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Fig. 1: We propose a joint formulation for collision detection and contact modelling where both capacities take the form of smooth
analytical functions. On the collision detection side (above left), we propose a 3D surface representation called “soft signed distance function”
(SSDF) that can tightly approximate any closed 3D surface, and continuously interpolate it towards an ellipsoid by means of a smoothing
parameter ϵ. SSDF’s allow us to formulate a “soft-minimum contact model” (SCM) that represents the contact interaction between two
collision geometries as a smooth force field distributed over their entire volume of intersection. Right side of the figure visualizes this
smoothing effect with an example showing how the contact force between two spheres changes as one is moved continuously along the y
axis while the other is fixed, for SCM and contact models from other well-established simulators. We demonstrate the plausibility of the
proposed formulation through simulation experiments on a planar pushing system involving a T-shaped collision geometry.

Abstract— Generating intelligent robot behavior in contact-
rich settings is a research problem where zeroth-order methods
currently prevail. A major contributor to the success of such
methods is their robustness in the face of non-smooth and
discontinuous optimization landscapes that are characteristic of
contact interactions, yet zeroth-order methods remain computa-
tionally inefficient. It is therefore desirable to develop methods
for perception, planning and control in contact-rich settings that
can achieve further efficiency by making use of first and second
order information (i.e., gradients and Hessians). To facilitate this,
we present a joint formulation of collision detection and contact
modelling which, compared to existing differentiable simulation
approaches, provides the following benefits: i) it results in
forward and inverse dynamics that are entirely analytical (i.e.
do not require solving optimization or root-finding problems
with iterative methods) and smooth (i.e. twice differentiable),
ii) it supports arbitrary collision geometries without needing
a convex decomposition, and iii) its runtime is independent
of the number of contacts. Through simulation experiments,
we demonstrate the validity of the proposed formulation as a
“physics for inference” that can facilitate future development of
efficient methods to generate intelligent contact-rich behavior.

I. INTRODUCTION

The dynamics of rigid body interactions involving contact
is discontinuous in acceleration and velocity due to discrete

contact events [1, 2, 3, 4]. When modeling such interactions
for robotics applications, this inherent non-smoothness gives
rise to two distinct objectives: i) prioritizing forward sim-
ulation accuracy by capturing the discontinuous reality of
contact interactions as faithfully as possible (i.e. “physics for
prediction”), or ii) making appropriate relaxations to this dis-
continuous reality of contact in order to create a well-behaved
optimization landscape (i.e. “physics for inference”). As these
priorities essentially constitute orthogonal complements, most
well-established simulators [5, 6, 7] try to strike a correct
balance between them. Following the success of zeroth-order
methods in generating intelligent contact-rich behavior (e.g.
using reinforcement learning [8] or stochastic optimal control
[9]), development of high-throughput simulators with contact
models that are as realistic as possible to facilitate the sim-
to-real transfer of such methods has become a particularly
relevant research direction [10, 11]. Therefore, priorities from
the former physics for prediction perspective have in recent
years started taking precedence in contact modeling. While
the zeroth-order approach has certainly proved immensely
valuable and effective for the contact-rich manipulation
domain, it also remains a fact that most of the efficient and

ar
X

iv
:2

50
3.

11
73

6v
2 

 [
cs

.R
O

] 
 1

4 
A

pr
 2

02
5



well-understood algorithms from optimal control [12], state
estimation [13], system identification [14], and numerical
optimization [15] that sustain our modern civilization (e.g.,
making our ships navigate, localizing our satellites, regulating
our power grids and manufacturing processes) do operate
primarily through using first- and second-order information
(i.e., gradients and Hessians). This apparent dichotomy raises
the following question: is it possible to get the best of both
worlds? How can we make better use of first- and second-
order information to efficiently solve robotic perception,
planning, and control problems involving contacts? This line
of reasoning naturally leads to an earlier question: how can we
obtain this first- and second-order information reliably in the
context of contact dynamics if it is inherently discontinuous
and non-smooth? As a step towards answering this latter
question and formulating a physics for inference around
contact, we introduce the following contributions in this paper:
• Soft signed distance function (SSDF): An expression

that allows smoothly approximating the signed distance
function (SDF) associated with any closed 3D surface (not
necessarily convex or simply connected), and continuously
interpolating between the original surface and an ellipsoid.
We mainly utilize SSDF’s to enable analytical and smooth
collision detection between surfaces.

