

3. The systems (A(i), B(i)) for 0 < i ≤ M are then constructed by perturbing the nominal systems
according to: A(i) = A0 + γ

(i)
1 Z1 and B(i) = B0 + γ

(i)
2 Z2, where Z1 and Z2 are defined in step 2.

4. The nominal matrices are included in the set of generated systems as (A(1), B(1)) = (A0, B0).

In particular, we consider

A0 =

1.20 0.50 0.40
0.01 0.75 0.30
0.10 0.02 1.50

 , B0 = I3, Q = 2I3, and R = 1
2I3,

14In Fazel et al. (2018), the sample complexity of policy gradient with one-point zeroth-order estimation is Õ( 1
ϵ4 ), this was

later improved to Õ( 1
ϵ2 ) by Malik et al. (2019). We compare our results to the refined analysis in Malik et al. (2019).

15Code can be downloaded from https://github.com/jd-anderson/FedLQR
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Figure 3: Gap between the current and optimal cost with respect to the number of global iterations.

for the nominal system matrices and cost matrices respectively.

The optimal controller for the nominal system (A(1), B(1)) is

K∗
1 =

1.0056 0.4293 0.3570
0.0262 0.6239 0.2657
0.1003 0.0298 1.2960

 ,

and was obtained by solving the discrete algebraic Riccati equation (DARE).

9.2 Algorithm Parameters

For the gradient estimation step in the zeroth-order algorithm (Algorithm 2), we set the initial state for
cost computation as a random sample from a standard normal distribution, denoted as D d= N (0, I3), for all
systems i ∈ [M ]. Additionally, we consider ns = 5 trajectories, where each trajectory has a rollout length of
τ = 15, and we set the smoothing radius r = 0.1 for the zeroth-order gradient estimation.

Throughout our simulations, we consider the following initial stabilizing controller K0 = 1.62I3 (Line 1 in
Algorithm 1). Note that although the control action u

(i)
t = −K0x

(i)
t may not be optimal for any of the M

systems. For example, the suboptimality of K0 applied to the nominal system is evidenced by its cost of
C(1)(K0) = 18.4049, compared to the optimal cost of C(1)(K∗

1 ) = 9.5220, when computed from an initial
state x

(1)
0 = [1 1 1]⊤ and time horizon T = 500. However, it is important to note that K0 is still stabilizing

all M systems. Note that we will use K0 as the initial controller for all of the experiments in this paper.

9.3 Experiments

To assess the performance of FedLQR, we evaluate the normalized gap between the current cost C(1)(Kn)
of the nominal system when using the common stabilizing controller Kn and its corresponding optimal cost
C(1)(K∗

1 ). This metric is represented as C(1)(Kn)−C(1)(K∗
1 )

C(1)(K∗
1 ) for each global iteration n ∈ [N ]. In our experi-

ments, we set the step sizes as ηg = 1× 10−2, with an adaptive decrease of 0.05% per global iteration, and
η = 1× 10−4. Further details regarding other parameters, such as the number of systems M , heterogeneity
levels (ϵ1, ϵ2) are provided in the figures and the subsequent discussion.

Figures 3-(a,b) present the normalized distance between the current cost associated with the common stabi-
lizing controller and the optimal cost for the nominal system, plotted with respect to the number of global
iterations. These figures demonstrate the impact of varying the number of systems M and the heterogeneity
parameters (ϵ1, ϵ2) on the convergence and performance of Algorithm 1.

In Figure 3-(a), we specifically investigate the effect of the number of systems M participating in the
collaboration to compute a common controller K∗ on the convergence of our algorithm. In this analysis, we
set the heterogeneity parameters as ϵ1 = 0.5 and ϵ2 = 0.5 and consider modification masks Z1 = Z2 = I3.
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The figure reveals a noticeable reduction in the gap between the current and optimal cost as the number of
participating systems M increases. This numerical result aligns with our theoretical findings, which indicate
that the number of samples required to achieve reliable estimation for the cost function’s gradient can be
scaled down with the number of systems participating in the collaboration. Consequently, as the number
of systems involved increases, there is a considerable reduction in the gap between the common computed
controller and the optimal one.

Figure 3-(b) illustrates the influence of the heterogeneity parameters (ϵ1, ϵ2) on the convergence rate of
Algorithm 1. In this analysis, we set the number of systems as M = 10, and the modification masks
Z1 = diag([3.5 1 0.1]) and Z2 = diag([1.5 0.1 1]). Consistent with our theoretical findings, we observe
that an increase in the dissimilarity among the systems results in a significant gap between the common
and optimal controller. This discrepancy arises due to the additive effect of system heterogeneity on the
convergence rate of our algorithm, as elaborated in Theorem 2.

10 Conclusions and Future Work

We investigated the problem of learning a common and optimal LQR policy with the objective of minimizing
an average quadratic cost. The primary focus of this paper was to thoroughly examine and provide com-
prehensive answers to the following questions: (i) Is the learned common policy stabilizing for all agents?
(ii) How close is the learned common policy to each agent’s own optimal policy? (iii) Can each agent learn
its own optimal policy faster by leveraging data from all agents? To address these questions, we proposed
a federated and model-free approach, FedLQR, where M heterogeneous systems collaborate to learn a com-
mon and optimal policy while keeping the system’s data private. Our analysis tackles numerous technical
challenges, including system heterogeneity, multiple local gradient descent updates, and stability. We have
demonstrated that FedLQR produces a common policy that stabilizes all systems and converges to the optimal
policy (Theorem 2) of each agent up to a heterogeneity-induced bias term. Furthermore, FedLQR achieves a
reduction in sample complexity proportional to the number of participating agents M (Lemma 4). We have
also provided numerical results to effectively showcase and evaluate the performance of our FedLQR approach
in a model-free setting. Future work will address the assumption of requiring full-state information to ex-
tend our results to the Linear Quadratic Gaussian (LQG) problem in a federated setting. We are currently
investigating data-driven and system-theoretic metrics for heterogeneity, as well as personalization-based
methods to mitigate the impact of heterogeneity on the performance of the proposed approach.

Acknowledgments

The authors thank the anonymous reviewers for their thorough and constructive feedback, which significantly
improved this work. Leonardo F. Toso is funded by the Center for AI and Responsible Financial Innovation
(CAIRFI) Fellowship and by the Columbia Presidential Fellowship. James Anderson is partially funded by
NSF grants ECCS 2144634 and 2231350 and the Columbia Center of AI Technology in collaboration with
Amazon.

References
Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,

and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Naman Agarwal, Elad Hazan, and Karan Singh. Logarithmic regret for online control. Advances in Neural
Information Processing Systems, 32, 2019.

Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier Corporation,
2007.

Ashwin Aravind, Mohammad Taha Toghani, and César A Uribe. A moreau envelope approach for lqr meta-
policy estimation. In 2024 IEEE 63rd Conference on Decision and Control (CDC), pp. 415–420. IEEE,
2024.

17



Published in Transactions on Machine Learning Research (02/2026)

Francis Bach and Vianney Perchet. Highly-smooth zero-th order online optimization. In Conference on
Learning Theory, pp. 257–283. PMLR, 2016.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
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A Appendix

A.1 Appendix Roadmap

This appendix is organized as follows. Sections A.2 and A.3 present auxiliary norm inequalities and lemmas
that play a key role in proving the main results of this paper. The proof of our main results in the model-
based setting is provided in Section A.4, while Section A.6 is dedicated to the corresponding results in the
model-free setting. Additional details on the zeroth-order optimization method are provided in Section A.5.

A.1.1 Notation Recap

For convenience we briefly recap and summarize our notation. We use ∥S∥max to denote the maximum
spectral norm taken over the family of matrices S(1), . . . , S(M). All norms for matrices and vectors are
spectral and Euclidean respectively, unless otherwise stated. The integer sequence {1, 2, . . . , N} is denoted
as [N ]. The spectral radius of a square matrix is denoted by ρ(·).

Table 1: Notations

Symbol Meaning

M number of systems

L number of local updates (counter: l)

N number of rounds of averaging (counter: n)

Kn averaged controller at round n

K∗
i optimal controller for system (A(i), B(i))

K
(i)
n,l controller for system i after l local iterations and n averaging rounds

A.2 Useful Norm Inequalities

• Given any two matrices A, B of the same dimensions, for any ξ > 0, we have

∥A + B∥2
F ≤ (1 + ξ)∥A∥2

F +
(

1 + 1
ξ

)
∥B∥2

F . (6)

• Given any two matrices A, B of the same dimensions, for any ξ > 0, we have

⟨A, B⟩ ≤ ξ

2∥A∥
2
F + 1

2ξ
∥B∥2

F . (7)

This inequality goes by the name of Young’s inequality.

• Given m matrices A1, . . . , Am of the same dimensions, the following is a simple application of Jensen’s
inequality: ∥∥∥∥∥

m∑
i=1

Ai

∥∥∥∥∥
2

≤ m

m∑
i=1
∥Ai∥2

,

∥∥∥∥∥
m∑

i=1
Ai

∥∥∥∥∥
2

F

≤ m

m∑
i=1
∥Ai∥2

F . (8)
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• Given any two vectors x, y ∈ Rd, for any constant ζ > 0, we have

∥x + y∥2 ≤ (1 + ζ)∥x∥2 +
(

1 + 1
ζ

)
∥y∥2. (9)

• Given any two vectors x, y ∈ Rd, for any constant ζ > 0, we have

⟨x, y⟩ ≤ ζ

2∥x∥
2 + 1

2ζ
∥y∥2. (10)

A.3 Useful Lemmas and Constants

Lemma 5. For each i ∈ [M ], we have that:

||Σ(i)
K || ≤

C(i)(K)
σmin(Q) , ||P (i)

K || ≤
C(i)(K)

µ
. (11)

Proof. The proof of this lemma is detailed in (Fazel et al., 2018, Lemma 13).

Lemma 6. (Uniform bounds for ∇C(i)(K) and ||K||) For each agent i ∈ [M ], the gradient ∇C(i)(K) and
∥K∥ can be bounded as follows:

∥∇C(i)(K)∥ ≤ ∥∇C(i)(K)∥F ≤ h1(K) and ∥K∥ ≤ h2(K),

where h1(K), and h2(K) are some positive scalars depending on the function C(K).

Proof. In this lemma, h1(K), and h2(K) are the functions defined as:

h0(K) :=

√
∥RK∥max (Cmax(K)− Cmin (K))

µ
,

h1(K) := Cmax(K)h0(K)
σmin(Q) , h2(K) :=

h0(K) +
∥∥B⊤PKA

∥∥
max

σmin(R) ,

where ∥RK∥max := maxi

∥∥∥R + B(i)⊤P
(i)
K B(i)

∥∥∥ . By using (Fazel et al., 2018, Lemma 13), we have

∥∇C(i)(K)∥2 ≤ Tr
(

Σ(i)
K E

(i)⊤
K E

(i)
K Σ(i)

K

)
≤
∥∥∥Σ(i)

K

∥∥∥2
Tr
(

E
(i)⊤
K E

(i)
K

)
≤
(

C(i)(K)
σmin(Q)

)2

Tr
(

E
(i)⊤
K E

(i)
K

)
.

