
MVA: Linear Attention with High-order Query-Keys Integration and Multi-level
Vocabulary Decomposition

Ning Wang * 1 2 3 Zekun Li * 1 2 3 Tongxin Bai 3 Man Yao 1 2 Zhen Qin 4 Guoqi Li 1 2

Abstract

Linear attention offers the advantages of linear
inference time and fixed memory usage com-
pared to Softmax attention. However, training
large-scale language models with linear atten-
tion from scratch remains prohibitively expensive
and exhibits significant performance gaps com-
pared to Softmax-based models. To address these
challenges, we focus on transforming pre-trained
Softmax-based language models into linear atten-
tion models. We unify mainstream linear attention
methods using a high-order QK integration the-
ory and a multi-level vocabulary decomposition.
Specifically, the QK integration theory explains
the efficacy of combining linear and sparse atten-
tion from the perspective of information collec-
tion across different frequency bands. The multi-
level vocabulary decomposition exponentially ex-
pands memory capacity by recursively exploit-
ing compression loss from compressed states. To
further improve performance and reduce training
costs, we adopt a soft integration strategy with
attention scores, effectively combining a sliding
window mechanism. With less than 100M tokens,
our method fine-tunes models to achieve linear
complexity while retaining 99% of their original
performance. Compared to state-of-the-art linear
attention model and method, our approach im-
proves MMLU scores by 1.2 percentage points
with minimal fine-tuning. Furthermore, even with-
out the sliding window mechanism, our method
achieves state-of-the-art performance on all test
sets with 10B tokens.

*Equal contribution 1Institute of Automation, Chinese Academy
of Sciences 2School of Artificial Intelligence, University of
Chinese Academy of Sciences 3Beijing Academy of Artifi-
cial Intelligence 4TapTap. Correspondence to: Tongxin Bai
<txbai@baai.ac.cn>, Guoqi Li <guoqi.li@ia.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The attention mechanism has been the cornerstone of recent
advancements in natural language processing, computer
vision, and related fields. Current large language models
(LLMs) (Touvron et al., 2023; Jiang et al., 2023) predomi-
nantly leverage the Transformer architecture (Vaswani et al.,
2017) with Softmax Attention, demonstrating remarkable
performance. However, the Softmax Attention mechanism
inherently suffers from quadratic complexity in both time
and space during training. This issue is particularly pro-
nounced during inference, where the KV cache grows lin-
early with sequence length, leading to substantial compu-
tational costs and memory overhead. These constraints
significantly hinder efficient deployment in real-world ap-
plications.

To address this bottleneck, various linearized recursive mod-
els (Zaheer et al., 2020; Katharopoulos et al., 2020; Chou
et al., 2024; Zhang et al., 2024b) have been proposed. These
approaches aim to reduce the complexity of self-attention
from quadratic to linear while keeping the KV cache size
constant. This enables more efficient inference with fewer
computational and memory resources. However, training
a linear model from scratch requires substantial resources
and faces numerous challenges. Consequently, a widely
accepted and researched approach is to repurpose the pre-
trained weights of Softmax Attention-based LLMs into
linear-complexity language models by fine-tuning (Kasai
et al., 2021). This strategy not only conserves significant
resources but also enables linear models to approach, and
in some tasks surpass, the performance of their Softmax-
based counterparts. The key to achieving this transformation
lies in approximating Softmax Attention with minimal cost,
either through functional or computational approximations.

Traditional linear attention models and state-space mod-
els (SSMs) without gating mechanism, such as Lin-
former (Wang et al., 2020a), Performer (Choromanski et al.,
2022), S4 (Gu et al., 2022), RetNet (Sun et al., 2023), and
H3 (Fu et al., 2023), exhibit significant discrepancies from
Softmax Attention due to their inability to functionally ap-
proximate the Softmax operation. This limitation makes
it challenging to inherit pretrained weights. Recent re-
search has introduced mechanisms such as gating to ap-

1

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

proximate the functionality of Softmax Attention, leading
to models like HGRN (Qin et al., 2023), Gated Linear At-
tention (GLA) (Yang et al., 2024b), Gated Slot Attention
(GSA) (Zhang et al., 2024b), Unified Optimal Linear Atten-
tion (MetaLA) (Chou et al., 2024), and Mamba (Gu & Dao,
2024). Among these, MetaLA provides a unified frame-
work for analyzing existing linear models and demonstrates
their potential for optimal approximation of Softmax At-
tention. However, we observe that the model described
above lacks the Softmax function’s ability to capture both
high-frequency and low-frequency information. By ana-
lyzing the errors (appendix C) between Softmax Attention,
GSA, and MetaLA, we find that GSA, due to its query-
based compression of the key-value (KV) sequences, tends
to focus on high-frequency information, or potentially in-
troducing high-frequency noise. In contrast, the MetaLA
family of linear attention methods primarily captures the
low-frequency components of the original attention map. In
addition, none of these methods efficiently enhance memory
capacity, which could help reduce the error between linear
models and Softmax Attention, which has infinite cache
expansion.

Based on the above analysis, we propose three steps to
continually reduce the error with Softmax Attention: (1)
First, we propose using recursive sparse attention approach
to focus on high-frequency information fitting, while em-
ploying unified optimal linear attention to dominate the
fitting of low-frequency information and suppress the high-
frequency noise introduced by recursive sparse attention. In
this way, we achieve a unification and combination of re-
cursive sparse attention and unified optimal linear attention.
We refer to this approach of progressively combining differ-
ent frequency bands as the Higher-Order QK Integration
Theory. (2) After unifying the two most effective methods,
we propose a unified approach for efficient memory capacity
expansion: the Multi-Level Vocabulary Decomposition
Method. All recursive attention mechanisms with linear
complexity compress the infinitely growing KV sequences
into fixed-size states, which inherently leads to information
loss and error. By recursively compressing this error into
a series of states, we achieve an exponential decrease in
the expected error as the level increases. This results in a
polynomial increase in memory capacity, significantly re-
ducing the error compared to Softmax Attention. Compared
to the Delta Rule, we store the Delta separately rather than
directly adding it to the original state. We name the resulting
attention mechanism MVA.

Additionally, recent hybrid architectures such as
Based (Arora et al., 2024), LoLCATs (Zhang et al.,
2024a), and Distill to Mamba (Wang et al., 2025) offer
promising solutions by combining sliding window attention
(SWA) with linear attention or replacing specific layers of
SSMs with attention mechanisms, which can significantly

restore LLM performance and save a lot of resources.
However, these approaches often suffer from suboptimal
convergence due to the significant gap between their linear
models and Softmax Attention, and overfitting within the
window. (3) Thus, we introduced SWA and solved the
above problem. By maintaining both the key (K) and value
(V) states, we retain the attention score during computation.
This enables us to balance the historical information
encoded by MVA with the current information from the
SWA, named MVA-SW, achieving faster convergence,
reduced resource requirements, and superior performance.

Using these methods, our linear model restores 99% of
Mistral-7B’s performance with fewer than 100M fine-tuning
tokens. Compared to GSA, our MVA without using the
sliding window outperforms it across all test sets using only
half the training tokens.

2. Background and Preliminaries
2.1. Transformer

Transformer leverages Softmax Attention with uncom-
pressed Key-Value (KV) cache. For an input sequence
X ∈ Rn×d, the attention computation is defined as follows:
Parallel Form:

O = Attention(Q,K, V) = Softmax
(
QK⊤
√
dk

⊙M

)
V,

Recursive Form:

Kt = concat(Kt−1, kt), Vt = concat(Vt−1, vt)

ot = Softmax
(
qtK

⊤
t√

dk

)
Vt

where Q = XWq, K = XWk, V = XWv, with
Q,K ∈ Rn×dk and V ∈ Rn×dv . M represents the mask,
which is a causal mask for language models, i.e., a lower
triangular matrix filled with ones below the diagonal and
−∞ elsewhere. In the recursive formulation, the subscript t
denotes the input required for attention at timestep t. Specif-
ically, Kt ∈ Rt×dk , Vt ∈ Rt×dv , qt, kt ∈ R1×dk , and
vt, ot ∈ R1×dv .

The space and time complexity of training this formulation
is quadratic. FlashAttention(Dao, 2023) reduces the mem-
ory complexity to nearly linear, but during inference, the KV
cache size still grows linearly with sequence length, leading
to significant memory overhead. This can even result in
memory explosion for long sequences, making tasks infeasi-
ble. Thus, various approaches, such as linear attention and
state-space models (SSMs), have been developed to address
this issue by maintaining a fixed-size state for inference.

2.2. Linear Attention

Linear Attention computes attention as follows:

2

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

18

理论

SW

MVD

HOI
MQVA𝛽𝛽𝑐𝑐 𝛽𝛽ℎ

𝛽𝛽𝑐𝑐
𝛽𝛽𝑐𝑐 + 𝛽𝛽ℎ

𝛽𝛽ℎ
𝛽𝛽𝑐𝑐 + 𝛽𝛽ℎ

MQVA-SW

𝐊𝐊(𝟐𝟐)𝐊𝐊(𝟏𝟏)

MVD

𝐊𝐊(𝟎𝟎)

𝐊𝐊𝐭𝐭
(𝟎𝟎)

𝑭𝑭(⋅)

𝑸𝑸(⋅)

-

𝐊𝐊𝐭𝐭
(𝟏𝟏)

𝑭𝑭(⋅)

𝑸𝑸(⋅)

-

𝐊𝐊𝐭𝐭
(𝟐𝟐)

…
…

…

…

HOI

𝐕𝐕(𝒊𝒊)

𝐊𝐊(𝒊𝒊)𝐐𝐐 𝐀𝐀(𝒊𝒊)𝒇𝒇𝜶𝜶 𝑩𝑩(𝒊𝒊) 𝟏𝟏 −

∗ /

𝝈𝝈 ⋅ 𝑾𝑾𝑺𝑺

/

𝑾𝑾𝒒𝒒

out

(a) (b) (c)

Figure 1. (a) The Attention mechanism based on High-order QK integration (HOI), multi-level vocabulary decomposition (MVA) and
sliding window attention (SW). (b) The original K and V sequences are first decomposed to address the information loss caused by
compressing them into fixed-size hidden states during recursion. By computing the difference between the original sequences and hidden
states, we estimate the information error and further compress it to reduce this error. (c) is high-order QK integration Attention mechanism,
where QK sequences of different orders are used for pseudo-querying and different frequencies information gathering. ∗ is element-wise
multiplication, / is element-wise division, ⊗ is matrix multiplication.