• Soft-minimum contact model (SCM): A contact model
that uses the SSDF representation to enable forward and
inverse dynamics computations in a smooth and analytical
manner. This allows the entire simulation pipeline to be
written within the confines of the standard feature set (i.e.,
without any external libraries) of any array computing
framework [16], easily obtaining gradients and Hessians
via automatic differentiation [17], and trivially vectorizing
simulations across rigid body systems with entirely different
geometry as long as they share the same kinematic structure
(i.e., rather than copies of the same set of geometries in
different configurations as in existing simulators [10]).

II. RELATED WORK

1) Differentiable Physics: Most modern simulators for
rigid body dynamics with contact operate through two main
steps [1, 18, 19, 20]: i) performing collision detection [21]
to find contact points between geometries, and ii) using these
contact points to transcribe non-penetration constraints in
a convex program that tries to minimize deviation from
unconstrained accelerations (i.e., Gauss’ principle [22]). The
resulting dynamics is governed by the KKT system of
equations associated with the optimization problem, where
contact forces appear as the dual variables for non-penetration
constraints. A common recipe to differentiate through such
simulation pipelines is: i) using a limited set of convex
primitives (e.g., ellipsoids, boxes, capsules) with elementary
pairwise collision detection routines that are differentiable,
and ii) differentiating through the convex program either by
explicitly unrolling the solver iterations [23] or by applying
the implicit differentiation theorem to its KKT optimality
conditions [24]. Examples of such differentiable simulators
include Dojo [25], the Simple Simulator [11], and the work

of Pang et al. [26]. The main differences of our approach are:
i) our collision detection formulation does not require special
convex primitives but can flexibly accommodate any closed
3D shape including non-convex or not simply-connected ones,
ii) our contact model does not require solving an optimization
problem as all steps involved are simple analytical operations.

2) Differentiable Collision Detection: Going beyond ele-
mentary geometric arguments between limited shape prim-
itives to more generally support differentiable collision
detection between arbitrary surfaces is an active area of
research. DCOL [27] proposes an elegant formulation that
supports a highly representative set of convex primitives. It
operates by solving a cone-constrained convex program to
find the minimum scaling factors for each primitive within
a collision pair that results in an intersection between them.
Gradients through this convex program are then obtained
via implicit differentiation. The work by Montaut et al. [28]
in turn proposes a flexible randomized smoothing approach
that can support collisions between arbitrary convex sets
by: i) sampling M deviations around a nominal kinematic
configuration, ii) running GJK and EPA algorithms [21] M
times to get separation distances, iii) getting a zeroth-order
estimate of the gradient via the score function estimator [29].
The difference of our approach with respect to these two
approaches is that: i) it also supports non-convex geometries,
ii) it does not require any iterative procedure such as solving
an optimization problem or running GJK (which itself is a
Frank-Wolfe based optimization routine) multiple times.

3) Smoothing Contact Models: A common approach to
obtain well-behaved gradients through contact models that
involve discontinuities is to find a way to smooth them.
The influential work by [26] proposes a simple and general
procedure for smoothing optimization-based contact models
(that is interestingly also called “analytical” smoothing),
which involves moving friction cone constraints into the
objective via a log-barrier function and modulating the
associated weight (an approach also employed in DCOL
[27] to obtain smooth derivatives of collision detection). The
difference of our formulation is that it proposes an analytical
smoothing approach instead of modifying an optimization
problem that is solved non-analytically via an iterative routine.