By (Fazel et al., 2018, Lemma 11), we obtain

Tr
(

E
(i)⊤
K E

(i)
K

)
≤

∥∥∥R + B(i)⊤P
(i)
K B(i)

∥∥∥ (C(i)(K)− C(i) (K∗
i )
)

µ
,

which proves the first claim:

∥∇C(i)(K)∥ ≤ C(i)(K)
σmin(Q)

√√√√∥∥∥R + B(i)⊤P
(i)
K B(i)

∥∥∥ (C(i)(K)− C(i) (K∗
i )
)

µ

≤ Cmax(K)
σmin(Q)

√√√√∥∥∥R + B(i)⊤P
(i)
K B(i)

∥∥∥
max

(Cmax(K)− Cmin (K))

µ
.
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On the other hand, by exploiting (Fazel et al., 2018, Lemma 11) we can also write

∥K∥ ≤
∥∥∥∥(R + B(i)⊤P

(i)
K B(i)

)−1
∥∥∥∥∥∥∥(R + B(i)⊤P

(i)
K B(i)

)
K
∥∥∥

≤ 1
σmin(R)

∥∥∥(R + B(i)⊤P
(i)
K B(i)

)
K
∥∥∥

≤ 1
σmin(R)

(∥∥∥(R + B(i)⊤P
(i)
K B(i)

)
K −B(i)⊤P

(i)
K A(i)

∥∥∥+
∥∥∥B(i)⊤P

(i)
K A(i)

∥∥∥)
=

∥∥∥E
(i)
K

∥∥∥
σmin(R) +

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R)

≤

√
Tr
(

E
(i)⊤
K E

(i)
K

)
σmin(R) +

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R)

=

√(
C(i)(K)− C(i) (K∗

i )
) ∥∥∥R + B(i)⊤P

(i)
K B(i)

∥∥∥
√

µσmin(R) +

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R) ,

which completes the proof for the second claim.

It is worth noting that the local cost and gradient smoothness in Lemma 1 not only hold for the single-
agent setting but also hold for the multi-agent setting. Moreover, we will make use of the following matrix
concentration inequality.
Definition 3 (Matrix Martingale). Consider a random process {Yk : k = 0, 1, 2, . . .} with matrices Yk of
finite dimension, we say that the process is martingale if Y0 = 0, Ek−1Yk = Yk−1, and E∥Yk∥ < ∞, where
Ek−1 is the expectation conditioned on a filtration Fk−1.
Lemma 7. (Rectangular Matrix Freedman (Tropp, 2011)). Consider a matrix martingale
{Yk : k = 0, 1, 2, . . .} whose values are matrices with dimension d1 × d2, and denote the difference sequence
as {Xk = Yk − Yk−1 : k = 1, 2, 3, . . .}. Assume that the difference sequence is uniformly bounded:

∥Xk∥ ≤ R almost surely for k = 1, 2, 3, . . . .

Define two predictable quadratic variation processes for this martingale:

Wcol,k :=
k∑

j=1
Ej−1

(
XjX∗

j

)
and

Wrow ,k :=
k∑

j=1
Ej−1

(
X∗

j Xj

)
for k = 1, 2, 3, . . .

Then, for all t ≥ 0 and σ2 > 0,

P
{
∃k ≥ 0 : ∥Yk∥ ≥ t and max {∥Wcol ,k∥ , ∥Wrow ,k∥} ≤ σ2} ≤ (d1 + d2) · exp

{
− −t2/2

σ2 + Rt/3

}
.

A.3.1 Proof of Lemma 1

Proof. In this proof, we aim to show∣∣∣C(i) (K ′)− C(i)(K)
∣∣∣ ≤ hcost(K)∥K ′ −K∥,∥∥∥∇C(i) (K ′)−∇C(i)(K)
∥∥∥ ≤ hgrad (K)∥∆∥, and∥∥∥∇C(i) (K ′)−∇C(i)(K)
∥∥∥

F
≤ hgrad(K)∥∆∥F ,
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hold for all agents i ∈ [M ], and K ′ satisfying ∥K ′ −K∥ ≤ h∆(K) <∞. The term h∆(K) is the polynomial
defined as

h∆(K) := σmin(Q)µ
4||B||maxCmax(K) (∥A−BK∥max + 1) ,

the term hcost (K) and hgrad(K) are defined as

hcost (K) := 4 Tr (Σ0) Cmax(K)∥R∥
µσmin (Q)

(
∥K∥+ h∆(K)

2 + ∥B∥max∥K∥2 (∥A−BK∥max + 1) Cmax(K)
µσmin(Q)

)

hgrad (K) :=4
(

Cmax(K)
σmin(Q)

)[
∥R∥+ ∥B∥max (∥A∥max + ||B||max (∥K∥+ h∆(K)))

×
(

hcost (K)Cmax(K)
Tr (Σ0)

)
+ ∥B∥2

max
Cmax(K)

µ

]
+ 8

(
Cmax(K)
σmin(Q)

)2(∥B∥max (∥A−BK∥max + 1)
µ

)
h0(K).

For the single-agent (i.e., M = 1) setting, the proof is explained in detail in (Fazel et al., 2018, Lemma 24
and 25). For the multi-agent setting (i.e., M > 1), we can complete the proof by taking the maximum over
the clients i ∈ [M ] of all the system-dependent parameters, such as ∥B∥max.

A.3.2 Proof of Lemma 2

Proof. For the single-agent (i.e., M = 1) setting, the proof is explained in (Fazel et al., 2018, Lemma 11).
For the multi-agent setting (i.e., M > 1), it is easy to see that

C(i)(K)− C(i) (K∗
i ) ≤

∥∥ΣK∗
i

∥∥
4µ2σmin(R)∥∇C(i)(K)∥2

F ≤
maxi

∥∥ΣK∗
i

∥∥
4µ2σmin(R) ∥∇C(i)(K)∥2

F

holds for any stabilizing controller K and any agent i ∈ [M ].

A.4 The model-based setting

We first introduce the following operators on a symmetric matrix X,

T (i)
K (X) :=

∞∑
t=0

(A(i) −B(i)K)tX
[
(A(i) −B(i)K)⊤

]t

,

F (i)
K (X) := (A(i) −B(i)K)X(A(i) −B(i)K)⊤. (12)

We also define the induced norms of T and F as

∥TK∥ = sup
X

∥TK(X)∥
∥X∥

, ∥FK∥ = sup
X

∥FK(X)∥
∥X∥

.

Lemma 8. When (A(i) −B(i)K) has spectral radius smaller than 1, we have

T (i)
K =

(
I−F (i)

K

)−1

holds for each i ∈ [M ].

Proof. The proof is detailed in (Fazel et al., 2018, Lemma 18).
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Lemma 9. If 16

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ ≤ 1
2 (13)

holds for any system i, j ∈ [M ], then we have∥∥∥(T (i)
K − T (j)

K

)
(X)

∥∥∥ ≤ 2
∥∥∥T (i)

K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥∥T (i)
K (X)

∥∥∥
≤ 2

∥∥∥T (i)
K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥ ∥ X∥.

Proof. Define A = I−F (i)
K , and B = F (i)

K −F
(j)
K . In this case A−1 = T (i)

K and (A−B)−1 = T (j)
K . Hence, the

condition
∥∥∥T (i)

K

∥∥∥ ∥∥∥F (i)
K −F

(j)
K

∥∥∥ ≤ 1
2 translates to the condition

∥∥A−1
∥∥ ∥B∥ ≤ 1

2 .

First, we observe that (
A−1 − (A− B)−1) (X) =

(
I−

(
I−A−1 ◦ B

)−1
) (
A−1(X)

)
=
(

I−
(
I−A−1 ◦ B

)−1
)(
T (i)

K (X)
)

, (14)

where f ◦ g denotes the composition f(g(x)). Since(
I−A−1 ◦ B

)−1 = I +A−1 ◦ B ◦
(
I−A−1 ◦ B

)−1
,

we have: ∥∥∥(I−A−1 ◦ B
)−1
∥∥∥ ≤ 1 +

∥∥A−1 ◦ B
∥∥ ∥∥∥(I−A−1 ◦ B

)−1
∥∥∥ ≤ 1 + 1

2

∥∥∥(I−A−1 ◦ B
)−1
∥∥∥ (15)

Now rearranging terms in Eq.(15), we obtain
∥∥∥(I−A−1 ◦ B

)−1
∥∥∥ ≤ 2. Therefore, we have∥∥∥I−

(
I−A−1 ◦ B

)−1
∥∥∥ =

∥∥∥A−1 ◦ B ◦
(
I−A−1 ◦ B

)−1
∥∥∥ ≤ ∥∥A−1∥∥ ∥B∥ ∥∥∥(I−A−1 ◦ B

)−1
∥∥∥

≤ 2
∥∥A−1∥∥ ∥B∥,

and so ∥∥∥I−
(
I−A−1 ◦ B

)−1
∥∥∥ ≤ 2

∥∥A−1∥∥ ∥B∥ = 2
∥∥∥T (i)

K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ . (16)

Then, we have ∥∥∥(T (i)
K − T (j)

K

)
(X)

∥∥∥ =
∥∥(A−1 − (A− B)−1) (X)

∥∥
(a)
≤
∥∥∥(I−

(
I−A−1 ◦ B

)−1
)∥∥∥∥∥∥T (i)

K (X)
∥∥∥

(b)
≤ 2

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ ∥∥∥T (i)
K (X)

∥∥∥
≤ 2

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥∥T (i)
∥∥∥ ∥X∥ ,

where (a) is due to Eq.(14) and (b) is due to Eq.(16). This completes the proof of Lemma 9.

16This lemma has a similar flavor to that of Lemma 20 in (Fazel et al., 2018). It is worthwhile to mention that the
inequality (13) imposes certain conditions on heterogeneity. Note that the constant 1

2 can be changed into any finite constant.
Thus, this heterogeneity requirement can be subsumed by that in Eq.(21).
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A.4.1 Proof of Lemma 3

Proof. First, we know that ∇C(i)(K) and ∇C(j)(K) are given by,

∇C(i)(K) = 2E
(i)
K Σ(i)

K , and ∇C(j)(K) = 2E
(j)
K Σ(j)

K

where,

E
(i)
K = (R + B(i)⊤P

(i)
K B(i))K −B(i)⊤P

(i)
K A(i),

and

Σ(i)
K =

x
(i)
0 ∼D

∞∑
t=0

x
(i)
t x

(i)⊤
t .

Thus, we can write,

||∇C(i)(K)−∇C(j)(K)|| = ||2E
(i)
K Σ(i)

K − 2E
(j)
K Σ(j)

K ||

≤ 2(||E(i)
K − E

(j)
K || ||Σ

(i)
K ||︸ ︷︷ ︸

β1

+ ||E(j)
K ||︸ ︷︷ ︸

β2

||Σ(i)
K − Σ(j)

K ||).

From Eq. (11) we can upper bound ||Σ(i)
K || as follows:

||Σ(i)
K || ≤

C(i)(K)
σmin(Q) .

With the definition of E
(j)
K = RK +B(j)⊤P

(j)
K B(j)K−B(j)⊤P

(j)
K A(j), we can use triangle inequality to write,

||E(j)
K || ≤ ||RK||+ ||B(j)||||P (j)

K ||||B
(j)K||+ ||B(j)||||P (j)

K ||||A
(j)||

≤ ||RK||+ ||B
(j)||C(j)(K)

µ
(||B(j)K||+ ||A(j)||),

where ||P (j)
K || ≤

C(j)(K)
µ from Eq. (11), with µ = σmin(Σ(j)

0 ).

With the notation that we introduced previously, we can write

β1 = ||Σ(i)
K || ≤ ||ΣK ||max ≤

Cmax(K)
σmin(Q) ,

and,

β2 = ||E(j)
K || ≤ ||EK ||max ≤ ||R||||K||+

||B||maxCmax(K)
µ

(||B||max + ||A||max),

where Cmax(K) := maxi C(i)(K).

