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Figure 1: HOMIE empowers the humanoid robot to execute various loco-manipulation tasks in the
real world. (a): Squatting to grasp a tape and placing it on a higher shelf; (b): Facilitating an apple
handover between two robots; (c): Holding a box and transferring it to another shelf; (d): Pushing a
person seated on a chair; (e): Opening an oven door; (f): Picking up a tomato, handing it over, and
placing it in a fruit basket; (g): Retrieving a bottle from the ground; (h): Holding a flower and
placing it into a box on a table. (i): Balancing under vigorous motion. These tasks show robustness
and generality of HOMIE.

Abstract: Generalizable humanoid loco-manipulation poses significant chal-
lenges, requiring coordinated whole-body control and precise, contact-rich object
manipulation. To address this, this paper introduces HOMIE, a semi-autonomous
teleoperation system that combines a reinforcement learning policy for body con-
trol mapped to a pedal, an isomorphic exoskeleton arm for arm control, and
motion-sensing gloves for hand control, forming a unified cockpit to freely op-
erate humanoids and establish a data flywheel. The policy incorporates novel
designs, including an upper-body pose curriculum, a height-tracking reward, and
symmetry utilization. These features enable the system to perform walking and
squatting to specific heights while seamlessly adapting to arbitrary upper-body
poses. The exoskeleton, by eliminating the reliance on inverse dynamics, delivers
faster and more precise arm control. The gloves utilize Hall sensors instead of ser-
vos, allowing even compact devices to achieve 15 or more degrees of freedom and
freely adapt to any model of dexterous hands. Compared to previous teleoperation
systems, HOMIE stands out for its exceptional efficiency, completing tasks in half
the time; its expanded working range, allowing users to freely reach high and low
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areas as well as interact with any objects; and its affordability, with a price of just
$500. Our project is fully open-source.
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1 Introduction

Generalizable humanoid loco-manipulation is crucial for integrating humanoid robots into daily
life and enabling them to handle labor-intensive tasks. Achieving this requires coordinated whole-
body control (WBC) policies that endow robots with both strong athletic capabilities and precise,
contact-rich object manipulation skills for interacting with a variety of objects. Teleoperation is a
promising technique to realize this vision, leveraging a data-driven approach to create a flywheel
effect. However, the field currently faces a significant dichotomy: reinforcement learning (RL)-
trained locomotion policies excel at environmental adaptation but lack the interfaces needed for
real-time, precise teleoperation [1, 2, 3, 4, 5, 6]. On the other hand, most existing teleoperation
systems focus solely on upper-body control without considering the impact of locomotion on the
robot’s operational workspace, thereby severely limiting its functionality [7, 8, 9, 10, 11]. This
fragmentation creates a lose-lose situation, where robots either sacrifice dexterous manipulation
during movement or compromise their workspaces when performing manipulation.

The path forward demands mutual perspective iteration: RL-based training incorporates upper-body
teleoperation interfaces without compromising the robot’s athletic ability, and teleoperation system
seamlessly integrate locomotion control modules while affording accurate and smooth pose acqui-
sition. In responce, we introduce HOMIE, a semi-autonomous humanoid teleoperation system that
integrates a RL policy for body control mapped to a pedal, an isomorphic exoskeleton arm for arm
control, and motion-sensing gloves for hand control. This unified cockpit enables a single opera-
tor to precisely and efficiently control a humanoid robot’s full-body movements, addressing both
humanoid whole-body control and real-time precise teleoperation.

Our RL-based training framework features three core techniques: upper-body pose curriculum for
dynamic balance adaptation, height-tracking reward for precise squatting, and symmetry utilization
for action regularization and data augmentation. These components collectively enhance the robot’s
physical agility, enabling robust walking, rapid squatting to any required heights, and stable balance
maintenance during dynamic upper-body movements, thereby significantly expanding the robot’s
operational workspace beyond existing solutions and allowing any teleoperation commands to take
effect. Unlike previous whole-body control methods that depend on motion priors derived from
MoCap data [12], our framework eliminates this dependency, resulting in a more efficient pipeline.