III. METHODS

A. Notation

Let us introduce common notation used in the rest of
the paper. We notate generalized positions, velocities, and
accelerations [4] as q,v, v̇ ∈ Rn, and use pi,vi,ai ∈ R3 to
represent translational positions, velocities and accelerations
at a point i on a rigid body (all such task space quantities
are expressed in world coordinates throughout the rest of the
discussion). The Newton–Euler equation is notated as [4]:

τ +
∑
i

Ji(q)
⊤λi = M(q)v̇ + c(q,v) (1)

where τ ∈ Rn represents the total generalized force due to
controls, M(q) ∈ Rn×n represents the generalized inertia
matrix, and c(q,v) ∈ Rn represents the total generalized bias
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Fig. 2: Computing the SSDF ϕ̂S(p) of a point p with respect to an
AOPC S involves three steps: i) computing all distances {d(p)i}4i=1

between p and points {pi}4i=1 on the AOPC, ii) computing a
softminimum σ(−d(p)) of all distances, resulting in a distribution
where the entry i∗= 4 corresponding to the smallest distance has the
largest probability mass, iii) using the distribution σ(−d(p)) for
soft selection of the corresponding signed distance via a weighted
average ϕ̂S(p) =

∑I
i=1 σ(−d(p))i n

⊤
i (p− pi)≈ n⊤

4 (p− p4).

force due to effects such as gravity, Coriolis, and centripetal
forces. The translational Jacobian at point i is notated as
Ji(q) ∈ R3×n and satisfies vi = Ji(q)v. Finally λi ∈
R3 denotes any external linear force acting on point i, and
Ji(q)

⊤λi is the corresponding generalized force induced on
the system. Our analytical relaxations to collision detection
and contact modelling also make use of the softmax σ and
softplus s+ functions, which are defined as:

σϵ : RN → [0, 1]N σϵ(x)i =
exp(xi/ϵ)∑N

n=1 exp(xn/ϵ)
(2)

s+ϵ : R → R+ s+ϵ (x) = ϵ log(1 + exp(x/ϵ)) (3)

where ϵ acts as a smoothing factor (i.e., as ϵ → 0, σϵ and
s+ϵ approach argmax and ReLU functions respectively).

B. Soft Collision Detection

This section introduces the soft signed distance field
(SSDF) representation and describes how to perform collision
detection between two closed surfaces represented as SSDFs.

1) Representing Geometries: In our framework, geome-
tries are represented with articulated, oriented point clouds
(AOPCs). An AOPC S = {(pi,ni,Ji)}Ii=0 is a collection
of 3D planes that cover the surface of a geometry where
every plane has a center point pi, surface normal ni, and
translational Jacobian Ji at pi. The exact placements of these
3D planes (that are implicitly represented by pi and ni)
has a significant impact on the numerical conditioning and
quality of the analytical approximations in the next sections.
A correct placement should distribute them on the surface
with high isotropy and in a way that the edges and corners
defined by the intersections of these 3D planes align well
with the edges and corners of the underlying geometry. In
practice, any mesh can be correctly converted to an AOPC
by: i) using the remeshing algorithm of [30] to quadrangulate
the mesh down to a desired resolution, ii) setting pi and ni

as the center point and surface normal of each quadrangle,
iii) computing Ji using forward kinematics.

2) Soft Signed Distance Function (SSDF): After converting
a mesh to an AOPC, we can proceed with making a smooth
approximation to its signed distance function. Let S denote
the surface of a mesh with normals nS(x) ∈ R3 for any 3D
point x on S, and S be an AOPC obtained from S. One way
to compute the signed distance ϕS(p) ∈ R of any 3D point
p with respect to S is:

x∗ = argmin
x∈S

∥p− x∥2 (4)

ϕS(p) = n(x∗)⊤(p− x∗) (5)

Using S , this can be approximated non-smoothly as:

i∗ = argmin
i∈1,...,I

∥p− pi∥2 (6)

ϕS(p) = n⊤
i∗(p− pi∗) (7)

and a smooth (i.e. twice differentiable) analytical approxima-
tion to (6, 7) can in turn be computed as:

d(p)i := ∥p− pi∥2 (with d(p) ∈ RI) (8)

ϕ̂S(p) =

I∑
i=1

σϵ1(−d(p))i n
⊤
i (p− pi) (9)

The probability distribution σϵ1(−d(p)) ∈ [0, 1]I effec-
tively evaluates a soft-argminimum of ∥p − pi∥ over all
indices i, as shown in Fig. 2. Using it to compute a weighted
average of n⊤

i (p − pi) in turn approximates n⊤
i∗(p − pi∗).