Next we will derive an upper bound for ||E(i)
K − E

(j)
K ||.

Upper bound for ||E(i)
K − E

(j)
K ||: We can first use the definition of E

(i)
K and E

(j)
K to write,

E
(i)
K − E

(j)
K = B(j)⊤P

(j)
K (A(j) −B(j)K)−B(i)⊤P

(i)
K (A(i) −B(i)K)

= −B(i)⊤P
(i)
K (A(i) −B(i)K) + B(i)⊤P

(i)
K (A(j) −B(j)K)−B(i)⊤P

(i)
K (A(j) −B(j)K)

+ B(i)⊤P
(j)
K (A(j) −B(j)K)−B(i)⊤P

(j)
K (A(j) −B(j)K) + B(j)⊤P

(j)
K (A(j) −B(j)K).
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Then, by using triangle inequality, we obtain the following expression:

||E(i)
K − E

(j)
K || ≤ ||B

(i)⊤P
(i)
K (A(i) −B(i)K)−B(i)⊤P

(i)
K (A(j) −B(j)K)︸ ︷︷ ︸

H1

||

+ ||B(i)⊤P
(i)
K (A(j) −B(j)K)−B(i)⊤P

(j)
K (A(j) −B(j)K)︸ ︷︷ ︸

H2

||

+ ||B(i)⊤P
(j)
K (A(j) −B(j)K)−B(j)⊤P

(j)
K (A(j) −B(j)K)︸ ︷︷ ︸

H3

||.

Incorporating the heterogeneity bounds from assumption 1 gives

||H1|| ≤ ||B(i)||||P (i)
K ||(ϵ1 + ϵ2||K||),

to which we apply the max-norm definition to arrive at

||H1|| ≤ ||B||max(ϵ1 + ϵ2||K||)||PK ||max. (17)

Similarly, we can also derive upper bounds for ||H2|| and ||H3||, as follows,

||H2|| ≤ ||B(i)||||P (i)
K − P

(j)
K ||||A

(j) −B(j)K|| ≤ ||B||max||P (i)
K − P

(j)
K ||||A−BK||max (18)

and

||H3|| ≤ ϵ2||A(i) −B(i)K||||P (j)
K || ≤ ϵ2||A−BK||max||PK ||max. (19)

To bound H2, we need to derive an upper bound for ||P (i)
K − P

(j)
K ||. For this purpose, we have that for any

fixed system i ∈ [M ]

||P (i)
K − P

(j)
K || =

∥∥∥T (i)
K

(
Q + K⊤RK

)
− T (j)

K

(
Q + K⊤RK

)∥∥∥ .

Thus, by using Lemma 9, we can write,

||P (i)
K − P

(j)
K || ≤ 2

∥∥∥T (i)
K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥Q + K⊤RK
∥∥ ,

where ||T (i)
K || ≤

C(i)(K)
σmin(Q)µ ≤

Cmax(K)
σmin(Q)µ (detailed in Lemma 17 of (Fazel et al., 2018)). With the following upper

bound for
∥∥∥F (i)

K −F
(j)
K

∥∥∥:

||(F (i)
K −F

(j)
K )(X)|| = ||(A(i) −B(i)K)X(A(i) −B(i)K)⊤

− (A(j) −B(j)K)X(A(j) −B(j)K)⊤||
≤ 2(ϵ1 + ϵ2||K||)||X||||A−BK||max,

we have

||P (i)
K − P

(j)
K || ≤ 4

(
Cmax(K)
σmin(Q)µ

)2
(ϵ1 + ϵ2||K||)||A−BK||max(||Q||+ ||R||||K||2), (20)

Plugging in Eq. (20) into H2 and adding the upper bounds of H1 (Eq. 17), H2 (Eq. 18) and H3 (Eq. 19)
together, we have

||E(i)
K − E

(j)
K || ≤ g1(ϵ1, ϵ2, K),

30



Published in Transactions on Machine Learning Research (02/2026)

where g1 is a linear in ϵ1, ϵ2 and polynomial in the remaining problem data. Specifically,

g1(ϵ1, ϵ2, K) := ϵ1

(
||B||maxCmax(K)

µ

[
1 + 4

(
Cmax(K)
σmin(Q)µ

)
(||A−BK||max)2 (||Q||+ ||R||||K||2)])

+ ϵ2

(
||B||max||K||Cmax(K)

µ

[
1 + 4

(
Cmax(K)
σmin(Q)µ

)
(||A−BK||max)2 (||Q||+ ||R||||K||2)]

+||A−BK||max) .

In what follows, we will derive an upper bound for ||Σ(i)
K − Σ(j)

K ||:

Upper bound for ||Σ(i)
K − Σ(j)

K ||: From the previous definitions in Eq.(12) and Lemma 9, we have,

||Σ(i)
K − Σ(j)

K || = ||T
(i)

K (Σ0)− T (j)
K (Σ0)|| ≤ 2

∥∥∥T (i)
K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥ ∥ Σ0∥

≤ 4
(

Cmax

σmin(Q)µ

)2
(ϵ1 + ϵ2||K||)||A−BK||max||Σ0||

where Σ0 = E
x

(i)
0 ∼D

[
x

(i)
0 x

(i)⊤
0

]
.

Thus, we have the following upper bound for ||Σ(i)
K − Σ(j)

K ||,

||Σ(i)
K − Σ(j)

K || ≤ g2(ϵ1, ϵ2, K)
with,

g2(ϵ1, ϵ2, K) := ϵ1

(
Cmax(K)
σmin(Q)µ

)2
(4||A−BK||max||Σ0||) + ϵ2||K||

(
Cmax(K)
σmin(Q)µ

)2
(4||A−BK||max||Σ0||) .

Therefore, we can finally write an upper bound for ||∇C(i)(K)−∇C(j)(K)||, which is:
||∇C(i)(K)−∇C(j)(K)|| ≤ f(ϵ1, ϵ2, K)

where,
f(ϵ1, ϵ2, K) = 2(β1g1(ϵ1, ϵ2, K) + β2g2(ϵ1, ϵ2, K)).

After some rearrangement, we have that
f(ϵ1, ϵ2, K) = ϵ1h1

het(K) + ϵ1h2
het(K),

where h1
het = h1f + h2f and h2

het = h3f + h4f , and

h1f = 2||B||max(Cmax(K))2

σmin(Q)µ

[
1 + 4

(
Cmax(K)
σmin(Q)µ

)
(||A−BK||max)2 (||Q||+ ||R||||K||2)] ,

h2f = 2
µ

(
Cmax(K)
σmin(Q)

)3
(4||A−BK||max||Σ0||) ,

h3f = 2
(
||R||||K||+ ||B||maxCmax(K)

µ
(||B||max + ||A||max)

)
×
(
||B||max||K||Cmax(K)

µ

[
1 + 4

(
Cmax(K)
σmin(Q)µ

)
(||A−BK||max)2 (||Q||+ ||R||||K||2)]

+||A−BK||max) ,

h4f = 8
(
||R||||K||+ ||B||maxCmax(K)

µ
(||B||max + ||A||max

)
||K||

(
Cmax(K)
σmin(Q)µ

)2
||A−BK||max||Σ0||.
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A.4.2 Proof of Theorem 1

In this theorem, we consider the setting where (ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het with

h̄3
het := min

j∈[M ]

{
µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

4||ΣK∗
j
||min{nx, nu}

}
. (21)

Outline: To prove Theorem 1, we first introduce some lemmas: Lemma 10 establishes stability of the local
policies; Lemma 11 provides the drift analysis; Lemma 12 quantifies the per-round progress of our FedLQR
algorithm. As a result, we are able to present the iterative stability guarantees and convergence analysis of
FedLQR in the model-based setting.
Lemma 10. (Stability of the local policies) Suppose Kn ∈ G0. If the local step-size satisfies ηl ≤
min{h∆

h̄1
, 1

4h̄grad
} and the heterogeneity level satisfies (ϵ1h̄1

het + ϵ2h̄2
het)2 ≤ h̄3

het, then K
(i)
n,l ∈ G0 holds for

all i ∈ [M ] and l ∈ [L].

Proof. Since Kn ∈ G0, based on the local Lipschitz property in Lemma 1, we have:

C(j)(K(i)
n,1)− C(j)(Kn) ≤

〈
∇C(j)(Kn), K

(i)
n,1 −Kn

〉
+ hgrad(Kn)

2

∥∥∥K
(i)
n,1 −Kn

∥∥∥2

F

≤ −
〈
∇C(j)(Kn), ηl∇C(i)(Kn)

〉
+ hgrad(Kn)

2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2

F
(22)

holds for any i, j ∈ [M ], if
∥∥∥ηl∇C(i)(Kn)

∥∥∥
F
≤ h∆ ≤ h∆(Kn), which holds when

∥∥∥ηl∇C(i)(Kn)
∥∥∥

F

(a)
≤ ηlh1(Kn) ≤ ηlh̄1

(b)
≤ h∆,

where (a) comes from Lemma 6 and (b) holds because of the requirement on ηl in the statement of the
lemma. We note that although hgrad(Kn) depends on Kn, our analysis is always restricted to the common
stabilizing sublevel set G0(β), on which, hgrad(Kn) is bounded from above by some h̄grad <∞ (see (ϕ, ρ)-local
smoothness property in Malik et al. (2019)).

Following the analysis in Eq (22), we have

C(j)(K(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
− ηl

〈
∇C(j)(Kn),∇C(i)(Kn)−∇C(j)(Kn)

〉
︸ ︷︷ ︸

T1

+ hgrad(Kn)
2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2

F
. (23)

Now T1 can be bounded as

T1 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥

F

≤ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥

(c)
≤ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het), (24)

where (c) is due to Lemma 3. Plugging in the upper bound of T1 into (22), we have:

C(j)(K(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het) + hgrad(Kn)

2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2

F
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(d)
≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het)

+ hgrad(Kn)
∥∥∥ηl∇C(j)(Kn)

∥∥∥2

F
+ hgrad(Kn)

∥∥∥ηl∇C(i)(Kn)− ηl∇C(j)(Kn)
∥∥∥2

F

(e)
≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het)

+ η2
l hgrad(Kn)

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ η2

l hgrad(Kn) min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2

(f)
≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

4

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ ηl min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2

+ η2
l h̄grad

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ η2

l h̄grad min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2

= −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ (ηl

4 + η2
l h̄grad)

∥∥∥∇C(j)(Kn)
∥∥∥2

F

+ (ηl + η2
l h̄grad) min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2

(g)
≤ −ηl

2

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ 2ηl min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2,

which implies

C(j)(K(i)
n,1)− C(j)(K∗)

(h)
≤

1− 2ηlµ
2σmin(R)∥∥∥ΣK∗

j

∥∥∥
 (C(j)(K0)− C(j)(K∗

j ))

+ 2ηl min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2, (25)

where (d) is due to Eq. (8); (e) is due to Lemma 3; (f) is due to Eq.(10) with ζ = 1
2 ; (g) is due to the choice

of step-size such that η2
l h̄grad ≤ ηl

4 , which holds when ηl ≤ 1
4h̄grad

; and (h) is due to Lemma 2 and the fact
that Kn ∈ G0. If ϵ1 and ϵ2 are small enough that

(ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ min
j∈[M ]

{
µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

4||ΣK∗
j
||min{nx, nu}

}
,

we have that

C(j)(K(i)
n,1)− C(j)(Kn) ≤ C(j)(K0)− C(j)(K∗

j ),

holds for any j ∈ [M ].