Parallel Form:

O = LA(ϕ(Q), ϕ(K), V) =
((
ϕ(Q)ϕ(K)⊤

)
⊙M

)
V,

Recursive Form:

St = St−1 + ϕ(kt)
⊤vt, ot = ϕ(qt)St,

where St ∈ Rdk×dv . Linear Attention maintains a fixed-
size state St, achieving constant memory complexity during
inference. However, it suffers from the issue of diluted atten-
tion, where the model fails to focus effectively on relevant
tokens. Many works address this by improving the function
ϕ (Han et al., 2023; Choromanski et al., 2022) or introduc-
ing additional mechanisms. Linear Attention also struggles
to leverage positional biases (Su et al., 2023) that prioritize
neighboring tokens and memory forgetting, leading to the
development of Gated Linear Attention (GLA).

2.2.1. GATED LINEAR ATTENTION (GLA)

GLA (Yang et al., 2024b) introduces a gating mechanism to
alleviate the limitations of Linear Attention:

Parallel Form:

O = GLA(Q,K, V,G) = LA(Q⊙B,
K

B
, V), (1)

where the t-th row of B is defined as bt =
∏t

i=1 gi, with
gi being the i-th row of the gating matrix G = σ(XWg) ∈
Rn×dk .

Recursive Form:

St = diag(gt)St−1 + k⊤t vt, ot = qtSt.

The gating mechanism provides input-dependent dynamic
decay, emphasizing neighboring tokens and adjusting the
decay size per step. This addresses attention dilution and im-
proves the state update process with forgetting unimportant
information.

2.2.2. META LINEAR ATTENTION (METALA)

MetaLA (Chou et al., 2024) unifies and optimizes linear
attention with the following formulation:

Parallel Form:

O = MetaLA(Q,V,G) = LA(Q⊙B,
1−G

B
, V), (2)

where B and G are defined as in GLA.

Recursive Form:

St = diag(gt)St−1 + (1− gt)
⊤vt, ot = qtSt.

MetaLA uses fewer parameters while achieving superior
performance. It can converge to existing Linear Attention,
LinRNN, and SSM models under specific conditions. How-
ever, as MetaLA removes the K matrix, it introduces a
significant gap from Softmax Attention, hindering methods
that rely on fine-tuning Softmax Attention weights. We pro-
pose a solution to bridge this gap while unifying recursive
sparse attention and delta-rule-based mechanisms.

2.3. Recursive Sparse Attention

Recursive sparse attention compresses K and V se-
quences incrementally. For example, Gated Slot Attention
(GSA) (Zhang et al., 2024b) is formulated as:

3

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Recursive Form:

Kt = diag(gt)Kt−1 + (1− gt)
⊤kt, Vt = diag(gt)Vt−1 + (1− gt)

⊤vt

ot = Softmax(qtK⊤
t)Vt.

Parallel Form:

O = GSA(Q,K, V,G) = GLA(Softmax(GLA⊤(Q,K, 1−G,G)), 1−G,V,G).

(3)

GSA retains the K and V sequences, offering advantages for
linearizing Softmax Attention while preserving its weights.
Experimental results indicate that replacing Softmax with
a perceptron (e.g., σ(·)W) leads to faster convergence and
better performance. Our method also preserves K and V
sequences while employing a perceptron to replace Softmax,
further incorporating a delta-rule-inspired mechanism to
expand memory capacity exponentially.

2.4. Delta Rule Memory Mechanism

Delta rule-based (Schlag et al., 2021) updates refine state
transitions by querying existing states before updates:

Recursive Form:

vold
t = ktSt−1, St = St−1+gt·k⊤t (vt−vold

t), ot = qtSt.

The parallel form is detailed in related works. The delta rule
updates states by incorporating only the new information,
avoiding redundant accumulation.

3. Methodology
In this study, we propose two theoretical frameworks to ef-
fectively integrate and extend existing linear attention mech-
anisms (e.g., MetaLA) and recursive compression attention
mechanisms (e.g., Gated Slot Attention, GSA).

The first framework, termed High-order QK Integration
Theory, introduces pseudo-queries of different orders, en-
abling information collection at varying frequencies while
efficiently storing the retrieved information in the KV cache.
This theoretical foundation provides a unified perspective
for integrating linear attention with recursive compression
attention. Furthermore, inspired by the Delta Rule and the
vocabulary decomposition techniques, we propose a Multi-
level Quantized Vocabulary Decomposition method to
efficiently enhance memory capacity.

To further substantiate our approach, we conduct an error
analysis comparing our method with full attention. The
results demonstrate that the proposed techniques enable a
more accurate approximation to full attention compared to
existing methods. This improved approximation is particu-
larly beneficial for the implementation of hybrid attention

or hybrid architectures. Therefore, we introduce a hybrid
attention mechanism with soft integration by attention
scores that combines sliding window for processing current
information and linear attention for handling historical infor-
mation. By leveraging their respective attention scores, our
method effectively balances contributions from historical
and current information, further improving model perfor-
mance on various tasks.

3.1. High-order QK Integration

In this section, we introduce the High-order QK Integra-
tion Theory to unify and extend linear attention mecha-
nisms, such as MetaLA, and recursively compressed atten-
tion mechanisms, such as GSA. We begin by examining the
original self-attention mechanism in full attention: eQK⊤

.

Theorem 3.1. . Given a self-attention mechanism expressed
as eQK⊤

, the Taylor series expansion of the (i, j)-th element
is given by:

eqik
⊤
j = 1 +

∑
m

1

m!
(qik

⊤
j)

m =

∞∑
m=0

∑
s1+s2+···+sd=m

d∏
l=1

(qilkjl)
sl

sl!

=
∑

s1,...,sd

Fmsl(qil)

d∏
l=1

(kjl)
sl

=
∑

s1,...,sd

Fmsl(qi)k
s1
j Ams1k

⊤
j

s2
. . . Amsd−1

k
sd−1

j Amsdk
⊤
j

sd

where Amu ∈ Rdk×dk is a matrix independent of q and k
and Fmsl(qi) = qs1i Ams1q

⊤
i

s2
. . . Amsdq

⊤
i

sd . □

This expansion reveals that attention scores can be expressed
as higher-order terms of q and k, where the different pow-
ers of k control the contributions from various frequency
components. This observation is central to our high-order
integration framework, where we explore how different fre-
quencies of information can be selectively integrated.

Next, we investigate the ability of linear models such as
MetaLA and recursively compressed attention models such
as GSA to represent different types of information.

Theorem 3.2 (High-order QK Integration). By indepen-
dently setting different frequency components for queries
(Q) and keys (K), linear models (e.g., MetaLA) use low-
frequency fixed polynomial Q queries over multi-frequency
K polynomials, while recursive models (e.g., GSA) employ
varying-frequency polynomial Q queries over fixed K poly-
nomials. This makes GSA more sensitive to high-frequency
information. Thus, MetaLA’s low-frequency focus comple-
ments GSA’s high-frequency sensitivity, enabling a more
balanced and effective attention mechanism.

Proof. We analyze the attention scores, temporarily neglect-
ing the impact of Bn or treating Bn as learnable positional
encodings and dynamic decay.

4

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

1. The calculation of linear attention can be expressed as:

ϕ(qn)F(CK⊤
n)Vn.

If F is the identity function, the method reduces to Linear
Attention (LA). When F takes a non-linear form involving
an exponential, such as e−x

1+e−x in MetaLA, it enhances the
first-order information by propagating it to all powers of K
via a fixed non-linear function.

Neglecting the denominator for simplicity, as its primary
role is normalization (leaving more detailed analysis for
future work). The (i, j)-th attention score of MetaLA is:

∑
t=0

1

t!
ϕ(qi)(Ck⊤j)

t =
∑

s1,s2,...,sd

(∑
t

ϕ(qit)Fmsl(Ctl)

)
d∏

l=1

(kjl)
s

where ϕ(x) = xW , the parameter W ensures that the shape
of q is 1 ×m. This formulation enables fixed Q to query
each frequency of K independently, effectively eliminating
first-order approximation errors. By carefully designing ϕ(·)
as a polynomial function, higher-order errors can also be
mitigated. In addition, causal convolutions in these methods
can be interpreted as zero-order integration.

2. Similarly, the Gated Slot Attention (GSA) mechanism
can be formulated as:

Softmax(qn(F(CK⊤
n)Kn)

⊤)F(CK⊤
n)Vn,

where ϕ(qn) is replaced by Softmax(qn(F(CK⊤
n)Kn)

⊤).
Considering the numerator, while mitigating the impact of
denominator by a final linear mapping, the expanded form
becomes, results in the expanded form:

∑
s1,s2,...,sd

(∑
t

∑
u

1

u!

(
qi

i∑
a=0

k⊤a Ft(kaC
⊤)

)u

Fsl(Ctl)

)
d∏

l=1

(kjl)
s

By approximating
∑i

a=0 k
⊤
a Ft(kaC

⊤) with an average ma-
trix C̄a, this can be further rewritten as:

∑
s1,s2,...,sd

(∑
t

∑
u1,u2,...,ud

Ful
(qi)

d∏
l=1

(
C̄at

)u)
Fsl(Ctl)

d∏
l=1

(kjl)
s
.

Since s and u are at least 1, and C̄j represents at least second-
order kj terms multiplied by kj itself, GSA primarily empha-
sizes high-frequency information from higher-order terms,
while lacking adequate contributions from low-frequency
components. By integrating MetaLA, which complements
these missing low-frequency details, a more accurate approx-
imation can be achieved, significantly reducing resource
consumption and improving performance. For detailed er-
ror analysis of GSA and its complementarity with MetaLA,
please refer to the appendix C.1. □

3.2. Multi-level Vocabulary Decomposition

In recursive linear models, the challenge lies in efficiently
compressing sequences that grow linearly into compact hid-
den states. These models aim to retain critical information
while minimizing memory requirements. Specifically, given
the compressed states Kt = F(CK⊤)K ∈ Rm×dk and
Vt ∈ Rm×dv , some information from the original sequence
is inevitably lost during the compression process. Here,
C ∈ Rm×dk is a learnable matrix and K ∈ Rt×dk repre-
sents the sequence of keys. The error introduced by this
compression can be expressed as:

ϵ(i) = K(i)−S(K(i)K
(i)⊤
t)K

(i)
t ,K(i+1) = ϵ(i)W (i), (4)

where S(A) is defined as:

S(A) =

{
1 if Aij is the maximum in row i
0 otherwise

.