We call ϕ̂S(p) the soft signed distance function (SSDF).
For applications that require more fine-grained control on

the surface representation, (9) can instead be replaced with
the following generalization:

ϕ̂S(p) =

∑I
i=1 Bi(p− pi) n

⊤
i (p− pi)∑I

i=1 Bi(p− pi)
(10)

where Bi(p − pi) are basis functions with local support.
For example using an isotropic Gaussian kernel for Bi is
equivalent to (9); which in turn is equivalent to implicit
moving least squares [31] as well as the mean of a Gaussian
process implicit surface [32]; and using a non-isotropic
Gaussian kernel is equivalent to 3D Gaussian splatting [33].
For our experiments, we have found the isotropic Gaussian
kernel with a uniform temperature ϵ1 across all points to be
sufficiently expressive and simple to implement.

3) Collision Detection Between Two SSDFs: We now
describe how to represent the collision context between two
SSDFs to support contact simulation using SCM. Let S1
and S2 be two surfaces, and S1,S2 be the corresponding
AOPCs with I1 and I2 points each. Traditional collision
drivers represent the collision context by a separation vector
dΦ ∈ R3 that connects the two end-points of the largest
penetration distance between two surfaces (i.e., the smallest
separation distance in case of non-penetration) [34]. These
witness points naturally correspond to the pair of points with
the minimum signed distance in-between, and therefore the
following holds:

∥dΦ∥ = min { min
x′
2∈S2

ϕS1(x
′
2) ; min

x1∈S1
ϕS2(x1)} (11)
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Fig. 3: Steps involved in performing collision detection between
two AOPCs are as follows: i) computing SSDFs of all points on one
AOPC with respect to the other AOPC; and vice versa; which gives
{ϕ̂S1(p

′
j)}j=1:3 and {ϕ̂S2(pi)}i=1:4, ii) stacking them into a single

vector Φ12∈ R7 to form the separation field, iii) computing a soft-
argminimum σ(−Φ12)∈ [0, 1]7 over the separation field to obtain
a separation distribution, which acts as a soft selection operator
whose entries concentrate probability mass on AOPC points that
have the largest penetration depth (i.e., the smallest SSDF value).

Applying a probabilistic relaxation to (11) that is anal-
ogous to (9) , our soft collision detection routine instead
characterizes the collision context using an entire separation
field distributed over the volume of intersection as follows:
• Compute {ϕ̂S1

(p′
j)}

I2
j=1 and {ϕ̂S2

(pi)}I1i=1 (i.e. SSDFs of
all points on S1 with respect to S2, and vice versa).

• Concatenate these two sets of SSDF’s into a single vector
to create the separation field Φ12 ∈ RI1+I2 , and compute
the separation distribution σϵ2(−Φ12) ∈ [0, 1]I1+I2 .
As visualized in Fig.3, the entries of σϵ2(−Φ12) represent

how much each point on one surface penetrates into the
other surface (i.e., larger the entry, larger the penetration),
and a smooth approximation to the separation distance ∥dΦ∥
is simply σϵ2(−Φ12)

⊤ Φ12, which is a weighted average
exactly analogous to (9).

If we want to obtain a discrete set of collision points to
then propagate to any existing contact model [19, 11], we can
proceed with an additional reduction of the separation field
Φ12. To achieve this, let us first jointly re-index all points
across both AOPCs as {pf}I1+I2

f=1 . Because these AOPCs
were obtained from a quadrangulation, every point pf belongs
to a face f . Quadrangulations for S1 and S2 also produce
associated vertices {yi}V1

i=1 and {y′
j}

V2
j=1. Let us jointly index

these two sets of vertices as {yv}V1+V2
v=1 , and use 1fv to denote

if a vertex v belongs to a face f (i.e., 1fv = 1 if it does, 0
otherwise). We can then transfer the probability masses of the
separation distribution σϵ2(−Φ12) defined over faces f of the
quadrangulation onto a distribution of weights z ∈ RV1+V2

that is defined over the vertices {qv} instead by using:

zv =

I1+I2∑
f=1

1fv σϵ2(−Φ12)f (12)