The above inequality implies K
(i)
n,1 ∈ G0 as long as Kn ∈ G0. Then we can use the induction method to

obtain that K
(i)
n,2 ∈ G0 since K

(i)
n,1 ∈ G0. As a result, an identical argument can be used from K

(i)
n,1 to K

(i)
n,2.

Therefore, by repeating this step for L times, we have that all the local polices K
(i)
n,l ∈ G0 holds for all i ∈ [M ]

and l = 1, · · · , L, when the global policy Kn ∈ G0.

Lemma 11. (Drift term analysis) If ηl ≤ min
{

1
4h̄grad

, 1
2 ,

h∆
h̄1

, log 2
L(3h̄grad+1)

}
and Kn ∈ G0, the difference between

the local policy and global policy can be bounded as follows ∀i ∈ [M ] and l ∈ [L]:∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
≤ 2ηlL

∥∥∥∇C(i)(Kn)
∥∥∥2

F
= 2η

ηg

∥∥∥∇C(i)(Kn)
∥∥∥2

F
.

Proof. We have∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
=
∥∥∥K

(i)
n,l−1 −Kn − ηl∇C(i)(K(i)

n,l−1)
∥∥∥2

F
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=
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇C(i)(K(i)

n,l−1), K
(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇C(i)(K(i)

n,l−1)
∥∥∥2

F

=
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇C(i)(K(i)

n,l−1)−∇C(i)(Kn), K
(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(Kn), K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇C(i)(K(i)

n,l−1)
∥∥∥2

F

≤
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
+ 2ηl

∥∥∥∇C(i)(K(i)
n,l−1)−∇C(i)(Kn)

∥∥∥
F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥

F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+
∥∥∥ηl∇C(i)(K(i)

n,l−1)
∥∥∥2

F

(a)
≤
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
+ 2ηlhgrad(Kn)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ ηl

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+
∥∥∥ηl∇C(i)(K(i)

n,l−1)
∥∥∥2

F

≤ (1 + 2ηlhgrad(Kn) + ηl)
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 2η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ 2η2
l

∥∥∥∇C(i)(K(i)
n,l−1)−∇C(i)(Kn)

∥∥∥2

F

(b)
≤ (1 + 2ηlhgrad(Kn) + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 2η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ 2η2
l h2

grad(Kn)
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F

(c)
≤
(
1 + 2ηlh̄grad + ηl + 2η2

l h̄2
grad

) ∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 2η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

(d)
≤
(
1 + 3ηlh̄grad + ηl

) ∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F
, (26)

where (a) and (b) are due to Lemma 1; (c) is due to the fact that Kn ∈ G0; (d) is due to the choice of
step-size such that 2η2

l h̄2
grad ≤ ηlh̄grad and 2η2

l ≤ ηl, which hold when ηl ≤ min{ 1
2h̄grad

, 1
2}. Therefore, we

have ∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
≤ (1 + 3ηlh̄grad + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

≤ (1 + 3ηlh̄grad + ηl)l
∥∥∥K

(i)
n,0 −Kn

∥∥∥2

F︸ ︷︷ ︸
=0

+2
l−1∑
j=0

(
1 + 3ηlh̄grad + ηl

)j
ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

≤
(
1 + 3ηlh̄grad + ηl

)l − 1(
1 + 3ηlh̄grad + ηl

)
− 1

2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

(a)
≤ 2× 1 + l(3ηlh̄grad + ηl)− 1

3h̄grad + 1

∥∥∥∇C(i)(Kn)
∥∥∥2

F

≤ 2ηlL
∥∥∥∇C(i)(Kn)

∥∥∥2

F
,

where, for (a), we used the fact that (1 + x)τ+1 ≤ 1 + 2x(τ + 1) holds for x ≤ log 2
τ . In other words,(

1 + 3ηlh̄grad + ηl

)l ≤ 1 + l(3ηlh̄grad + ηl) holds when 3ηlh̄grad + ηl ≤ log 2
l , i.e., when ηl ≤ log 2

L(3h̄grad+1) .

Lemma 12. (Per round progress) Suppose Kn ∈ G0. If we choose the local step-size as

ηl = 1
2 min

{
1

4h̄grad
,

1
2 ,

h∆

h̄1
,

log 2
L(3h̄grad + 1)

,
1

80Lh̄2
grad

}
,
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choose η = 1
2 min{h∆

h̄1
, 1, 2

3h̄grad
}, and the global step-size as ηg = η

Lηl
, then, for all i ∈ [M ], it holds that

C(i)(Kn+1)− C(i)(Kn) ≤ −ηµ2σmin(R)∥∥ΣK∗
i

∥∥
max

(C(i)(Kn)− C(i)(K∗
i )) + 3η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2. (27)

Proof.

C(i)(Kn+1)− C(i)(Kn)
(a)
≤ ⟨∇C(i)(Kn), Kn+1 −Kn⟩+ hgrad(Kn)

2 ∥Kn+1 −Kn∥2
F

= −
〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
〉

+ hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
∥∥∥2

F

= −
〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K(j)

n,l )−∇C(i)(Kn)
]〉
− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
∥∥∥2

F

= −
〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K(j)

n,l )−∇C(j)(Kn) +∇C(j)(Kn)−∇C(i)(Kn)
]〉

− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
∥∥∥2

F

≤ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K(j)

n,l )−∇C(j)(Kn)
] ∥∥∥

F

+ η

M

M∑
j=1

∥∥∥∇C(i)(Kn)
∥∥∥

F

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥

F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
∥∥∥2

F

(b)
≤ η

∥∥∥∇C(i)(Kn)
∥∥∥

F

hgrad(Kn)
ML

M∑
j=1

L−1∑
l=0

∥∥∥K
(j)
n,l −Kn

∥∥∥
F


+ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ η

M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2

F
− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ hgrad(Kn) 3η2

2ML

M∑
j=1

L−1∑
l=0

∥∥∥∇C(j)(K(j)
n,l )−∇C(j)(Kn)

∥∥∥2

F

+ 3η2hgrad(Kn)
2M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2

F
+ 3η2hgrad(Kn)

2

∥∥∥∇C(i)(Kn)
∥∥∥2

F

(c)
≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+

ηh̄2
grad

ML

M∑
i=1

L−1∑
l=0

∥∥∥K
(i)
n,l −Kn

∥∥∥2

F

+ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+
(

η + 3η2h̄grad

2

)
1

M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2

F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+

3η2h̄2
grad

2ML

M∑
j=1

L−1∑
l=0

∥∥∥K
(j)
n,l −Kn

∥∥∥2

F
+ η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
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(d)
≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+

5η2h̄2
grad

ηgM

M∑
j=1

∥∥∥∇C(j)(Kn)
∥∥∥2

F

+ 2η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2

(e)
≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+

10η2h̄2
grad

ηgM

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2

F

+
10η2h̄2

grad

ηg

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 2η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2

(f)
≤ −η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 3η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2

≤ −ηµ2σmin(R)∥∥ΣK∗
i

∥∥ (C(i)(Kn)− C(i)(K∗
i )) + 3η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2.

In the above steps, (a) is due to the choice of step-size η such that

∥Kn+1 −Kn∥ = ∥ η

ML

M∑
i=1

L−1∑
l=0
∇C(i)(K(i)

n,l)∥ ≤ ηh̄1 ≤ h∆,

holds when η ≤ h∆
h̄1

. For (b), we use the Lipschitz property of the gradient (Lemma 1) in the first line, and use
Eq.(10) with ζ = 1

2 in the second line, and for the third and forth lines we use Eq. (8); (c) is due to Lemma 1
and 3η2h̄grad

2 ≤ η
8 ; (d) is due to Lemma 3, Lemma 11 and the choice of step-size such that 3η2h̄grad

2 ≤ η
8 ≤ η;

(e) is due to Eq.(8); and for (f), we use the fact that 10η2h̄2
grad

ηg
≤ η

8 ≤ η, which holds when ηl ≤ 1
80Lh̄2

grad
.

We use the gradient domination property (Lemma 2) in the last equality.

With this lemma, we are now ready to provide the convergence guarantees for FedLQR in the model-based
setting.

Proof of the iterative stability guarantees of FedLQR: Here we leverage the method of induction to
prove FedLQR’s iterative stability guarantees. First, we start from an initial policy K0 ∈ G0. At round n, we
assume Kn ∈ G0. According to Lemma 10, we can show that all the local policies K

(i)
n,l ∈ G0. Furthermore,

by choosing the step-sizes properly in Lemma 12, we have that

C(i)(Kn+1)− C(i)(Kn) ≤ −ηµ2σmin(R)∥∥ΣK∗
i

∥∥
max

(C(i)(Kn)− C(i)(K∗
i ))

+ 3η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2.

for any i ∈ [M ]. Then, for any fixed system i ∈ [M ], with (ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i ))

+ 3η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2

≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(K0)− C(i)(K∗
i ))

+ ηµ2σmin(R)∥∥ΣK∗
i

∥∥ (C(i)(K0)− C(i)(K∗
i ))

≤ C(i)(K0)− C(i)(K∗
i ).
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With this, we can easily see that the global policy Kn+1 at the next round n + 1 is also stabilizing, i.e.,
Kn+1 ∈ G0, by using the definition of G0 (Definition 2). Therefore, we can complete proving FedLQR’s
iterative stability property by inductive reasoning.

Proof of FedLQR’s convergence: From Eq.(27), we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i ))

+ 3η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2.

Under the assumptions in Lemma 12, FedLQR thus enjoys the following convergence guarantee after N rounds:

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i ))

+
3 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h1

het + ϵ1h2
het)2.

Thus, we finish the proof of Theorem 1 with cuni,1 = 12 and B(ϵ1, ϵ2) :=
υ
∥∥ΣK∗

i

∥∥
4µ2σmin(R) (ϵ1h1

het + ϵ1h2
het)2. □

A.4.3 Proof of Corollary 8.3

Proof. From Theorem 1, we have that

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i ))

+
3 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h1

het + ϵ1h2
het)2

holds for all i ∈ [M ]. Based on the fact that K∗
i is system i’s optimal LQR controller, i.e., C(i)(K∗

i ) ≤
C(i)(K∗), we have that

C(i)(KN )− C(i)(K∗) ≤
(

1− ηµ2σmin(R)∥∥ΣK∗
i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i ))

+
3 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h1

het + ϵ1h2
het)2 (28)

We can finish the proof of Corollary 1 by averaging Eq. (28) across all M systems.
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A.5 Zeroth-order optimization

To prepare for the model-free setting where the controllers only have access to the system’s trajectories,
we first quickly recap the basic idea behind zeroth-order optimization. Say our goal is to minimize a loss
function f(x), where x ∈ Rd. When one has access to exact deterministic gradients of this loss function via
an oracle, the standard approach for minimization would be to query the gradient oracle at each iteration,
and run gradient descent. Concretely, one would run the following iterative scheme: xt+1 = xt − η∇f(xt),
where η is a suitably chosen learning-rate/step-size. While such first-order optimization schemes have a rich
history, there has also been a growing interest in understanding the behavior of derivative-free (zeroth-order)
methods that can only query function values, as opposed to the gradients. Two immediate reasons (among
many) for studying zeroth-order optimization are as follows: (i) in practice, one may only have access to
a black-box procedure that cannot evaluate gradients; and (ii) computing gradients might prove to be too
computationally-expensive.

Given two or more function evaluations, the basic idea behind zeroth-order algorithms is to construct an
estimate of the true gradient for evaluating and updating model parameters. For instance, a typical zeroth-
order scheme with single-point function evaluation would take the following form (Polyak, 1987):

xt+1 = xt − ηt

(
f(xt + µtu)− f(xt)

µt

)
u.