Complementing the training framework, our hardware system features isomorphic exoskeleton arms,
a pair of motion-sensing gloves, and a pedal. The pedal design serves as an effective interface for
locomotion command acquisition, guiding the robot’s movement while freeing the operator’s upper
body. This setup enables simultaneous acquisition of upper-body poses and removes the need for
continuous synchronized walking between the operator and the robot. To eliminate the inaccuracies
introduced by inverse kinematics (IK) and pose estimation, which are commonly used in mainstream
teleoperation systems, we design the exoskeleton arms to be isomorphic to the controlled robot. This
allows us to directly set the upper-body joint positions based on the exoskeleton readings, bypassing
the need for IK and resulting in faster and more accurate teleoperation. Each of our gloves offers
15 degrees of freedom (DoF), surpassing most existing dexterous hands, enabling them to control
a variety of hand types using the same gloves. Additionally, the gloves can be detached from the
arms, making them reusable in systems isomorphic to different robots. The total cost of the hardware
system is just $0.5k, significantly more affordable than motion capture (MoCap) devices [13].

Through ablation experiments, we validate the effectiveness of each technique in our training frame-
work and demonstrate the robustness of the resulting policies across different robots. Our evaluation
shows that the hardware system supports 200% faster and more accurate pose acquisition than pre-
vious methods, enabling operators to complete tasks more efficiently than virtual reality (VR)-based
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approaches. Real-world studies confirm that the trained policies can be deployed directly in the real
world, allowing robots to perform diverse loco-manipulation tasks stably in complex environments.
We further show that real-world data collected via HOMIE can be effectively used by imitation
learning (IL) algorithms, allowing humanoid robots to autonomously execute tasks. Integrated into
simulation environments, our cockpit also enables seamless teleoperation in virtual settings.

In summary, the key contributions of HOMIE are:

1. A novel humanoid teleoperation cockpit that combines RL-based loco-manipulation con-
trol with an isomorphic exoskeleton and motion-sensing gloves, enabling full-body control
by a single operator.

2. The first successful implementation of teleoperation-compatible humanoid loco-
manipulation, including dynamic squatting, without relying on motion prior data.

3. A cost-effective hardware system that supports more precise and faster whole-body control
than existing systems, significantly reducing task completion times.

2 Related Works

2.1 Teleoperation Systems

Teleoperating dual-arm robots to perform complex manipulation tasks is an efficient way to collect
real-world expert demonstration, which can then be used by IL to learn autonomous skills [14, 7,
9, 15, 16]. Some researchers utilize robotic arms identical to the teleoperated ones [17, 14, 18, 19],
making joint-matching possible, thus ensuring high accuracy and fast response speed. However,
due to the high cost of robotic arms, the establishment of such a system incurs significant expenses.
Additionally, teleoperating dexterous hands with these systems is not feasible.

An alternative approach is to use VR devices [7, 11] or just a camera [20, 10, 21]. These works
use vision-based techniques to capture the operator’s wrist postures and key points of the hands,
which are used by IK to calculate the joint positions of the arms and hands. However, due to
limitations in the accuracy, inference speed, and difficulty in handling occlusions of pose estimation,
such approaches cannot guarantee rapid and accurate pose acquisition. Some researchers try to use
MoCap methods [13, 22, 23, 24] to acquire more accurate poses at higher frequencies, but MoCap
equipment is very expensive. Moreover, since IK is an iterative method that approximates solutions,
even when wrist and hand poses are captured accurately, the limitations of IK may prevent the robot
from achieving the desired posture. Another possible solution is an exoskeleton-based teleoperation
system, which does not require an additional identical robot, thus the overall cost is relatively low.
Some research calculates the end-effector pose of the exoskeleton using Forward Kinematics (FK)
and then apply IK to determine the robot’s joint positions, while using computer vision techniques
to capture the hand poses [8]. However, these systems are also limited by the inaccuracies of IK and
pose estimation.