Given this distribution z that captures the penetration depth
of each vertex {xv}V1+V2

v=1 , we can obtain K discrete collision
points c1:K ∈ R3 via soft top-K selection [35]. For any

vector z ∈ RV , the soft top-K operation produces a matrix
ΓK(z) ∈ [0, 1]K×V where the entry ΓK(z)kv ≈ 1 if zv is
the kth largest entry of z, and ΓK(z)kv ≈ 0 otherwise. Using
ΓK(z), soft selection then amounts to a weighted average:

ck =

V1+V2∑
v=1

ΓK(z)kv yv (13)

When geometries for all collision pairs (S1,S2) are convex
[36] and mesh vertices come from a quadragulation, using
K = 4 + 4 = 8 (e.g., to ensure coverage of non-strictly
convex cases like box-box collisions with parallel faces)
creates points c1:K that are a sufficient description of the
collision context analogous to standard collision drivers used
in existing simulators [7, 5]. However, reducing the separation
field Φ12 into c1:K may not always be desirable, as Φ12 is
an even richer description of the collision context that does
not require a convex decomposition to be meaningful (e.g.,
if two non-convex collision geometries establish contact at
multiple different points, the distribution σϵ2(−Φ12) would
simply have multiple modes rather than a single peak). The
next section describes a contact model that makes use of the
entire separation field.

C. Soft-minimum Contact Model (SCM)

Building on top of the SSDF representation and the
associated soft collision detection routine introduced in the
previous sections, this section discusses how they can be used
to simulate rigid body dynamics with contact.

1) Point-Plane Contact: The main idea of the soft-
minimum contact model (SCM) is to compute the total contact
force between two SSDFs as a weighted average of the
individual contact forces between all possible point-plane
pairs across two AOPCs. Let us consider a planar face with
center pi and normal ni, and a moving point at position p
with velocity v decomposed as v = vnni+vt. Following [37],
we model the contact force λ(p,v,pi,ni) ∈ R3 between
them using a standard spring-damper system with dissipation
velocity vd and stiction velocity vs:

ϕ = n⊤(p− pi) (14)

c(ϕ) = k s+ϵ3(−ϕ) (15)
d(vn/vd) = [vn/vd ≤ 0](1− vn/vd) + (16)

[0 < vn/vd ≤ 2](vn/vd − 2)2/4 (17)
λn = c(ϕ)d(vn/vd) (18)

λt =− µλn
vt√

v2s + ||vt||2
(19)

λ(p,v,pi,ni) = λnni + λt (20)

where the Iverson bracket notation [condition] evaluates to
1 or 0 depending on whether the condition holds or not.
While we refer the reader to [37] for an in-depth explanation,
we note that equations (14)–(20) simply construct a spring
damper system between a point and the plane where (15)
ensures that there is a slight force pushing the point away
from the plane even when the two are not in penetration.



2) Point-SSDF Contact: We now describe how to compute
contact forces between a point and an SSDF using a weighted
average of the point-plane contact forces λ(p,v,pi,ni) from
the previous section. Let us consider a moving AOPC S where
every point pi has an associated linear velocity vi ∈ R3.
Consider also a moving point (attached to a body) at position
p with velocity v and Jacobian J. The resulting generalized
force ΛS(p,v,J) ∈ Rn (i.e., similar to the J⊤

i λi ∈ Rn term
in (1)) can be computed as follows [4]:

λ̄i := (Ji − J)⊤λ(p,v − vi,xi,ni) (21)

ΛS(p,v,J) =

I∑
i=1

σϵ1(−d(p))i λ̄i (22)

Note that the weighted average in (22) simply corresponds
to a soft selection of the contact force belonging to the point-
plane pair with the largest penetration in-between, in a manner
directly analogous to (9).

3) SSDF-SSDF Contact: Finally, we describe how to com-
pute the total generalized contact force Λ12(q,v) between
two AOPCs (S1,S2) as a weighted average of point-SSDF
contact forces ΛS(p,v,J). Analogous to the soft collision
detection routine from Sec. III-B.3, we proceed as follows:

• Compute contact forces exerted on all points of one SSDF
by the other SSDF (and vice versa), creating two lists:
{ΛS1

(p′
j ,v

′
j ,J

′
j)}

I2
j=1 and {ΛS2

(pi,vi,Ji)}I1i=1 .
• Concatenate these two sets and jointly re-index them as
{ΛS12

(pf ,vf ,Jf )}I1+I2
f=1 .