In the expression above, {ηt} is the learning-rate sequence, {µt} is a sequence typically chosen in a way such
that µt → 0, and u is a random vector distributed uniformly over the unit sphere. For details about the
convergence of zeroth-order optimization algorithms such as the one above, we refer the interested reader
to (Nesterov & Spokoiny, 2017; Duchi et al., 2015; Bach & Perchet, 2016).

We now turn to briefly describing the model-free setup for our LQR problem. (Fazel et al., 2018) propose a
zeroth-order-based algorithm (Algorithm 1 in (Fazel et al., 2018)) to compute an estimation ∇̂C(K) and Σ̂K

for both ∇C(K) and ΣK , for a given K. Algorithm 1 in (Fazel et al., 2018) exploits a multiple-trajectory-
based technique that uses a Gaussian perturbed cost function (i.e., producing a Gaussian smoothing function)
to estimate∇C(K) from cost function perturbed values. That is, given the cost function C(K), we can define
its perturbed function as,

Cr(K) = EU∼Br [C(K + U)]
where Br is the uniform distribution over all matrices with Frobenius norm at most r and U is a random
matrix with proper dimension and generated from Br. For small r, the smooth cost Cr(K) is a good
approximation to the original cost C(K). Due to the Gaussian smoothing, the gradient has a particularly
simple functional form (Gravell et al., 2020):

∇Cr(K) = nxnu

r2 EU∼Br [C(K + U)U ].

Therefore, this expression implies a straightforward method to obtain an unbiased estimate of ∇Cr(K),
through obtaining the infinite-horizon rollouts. However, in practice, we can only obtain the finite-horizon
rollouts to approximate the gradient. Thanks to (Fazel et al., 2018), they showed that the approximation
error of the exact gradient can be reduced to arbitrary accuracy if the number of sample trajectories ns and
the length of each rollout τ are sufficiently large, and the smoothing radius r is small enough.

We also emphasize that the zeroth-order estimator obtained from Cr(K) is a biased approximation of the
true gradient ∇C(K), with the bias arising from the smoothing step. The magnitude of this bias is controlled
by the choice of the smoothing radius r: smaller values of r yield a closer approximation to the original cost
landscape at the cost of higher variance. In our analysis, we make the estimation error sufficiently small by
selecting r, the number of samples ns, and the rollout horizon τ appropriately.

It is important to emphasize that our results can be readily extended to the two-point zeroth-order estima-
tion scheme, where the estimation variance can be reduced, as discussed in Malik et al. (2019). However,
addressing the two-point zeroth-order estimation is beyond the scope of this work, and we refer the reader
to (Toso et al., 2024a) for an instantiation of the results in the asynchronous aggregation setting under the
two-point gradient estimation scheme.
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A.6 The model-free setting

For notational brevity we rewrite ̂∇C(i)(K) as ∇̃C(i)(K) where

̂∇C(i)(K) = ∇̃C(i)(K) := 1
ns

ns∑
s=1

nxnu

r2 C̃(i),(τ)
(

K + U (i)
s

)
U (i)

s ,

and introduce two new gradient-based terms:

∇′C(i)(K) := 1
ns

ns∑
s=1

nxnu

r2 C(i),(τ)
(

K + U (i)
s

)
U (i)

s ,

∇̂C(i)(K) := 1
ns

ns∑
s=1

nxnu

r2 C(i)
(

K + U (i)
s

)
U (i)

s ,

where C̃(i),(τ)
(

K + U
(i)
s

)
:=

∑τ−1
t=0

(
x

(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
with x

(i)
t = (K + U

(i)
s )u(i)

t ,

C(i),(τ)
(

K + U
(i)
s

)
:= E

x
(i)
0 ∼D

∑τ−1
t=0

(
x

(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
and

C(i)
(

K + U (i)
s

)
:= E

x
(i)
0 ∼D

∞∑
t=0

(
x

(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
.

A.6.1 Auxiliary Lemmas

Lemma 13. (Approximating C(i)(K) and Σ(i)
K with finite horizon) Suppose K is such that C(i)(K) is finite.

Define the finite horizon estimates,

Σ(i),(τ)
K := E

[
τ−1∑
t=0

x
(i)
t x

(i)⊤
t

]
and C(i),(τ)(K) := E

[
τ−1∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]
,

for all systems i ∈ [M ]. Now, let ϵ be an arbitrarily small constant such that

τ ≥ h1
τ (ϵ) := max

i∈[M ]

{
nx · (C(i)(K))2

ϵµ(σmin(Q))2

}
= nx · (Cmax(K))2

ϵµ(σmin(Q))2 ,

such that ∥∥∥Σ(i),(τ)
K − Σ(i)

K

∥∥∥ ≤ ϵ.

If

τ ≥ h2
τ (ϵ) := max

i∈[M ]

{
nx · (C(i)(K))2(∥Q∥+ ∥R∥∥K∥2)

ϵµ(σmin(Q))2

}
= nx · (Cmax(K))2(∥Q∥+ ∥R∥∥K∥2)

ϵµ(σmin(Q))2 ,

we have ∣∣∣C(i),(τ)(K)− C(i)(K)
∣∣∣ ≤ ϵ,

where Cmax(K) := maxi∈[M ] C(i)(K).

Proof. The proof for this lemma is detailed in (Fazel et al., 2018, Lemma 23).
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Lemma 14. (Estimating ∇C(i)(K) with finitely many infinite-horizon rollouts) Given an arbitrary tolerance
ϵ and probability δ, suppose the radius r satisfies

r ≤ hr

( ϵ

2

)
:= min

{
h∆,

C̄max

h̄cost
,

ϵ

2h̄grad

}
,

and the number of samples ns satisfies,

ns ≥ hsample

( ϵ

2 , δ
)

: =
8σ2

∇̂ min(nx, nu)
ϵ2 log

[
nx + nu

δ

]
σ2

∇̂ :=
(

2nxnuC̄max

r

)2

+
( ϵ

2 + h̄1

)2

Then with a high probability of at least 1− δ, the estimate

∇̂C(i)(K) = 1
ns

ns∑
s=1

nxnu

r2 C(i)
(

K + U (i)
s

)
U (i)

s

satisfies
∥∇̂C(i)(K)−∇C(i)(K)∥F ≤ ϵ

for any system i ∈ [M ] and K ∈ G0.

Proof. The proof for this lemma is detailed in Lemma B.6 of (Gravell et al., 2020). It is worthwhile to
mention that, in (Gravell et al., 2020), the number of samples ns satisfies

ns ≥

8σ2
∇̂ min(nx, nu)

ϵ2︸ ︷︷ ︸
T1

+ 8 min(nx, nu)
ϵ2

R∇̂ϵ

6
√

min(nx, nu)︸ ︷︷ ︸
T2

 log
[

nx + nu

δ

]

with R∇̂ = 2nxnuC̄max
r + ϵ

2 + h̄1. In the analysis throughout the paper, we only keep the dominant term T1
in ns, since T1 is in the order O(ϵ−2) while T2 is in the order O(ϵ−1).

By taking the maximum over K inside G0, we make the local parameters become the global parameters, e.g.,
C̄max := supK∈G0,i∈[M ] C(i)(K).

Lemma 15. (Estimating ∇C(i)(K) with finitely many finite-horizon rollouts): Given an arbitrary tolerance
ϵ and probability δ, suppose that the smoothing radius r satisfies,

r ≤ hr

( ϵ

4

)
= min

{
h̄∆,

C̄max

h̄cost
,

ϵ

4h̄grad

}
,

and the trajectory length τ satisfies

τ ≥ hτ

(
rϵ

4nxnu

)
=

4nun2
x(Cmax(K))2 (∥Q∥+ ∥R∥∥K∥2)

rϵµσmin(Q)2 .

According to Assumption 1, the distribution of the initial states satisfies x
(i)
0 ∼ D and

∥∥∥x
(i)
0

∥∥∥ ≤ H almost

surely. Thus, for any given realization x
(i)
0,s

17 of x
(i)
0 , and for any system i ∈ [M ], we have∥∥∥x

(i)
0,s

∥∥∥ ≤ H,
(

x
(i)
0,s

)(
x

(i)
0,s

)⊤
⪯ H2

µ
E
[
x

(i)
0 x

(i)⊤
0

]
.

17The notation x
(i)
0,s denotes s-th sample of the initial state from i-th system.
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As a result, the summation over the finite-time horizon

τ−1∑
t=0

(
x

(i)⊤
t,j Qx

(i)
t,j + u

(i)⊤
t,j Ru

(i)
t,j

)
≤ H2

µ
C(i)

(
K + U

(i)
j

)
.

Furthermore, suppose the number of samples ns satisfies

ns ≥ hsample,trunc

(
ϵ

4 , δ,
H2

µ

)
:=

32σ2
∇̃ min(nx, nu)

ϵ2 log
[

nx + nu

δ

]
,

where

σ2
∇̃ :=

(
2nxnuH2C̄max

rµ

)2

+
( ϵ

2 + h̄1

)2
,

then, with a high probability of at least 1− δ, the estimated gradient

∇̃C(i)(K) := 1
ns

ns∑
s=1

nunx

r2 C̃(i),(τ)
(

K + U (i)
s

)
U (i)

s

satisfies
∥∇̃C(i)(K)−∇C(i)(K)∥F ≤ ϵ

for any system i ∈ [M ] and K ∈ G0.

Proof. The proof for this lemma is detailed in Lemma B.7 of (Gravell et al., 2020). As in Lemma 14, we
only keep the dominant term in the requirement of sample size ns. By taking the maximum over K inside
G0, all the local parameters inside the polynomials such as hr( ϵ

4 ) become global parameters.

A.6.2 Proof of Lemma 4

Proof. For our subsequent analysis, we will use Fn
l to denote the filtration that captures all the randomness

up to the l-th local step in round n. We have∥∥∥∥∥ 1
ML

M∑
i=1

L−1∑
l=0

[
̂∇C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
]∥∥∥∥∥

F

=
∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̃C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
]∥∥∥∥∥

F

≤
∥∥∥ 1

ML

M∑
i=1

L∑
l=0

[
∇̃C(i)(K(i)

n,l)−∇
′C(i)(K(i)

n,l)
] ∥∥∥

F︸ ︷︷ ︸
T1

+
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇′C(i)(K(i)

n,l)− ∇̂C(i)(K(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
T2

+
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
T3

.

Next, we will bound T1, T2, and T3, respectively.
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Bounding T2: From the proof of Lemma B.7 in (Gravell et al., 2020), we have

T2 ≤
1

ML

M∑
i=1

L−1∑
l=0

∥∥∥∇′C(i)(K(i)
n,l)− ∇̂C(i)(K(i)

n,l)
∥∥∥

F
≤ ϵ

4 (29)

holds as long as τ ≥ hτ

(
rϵ

4nxnu

)
.

Bounding T3 : To precede, we bound T3 as

T3 =
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
] ∥∥∥

F

≤ 1
ML

M∑
i=1

L−1∑
l=0

∥∥∥∇C(i)
r (K(i)

n,l)−∇C(i)(K(i)
n,l)
∥∥∥

F︸ ︷︷ ︸
Bias term 1

+
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)
r (K(i)

n,l)
] ∥∥∥

F︸ ︷︷ ︸
Variance term 2

(30)

where ∇C
(i)
r (K(i)

n,l) := E
U

(i)
n,l

∼Br

[
∇C(i)(K(i)

n,l + U
(i)
n,l)
]

.