The lost information is compressed into K
(1)
t , where K(0)

is the original K. Iteratively applying this process, the error
expectation can decay at an exponential rate, by yielding a
series of states K(i)

t (i ≤ h, where h is the preset number
of levels). Assuming a c-level recursion, the final error is
given by:

E = K(c+1) = (I −Lc)K
(c)Wc =

c∏
i=0

(I −Li)K

c∏
i=0

Wi.

(5)
Theorem 3.3 (Improved Memory Capacity). After c recur-
sions, the expected error E can be bounded as follows:

∥E∥ ≤ ∥K∥
c∏

i=0

ϵi

c∏
i=0

γi,

where ϵi =
n−m
n and γi is determined by learnable param-

eters that ensure convergence to a value less than 1.

The analysis and proof are given in Appendix C.2. □

Theorem 3.3 demonstrates that the error can decrease at an
exponential rate. Conversely, it also implies that the memory
capacity can scale exponentially.

The S-function in Equation 4 requires the use of the
gather operation. However, we consider replacing it
with a more efficient Softmax approximation. The term
S(K(i)K

(i)⊤
t)K

(i)
t can be implemented using two rounds

of the GLA or GSA operator in parallel. Furthermore,
multi-level parallelism can be combined with Equation 5
for implementation. To simplify and improve efficiency,
we observe that replacing it with Softmax(KC⊤)C or
Softmax(KC⊤)Kt yields comparable performance. The
latter can be implemented using GLA(Softmax(KC⊤), 1−
G,K,G). Alternatively, a perceptron can approximate S
instead of Softmax.

5

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

3.3. MVA

Using the theoretical foundations introduced above, we de-
velop a high-order QK Integration and multi-level vocab-
ulary decomposition attention mechanism (MVA). In the
experiment, we used a high-order QK integration method,
where the low order is processed by a branch similar to Met-
aLA and the high order is dominated by a branch similar to
GSA, so that information of all frequencies can be processed
more reasonably. The computation process is detailed as
follows:

K
(i)
t = diag

(
f(i)g

(
k
(i)
t

))
K

(i)
t−1 +

(
1− f(i)α

(
k
(i)
t

))
k
(i)
t

V
(i)
t = diag

(
f(i)g

(
k
(i)
t

))
V

(i)
t−1 +

(
1− f(i)α

(
k
(i)
t

))
v
(i)
t

v
(i)
t = v

(0)
t = vt, k

(i+1)
t = k

(i)
t − ϕk

(
k
(i)
t W

(i)
kc

)
K

(i)
t

P
(i)
MetaLA = ϕq(qtW

(i)
qc), P

(i)
GSA = σ

(
qtK

(i)⊤
t

)
W

(i)
S (6)

ot =
∑

i diag(w
(i))(P

(i)
metala + P

(i)
gsa)V

(i)
t

f(i)g

(
k
(i)
t

)
= f(i)α

(
k
(i)
t

)
= σ

(
C(i)k

(i)⊤
t

)
, σ = 1

1+e−x

w(i) = P (i)∑
i P

(i) , ϕq(x) = x, ϕk(x) = x

Where C(i) ∈ Rdq×dv . For the explicit low-order branch, a
weight matrix W

(i)
qc ∈ Rdq×dv is applied to adjust its con-

tribution. This branch can fully replicate the core operation
of MetaLA. For the high-order branch, we utilize a layer
of perceptron to replace the Softmax function in GSA and
a weight matrix W

(i)
S ∈ Rdq×dv to adjust attention scores

and determine its contribution, equivalent to the role of
GSA. For vocabulary decomposition, we adopt the second
parallelizable method:

Softmax(KW
(i)
kc)Kt, W

(i)
kc ∈ Rdk×dk . (7)

The parameters W
(i)
qc ,W

(i)
S ,W

(i)
kc are shared across all

heads, resulting in a total parameter count of 3 × d × d,
where d denotes the head dimension. Future work will
consider introducing per-head parameters.

To further simplify, we express this as a linear attention
operator. Leveraging the GLA operator notation, the process
is as follows:

ot = MVA(qt, k
(0−m)
t , v

(0−m)
t , C,WS ,Wkc,Wqc) : (8)

qkst = GLA(qt, k
(i)
t , (1− f(i)α (k

(i)
t)), f(i)g (k

(i)
t))

pMetaLAt
= ϕq(qtW

(i)
qc), pGSAt

= σ(qkst)W
(i)
S

ot = GLA(pmetalat + pgsat , (1− f(i)α (k
(i)
t)), v

(i)
t , f(i)g (k

(i)
t))

k
(i+1)
t = k

(i)
t − GLA(ϕk(k

(i)
t W

(i)
kc), (1− f(i)α (k

(i)
t)), k

(i)
t , f(i)g (k

(i)
t))

Where i refers to the i-th level. Specific cases of MVA
reduce to well-known methods:

MetaLA = MVA(qt, k
(0)
t , v

(0)
t , C(0), 0, 0, I), (9)

GSA = MVA(qt, k
(0)
t , v

(0)
t , C(0),WS , 0, 0). (10)

Further equivalence demonstrations with additional methods
are provided in the appendix.

3.4. Integrating MVA with Sliding Window (MVA-SW)

To further enhance the proposed MVA method, we incorpo-
rate the Sliding Window (SW) attention mechanism. The
SW mechanism attention retains the distribution of the orig-
inal attention, which allows us to significantly preserve
performance while substantially reducing the training data
required for convergence. Additionally, since our method
reduces gap compared to Softmax, the historical attention
scores retained are more consistent with the original atten-
tion. Balancing the outputs of MVA and SW using the
current and historical attention scores is thus both natural
and reasonable. The computation process is detailed as
follows:

outc = Softmax(qt[k(t−sw) : kt]
⊤)[v(t−sw) : vt]

outh = (Softmax(qtK⊤
t)WS + ϕ(qt))Λt(1−An)Vn

output = diag
(

βc

βc + βh

)
outc + diag

(
βh

βc + βh

)
outh

where

βc = exp(qt[k(t−sw) : kt]
⊤)Rd, (11)

βh = GLA(qkst + ϕ(qt), 1−G, IV , G)Wβh
(12)

where Wβh
∈ Rdv×1 and Rd ∈ Rsw×1. And, βh corre-

sponds to a weighted summation over the attention map:

((Softmax(qtK⊤
t)WS + ϕ(qt))Λt(1−An)).

The process of balancing historical and current information
based on the attention scores closely aligns with the behavior
of the original attention mechanism. This alignment further
reduces the approximation error, ensuring a more faithful
representation of the original attention while preserving
computational efficiency.

4. Experiments
In this work, we explore inheriting LLM weights and con-
verting them into linear models. Specifically, we adopt the
Mistral-7B model as the base LLM and evaluate the perfor-
mance of MVA-SW and MVA. We use the lm-evaluation-
harness (Gao et al., 2024) tool to perform the test. For
fine-tuning, we utilize LoRA (Hu et al., 2021) to achieve
efficient fine-tuning, significantly reducing computational
resources.

For MVA, we compare with the state-of-the-art GSA, as well
as GLA, RetNet, and SUPRA (Mercat et al., 2024), which
were benchmarked in the GSA paper. For MVA-SW, we

6

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Table 1. MVA-SW fine-tuning results.
Performance comparison across various 7B models. ♣ denotes models using softmax-attention. † denotes our results.

Size Tokens ARCe ARCc Hella. PIQA Wino. NQ TriviaQA MMLU Avg.
Shot(s) 0 0 0 0 0 5 5 5

Models trained from scratch (for reference)
RWKV6 7B 1.4T 73.6 44.0 75.2 78.4 68.5 20.9 59.5 43.9 58.0
Mamba 7B 1.2T 77.6 46.8 77.8 81.0 72.3 25.4 66.2 33.2 60.0
Llama2♣ 7B 2T 76.4 46.2 76.0 78.0 69.2 26.0 64.2 45.5 60.2
Gemma♣ 7B 6T 81.5 53.2 80.5 79.8 74.0 24.3 63.7 63.2 65.0
Mistral♣ 7B ? 80.8 54.0 81.1 80.6 74.0 29.7 70.3 62.4 66.6

Models finetuned from Mistral 7B
SW-128† 7B +0.1B 80.1 53.2 80.7 81.6 73.8 28.6 69.8 52.1 65.0
GLA-SW-128† 7B +0.1B 75.4 46.7 74.4 78.5 64.0 13.9 49.2 30.2 54.1
GSA-SW-128† 7B +0.1B 79.9 53.4 80.5 81.7 73.9 29.0 69.8 54.5 65.3
MVA-SW(Ours)† 7B +0.1B 80.5 54.3 80.8 82.0 74.0 29.6 70.1 57.1 66.1
MVA-SW(Ours)† 7B +2B 80.7 54.4 81.2 82.0 73.8 29.7 70.2 57.3 66.2

Table 2. Performance comparison between Qwen2.5 models and
their MVA-SW converted versions on MMLU, PIQA, and Hel-
laswag benchmarks. Missing values are marked with ”-”.

Model MMLU PIQA Hellaswag

Qwen2.5-14B-1M 80.7 85.2 87.3
→ MVA-SW (14B) 77.3 83.8 86.8

Qwen2.5-32B 83.9 - 85.2
→ MVA-SW (32B) 79.8 82.5 85.0

compare with LoLCATs, using identical fine-tuning parame-
ters and window sizes for a fair comparison. In addition, we
conduct experiments with GSA and GLA combined with
the sliding window, using different fine-tuning parameter
configurations for a comparative study with our method.

4.1. MVA-SW

This section evaluates MVA-SW with attention scores bal-
ancing approach. The integration follows the soft combina-
tion method described in Section 3.4, with a window size
equal to the head dimension (dhead = 128). This ensures that
the computational complexity of adding the sliding window
remains equivalent to linear Attention (O(nd2)) while pre-
serving more of the model’s performance. For fine-tuning,
we use LoRA with the QKV mapping and FFN down proj
parameters, setting the rank to 128, alternatively, tuning
only the QKV mapping with a rank of 8. Additionally, all
parameters introduced by the linear attention part of MVA-
SW are fine-tuned, while other parameters remain frozen.
Optimization is performed using AdamW with a cosine
learning rate schedule, an initial learning rate of 4× 10−5,
20 steps of linear warmup, and a training length of 1.5K
due to GPU memory constraints, with a batch size of 0.1M
tokens. The dataset used is the SlimPajama corpus. The
results are shown in Table 1 and Table 2.