• Compute a weighted average based on the separation
distribution computed during collision detection:

Λ12(q,v) =

I1+I2∑
f=1

σϵ2(−Φ12)f ΛS12
(pf ,vf ,Jf ) (23)

The benefit of using an entire separation field Φ12 rather
than a discrete set of contact points c1:K to describe the
collision context becomes apparent when (S1,S2) are non-
strictly convex (e.g. two boxes lying parallel one on top of
the other) or non-convex (e.g. a horseshoe piercing a box
with unequal penetration depth on its two ends). Because
in such cases (23) still remains valid, as the support of the
separation distribution simply becomes broader (e.g. the box-
box example) or multimodal (e.g., the box-horseshoe example)
to cover the entire volume of intersection. This eliminates
the need to do convex decompositions or employing contact
point buffers to evenly distribute contact forces on a surface.

4) Dynamics Under SCM: Building on top of our defi-
nitions from the previous sections about the contact force
between two SSDFs, we can now describe how to simulate
dynamics using SCM. Consider a rigid-body system with
AOPCs {Sa} and collision pairs G = {(a, b)}. The total
contact force in configuration space simply becomes a
twice-differentiable analytical function

∑
(a,b)∈G Λab(q,v).

Incorporating it into (1), forward and inverse dynamics under

ϵ = 0.01 ϵ = 0.25 ϵ = 0.5 ϵ = 10.0

Softmax temperature

Fig. 4: SSDF of a 2D box for different softmax temperatures ϵ,
points pi, and normals ni. The outline of the box, as well as points
and normals, are marked in white while the zero isosurface is blue.

the soft-minimum contact model simply become:

τ (q,v, v̇) = M(q)v̇ + c(q,v)−
∑

(a,b)∈G

Λab(q,v) (24)

v̇(q,v, τ ) = M(q)−1
[
τ − c(q,v) +

∑
(a,b)∈G

Λab(q,v)
]

(25)

IV. EXPERIMENTS

This section presents experiments that demonstrate how
SSDFs and rigid body dynamics under SCM behave.

A. Characterizations of the SSDF Isosurfaces

We characterize the behavior of the SSDF function using
a simple 2D box as a didactic example, as shown in Fig. 4.
First, it can be seen that consistent normal orientation is
crucial to obtain a correct SSDF approximation. As the AOPC
representation has no explicit face information, it is the normal
orientation that defines the boundaries of what constitute the
inside and outside of a closed surface, as well as determining
how the surface is interpolated between neighboring points.
Distributing the AOPC points and normals on the surface
correctly is also crucial, and it can be seen that additional
incorrect points on the corner of the box result in significant
artifacts in the SSDF isosurface. It can also be seen from
Figures 1 and 4 that the softmax temperature used in the SSDF
approximation essentially acts as a smoothing parameter. As
it is decreased from infinity to zero, the isosurface smoothly
interpolates between a simply-connected ellipsoid and the
original surface, with non-convex regions, holes, and corners
gradually appearing. Finally, the resolution of points used in



the AOPC is another important hyperparameter, and increasing
it suppresses oscillatory artifacts on the SSDF surface that
are present when temperature is high (e.g. ϵ = 0.5).

B. Characterizations of the Contact Force Profile
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Fig. 5: Comparison of contact forces obtained from SCM (top row)
and MJX’s contact model (bottom row).

We proceed with a characterization of the soft-minimum
contact force in (23) by comparing it with contact forces from
MuJoCo XLA (MJX) [19]. Fig. 5 visualizes complete contact
force profiles from the didactic example with two spheres first
introduced in Fig. 1, where the small sphere is now allowed
to move across the entire x-y plane. It can be seen that
MJX’s contact force profile involves discontinuities and sharp
corners, whereas the SCM force profile is twice differentiable.
It can also be seen that with SCM, gradients and Hessians are
non-zero even without contact, which is crucial for solving
trajectory optimization problems that involve discovering
contact [26]. The idea behind SCM is to make a slight
compromise from forward simulation accuracy to instead
create contact forces and dynamics that are more suitable for
optimization and inference. As can be seen in Fig. 5, the two
main consequences of this relaxation are:

• Introduction of an unstable equilibrium state when two
spheres are concentric. With sufficiently high contact
stiffness, such states are never visited as even the slightest
penetration would be sufficient to create large contact forces
that push back and resolve the penetration.