For the bias term 1 , since the smoothing radius r ≤ hr

(
ϵ
4
)
, we have that

1 =
∥∥∥∇C(i)

r (K(i)
n,l)−∇C(i)(K(i)

n,l)
∥∥∥

F
≤ hgrad(K(i)

n,l)r ≤ h̄gradr ≤ ϵ

4 . (31)

For the variance term, 2 , we will exploit the matrix Freedman inequality (Lemma 7) to bound it. For
simplicity, we denote

e
(i)
l := 1

ML

[
∇̂C(i)(K(i)

n,l)−∇C(i)
r (K(i)

n,l)
]

, el :=
M∑

i=1
e

(i)
l ,

Then, we have
1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)
r (K(i)

n,l)
]

=
L−1∑
l=0

el.

Next, we aim to prove the following claims:

Claim I: Yt :=
∑t

l=0 el is a martingale w.r.t Fn
t−1 for t = 1, · · · , L − 1 and el :=

∑M
i=1 e

(i)
l is a martingale

difference sequence.

Proof: Note that E[∇̂C(i)(K(i)
n,l)] = ∇C

(i)
r (K(i)

n,l). Then we can easily have E[el] = 0 for l = 0, · · · , L − 1.

As a result, we have E[Yt | Fn
t−1] = Yt−1 since Yt = Yt−1 + et. In other words, Yt :=

∑t
l=0 el is a martingale

w.r.t Fn
t−1 for t = 1, · · · , L− 1.

Claim II:
∥∥∥∥E [ele

⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ ≤ σ2
∇̂

nsML2 where σ2
∇̂ is as defined in Lemma 14.

Proof: From Lemma B.7 in (Gravell et al., 2020), we can write

∥∥∥∥E [e(i)
l e

(i)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ ≤ σ2
∇̂

nsM2L2 ,

∥∥∥∥E [e(i)⊤
l e

(i)
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ ≤ σ2
∇̂

nsM2L2 ,
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and based on this fact, we have∥∥∥∥E [ele
⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ =
∥∥∥∥∥E
[(

M∑
i=1

e
(i)
l

)(
M∑

i=1
e

(i)⊤
l

) ∣∣∣∣ Fn
l−1

]∥∥∥∥∥
≤

M∑
i=1

∥∥∥∥E [e(i)
l e

(i)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥+
M∑

i ̸=j

∥∥∥∥E [e(i)
l e

(j)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥︸ ︷︷ ︸
T4=0

≤
σ2

∇̂
nsML2 ,

where we use the fact that T4 = 0 because e
(i)
l and e

(j)
l are independent, if we conditioned on Fn

l . An

identical argument holds for
∥∥∥∥E [e⊤

l el

∣∣∣∣ Fn
l−1

]∥∥∥∥.

Define Wcol,t :=
∑t

l=0 E
[
ele

⊤
l

∣∣∣∣ Fn
l−1

]
and Wrow,t :=

∑t
l=0 E

[
e⊤

l el

∣∣∣∣ Fn
l−1

]
, then we have

∥Wcol,t∥ ≤
σ2

∇̂
nsML

, ∥Wrow,t∥ ≤
σ2

∇̂
nsML

.

Claim III: ∥el∥ ≤
R∇̂
nsL where R∇̂ = 2nxnuC̄max

r + ϵ
2 + h̄1.

Proof: From Lemma B.7 in (Gravell et al., 2020), we have ∥e(i)
l ∥ ≤

nsR∇̂
ML . With this fact, we have

∥el∥ ≤
M∑

i=1

∥∥∥e
(i)
l

∥∥∥ ≤ R∇̂
nsL

.

With Claim I, II and Claim III and the matrix Freedman inequality (7), we have, for all ϵ ≥ 0,

P

{
∃t ≥ 0 : λmax (Yt) ≥ ϵ and max {∥Wcol ,t∥ , ∥Wrow ,t∥} ≤

σ2
∇̂

nsML

}

≤ (nx + nu) exp

− ϵ2/2
σ2

∇̂
nsML + R∇̂ϵ

3nsL

 . (32)

Therefore, rephrasing Eq.(32), if

ns ≥

32σ2
∇̂ min (nx, nu)

MLϵ2︸ ︷︷ ︸
T5

+ 32LR∇̂
√

min (nx, nu)
12Lϵ︸ ︷︷ ︸

T6

 log
[

ML(nx + nu)
δ

]
, (33)

we have that

∥YL∥F = ∥ 1
ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)
r (K(i)

n,l)
]
∥F ≤

ϵ

4 , (34)

holds with probability 1 − δ. As we discussed in Lemma 14, we only keep the dominant term T5 in the
requirement of the sample size ns (as in Eq.(33)). Because T5 is in the order O(ϵ−2) while T6 is in the order
O(ϵ−1). Moreover, we note that by making ϵ = O(1/M), T6 when compared to T5 is negligible. We also
note that, as an alternative to imposing the restriction ϵ = O(1/M), one can apply the Freedman lemma
(Lemma 7) to ML terms rather than to L terms.

In summary, if ns ≥
32σ2

∇̂ min(nx,nu)
MLϵ2

[
ML(nx+nu)

δ

]
= hsample ( ϵ

4 , δ
ML )

ML ,

2 =
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K(i)

n,l)−∇C(i)
r (K(i)

n,l)
] ∥∥∥

F
≤ ϵ

4 (35)
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holds with probability 1− δ.

As a result, we have T3 ≤ ϵ
2 holds with probability 1− δ, when r ≤ hr

(
ϵ
4
)

and ns ≥
hsample ( ϵ

4 , δ
ML )

ML . In what
follows, we will provide an upper bound on the term T1.

Bounding T1: We can follow the same analysis of bounding 2 in T3 to bound T1. Different from the
filtration we define in analyzing 2 , we need to define a new filtration F̃n

l−1, where F̃n
l−1 := Fn

l−1 ∪ Un
l and

Un
l :=

{
U

(i)
n,l,s

}i=1,··· ,N

s=1,··· ,ns

. Note that Un
l is the sigma-field generated by the randomness of all random

smoothing matrices U
(i)
n,l,s

18 from all the systems at the n-th global iteration and l-th local iteration.
Replacing σ2

∇̂ Eq.(33) with into σ2
∇̃ and R∇̂ with R∇̃, we have that

T1 =
∥∥∥ 1

ML

M∑
i=1

L∑
l=0

[
∇̃C(i)(K(i)

n,l)−∇
′C(i)(K(i)

n,l)
] ∥∥∥

F
≤ ϵ

4 (36)

holds with probability 1− δ when

ns ≥
32σ2

∇̃ min(nx, nu)
MLϵ2 log

[
ML(nx + nu)

δ

]
=

hsample,trunc

(
ϵ
4 , δ

ML , H2

µ

)
ML

.

Combing the upper bound of T1 (Eq.(36)), T2 (Eq.(29)) and T3 (Eq.(31) and (35)), we have∥∥∥∥∥ 1
ML

M∑
i=1

L−1∑
l=0

[
̂∇C(i)(K(i)

n,l)−∇C(i)(K(i)
n,l)
]∥∥∥∥∥

F

≤ T1 + T2 + T3 ≤ ϵ

when the trajectory length τ satisfies τ ≥ hτ

(
rϵ

4nxnu

)
, the smoothing radius satisfies r ≤ hr

(
ϵ
4
)

and the

size of samples satisfies ns ≥ max
{

hsample,trunc
(

ϵ
4 , δ

ML , H2
µ

)
ML ,

hsample ( ϵ
4 , δ

ML )
ML

}
=

hsample,trunc
(

ϵ
4 , δ

ML , H2
µ

)
ML . Thus,

we complete the proof of Lemma 4.

A.6.3 Proof of Theorem 2

Outline: To prove Theorem 2, we first introduce some lemmas: Lemma 16 establishes stability of the local
policies; Lemma 17 provides the drift analysis; Lemma 18 quantifies the per-round progress of our FedLQR
algorithm. As a result, we are able to present the iterative stability guarantees and convergence analysis of
FedLQR in the model-free setting.
Lemma 16. (Stability of the local policies) Suppose Kn ∈ G0 and the heterogeneity level satisfies (ϵ1h̄1

het +
ϵ2h̄2

het)2 ≤ h̄3
het, where h̄3

het is as defined in Eq.(21). If the local step-size ηl satisfies

ηl ≤ min
{

h∆µ

H2
(
h1 +

√
ϵ̄
) ,

1
9h̄grad

}
,

the smoothing radius satisfies

r ≤ min
{

mini∈[M ] C(i)(K0)
h̄cost

, h∆, hr

(√
ϵ̄

4

)}
,

the trajectory length satisfies τ ≥ hτ

(
r

√
ϵ̄

4nxnu

)
, and the number of the sample size satisfies

ns ≥ max
{

hsample,trunc

(√
ϵ̄

4 ,
δ

L
,

H2

µ

)
, hsample

(√
ϵ̄

2 ,
δ

L

)}
18Here we use the index s to denote s-th sample. Note that in each local iteration l, we need to generate the random smoothing

matrices ns times.
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where we choose a fixed error tolerance ϵ̄ to be

ϵ̄ := min
j∈[M ]

{
3µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||

}
,

then with probability 1− δ,, where δ ∈ (0, 1), K
(i)
n,l ∈ G0 holds for all i ∈ [M ] and l = 0, 1, · · · , L− 1.

Proof. For any i, j ∈ [M ], according to the local Lipschitz property in Lemma 1, we have that

C(j)(K(i)
n,1)− C(j)(Kn) ≤

〈
∇C(j)(Kn), K

(i)
n,1 −Kn

〉
+

hgrad(Kn)

2

∥∥∥K
(i)
n,1 −Kn

∥∥∥2

F
(Local lipschitz)

= −
〈
∇C(j)(Kn), ηl∇̃C(i)(Kn)

〉
+

hgrad(Kn)

2

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥2

F
,

holds if
∥∥∥ηl∇̃C(i)(Kn)

∥∥∥
F
≤ h∆ ≤ h∆(Kn). Note that this inequality holds when ηl satisfies

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥

F
= ηl

∥∥∥ 1
ns

ns∑
s=1

nunx

r2 C̃(i),(τ)
(

Kn + U (i)
s

)
U (i)

s

∥∥∥
F

(a)
≤ ηl

H2

µ

∥∥∥ 1
ns

ns∑
i=1

nxnu

r2 C(i)
(

Kn + U (i)
s

)
U (i)

s

∥∥∥
F

= ηlH
2

µ

∥∥∥∇̂C(i)(K)
∥∥∥

F

≤ ηlH
2

µ

[∥∥∥∇C(i)(K)
∥∥∥

F
+
∥∥∥∇̂C(i)(K)−∇C(i)(K)

∥∥∥
F

]
(b)
≤ ηlH

2

µ

[∥∥∥∇C(i) (Kn)
∥∥∥

F
+
√

ϵ̄
]

≤ ηlH
2

µ

(
h1 +

√
ϵ̄
)

(37)

where19 (a) is due to Lemma 15; according to Lemma 14, (b) holds with high probability, when the number
of the sample size satisfies ns ≥ hsample

(√
ϵ̄

2 , δ
L

)
. The last inequality follows from the uniform upper gradient

bound in Lemma 6. Then we can easily conclude that
∥∥∥ηl∇̃C(i)(Kn)

∥∥∥
F
≤ h∆ holds when ηl ≤

h∆µ

H2(h1+
√

ϵ̄) .