The results demonstrate that our method can recover most
of the model’s performance with a small number of tokens.

Furthermore, compared to GSA and GLA, our approach
achieves better performance recovery due to its smaller error
relative to Softmax Attention and the rationality of the soft
combination mechanism. If continue training a large number
of tokens we consider turning off the parameters of QKV
and only consider the additional parameters introduced by
training LA or truncating the reverse gradient information
of SW and update only the information of LA. We froze the
weights of QKV to train only the linear part to 2B tokens
and its performance was slightly improved.

4.2. Comparison with LoLCATs

This experiment compares MVA-SW with LoLCATs. Un-
like LoLCATs, which require a two-stage process, our
method achieves comparable performance using a sim-
ple soft combination mechanism and straightforward fine-
tuning. The experimental configuration matches LoLCATs,
with a window size of 64. LoRA fine-tuning is applied to
the QKV mapping parameters with a rank of 8. For MVA-
specific parameters, full fine-tuning is applied, while other
parameters remain frozen. The training length is 1K with
a learning rate of 1× 10−4 and a batch size of 32K tokens.
The results are presented in Table 3. In addition, we also
investigated the effect of different fine-tuned datasets on
MVA-SW and compared them with LoLCATs, as shown
in Table 4. Our method requires only half the fine-tuning
tokens to outperform LoLCATs on the MMLU tasks.

4.3. MVA

We replace the Attention mechanism in the Mistral model
with MVA (MVA-SW without SWA), leaving the other com-
ponents unchanged. The LoRA fine-tuning is applied to the
QKV weights and the down proj parameters in FFN, with
a rank of 256. In addition, we unfreeze the embedding and
normalization parameters while keeping all other parame-
ters frozen. The optimization uses AdamW with a cosine
learning rate schedule, an initial learning rate of 8× 10−5,

7

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Table 3. Comparison between MVA-SW and LoLCATs.
Model Training Tokens (B) PiQA ARC-e ARC-c (norm) HellaSwag (norm) Winogrande MMLU (5-shot) Avg. Avg. (no MMLU)

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Mistral 7B SUPRA 100 80.4 75.9 45.8 77.1 70.3 34.2 64.0 69.9
Mistral 7B LoLCATs 0.04 81.5 81.7 54.9 80.7 74.0 51.4 70.7 74.5
Mistral 7B MVA-SW (Ours) 0.02 82.5 80.6 53.8 80.6 74.5 52.6 70.8 74.4

Table 4. Performance comparison on Alpaca-Clean and RedPajama datasets. All models are derived from Mistral-7B.
Model Training Data PIQA ARC-e ARC-c HellaSwag Wino-grande MMLU Avg. Avg. (w/o MMLU)

Mistral-7B (v0.1) – 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4

→ LoLCATs (rank=8) AlpacaClean (+40M) 81.5 81.7 54.9 80.7 74.0 51.4 70.7 74.5
→ LoLCATs (rank=8) RedPajama (+40M) 80.1 77.6 49.0 80.3 71.7 53.2 68.6 71.7

→ MVA-SW (rank=32) AlpacaClean (+20M) 82.1 81.5 54.7 81.2 74.1 52.2 70.7 74.4
→ MVA-SW (rank=8) AlpacaClean (+40M) 82.3 81.9 57.6 80.2 74.0 51.6 71.2 75.2
→ MVA-SW (rank=8) RedPajama (+40M) 82.5 81.5 55.7 79.7 72.9 52.4 70.8 74.5

Table 5. MVA (MVA-SW without SW) fine-tuning results with inherited Mistral model weights.
Performance comparison across various 7B models. ♣ denotes models using softmax-attention. † denotes our results.

Size Tokens ARCe ARCc Hella. PIQA Wino. NQ TriviaQA MMLU Avg.
Shot(s) 0 0 0 0 0 5 5 5

Models trained from scratch (for reference)
Mistral♣ 7B ? 80.8 54.0 81.1 80.6 74.0 29.7 70.3 62.4 66.6

Models finetuned from Mistral 7B
SUPRA 7B +20B 74.6 42.3 74.8 80.1 67.4 - - 28.0 -
RetNet 7B +20B 73.3 39.9 72.9 77.8 66.1 16.2 43.0 26.1 51.9
GLA 7B +20B 74.6 44.0 75.9 79.2 69.5 22.2 57.8 28.4 56.5
GSA 7B +20B 75.9 43.9 76.5 78.7 70.1 23.4 60.7 32.4 57.7
MVA(Ours)† 7B +2.5B 75.7 44.9 76.0 80.4 69.7 21.2 59.1 30.2 57.2
MVA(Ours)† 7B +10B 78.3 47.5 78.1 80.5 72.1 25.9 65.9 34.4 60.3

200 steps of linear warm-up, and a training length of 2K
steps with a batch size of 0.5M tokens. The dataset used is
the SlimPajama (Soboleva et al., 2023) corpus. The results
are shown in Table 5.

Our MVA method achieves performance comparable to
state-of-the-art GSA after fine-tuning with 2.5B tokens. Af-
ter fine-tuning with 10B tokens, MVA surpasses GSA in all
tasks. This demonstrates that our MVA introduces smaller
errors compared to GSA and GLA, enabling a rapid recovery
of the original Attention’s performance. The effectiveness
of this observation is further supported by ablation studies.

4.4. MVA Inference Efficiency

Table 6 demonstrates the inference efficiency of MVA. In
terms of memory consumption, MVA performs comparably
to GSA. However, due to its vocabulary decomposition re-
quirement, MVA exhibits slightly higher generation latency
than GSA. Notably, both MVA and GSA significantly out-
perform FlashAttention in all efficiency metrics and memory
usage when the sequence length reaches 64K.

4.5. Ablation Studies

Finally, we examine the impact of incorporating the sliding
window. The results show that adding a sliding window
significantly preserves the performance of the original At-

Table 6. Inference efficiency comparison of MVA, GSA, and
FlashAttention under different sequence lengths. OOM indicates
out-of-memory errors.

Model Seq Len Full Inf
Time (s)

Full Inf
Mem (GB)

Prefill
Time (s)

Gen Latency
(ms/token)

Total
Mem (GB)

MVA

4K 0.14 0.77 0.125 98.8 15.32
8K 0.26 1.53 0.249 60.3 16.58

16K 0.51 3.06 0.508 78.8 19.08
32K 1.08 6.11 1.090 79.8 24.09
64K 2.25 12.22 2.265 97.3 34.11

128K 5.08 24.44 7.156 58.1 54.14

GSA

4K 0.10 0.76 0.077 93.2 15.30
8K 0.17 1.53 0.153 40.9 16.55

16K 0.32 3.06 0.315 48.5 19.06
32K 0.64 6.11 0.630 63.0 24.07
64K 1.29 12.22 1.293 90.2 34.08

128K 2.66 24.44 5.102 38.7 54.11

Flash
Attention

4K 0.05 1.26 0.056 21.7 15.79
8K 0.11 2.53 0.116 27.5 18.54

16K 0.27 5.05 0.287 46.3 23.55
32K 0.73 10.11 0.750 92.4 33.55
64K 2.19 20.22 2.208 220.4 53.57
128K OOM

tention, while reducing the training resources. However, the
standalone sliding window is limited by its window size.
Integrating MVA enhances its performance, achieving at
least a 5-point improvement on MMLU tasks.

We investigate the contributions of hierarchical integration
and multi-level vocabulary decomposition. First, replacing
the Softmax function in GSA with a perceptron signifi-
cantly improves performance. Integrating MetaLA further
enhances performance, with our hierarchical integration out-

8

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Table 7. Impact of sliding window on MVA-SW performance.

Component MMLU

MVA-SW (soft bond) 57.1
MVA-SW (hard bond) 53.2
Sliding Window Only 51.9
noSW 25.0

performing both GSA and MetaLA, achieving at least a
3.3-point improvement on ARC-Challenge and a 0.9-point
improvement on ARC-Easy. Finally, replacing the mem-
ory strategy with multi-level vocabulary decomposition fur-
ther boosts performance, yielding a 1.9-point gain on ARC-
Challenge and a 3.2-point gain on ARC-Easy. The results

Table 8. Ablation study results on ARC dataset. The table com-
pares different methods and their performance on ARC, as well as
the token budget (in billions). VD means vocabulary decomposi-
tion.

Method arc challenge arc easy Tokens (B)

MVA w/ 3 order (GSA) 0.3389 0.6596 0.8
MVA w/ 3 order (GSA) 0.3763 0.6949 2.0
MVA w/ 3 order (GSA-sigmoid) 0.3407 0.6732 0.8
MVA w/ 1 order (MetaLA) 0.3527 0.6987 0.8
MVA w/o VD (GSA+MetaLA) 0.3857 0.7075 0.8
MVA w/ VD (attn(K,mk,mk)) 0.3906 0.7210 0.8
MVA w/ VD (delta rule-like) 0.4044 0.7391 0.8

indicate that our method effectively combines the strengths
of GSA and MetaLA, achieving substantial performance im-
provements. Multi-level vocabulary decomposition further
reduces the error relative to Softmax Attention.

Table 9. Performance comparison of different models. Attention
replacing Mistral-7B with a training length of 2K and a gradient
accumulation of 128. VD means vocabulary decomposition and
we use a 2-level word list decomposition.

Method Memory Usage (GPU) Time per Iteration
MetaLA 36317MiB 75.08 s/it

GSA 37619 MiB 81.67 s/it
MVA w/o VD 38885 MiB 82.18 s/it
MVA w/ VD 40096 MiB 105.79 s/it

5. Conclusion
We propose a unified linear attention framework that in-
tegrates MetaLA, GSA, and Delta Rule-inspired methods
using high-order QK integration and multi-level vocabulary
decomposition theories.

The high-order QK integration theory reveals that GSA fo-
cuses on high-frequency information through higher-order
QK-terms, while MetaLA captures low-frequency informa-
tion using lower-order QK-terms. These complementary

behaviors allow our method to exploit both perspectives for
enhanced performance. In addition, multi-level vocabulary
decomposition recursively reduces information loss, achiev-
ing exponential memory capacity expansion and improving
approximation accuracy for high-rank matrices.

MVA outperforms GSA by 2.3 points with only half the
training resources and consistently excels across all test sets.
Unlike LoLCATs two steps, MVA-SW simplifies fine-tuning
and achieves superior MMLU performance with fewer train-
ing tokens, demonstrating its efficiency and effectiveness.