• Introduction of contact forces that act at a distance. While
these forces may create mild non-physical behavior, they
are nevertheless necessary and desirable for optimization
as they provide non-zero gradients and Hessians that
allow reasoning about the effects of potential contacts
from a distance, which facilitates contact discovery [26].
These imaginary forces can be made arbitrarily small by
decreasing the smoothing parameters ϵ1:3 towards zero.

MJX (RK4, stepsize 2ms)

(RK4, stepsize 2ms)SCM 

(RK4, stepsize 16ms)SCM 

(Semi-implicit Euler, stepsize 2ms)

slip

SCM 

Fig. 6: Example rollouts for planar pushing experiments. Note that
on the last row, the contact at the tip of the object slips rather than
sticks due to the inaccuracy in Euler integration. Videos for all
rollouts are provided in supplementary material.

C. Characterizations of Simulation Accuracy and Speed

This section presents experiments that characterize the
accuracy and speed of forward simulations under SCM, using
MJX as a baseline. Fig. 6 shows simulation results for a
planar pushing example involving a freely moving T-shaped
geometry and a position controlled spherical finger. Five
separate control sequences; each tasked with pushing the T-
shaped object to a different goal position; were optimized in
MJX using the VP-STO algorithm [38]. These sequences are
then rolled out in an open-loop manner in a simulation where
MJX’s contact model [19] is replaced with SCM instead.
Table. 7 quantifies simulation runtimes and the final object
pose differences averaged across all 5 rollouts. Please see the
supplementary material for videos of all rollouts. We note
that this experiment is designed such that every manipulation
trajectory requires establishing and breaking contact at least
two times, and combining this with the open-loop nature
of the rollouts means the slightest differences in whether a
contact sticks or slips can result in large differences at the
final object pose. Looking at the table and the associated
figure, we can make the following observations:
• Using SCM is ∼ 4 times faster than using MJX’s contact

model under Euler integration, and has comparable speed
under RK4 integration.



2-RK-4k 8-RK-4k 16-RK-4k 2-RK-26 8-RK-26 16-RK-26 2-Euler-4k 2-Euler-26

SCM step time (ms) 17.9± 2.6 18.6± 2.6 17.7± 3.2 13.5± 3.1 14.6± 3.2 15.6± 2.8 0.9± 0.3 0.8± 0.1
MJX step time (ms) 12.5± 4.7 13.1± 5.3 13.7± 5.6 12.5± 4.7 13.1± 5.3 13.7± 5.6 4.2± 1.5 4.2± 1.5
∆d (cm) 1.2± 1.0 1.3± 1.6 4.6± 3.7 2.1± 0.7 2.4± 1.6 6.3± 5.4 6.7± 2.9 11.2± 5.7
∆θ (deg) 10.8± 10.3 12.5± 9.1 29.4± 18.3 6.8± 2.7 11.4± 6.5 26.6± 25.3 42.3± 18.2 46.2± 34.3

Fig. 7: Comparison of simulation runtimes and final object pose differences averaged across 5 contact-rich manipulation trajectories involving
a planar pushing problem with a T-shaped object and a spherical finger. Column headers show [simulation timestep (ms)]-[integrator]-[#
AOPC points] used in each experiment. The bounding box dimensions for the object are 25× 20 cm2, ∆d denotes the COM distance
between end poses of corresponding rollouts from SCM and MJX, while ∆θ denotes the difference in 2D rotations.

• As all computations are analytical and vectorized, simula-
tion speed under SCM is independent from the number of
AOPC points (i.e., as long as memory limit is not hit) or
the number of active contacts.

• For reasonable simulation step sizes such as 2ms (i.e.,
the default simulation stepsize for MJX), the qualitative
behavior such as whether contacts stick or slip are similar
across both contact models. Under RK4 integration, SCM
and MJX trajectories start deviating for simulation step
sizes larger than ∼ 16ms, and for Euler integration this
deviation happens even earlier.

These results highlight that while SCM does make a com-
promise from forward simulation accuracy, it nevertheless
achieves physically plausible behavior sufficient to serve as
a description of “physics for inference”.