Following the analysis in Eq (22), we have

C(j)(K(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
− ηl

〈
∇C(j)(Kn),∇C(i)(Kn)−∇C(j)(Kn)

〉
︸ ︷︷ ︸

T1

−ηl

〈
∇C(j)(Kn), ∇̃C(i)(Kn)−∇C(i)(Kn)

〉
︸ ︷︷ ︸

T2

+
hgrad(Kn)

2

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥2

F
,

where T1 can be upper bounded as

T1 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥

F

19For sake of the notation, we ignore the dependence on the local iteration l and global iteration n when we index U
(i)
s in

this part.
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≤ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het),

where we use the policy gradient heterogeneity bound in Lemma 3 and the fact that Kn ∈ G0.

We can bound T2 as follows

T2 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

∥∥∥∇̃C(i)(Kn)−∇C(i)(Kn)
∥∥∥

F

≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

√
ϵ̄,

where it holds with probability 1− δ. Here we use the Cauchy-Schwarz inequality in the first inequality, and
the second inequality is due to Lemma 15 since ns ≥ hsample,trunc

(√
ϵ̄

4 , δ, H2

µ

)
, the smoothing radius satisfies

r ≤ hr

(√
ϵ̄

4

)
and the length of trajectories satisfies τ ≥ hτ

(
r

√
ϵ̄

4nxnu

)
.

Plugging the upper bounds of T1 and T2 in Eq (23), we have:

C(j)(K(i)
n,1)− C(j)(Kn)

(a)
≤

− ηl

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het)

+ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

√
ϵ̄ +

3hgrad(Kn)η
2
l

2

∥∥∥∇̃C(i)(Kn)−∇C(i)(Kn)
∥∥∥2

F

+
3hgrad(Kn)η

2
l

2

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥2

F

+
3hgrad(Kn)η

2
l

2

∥∥∥∇C(j)(Kn)
∥∥∥2

F

(b)
≤ −ηl

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥

F
(ϵ1h̄1

het + ϵ2h̄2
het)

+ ηl

∥∥∥∇C(j)(Kn)
∥∥∥

F

√
ϵ̄ + 3h̄gradη2

l

2 ϵ̄

+ 3h̄gradη2
l min{nx, nu}

2 (ϵ1h̄1
het + ϵ2h̄2

het)2 + 3h̄gradη2
l

2

∥∥∥∇C(j)(Kn)
∥∥∥2

F
,

where (a) follows from Eq.(8); (b) follows from the same reasoning as we bound T1 and T2 and the fact that
Kn ∈ G0. If we choose the local step-size ηl satisfies ηl ≤ 1

9h̄grad
, i.e., 3h̄gradη2

l

2 ≤ ηl

6 , we have

C(j)(K(i)
n,1)− C(j)(Kn)

(a)
≤ −ηl

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ ηl

6

∥∥∥∇C(j)(Kn)
∥∥∥2

F

+ 3ηl min{nx, nu}
2 (ϵ1h̄1

het + ϵ2h̄2
het)2 +

ηl

∥∥∥∇C(j)(Kn)
∥∥∥2

F

6 + 3ηlϵ̄

2 + ηl

6 ϵ̄

+ ηl min{nx, nu}
6 (ϵ1h̄1

het + ϵ2h̄2
het)2 + ηl

6

∥∥∥∇C(j)(Kn)
∥∥∥2

F

≤ −ηl

2

∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ 5ηl min{nx, nu}

3 (ϵ1h̄1
het + ϵ2h̄2

het)2 + 5ηl

3 ϵ̄

(b)
≤ −2ηlσmin(R)µ2

||ΣK∗
j
||

(C(j)(Kn)− C(j)(K∗
j )) + 5ηl min{nx, nu}

3 (ϵ1h̄1
het + ϵ2h̄2

het)2 + 5ηl

3 ϵ̄,

where (a) follows from the Young’s inequality in Eq.(9); and (b) follows from the gradient domination in
Lemma 2.

Therefore, if the heterogeneity satisfies (ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het, then we have

(ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ min
j∈[M ]

{
3µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||min{nx, nu}

}
.
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Since the error tolerance

ϵ̄ = min
j∈[M ]

{
3µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||

}
,

we have

C(j)(K(i)
n,1)− C(j)(K∗

j ) ≤

1− 2ηµ2σmin(R)∥∥∥ΣK∗
j

∥∥∥
 (C(j)(Kn)− C(j)(K∗

j ))

+
ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

+
ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

(a)
≤

1− 2ηµ2σmin(R)∥∥∥ΣK∗
j

∥∥∥
 (C(j)(K0)− C(j)(K∗

j )) +
2ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

= C(j)(K0)− C(j)(K∗
j ),∀j ∈ [M ],

where we use the fact that Kn ∈ G0 in (a). The above inequality implies K
(i)
n,1 ∈ G0 with high probability

1 − δ when Kn ∈ G0. Then we can use the induction method to obtain that K
(i)
n,2 ∈ G0, since K

(i)
n,1 ∈ G0.

By repeating this step for L times, we have that all the local polices K
(i)
n,l ∈ G0 holds for all i ∈ [M ] and

l = 0, 1, · · · , L− 1, when the global policy Kn ∈ G0.

Lemma 17. (Drift term analysis) Suppose Kn ∈ G0. If ηl ≤ min
{

1
4h̄grad

, 1
4 , log 2

L(3h̄grad+2)

}
, the number of the

sample size ns satisfies

ns ≥
hsample,trunc

(√
ϵ

4 , δ
L , H2

µ

)
ML

,

the smoothing radius satisfies r ≤ hr

(√
ϵ

4

)
and the length of trajectories satisfies

τ ≥ hτ

(
r
√

ϵ

4nxnu

)
,

given any δ ∈ (0, 1), the difference between the local policy and global policy can be bounded by∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
≤ 2ηlL

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]
= 2η

ηg

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]
holds, with probability 1− δ, for all i ∈ [M ] and l = 0, 1, · · · , L− 1.

Proof. ∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
=
∥∥∥K

(i)
n,l−1 −Kn − ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F

=
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇̃C(i)(K(i)

n,l−1), K
(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F

=
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇̃C(i)(K(i)

n,l−1)−∇C(i)(K(i)
n,l−1), K

(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(K(i)

n,l−1)−∇C(i)(Kn), K
(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(Kn), K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F
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(a)
≤
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇̃C(i)(K(i)

n,l−1)−∇C(i)(K(i)
n,l−1), K

(i)
n,l−1 −Kn

〉]
+ 2ηl

∥∥∥∇C(i)(K(i)
n,l−1)−∇C(i)(Kn)

∥∥∥
F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥

F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+
∥∥∥ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F

(b)
≤
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F
− 2ηl

[〈
∇̃C(i)(K(i)

n,l−1)−∇C(i)(K(i)
n,l−1), K

(i)
n,l−1 −Kn

〉]
+ 2ηlhgrad(Kn)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ ηl

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F

+
∥∥∥ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F
(38)

where we use Cauchy–schwarz inequality for (a); and for (b), we use Eq. (9).

Following the analysis in Eq.(38), we have

∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
≤ (1 + 2ηlhgrad(Kn) + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

− 2ηl

[〈
∇̃C(i)(K(i)

n,l−1)−∇C(i)(K(i)
n,l−1), K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K(i)

n,l−1)
∥∥∥2

F

(a)
≤ (1 + 2ηlhgrad(Kn) + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

+ 2ηl

[∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥

F

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥
F

]
+ 2η2

l

∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F
+ 2η2

l

∥∥∥∇C(i)(K(i)
n,l−1)

∥∥∥2

F

(b)
≤ (1 + 2ηlhgrad(Kn) + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F

+ ηl

∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F
+ ηl

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F

+ 2η2
l

∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F

+ 4η2
l

∥∥∥∇C(i)(K(i)
n,l−1)−∇C(i)(Kn)

∥∥∥2

F
+ 4η2

l

∥∥∥∇C(i)(Kn)
∥∥∥2

F

(c)
≤ (1 + 2ηlhgrad(Kn) + ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 4η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ ηl

∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F
+ ηl

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F

+ 2η2
l

∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F
+ 4η2

l hgrad(Kn)2
∥∥∥K

(i)
n,l−1 −Kn

∥∥∥2

F

(d)=
(
1 + 2ηlhgrad(Kn) + 2ηl + 4η2

l hgrad(Kn)2) ∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 4η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+
(
ηl + 2η2

l

) ∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F

≤
(
1 + 2ηlh̄grad + 2ηl + 4η2

l h̄2
grad

) ∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 4η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+
(
ηl + 2η2

l

) ∥∥∥∇̃C(i)(K(i)
n,l−1)−∇C(i)(K(i)

n,l−1)
∥∥∥2

F︸ ︷︷ ︸
T1

,

where we use Cauchy-Schwarz inequality and Eq.(6) for (a); for (b), we use Eq.(6) and (8); for (c), we use
the gradient smoothness lemma in Lemma 1; and for (d), we use the fact that Kn ∈ G0.
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From Lemma 15, we can bound T1 term as follows:

T1 =
∥∥∥∇̃C(i)(K(i)

n,l−1)−∇C(i)(K(i)
n,l−1)

∥∥∥2

F
≤MLϵ,

where it holds with probability 1 − δ, since ns ≥
hsample,trunc

(√
ϵ

4 ,δ, H2
µ

)
ML , the smoothing radius satisfies r ≤

hr

(√
ϵ

4

)
and the length of trajectories satisfies τ ≥ hτ

(
r

√
ϵ

4nxnu

)
.

Hence, we obtain∥∥∥K
(i)
n,l −Kn

∥∥∥2

F
≤
(
1 + 2ηlh̄grad + 2ηl + 4η2

l h̄2
grad

) ∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ (ηl + 4η2

l )
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+
(
ηl + 2η2

l

)
MLϵ

(a)
≤ (1 + 3ηlh̄grad + 2ηl)

∥∥∥K
(i)
n,l−1 −Kn

∥∥∥2

F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 2ηlMLϵ

≤ (1 + 3ηlh̄grad + 2ηl)l
∥∥∥K

(i)
n,0 −Kn

∥∥∥2

F︸ ︷︷ ︸
=0

+ 2ηl

l−1∑
j=0

(
1 + 3ηlh̄grad + 2ηl

)j
[∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ MLϵ

]

≤ 2ηl ×
(
1 + 3ηlh̄grad + 2ηl

)l − 1(
1 + 3ηlh̄grad + 2ηl

)
− 1

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]

≤ 2×
(
1 + 3ηlh̄grad + 2ηl

)l − 1
3h̄grad + 2

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]
(b)
≤ 2× 1 + l(3ηlh̄grad + 2ηl)− 1

3h̄grad + 2

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]
≤ 2ηlL

[∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ MLϵ

]
,

where (a) is due to the choice of local step-size which satisfies 2ηlh̄grad + 2ηl + 4η2
l h̄2

grad ≤ 3ηlh̄grad + 2ηl and
ηl + 2η2

l ≤ ηl + 4η2
l ≤ 2ηl, i.e., ηl ≤ min

{
1

4h̄grad
, 1

4

}
. For (b), we used the fact that (1 + x)τ+1 ≤ 1 + 2x(τ + 1)

holds for x ≤ log 2
τ . In other words,

(
1 + 3ηlh̄grad + 2ηl

)l ≤ 1 + l(3ηlh̄grad + 2ηl) when 3ηlh̄grad + 2ηl ≤ log 2
l ,

i.e., ηl ≤ log 2
L(3h̄grad+2) .