Impact Statement
This paper presents work whose goal is to transform pre-
trained Softmax-based language models into linear attention
models. This transformation technique utilises lower costs
to train more efficient language models. Therefore this tech-
nique might help democratize access of language models.
Whether the efficient transformation would affect known
problems, such as biased and harmful outputs of language
models remains an unexplored research question.

Acknowledgements
This research is supported by the National Science and
Technology Major Project of China (2022ZD0116316).
This work was partially supported by National Natu-
ral Science Foundation of China (62325603, 62236009,
U22A20103), CAS Project for Young Scientists in Basic
Research (YSBR-116), Beijing Science and Technology
Plan (Z241100004224011). We are also thankful to all
the reviewers for their insightful comments and rigorous
evaluation.

References
Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,

S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff, 2024. URL https://arxiv.
org/abs/2402.18668.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
long-document transformer, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., Belanger, D., Colwell, L., and Weller, A.
Rethinking attention with performers, 2022.

Chou, Y., Yao, M., Wang, K., Pan, Y., Zhu, R., Zhong, Y.,

9

https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.18668

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Qiao, Y., Wu, J., Xu, B., and Li, G. Metala: Unified opti-
mal linear approximation to softmax attention map, 2024.
URL https://arxiv.org/abs/2411.10741.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D.,
Teh, Y. W., Pascanu, R., Freitas, N. D., and Gulcehre,
C. Griffin: Mixing gated linear recurrences with lo-
cal attention for efficient language models, 2024. URL
https://arxiv.org/abs/2402.19427.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A.,
and Ré, C. Hungry hungry hippos: Towards language
modeling with state space models, 2023. URL https:
//arxiv.org/abs/2212.14052.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Gu, A. and Dao, T. Mamba: Linear-time sequence mod-
eling with selective state spaces, 2024. URL https:
//arxiv.org/abs/2312.00752.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces, 2022. URL
https://arxiv.org/abs/2111.00396.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces
are as effective as structured state spaces, 2022. URL
https://arxiv.org/abs/2203.14343.

Han, D., Pan, X., Han, Y., Song, S., and Huang, G. Flatten
transformer: Vision transformer using focused linear at-
tention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 5961–5971,
October 2023.

Hanada, H., Hashimoto, N., Taji, K., and Takeuchi, I.
Generalized low-rank update: Model parameter bounds
for low-rank training data modifications, 2023. URL
https://arxiv.org/abs/2306.12670.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Kasai, J., Peng, H., Zhang, Y., Yogatama, D., Ilharco, G.,
Pappas, N., Mao, Y., Chen, W., and Smith, N. A. Fine-
tuning pretrained transformers into rnns, 2021. URL
https://arxiv.org/abs/2103.13076.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. In Proceedings of the International
Conference on Learning Representations, 2020.

Mercat, J., Vasiljevic, I., Keh, S., Arora, K., Dave, A.,
Gaidon, A., and Kollar, T. Linearizing large language
models, 2024. URL https://arxiv.org/abs/
2405.06640.

Mohtashami, A. and Jaggi, M. Landmark attention:
Random-access infinite context length for transform-
ers, 2023. URL https://arxiv.org/abs/2305.
16300.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Grella,
M., GV, K. K., He, X., Hou, H., Lin, J., Kazienko, P.,
Kocon, J., Kong, J., Koptyra, B., Lau, H., Mantri, K.
S. I., Mom, F., Saito, A., Song, G., Tang, X., Wang, B.,
Wind, J. S., Wozniak, S., Zhang, R., Zhang, Z., Zhao,
Q., Zhou, P., Zhou, Q., Zhu, J., and Zhu, R.-J. Rwkv:
Reinventing rnns for the transformer era, 2023. URL
https://arxiv.org/abs/2305.13048.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention, 2021.

Peng, H., Kasai, J., Pappas, N., Yogatama, D., Wu, Z.,
Kong, L., Schwartz, R., and Smith, N. A. Abc: Attention
with bounded-memory control, 2022. URL https://
arxiv.org/abs/2110.02488.

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N., and
Zhong, Y. The devil in linear transformer, 2022. URL
https://arxiv.org/abs/2210.10340.

Qin, Z., Yang, S., and Zhong, Y. Hierarchically gated recur-
rent neural network for sequence modeling, 2023. URL
https://arxiv.org/abs/2311.04823.

10

https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2203.14343
https://arxiv.org/abs/2306.12670
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2103.13076
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2110.02488
https://arxiv.org/abs/2110.02488
https://arxiv.org/abs/2210.10340
https://arxiv.org/abs/2311.04823

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient
content-based sparse attention with routing transform-
ers, 2020. URL https://arxiv.org/abs/2003.
05997.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transform-
ers are secretly fast weight programmers, 2021. URL
https://arxiv.org/abs/2102.11174.

Shen, Z., Zhou, Y., Bai, R., and Li, J. Kernelized self-
attention for generating long sequences. In arXiv preprint
arXiv:2106.13254, 2021.

Smith, J. T. H., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling, 2023.
URL https://arxiv.org/abs/2208.04933.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of Red-
Pajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor
to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Wang, J., Paliotta, D., May, A., Rush, A. M., and Dao,
T. The mamba in the llama: Distilling and accelerating
hybrid models, 2025. URL https://arxiv.org/
abs/2408.15237.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity, 2020a.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity, 2020b.
URL https://arxiv.org/abs/2006.04768.

Yang, S., Kautz, J., and Hatamizadeh, A. Gated delta net-
works: Improving mamba2 with delta rule, 2024a. URL
https://arxiv.org/abs/2412.06464.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated
linear attention transformers with hardware-efficient
training, 2024b. URL https://arxiv.org/abs/
2312.06635.

Yang, S., Wang, B., Zhang, Y., Shen, Y., and Kim, Y. Par-
allelizing linear transformers with the delta rule over se-
quence length, 2025. URL https://arxiv.org/
abs/2406.06484.

Yue, Z., Wang, Y., He, Z., Zeng, H., McAuley, J., and Wang,
D. Linear recurrent units for sequential recommenda-
tion, 2023. URL https://arxiv.org/abs/2310.
02367.

Yun, H., Han, W., and Kim, J. Global context transformer:
The power of the word embeddings. In arXiv preprint
arXiv:2106.09681, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J.,
Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang,
Q., Yang, L., and Ahmed, A. Big bird: Transformers
for longer sequences. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 17283–17297. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
c8512d142a2d849725f31a9a7a361ab9-Paper.
pdf.

Zhang, M., Arora, S., Chalamala, R., Wu, A., Spector, B.,
Singhal, A., Ramesh, K., and Ré, C. Lolcats: On low-
rank linearizing of large language models, 2024a. URL
https://arxiv.org/abs/2410.10254.

Zhang, Y., Yang, S., Zhu, R., Zhang, Y., Cui, L., Wang, Y.,
Wang, B., Shi, F., Wang, B., Bi, W., Zhou, P., and Fu,
G. Gated slot attention for efficient linear-time sequence
modeling, 2024b. URL https://arxiv.org/abs/
2409.07146.

11

https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/2208.04933
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2310.02367
https://arxiv.org/abs/2310.02367
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2409.07146
https://arxiv.org/abs/2409.07146

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Zhu, L., Wang, X., Ke, Z., Zhang, W., and Lau, R. W.
Biformer: Vision transformer with bi-level routing atten-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
10323–10333, June 2023.

12

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Table 10. Performance comparison on long-context benchmarks (Qasper, NarrativeQA, QMSum). Top section shows models trained from
scratch; bottom section shows methods fine-tuned from Mistral-7B.

Model Qasper NarrativeQA QMSum

Models Trained from Scratch

RWKV6 9.2 14.4 1.1
Mamba 5.6 27.9 0.8
Mistral 25.8 25.1 5.0

Fine-tuned from Mistral-7B (20B tokens)

RetNet 11.1 0.0 0.0
GLA 18.4 17.2 9.0
GSA 18.8 19.2 10.0
MVA 20.7 20.4 9.58

Figure 2. Speed of convergence for different models.

A. Fine-tuning the loss curve
In this subsection, we show the convergence speed of MVA, MVA (wordless table decomposition), GSA, and MetaLA, as
shown in Figure 2, it is obvious that the convergence speed of MVA is very fast and much better than GSA.In addition, we
show the loss of the whole fine-tuning process of MVA, and our method is very stable in the fine-tuning process and the
convergence tendency is very obvious, as shown in Figure 3.

A.1. MVA performance on long sequence tasks

We compared them on the long sequence tasks listed by GSA, as shown in Table 10.

B. Related Work
B.1. Linear Attention

Full attention in Transformers (Vaswani et al., 2017) and other efficient Attention (Zaheer et al., 2020; Roy et al., 2020;
Mohtashami & Jaggi, 2023; Zhu et al., 2023; Kitaev et al., 2020; Child et al., 2019; Yun et al., 2021; Beltagy et al., 2020)
that can’t be recursive requires a KV cache that scales linearly with sequence length, resulting in significant computational
and memory overhead during inference for long sequences. This limitation often makes it infeasible to process extremely
long sequences. Linear attention (LA) (Katharopoulos et al., 2020; Shen et al., 2021) addresses this issue by replacing the
softmax operation in attention with a kernel function and reordering operations. Specifically, it first computes ϕ(K)V to
obtain a fixed-size state S, and then computes ϕ(Q)S to produce the output. This method achieves linear complexity and

13

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Figure 3. Fine-tuned loss curves for MVA based on Mistral-7B modeling.

enables inference with a fixed-size state, regardless of sequence length, by maintaining the state recursively.

However, linear attention has several issues, including insufficient focus on relevant tokens, the inability to erase outdated
information during state updates, and a lack of bias toward closer tokens. To address these problems, Gated Linear
Attention (GLA) reintroduced gating mechanisms. During state updates, the gate selectively erases irrelevant information
before incorporating new data, which also introduces a dynamic decay mechanism to emphasize local information. GLA
parameterizes many linear Attention, SSM models, and other well-designed recursive models into their GLA form for
uniform system-level optimization. Building on GLA, MetaLA analyzed existing linear models, classifing current linear
models into three categories: the LinFormer (Sun et al., 2023; Wang et al., 2020b; Qin et al., 2022), SSM (Gu & Dao, 2024;
Gupta et al., 2022; Smith et al., 2023; Fu et al., 2023), and LinRNN (De et al., 2024; Hanada et al., 2023) and proposed four
necessary conditions for optimal linear approximations to softmax attention. Based on these conditions, MetaLA achieves
state-of-the-art performance among linear models.