V. LIMITATIONS AND FUTURE WORK

The presented approach has two main limitations. The
first one is that point-plane contact forces λ(p,v,pi,ni) are
derived from a spring-damper system [37] rather than a convex
optimization problem with cone constraints as is the current
standard [7, 6, 20]. There are two main shortcomings to spring-
damper based contact models: i) they require careful tuning of
contact hyperparameters (e.g., stiffness, dissipation, stiction)
for every new scene to avoid instabilities and unrealistic
penetrations, and ii) the individual spring-damper systems for
different contacts are unaware of each other as well as other
external forces on the system. In contrast, constraints of an
optimization-based contact model essentially act analogous to
a set of smart spring-dampers (that exert “forces” on the KKT
system via the dual variables) which are all aware of each
other and external forces, as well as scaling their stiffness and
damping automatically with inertia [19]. The limitations due
to using spring-damper models can be addressed in two ways
in future work. The first is to use (13) to obtain a discrete
set of contact points that can then be used to transcribe
the constraints of any existing optimization-based contact
model. The downside of this solution is that it automatically
inherits all the shortcomings of optimization-based contact
models that this paper tries to overcome. A second and better
solution is to replace λ(p,v,pi,ni) when computing inverse-
dynamics in (24) with an analytical function λ(p,v, v̇,pi,ni)
that is aware of the desired acceleration v̇. The corresponding
forward dynamics can also be easily obtained through an
unconstrained optimization problem, which solves for v̇
that matches the applied generalized control force in eq.24.

A compelling option for λ(p,v, v̇,pi,ni) is the analytical
inverse dynamics formulation used in MuJoCo [19] and Drake
[20], which involves a projection onto friction cone constraints
that can be evaluated via simple geometric arguments in 3D.
This constitutes our main direction for future work to address
the shortcomings of using spring-damper models.

The second main limitation of the presented approach
is that it requires considerable memory, and while batched
GPU simulation frameworks such as MJX allow simulating
thousand of systems in parallel, this is not possible in the
current state of the proposed method. This large memory
requirement is a consequence of the simulation time being
independent from the number of contacts, which in turn
is a consequence of considering all possible point-plane
pairs between two AOPCs in (21)-(23). Indeed, whenever a
simulation involves many different contacts between complex,
non-convex meshes, the memory requirements of simulators
such as MJX would also scale at least as poorly, with
the additional drawback of the simulation runtime growing
significantly larger due to increasing number of contact
constraints in optimization (which is not an issue in the
proposed contact model since it purely involves vectorized
analytical operations). The main distinction between our
approach and simulators like MJX is therefore that in
the regime where considering a small number of potential
contacts between simple collision primitives is sufficient,
their memory requirements scale more favorably (e.g., for
quadruped locomotion [39] where the only contacts are
typically between four spherical feet and a planar ground).
In such simple cases, our method currently still requires a
sufficient number of AOPC points to cover the surfaces of
geometric primitives in order to prevent simulation artifacts,
and has consequently a larger memory footprint. Therefore
our approach and the existing batch simulation approaches are
suitable for different regimes and requirements. A promising
direction for reducing memory footprint in future work is
to explore amortizing SSDF evaluations in (21)-(23) using
neural networks [40] or polynomial basis functions [41].

VI. CONCLUSION

We presented a formulation of collision detection and rigid
body dynamics with contact that purely consist of simple
analytical operations that are twice-differentiable. The benefits
of the proposed approach include: i) obtaining gradients and
Hessians through collision detection and contact simulation
simply using automatic differentiation, ii) not needing convex



decompositions of scene geometry, iii) simulation speed being
independent from the number of contacts between geometries,
and iv) being able to trivially vectorize simulations of rigid
body systems with entirely different geometry (though still
sharing the same kinematic structure). While these benefits
come at the cost of a slight compromise in physical accuracy
(e.g. due to contact forces acting at a distance), we have shown
through numerical experiments that the resulting dynamics
still maintains sufficient fidelity to serve as an “intuitive
physics engine” to generate intelligent contact-rich behavior.
Immediate directions for future work include applications of
the proposed contact dynamics to trajectory optimization and
system identification problems in robotics.
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