Lemma 18. (Per round progress) Suppose Kn ∈ G0. If we choose the local step-size as

ηl = 1
2 min

{
h∆µ

H2 (h1 +
√

ϵ) ,
1

9h̄grad
,

1
4 ,

log 2
L(3h̄grad + 2)

,
1

256Lh̄2
grad

}
,

with step-size η := Lηlηg = 1
2 min{ h∆µ

H2(h1+
√

ϵ) , 1, 1
32h̄grad

}, and the smoothing radius20

r ≤ min
{

mini∈[M ] C(i)(K0)
h̄cost

, h∆, hr

(√
ϵ

4

)}
,

20The exact requirement of r is r ≤ min
{

mini∈[M] C(i)(K0)
h̄cost

, h∆, hr

(√
ϵ

4

)
, hr

(√
ϵ̄

4

)}
. Here, without loss of generality, we

drop the hr

(√
ϵ̄

4

)
term from the min expression. This can be done because the error tolerance ϵ is usually small, and so

hr

(√
ϵ

4

)
≤ hr

(√
ϵ̄

4

)
holds. The assumptions on τ and ns follow similarly.
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where the trajectory length satisfies τ ≥ hτ

(
r

√
ϵ

4nxnu

)
, and the number of the sample size satisfies

ns ≥
hsample,trunc

(√
ϵ

4 , δ
L , H2

µ

)
ML

,

then with probability 1− δ, for any small δ ∈ (0, 1), the FedLQR algorithm provides the following convergence
guarantee:

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ

+ 2η min{nx, nu}(ϵ1h̄1
het + ϵ1h̄2

het).2 (39)

Proof. For any i ∈ [M ], according to the local Lipschitz property in Lemma 1, we have that

C(i)(Kn+1)− C(i)(Kn) ≤ ⟨∇C(i)(Kn), Kn+1 −Kn⟩+ hgrad(Kn)
2 ∥Kn+1 −Kn∥2

F

= −
〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
〉

+ hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F
, (40)

holds when
∥∥∥ η

ML

∑M
j=1

∑L−1
l=0 ∇̃C(j)(K(j)

n,l )
∥∥∥

F
≤ h∆ ≤ h∆(Kn). Following the same analysis as Eq.(37), this

inequality holds when

η ≤ h∆µ

H2 (h1 +
√

ϵ) , r ≤ min
{

mini∈[M ] C(i)(K0)
h̄cost

, h∆

}
.

Following the analysis in Eq.(40), we have

C(i)(Kn+1)− C(i)(Kn)

≤ −

〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )−
η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )
〉

−

〈
∇C(i)(Kn), η

ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )−∇C(j)(Kn)
〉

−

〈
∇C(i)(Kn), η

M

M∑
j=1
∇C(j)(Kn)−∇C(i)(Kn)

〉
− η

∥∥∥C(i)(Kn)
∥∥∥2

+ hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F

(a)
≤ η

∥∥∥∇C(i)(Kn)
∥∥∥

F

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K(j)

n,l )−∇C(j)(K(j)
n,l )
] ∥∥∥

F

+ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K(j)

n,l )−∇C(j)(Kn)
] ∥∥∥

F

+ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1
M

M∑
j=1

[
∇C(j)(Kn)−∇C(i)(Kn)

] ∥∥∥
F
− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F

+ hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F
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(b)
≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ η
∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K(j)

n,l )−∇C(j)(K(j)
n,l )
] ∥∥∥2

F

+ η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 2ηhgrad(Kn)2

ML

M∑
j=1

L−1∑
l=0

∥∥∥K
(j)
n,l −Kn

∥∥∥2

F

+ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ η

M

M∑
j=1

∥∥∥∇C(j)(Kn)− C(i)(Kn)
∥∥∥2

F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F
,

where (a) is due to Cauchy–Schwarz inequality; and (b) is due to Cauchy–Schwarz inequality and Eq.(7).
Moreover, we have

C(i)(Kn+1)− C(i)(Kn)
(b)
≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ η
∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K(j)

n,l )−∇C(j)(K(j)
n,l )
] ∥∥∥2

F

+ η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 2ηhgrad(Kn)2

ML

M∑
j=1

L−1∑
l=0

∥∥∥K
(j)
n,l −Kn

∥∥∥2

F

+ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ η

M

M∑
j=1

∥∥∥∇C(j)(Kn)− C(i)(Kn)
∥∥∥2

F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F

(c)
≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ ηϵ +

4η2h̄2
grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]

+ η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2 + hgrad(Kn)
2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )
∥∥∥2

F
, (41)

where (b) follows from the gradient Lipschitz property in Lemma 1; and (c) follows from the policy gradient
heterogeneity property in Lemma 3, Lemma 4 and Lemma 17.

Following the analysis in Eq.(41), we have

C(i)(Kn+1)− C(i)(Kn)
(d)
≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ ηϵ +

4η2h̄2
grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]
+ η min{nx, nu}(ϵ1h1

het + ϵ1h2
het)2

+ 4η2h̄grad

2

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0
∇̃C(j)(K(j)

n,l )−∇C(j)(K(j)
n,l )
∥∥∥2

F

+ 4η2h̄grad

2

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )−∇C(j)(Kn)
∥∥∥2

F

+ 4η2h̄grad

2M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2

F
+ 4η2h̄grad

2

∥∥∥∇C(i)(Kn)
∥∥∥2

F
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(e)
≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ (η + 2η2h̄grad)ϵ +

4η2h̄2
grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]
+ (η + 2η2h̄grad) min{nx, nu}(ϵ1h1

het + ϵ2h2
het)2 + 2η2h̄grad

∥∥∥∇C(i)(Kn)
∥∥∥2

F

+ 4η2h̄grad

2

∥∥∥ 1
ML

M∑
j=1

L−1∑
l=0
∇C(j)(K(j)

n,l )−∇C(j)(Kn)
∥∥∥2

F

(f)
≤ −

(
3η

8 + 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2

grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]
+ (η + 2η2h̄grad) min{nx, nu}(ϵ1h1

het + ϵ2h2
het)2

+
4η2h̄2

grad

2ML

M∑
j=1

L−1∑
l=0

∥∥∥K
(j)
n,l −Kn

∥∥∥2

F

(g)
≤ −

(
3η

8 + 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2

grad + 4η3h̄2
grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]
+ (η + 2η2h̄grad) min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2, (42)

where (d) is due to Eq.(8); (e) is due to variance reduction property in Lemma 4 and policy gradient
heterogeneity in Lemma 3; (f) is due to gradient Lipschitz property in Lemma 1; (g) is due to drift term
analysis in Lemma 17.

Continuing the analysis in Eq.(42), we have that

C(i)(Kn+1)− C(i)(Kn) ≤ −
(

3η

8 + 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2

grad + 4η3h̄2
grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2

F
+ MLϵ

]
+ (η + 2η2h̄grad) min{nx, nu}(ϵ1h̄1

het + ϵ1h̄2
het)2

(a)
≤ −

(
3η

8 + 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2

grad + 4η3h̄2
grad

ηgM

M∑
j=1

[
2
∥∥∥∇C(j)(Kn)−∇C(i)(Kn)

∥∥∥2

F
+ 2
∥∥∥∇C(i)(Kn)

∥∥∥2

F
+ MLϵ

]
+ (η + 2η2h̄grad) min{nx, nu}(ϵ1h̄1

het + ϵ1h̄2
het)2

(b)
≤ −

(
3η

8 + 2η2h̄grad +
8η2h̄2

grad + 8η3h̄2
grad

ηg

)∥∥∥∇C(i)(Kn)
∥∥∥2

F

+
(

η + 2η2h̄grad +
4η2h̄2

grad + 4η3h̄2
grad

ηg
ML

)
ϵ

+
(

η + 2η2h̄grad +
8η2h̄2

grad + 8η3h̄2
grad

ηg

)
min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2

(c)
≤ −η

4

∥∥∥∇C(i)(Kn)
∥∥∥2

F
+ 2ηϵ + 2η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2
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(d)
≤ −ηµ2σmin(R)∥∥ΣK∗

i

∥∥ (C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ + 2η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2, (43)

where (a) is due to Eq.(8); (b) is due to policy gradient heterogeneity in Lemma 3; and (c) is due to the
choice of step-size such that 3η

8 + 2η2h̄grad + 8η2h̄2
grad+8η3h̄2

grad
ηg

≤ η
4 and

η + 2η2h̄grad +
8η2h̄2

grad + 8η3h̄2
grad

ηg
≤ 2η,

which holds when η ≤ min{ 1
32h̄grad

, 1} and ηl ≤ 1
256Lh̄2

grad
; for (d) we use the gradient domination lemma in

Lemma 2.

In conclusion, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ

+ 2η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2,

holds when the step-size, smoothing radius, trajectory length, and sample size satisfy the requirements
mentioned above and those in Lemma 16 and Lemma 17.

With this lemma, we are now ready to provide the convergence guarantees for the FedLQR under the model-
free setting.

Proof of the iterative stability guarantees of FedLQR: Here, we leverage the method of induction to
prove FedLQR’s iterative stability guarantees. First, we start from an initial policy K0 ∈ G0. At round n, we
assume Kn ∈ G0. According to Lemma 16, we have that all the local policies K

(i)
n,l ∈ G0. Furthermore, frame

the hypotheses of in Lemma 18, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ

+ 2η min{nx, nu}(ϵ1h̄1
het + ϵ2h̄2

het)2.

Since (ϵ1h̄1
het + ϵ2h̄2

het)2 ≤ h̄3
het, we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(K0)− C(i)(K∗
i )) + 2ηϵ

+ ηµ2σmin(R)
2
∥∥ΣK∗

i

∥∥ (C(i)(K0)− C(i)(K∗
i ))

(a)
≤ C(i)(K0)− C(i)(K∗

i ),

where (a) follows from the fact that ϵ can be arbitrarily small by choosing a small smoothing radius, sufficient
long trajectory length, and enough samples.

With this, we can easily have that the global policy Kn+1 at the next round n + 1 is also stabilizing, i.e.,
Kn+1 ∈ G0. Therefore, we can finish proving FedLQR’s iterative stability property by inductively reasoning.

Proof of FedLQR’s convergence: From Eq.(39), we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)

(C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ + 2η min{nx, nu}(ϵ1h̄1

het + ϵ2h̄2
het)2,
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Using the above inequality recursively, FedLQR enjoys the following convergence guarantee after N rounds:

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) +

2
∥∥ΣK∗

i

∥∥
µ2σmin(R)ϵ

+
2 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h̄1

het + ϵ2h̄2
het)2.

Suppose the trajectory length satisfies τ ≥ hτ

(
rϵ′

4nxnu

)
, the smoothing radius satisfies r ≤ h′

r

(
ϵ′

4

)
, where

h′
r

(
ϵ′

4

)
:= min

{
mini∈[M ] C(i)(K0)

h̄cost
, h∆, hr

(
ϵ′

4

)}
,

and the number of the sample size of each agent ns satisfies

ns ≥
hsample,trunc

(
ϵ′

4 , δ
ML , H2

µ

)
ML

,

with ϵ′ =
4
∥∥ΣK⋆

i

∥∥
µ2σmin(R) ϵ.

When the number of rounds N ≥
cuni,4

∥∥ΣK∗
i

∥∥
ηµ2σmin(R) log

(
2(C(i)(K0)−C(i)(K∗

i ))
ϵ′

)
, our FedLQR algorithm enjoys the

following convergence guarantee:

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) + ϵ′

2

+
2 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h1

het + ϵ2h2
het)2

≤ ϵ′ +
2 min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R) (ϵ1h1

het + ϵ2h2
het)2,

which completes the proof.
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