Other approaches, such as Flatten Transformer (Han et al., 2023) and Performer (Peng et al., 2021), explore alternative
kernel functions to replace softmax for more focused attention. Additionally, non-attention architectures like SSM-based
models (e.g., S4, H3 (Fu et al., 2023)), RetNet (Sun et al., 2023), RWKV-4 (Peng et al., 2023), and HGRN (Qin et al.,
2023), as well as LRU (Yue et al., 2023), can be viewed as special cases of GLA or MetaLA. In some scenarios, these
models converge to MetaLA. Despite these advancements, linear attention models often suffer from a lack of high-frequency
information, corresponding to the higher-order terms in the Taylor expansion of softmax. This limitation creates a significant
gap with softmax attention, hindering their compatibility with existing LLM weights for fine-tuning. Consequently, recent
research focuses on developing linear models that retain softmax while enabling recursive mechanisms.

B.2. Sparse Attention

Sparse attention methods, such as ABC and Gated Slot Attention (GSA) (Zhang et al., 2024b), retain the softmax function,
preserving most of the frequency information in Q and K and achieving closer approximations to full softmax attention.
ABC (Peng et al., 2022) introduces learnable pseudo-queries for compressing the KV sequences, storing fixed-size states.
However, it lacks mechanisms to erase irrelevant information, leading to accumulation of unnecessary data. GSA addresses
this by incorporating a gating mechanism in the KV state updates, enabling controlled writes to the state and more efficient
compression.

Although sparse attention methods approximate softmax more effectively, they lack sufficient low-frequency information,

14

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

introducing non-negligible errors. Combining linear and sparse attention approaches can further reduce the gap with softmax
attention. However, both approaches face challenges in efficiently expanding memory capacity. Inspired by the Delta Rule,
our work introduces a mechanism to dynamically expand memory capacity.

B.3. Delta Rule Methods

Fast Weight Programmers (Schlag et al., 2021) proposed a more precise update mechanism that first queries the previous
state using the current K, removes the queried information from the current input, and updates only with new information.
This maximizes utilization of the limited state space. Parallels Delta Rule (Yang et al., 2025; 2024a) further parallelized this
mechanism, significantly improving training speed.

B.4. Transformer-to-RNN Conversion

Linear models offer substantial advantages over full attention, including a fixed-size state space and faster inference for longer
tasks. However, training linear models from scratch demands significant resources. Transformer-to-RNN (T2R) (Kasai et al.,
2021) conversion addresses this by fine-tuning existing LLM weights with softmax attention to transform them into linear
models. Notable methods, such as SUPRA (Mercat et al., 2024) and GSA, have demonstrated promising results. Recently,
LoLCATs (Zhang et al., 2024a) proposed a two-step process involving attention transfer and low-rank linearization (Hu
et al., 2021), combined with a sliding window mechanism. This approach transforms LLMs into linear models with nearly
linear complexity while preserving most of their performance.

C. Error Analysis with Softmax Attention
This section analyzes the error between our method and Softmax Attention, demonstrating that our approach achieves
superior approximation in larger memory capacities compared to other methods. From Section 3.3, we know that the MVA
method can fully converge to GSA and MetaLA. When they are optimal, the parameters W (i)

qc , W (i)
S , and W

(i)
kc converge to

very small values, such that their impact on the output is negligible. Consequently, the solution space of our method almost
entirely encompasses the above two methods, and their unified combination enables convergence to better solutions. This
unification ensures complementary convergence rather than mutual interference. The following provides a detailed error
analysis:

Original Attention:

O = Softmax
(
(Q⊙ P)(K ⊙ P)⊤ ⊙M

)
V

Our MVA computation is given by:

Qst = Softmax

(
(((Q⊙B)

(
K

B

)⊤

)⊙M)(1−G)

)
WS + ϕ(Q)

O = (((Qst ⊙B)

(
1−G

B

)⊤

)⊙M)V

C.1. Influence of High-order Integration

The error between our method and Softmax Attention can be expressed as follows:

Softmax
(
(Q⊙ P)(K ⊙ P)⊤ ⊙M

)
V − (((Qst ⊙B)

(
1−G

B

)⊤

)⊙M)V

Focusing on the error between specific attention scores:

15

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

The expression eqik
⊤
j can be expanded as:

eqik
⊤
j =

∞∑
m=0

1

m!

∑
s1+s2+···+sd=m

(
m

s1, s2, . . . , sd

) d∏
l=1

(qil)
sl (kjl)

sl (13)

=

∞∑
m=0

∑
s1+s2+···+sd=m

d∏
l=1

(qilkjl)
sl

sl!
(14)

=

∞∑
m=0

∑
s1+s2+···+sd=m

Fsl(qil)

d∏
l=1

(kjl)
sl (15)

=
∑

s1,s2,...,sd

Fsl(qil)

d∏
l=1

(kjl)
sl , (16)

where Fsl(qil) =
(qil)

sl

sl!
.

The MetaLA can be further expressed as:

ϕ(qi)e
−(−Ck⊤

j) =
∞∑
t=0

1

t!
ϕ(qi)(Ck⊤j)

t (17)

=
∑
t

ϕ(qit)

(∑
s1,s2,...,sd

Fsl(Ctl)

d∏
l=1

(kjl)
s

)
(18)

=
∑

s1,s2,...,sd

(∑
t

ϕ(qit)Fsl(Ctl)

)
d∏

l=1

(kjl)
s
, (19)

where ϕ(x) = x.

The error between Full Attention and MetaLA is given by:

eqik
⊤
j − ϕ(qi)e

−(−Ck⊤
j) =

∑
s1,s2,...,sd

(
Fsl(qil)−

∑
t

ϕ(qit)Fsl(Ctl)

)
d∏

l=1

(kjl)
s
. (20)

This can be interpreted as using a fixed function to fit different powers of Fsl(qil). Since MetaLA adopts ϕ(x) = x, it can
only fit first-order information. To further reduce the error, Q needs to be extended to higher powers. However, due to the
fixed power of the ϕ function, it can only eliminate fixed patterns of frequencies.

To minimize the error further, higher-order q terms need to be introduced for different powers of k. One method involves
increasing the order of k and querying with at least the same order of Q:

m∑
i=1

ϕi(Q)Fi1(K)⊤Fi1(K) . . . Fii(K)⊤, (21)

where different i terms do not affect the lower-order terms, ensuring that this approach can achieve at least m-order fitting,
leaving only m+ 1-order errors.

Another method is to avoid explicit summation by considering introducing dynamically varying powers of Q based on
the powers of K. This requires embedding Q and K within a higher-order nonlinear function, such as eQK⊤F(X). Here,
F(X) compresses K⊤ to a fixed size, enabling linear complexity and recursive inference. This type of high-order nonlinear
function enhances the previous method by introducing more powers for further approximating the original Attention but
inevitably introduces significant high-frequency noise. GSA adopts this strategy, the GSA attention mechanism, given by:

Softmax(Q(F(CK⊤
n)K)⊤)F(CK⊤

n)V,

has its attention score at position (i, j) expressed as:

e(qi
∑i

a(F(Ck⊤
a)ka)

⊤)F(Ck⊤j).

16

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Expanding this, we obtain:(∑
s1,s2,...,sd

∑
t

(
exp

(
i∑

a=0

qik
⊤
a Fit(kaC

⊤)

)
Fsl(Ctl)

)
d∏

l=1

ksjl

)
(22)

=

(∑
s1,s2,...,sd

∑
t

((∑
u

1

u!

(
qi

i∑
a=0

k⊤a Fit(kaC
⊤)

)u)
Fsl(Ctl)

)
d∏

l=1

ksjl

)
, (23)

where F(Ck⊤a) is the transformation applied to the context. By approximating
∑i

a=0 k
⊤
a Ft(kaC

⊤) as an averaged matrix
C̄a, where C̄a retains only higher-order k terms, the expression becomes:(∑

s1,s2,...,sd

∑
t

(∑
u

1

u!
(qiC̄at)

uFsl(Ctl)

)
d∏

l=1

ksjl

)
(24)

=

(∑
s1,s2,...,sd

∑
t

(∑
u1,u2,...,ud

Ful(qi)

d∏
l=1

(C̄at)
uFsl(Ctl)

)
d∏

l=1

ksjl

)
. (25)

Focusing on the
∏d

l=1 k
s
jl basis, the terms involving q and C̄a have the same order. To mitigate the influence of high-frequency

noise introduced by
∏d

l=1 k
s
jl, GSA tends to prioritize high-frequency information. Thus, we consider incorporating methods

such as MetaLA or GLA to balance and supplement the information.

The discrepancy between GSA and Softmax Attention is given by:

eqik
⊤
j − e(qi

∑i
a(F(Ck⊤

a)ka)
⊤)F(Ck⊤j) (26)

=
∑

s1,s2,...,sd

(
Fsl(qi)−

∑
t

(∑
u1,u2,...,ud

Ful(qi)

d∏
l=1

(C̄at)
u

)
Fsl(Ctl)

)
d∏

l=1

ksjl. (27)

This represents a dynamic average approximation of the full attention Fsl(qi) over q’s various orders. Expanding GSA
further:

∑
s1,s2,...,sd

(∑
u1,u2,...,ud

∑
v

Fvul(qi)F̄(C)

)
Fsl(Ctl)

d∏
l=1

ks+u
jl (28)

=
∑

s1,s2,...,sd

(F̄vul(qi)F̄(C)Fsl(Ctl))

d∏
l=1

ksjl. (29)

Introducing methods such as MetaLA transforms the equation into our MVA-no vocabulary decomposition, which can be
expressed as:

∑
s1,s2,...,sd

(ϕ(qi) + F̄vul(qi)F̄(C)Fsl(Ctl))

d∏
l=1

ksjl. (30)

The additional term ϕ(qi) alleviates part of GSA’s fitting pressure, suppressing high-frequency noise:

Fsl(qi) = (Fsl(qi)− ϕ(qi)) (F̄(C)Fsl(Ctl))
−1

.

Compared to the original formulation:

Fsl(qi) = Fsl(qi) (F̄(C)Fsl(Ctl))
−1

,

higher-order terms are similarly suppressed as F̄ (C)Fsl(Ctl) decreases, mitigating high-frequency noise.

17

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

C.1.1. NOT USING THE TAYLOR SERIES EXPANSION

Consider not using the Taylor series expansion, directly with full Attention for differential exhaustion error analysis, the
process is as follows: - Original Attention:

eqik
⊤
j = 1 +

∑
m

1

m!
(qik

⊤
j)

m

= 1 +
∑

m=odd

Fm(qi)k
⊤
j (kjk

⊤
j)

m−1 +
∑

s=even

Fs(qi)(kjk
⊤
j)

s + F (kj).

- GSA Attention Scores:

sij =
∑
s

eqik̂
⊤
s

i∏
t=i−j+1

αt(1−αsj)
⊤ =

∑
s

eqi(
∏i

t=i−j+1 αtk
⊤
s (1−αs))+log(

∏i
t=i−j+1 αt(1−αsj)

⊤) = eqif(k1,...,kj)+fg1(k1,...,kj)

ea1x1+a2x2+···+anxn =
ex1 + ex2 + · · ·+ exn

n
.[a1, a2, ..., an] = ln(

∑
i

exi/n)X†

where X† = (X⊤X)−1X⊤ is the pseudo-inverse of X .

- MetaLA Attention Scores:

mij =
ϕ(qi)

∏i
t=i−j+1 αte

−k⊤
j W

1 + e−k⊤
j W

= ϕ(qi)e
fm2(kj ,...,ki)

Rewriting the GSA scores as:
sij = eqif(k1,...,kj) = eqik̄

⊤
j +fg1(k1,...,kj),

where k̄j represents a weighted approximation of the original kj due to limited memory capacity. The error between GSA
and the original attention is:

ϵij = eqik
⊤
j − eqik̄

⊤
j = eqik̄

⊤
j

(
eqi(k

⊤
j −k̄⊤

j) − efg1(k1,...,kj)
)
.

Using a Taylor expansion of eqi(k
⊤
j −k̄⊤

j) around the first-order term:

1 +
∑
m

(qi(k
⊤
j − k̄⊤j))

m,

because ef1(k1,...,kj) ≈ 1, we find that the error can be approximated as:

ϵij ≈ eqik̄
⊤
j qi(k

⊤
j − k̄⊤j).

Introducing MetaLA further reduces the error, as:

ϵij ≈ qi

(
eqik̄

⊤
j +log(k⊤

j −k̄⊤
j) − efm1(qi)+fm2(kj ,...,ki)

)
.

This result indicates that the use of f1(qi) + f2(kj , . . . , ki) can effectively minimize the residual error. A similar analysis
holds when including the denominator.

Additionally, starting from MetaLA, the error can be expressed as:

1 +
∑

m=odd

Fm(qi)k
⊤
j (kjk

⊤
j)

m−1 +
∑

s=even

Fs(qi)(kjk
⊤
j)

s + F(kj)− ϕ(qi)f3(kj)

i∏
t=i−j+1

αt.

1+
∑

m=odd

Fm(qi)k
⊤
j (kjk

⊤
j)

m−1+
∑

s=even

Fs(qi)(kjk
⊤
j)

s+F(kj)−F(ϕ(qi)fg1(kj)⊤fg2(kj)
i∏

t=i−j+1

αt)fg1(kj)
⊤

i∏
t=i−j+1

αt.

MetaLA first removes the first-order terms in the attention map related to q, which is crucial because first-order terms
contribute significantly to the overall attention mechanism’s performance. Subsequently, GSA’s dynamic weighted approxi-
mation mitigates higher-order terms, limited by its memory constraints.

18

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

C.1.2. DYNAMIC DECAY

For gated attention models, we use the following formulation:

G⊤
n = Fa(CK⊤

n), B⊤
n = Fb(G

⊤
n),

where Kn ∈ Rn×dk is key tokens and C ∈ Rm×dk is a learnable parameter representing m pseudo-query tokens to query
Kn, with the results applied to Kn or Vn sequences. Here, m effectively defines the memory capacity. Gn is gating matrix
and Bn is decay matrix in 1, 2 and 3. For models like MetaLA, GLA, and GSA, G⊤

n is typically sigmoid(CK⊤
n), and

B⊤
n is exp(log(G⊤

n)U
⊤
n), where Un is an lower triangular matrix of shape n × n. For ABC, Fa is Softmax, and B⊤

n is
exp(log(G⊤

n)O
⊤
n), where O is a zero matrix of shape n× n.

For MetaLA, the memory mechanism is given by:

[Bn · (1−An)]Vn,

where 1−An represents attention integration over V using first-order pseudo-query attention, and Bn adjusts this attention.
Based on these characteristics, we define two attributes for MetaLA: first-order learnable pseudo-query attention over K and
first-order adjustment-based memory, referred to as a complete first-order K integration method. Higher-order terms
arise from powers of K, but the information primarily originates from first-order K.

For GSA, the mechanism involves [Bn · (1−An)]Kn and further processes [Bn · (1−An)]Vn to compute the final state.
This corresponds to integrating K and V with first-order pseudo-query attention, then re-integrating V using the resulting K.
Since this involves third-order terms of K, it is referred to as a complete third-order K integration method, albeit without
branches for first-order and second-order K integration. Thus, we introduce MetaLA to complement first-order integration.

Causal convolutions in these methods can be interpreted as zero-order integration. Consequently, we propose a full-branch
high-order K integration method, detailed in the Appendix. In summary, high-order methods effectively approximate the
higher-order terms of the Taylor expansion for Softmax attention.

C.2. Influence of Multi-level Vocabulary Decomposition

Theorem C.1 (Improved Memory Capacity). After c recursions, the expected error E can be bounded as follows:

∥E∥ ≤ ∥K∥
c∏

i=0

ϵi

c∏
i=0

γi,

where ϵi =
n−m
n and γi is determined by learnable parameters that ensure convergence to a value less than 1.

proof: For the GSA-like component in MVA, as shown in Equation (11), if we remove the ϕ(Q) branch and treat the matrix
B as learnable relative positional encoding, the GSA branch output is:

O =
(
Softmax

(
(QK⊤ ⊙M)F(K)

)
WSF(K)⊤ ⊙M

)
V,

where F(K) ∈ Rn×m, with m as the memory size and n as the sequence length. Considering extreme cases such as
quantization functions or Softmax, F(K)’s row vectors approach a one-hot distribution, effectively selecting specific
elements from the attention map.

Extracting F(K) equivalently from the Softmax yields:

Softmax((QK⊤ ⊙M)F(K)) = Softmax((QK⊤ ⊙M))F̂(Q,K),

where:
F̂(Q,K) = [Softmax((QK⊤ ⊙M))]−1Softmax((QK⊤ ⊙M)F(K)),

and F̂(Q,K) has dimensions n×m.

Thus, the output becomes:

O =
(

Softmax((QK⊤ ⊙M))F̂(Q,K)WSF(K)⊤ ⊙M
)
V.

19

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

Compared to the original Softmax Attention output, this introduces a dynamic low-rank matrix F̂(Q,K)WSF(K)⊤. Ideally,
if this matrix is equivalent to an identity matrix, the error is zero. However, achieving this is challenging due to rank
limitations, and maximizing the matrix rank is essential to minimize the error.

We first consider the error term in the following form:

ϵ =
(

Softmax((QK⊤ ⊙M))(I − F̂(Q,K)WSF(K)⊤)⊙M
)
V.

Next, we decompose this error as:

ϵ =

(
Softmax((QK⊤ ⊙M))(I − F̂(Q,K)WS

∑
i

F(i)(K)⊤)⊙M

)
V (i).

We focus on reducing the above error term and approach this problem from two key aspects:

1. Reducing the Error from the Term (I − F̂(Q,K)WSF(K)⊤):

The term (I − F̂(Q,K)WSF(K)⊤) involves the matrices:

F̂(Q,K) ∈ Rn×m, WS ∈ Rm×m, F(K)⊤ ∈ Rm×n.

For large sequence lengths, the product F̂(Q,K)WSF(K)⊤ ∈ Rn×n results in a low-rank matrix of rank m. To minimize
the error in this term, we aim to make this low-rank matrix close to the identity matrix, both in terms of rank and numerical
values.

Choice of the F-function

To ensure that the low-rank matrix approximates the identity matrix, we require the row vectors of the matrices F̂(Q,K)W ′
S

and F(K)W ′
S ∈ Rn×m to be aligned in the same positions, with orthogonality between different positions. The simplest

form of orthogonal matrices is the identity vector. Although this might seem like a special case, it is a generalizable approach.
After learning other orthogonal vectors for the matrices F̂ and F, the matrix W ′

S can transform them into identity vectors.
Moreover, the current methods using F̂ and F exhibit a tendency to approach identity vectors.

Thus, the condition for numerical computation to approach the identity matrix suggests that the F-function should be extremal,
such as the delta function or exponential functions. These functions make learning and convergence easier. Subsequently,
normalization via a parameter matrix or other methods can be applied, which results in extreme scaling of the matrix values,
where dominant values approach 1, and other values approach 0. This results in a matrix F̂(Q,K)W ′

S ,F(K)W ′
S ∈ Rn×m

that resembles the following form:

sv11 sv12 maxv1 . . . sv1n
sv21 sv22 . . . maxv2 sv2n

...
...

. . .
...

...
...

...
svm1 maxvm svmn

T

→F

0 0 1 . . . 0
0 0 . . . 1 0
...

...
. . .

...
...

...
...

0 1 0

T

For the matrices A = F̂(Q,K)W ′
S and B = F(K)W ′

S , the maximum values should appear at the same positions to make
the matrix approach the identity matrix I . This implies that corresponding rows must be similar, while different rows should
ideally be orthogonal. For the matrix product AB⊤, the value at position (i, j) is given by:

(AB⊤)ij =
∑
t

aitbjt.

For the matrices A and B to approach the identity matrix, we need:

20

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

∑
t

aitbit = 1.

However, this introduces additional error when the positions of the maximum values in different rows of A and B coincide,
leading to

∑
t aitbit = 1, while in the identity matrix,

∑
t Iij = 0.

Ensuring Consistency in the Maximum Value Positions

To ensure that the maximum values occur at the same positions in both matrices A and B, we leverage the structure of the
F(CK⊤) function used in MVA. Specifically, when the vector in K is most related to the ”query token” in C, it will yield
larger values, which are then amplified by the exponential function in F , causing the corresponding position to take on the
maximum value.

In our implementation, we use sigmoid and softmax functions with exponential methods. Additionally, more extreme
approaches could involve directly assigning a value of 1 to the most relevant position and 0 to other positions, as described
in Section 3.2 with the Q-function.

For the matrix A = F̂(Q,K)W ′
S , which also depends on Q, compared to the function F(CK⊤) that is independent of Q,

the dynamic nature of A = F̂(Q,K)W ′
S can lead to larger errors in certain scenarios. Therefore, future research will focus

on incorporating recursive updates in F(CK⊤), allowing it to dynamically adjust based on Q to generate orthogonal vectors
at the same positions as those in A = F̂(Q,K)W ′

S .

2. Exponential Power Increase of Memory Capacity for Rank Augmentation

For low-rank matrices, let us define:

L = F̂(Q,K)W ′
SW

′
S
⊤F(K)⊤ = Softmax(QK⊤)−1Softmax(QK⊤(1−Sigmoid(KC⊤)))W ′

SW
′
S
⊤
(1−Sigmoid(KC⊤))⊤

The rank of the above matrix is determined by the parameter matrix C ∈ Rd×m. A simple way to increase the rank is to
manually set the value of m in the matrix C, for example, C ∈ Rd×(2m). This method increases both the memory capacity
and the rank to 2m, but it is inefficient. We propose an alternative approach using a hierarchical structure, which, in the
optimal case, results in an exponential increase in the effective rank. We now turn to the hierarchical decomposition of K
and V :

After hierarchical decomposition, we have:

L(i) = F̂
(i)
(Q,K)WSF(i)(K)⊤, L(i)V (i)

For simplicity, let us first consider the case where we do not use hierarchical decomposition during the recursive compression
of K, and ignore the impact of Softmax((QK⊤ ⊙M)) for now. The error can be written as:

ϵ = Softmax((QK⊤ ⊙M))V −

(
Softmax((QK⊤ ⊙M))

∑
i

(
F̂
(i)
(Q,K)WSF(i)(K)⊤

)
⊙M

)
V (i)

This simplifies to:

V −
∑
i

F̂
(i)
(Q,K)WSF(i)(K)⊤V (i) = V −

∑
i

V ′(i)

We begin by analyzing the case where the number of levels in the hierarchy is 2. Suppose C ∈ Rd×m, then the rank of Li is
m.

First, the lower bound of the rank can at least represent a vector of length 2m without loss, since Li has rank m. When
V (i) = V , the resulting matrix is the sum of Li, i.e., L0 + L1, which can achieve a rank of 2m.

21

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

For the optimal case, where Li has rank m, the matrix V is compressed into m directions: diag(l)L̄i, where L̄i is the
normalized matrix of row vectors from Li, and l represents the amplitude of each row vector. Thus, diag(l)L̄iV

(i) can be
treated as generating m directions.

Further, combining two levels corresponds to vector addition:

vi×m+j = v
(0)
i + v

(1)
j

When the generated vectors vi×m+j are unequal, the number of directions generated is m2, corresponding to a vector space
of dimension m2. In the general case, c-level hierarchical decomposition can generate mc directions, thus enabling precise
expression in those directions, with an upper-bound error if the vectors are outside of those directions.

3. Error Analysis in Multi-level Decomposition

We proceed to provide a detailed error analysis to illustrate the advantage of multi-level decomposition. Suppose we use c
levels of decomposition. Each level reduces the error introduced by the previous level. The vector V (i) at level i is computed
as:

V (i) = (V (i−1) − Li−1V
(i−1))Wi−1 = (I − Li−1)V

(i−1)Wi−1

Thus, the error introduced at the final level is given by:

E = V (c+1) = (I − Lc)V
(c)Wc =

c∏
i=0

(I − Li)V

c∏
i=0

Wi

We can now analyze the trend of the error in detail. The error consists of two main components:

• Matrix compression error:
∏c

i=0(I − Li), which represents the cumulative compression of the original vector V
through multiple low-rank projections. This term gradually diminishes the contribution of V .

• Weight matrix transformation error:
∏c

i=0 Wi, which reflects the impact of re-weighting the vector V through the
residuals at each level of decomposition.

The total error norm can be bounded as:

∥E∥ ≤

∥∥∥∥∥
c∏

i=0

(I − Li)

∥∥∥∥∥ ∥V ∥

∥∥∥∥∥
c∏

i=0

Wi

∥∥∥∥∥ ≤
c∏

i=0

∥(I − Li)∥ ∥V ∥
c∏

i=0

∥Wi∥

Error Trend Analysis

We now discuss the trend of the error under certain assumptions. To simplify the analysis, we make the following assumptions
about the key matrices:

• Low-rank matrix compression effect: We assume that the learnable matrix Li converges to the optimal low-rank
approximation of the identity matrix. According to spectral norm analysis, we have:

ϵi = ∥I − Li∥ = max {σ1(I − Li), . . . , σm(I − Li)}

Here, σi(I − Li) represents the singular values of the matrix I − Li. In the optimal case, Li is similar to a matrix with
m ones on the diagonal and the rest being zeros, where the largest singular value is 1. However, this is the worst-case
scenario. As the number of levels increases, the probability of this situation decreases, and thus the expected error
becomes more representative.

22

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

The expected value of ϵi is:

E[∥I − Li∥] ≈
n−m

n

We then analyze the effect of the weight matrices Wi:

∥Wi∥ ≤ γi

Since Wi are learnable parameters, they tend to converge to eigenvalues less than 1, and thus the error will shrink as γi
decreases.

The overall error norm expectation can be recursively bounded as:

∥E∥ ≤ ∥V ∥
c∏

i=0

ϵi

c∏
i=0

γi

Convergence Trend Discussion

The cumulative compression effect: The low-rank compression of the matrix I − Li gradually suppresses the energy of V ,
and this suppression is multiplicative. When ϵi < 1 and does not increase with i, the error is exponentially decaying.

In particular, when each level is set to a uniform size such that ϵi ≈ ϵ (a constant value), we have:

c∏
i=0

ϵi = ϵc+1

This shows that as the number of levels c increases, the error decays exponentially.

The effect of shrinking the weight matrices: The accumulation of weight matrices Wi reduces the error. To ensure
convergence of the error, γi will become smaller through gradient learning, thereby further reducing the error.

Overall, the error norm converges as:

∥E∥ ≤ ∥V ∥
c∏

i=0

(ϵiγi)

If ϵiγi has an upper bound ρ < 1, the error will decay exponentially.

Numerical Upper Bound and Convergence Trend

If the values of ϵi and γi are bounded by fixed upper bounds ϵ and γ, respectively, the error convergence rate can be
expressed as:

∥E∥ ≤ ∥V ∥(ϵγ)c+1.

On the other hand, if ϵi and γi decrease gradually with i (e.g., through optimization of the low-rank matrix Li and the weight
matrices Wi), the error decay may be faster than exponential decay. For instance, if ϵi = ϵ0

i+1 , then:

c∏
i=0

ϵi =
ϵc+1
0

(c+ 1)!
.

This represents a super-exponential convergence.

Key Conclusions

23

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

1. Error Trend: The error is dominated by the cumulative compression factor
∏c

i=0(I −Li), which exhibits exponential
decay or faster super-exponential decay, depending on the decay behavior of ϵi and γi.

2. Optimization Directions:

• When selecting Li, it is important to ensure that ∥I − Li∥ remains sufficiently small, ideally decreasing gradually.
• When choosing Wi, it is essential to control ∥Wi∥ so that it does not exceed a certain range.

3. Practical Implications: Through careful design of Li and Wi, one can maintain compression efficiency while ensuring
that the error converges rapidly. The trend of error reduction across levels becomes increasingly more pronounced.

□

D. Unification of linear models and their convergence
D.1. Unified Representations of Attention Mechanisms

We propose a unified formulation of various attention mechanisms. Below, we describe several key models in detail.

MetaLA:

MetaLA = MVA(qt, k
(0)
t , v

(0)
t , C(0), 0, 0, I), (31)

ot = GLA(ϕq(qt), (1− f (0)
α (k

(0)
t)), v

(0)
t , f (0)

g (k
(0)
t)), (32)

where f
(0)
α and f

(0)
g represent adjustable functions dependent on k

(0)
t .

GLA:

GLA = MVA(qt, k
(0)
t , v

(0)
t , C(0), 0, 0, I, fα = 1− x), (33)

ot = GLA(ϕq(qt), k
(0)
t , v

(0)
t , f (0)(k

(0)
t)). (34)

LA:

LA = MVA(qt, k
(0)
t , v

(0)
t ,−∞, 0, 0, I, fα = 1− ϕk(x)), (35)

ot = GLA(ϕq(qt), ϕk(k
(0)
t), v

(0)
t , I). (36)

GSA: GSA extends to higher-order interactions by introducing intermediate query gating mechanisms:

GSA = MVA(qt, k
(0)
t , v

(0)
t , C(0),WS , 0, 0), (37)

qkst = GLA(qt, k
(0)
t , (1− f (0)

α (k
(0)
t)), f (0)

g (k
(0)
t)), (38)

qgmt = Sigmoid(qkst)WS ≈ Softmax(qkst), (39)

ot = GLA(qgmt , (1− f (0)
α (k

(0)
t)), v

(0)
t , f (0)

g (k
(0)
t)). (40)

ABC:

ABC = MVA(qt, k
(0)
t , v

(0)
t ,−∞,WS , 0, 0, fα = 1− Softmax(Cx)), (41)

qkst = GLA(qt, k
(0)
t , (1− f (0)

α (k
(0)
t)), I), (42)

qgmt = Softmax(qkst), (43)

ot = GLA(qgmt , (1− f (0)
α (k

(0)
t)), v

(0)
t , I). (44)

24

MVA: Linear Attention with High-order Query-Keys Integration and Multi-level Vocabulary Decomposition

D.2. Delta-like Rule Approximation

Our approach leverages an approximate Delta Rule to maintain state information and minimize information loss during
compression. The core idea is to preserve and update states iteratively based on discrepancies between compressed and
original sequences. Specifically, we define:

k(i), v(i), q(i) = Wkx
(i),Wvx

(i),Wqx
(i), (45)

v̂(i) = W (i−1)ϕ(k(i)), (46)

β(i) = σ(Wβx
(i)), (47)

v(i)new = β(i)v(i) + (1− β(i))v̂(i), (48)

W (i) = W (i−1) + β(i)(v(i) − v̂(i))⊗ ϕ(k(i)). (49)

To optimize for efficiency, we maintain auxiliary states, such as:

W ′(i) =

i∑
j=1

vjk
⊤
j , (50)

instead of directly relying on W (i−1). Although this prevents incremental querying of previous states, it introduces
performance trade-offs. Our method focuses on the current state and its discrepancy, effectively compressing errors while
enabling hierarchical aggregation for improved parallelism and scalability.

25