Some studies utilize isomorphic exoskeletons [18, 19], which can also employ joint-matching to
teleoperate the robots, ensuring both low cost and high accuracy and control frequency. Neverthless,
these systems typically handle robotic arms equipped with grippers, limiting their application to
basic manipulation tasks rather than dexterous ones. Since some projects have introduced cheap and
reliable motion-sensing gloves [25, 26], redesigning and combining them with an exoskeleton could
potentially overcome this limitation, a solution that has not yet been realized in this field. HOMIE is
designed to combine all the advantages mentioned above, integrating isomorphic exoskeleton arms
with a pair of novel motion-sensing gloves. We will introduce this system in Sec. 3.3. A comparison
between HOMIE and previous representative teleoperation systems can be found in Tab. 1.

2.2 Whole-body Loco-Manipulation

To enable robots to perform whole-body loco-manipulation tasks, some researchers focus on model-
based optimization algorithms [27, 28, 29, 30, 31], particularly generating locomotion control laws

3



Table 1: Comparison between representative teleoperation systems and HOMIE. Cost: total
cost of each system. Arm and Dex-Hand Tracking: method of tracking arm and hand poses. Loco-
Manip.: whether or not have loco-manipulation capability. Whole-body: whether or not teleoperate
the whole body of humanoid robots. No Mocap: whether or not exclude MoCap data.

Teleop System Cost ($) Arm Tracking Dex-Hand Tracking Loco-Manip. Whole-body No MoCap

Mobile-ALOHA [14] 32k Joint-matching ✓ ✓
GELLO [18] 0.6k Joint-matching ✓
AirExo [19] 0.6k Joint-matching ✓
ACE [8] 0.6k Joint-matching Vision Retarget ✓
DexCap [13] 4k Vision Retarget Mocap + SLAM ✓
AnyTeleop [10] ∼ 0.3k Vision Retarget Vision Retarget ✓
OpenTelevision [7] 4k VR devices VR devices ✓
HumanPlus [1] 0.05k Vision Retarget Vision Retarget ✓ ✓
OmniH2O [3] 0–3.5k Vision / VR Vision / VR ✓ ✓
Mobile-TeleVision [6] 3.5k VR devices VR devices ✓ ✓

HOMIE (Ours) 0.5k Joint-matching Joint-matching ✓ ✓ ✓

by solving optimal control problems (OCPs). Despite significant efforts to make OCPs compu-
tationally tractable, these algorithms still struggle with complex scenarios due to their high com-
putational demands during online processing. Reinforcement Learning (RL)-based algorithms, es-
pecially those based on Proximal Policy Optimization (PPO) [32], offer a more powerful alter-
native. Using these methods, several studies successfully achieve whole-body loco-manipulation
in quadruped robots [33, 34, 35, 36], and some teach humanoid robots to traverse various ter-
rains [37, 38, 39, 40, 41, 42, 43, 44] or perform parkour [45].

Achievements in quadrupeds motivate researchers to apply the same techniques to humanoid whole-
body loco-manipulation [46]. Some studies train whole-body policies for humanoid robots [5], en-
abling them to act in a manner similar to human operators or even dance with people. Some other
research separates the upper and lower body [4, 1, 2, 3, 6], using policies trained by RL to control the
lower body while directly setting the joint positions of the upper body, thus helping robots achieve
better balance. Despite achieving impressive results, these methods still face several common lim-
itations. First, they often rely on retargeted MoCap data [12] to get motion prior [47] for training
robots. However, obtaining MoCap data is costly, and adapting robots to new poses necessitates
additional data collection, which significantly hinders the scalability of these approaches. Second,
many of these methods employ vision-based algorithms to estimate the operator’s poses, which lack
the precision of exoskeleton-based devices. This limitation reduces the accuracy required for hu-
manoid robots to perform loco-manipulation tasks effectively. Third, these methods generally fail to
incorporate the ability to control a robot’s body height. Height control is crucial for handling objects
at varying elevations, and its absence severely restricts the robot’s operational workspace. Finally,
when issuing locomotion commands, some studies rely on body movement data directly [4, 1, 2, 3],
while others use joysticks or pedals [6]. The former approach becomes impractical when opera-
tors need to control robots in large-scale environments, whereas the latter offers a more effective
solution. However, controlling with joysticks necessitates the use of hands, which may already be
occupied by other manual tasks, thereby highlighting the advantage of using pedals for locomotion
commands.

3 Method

3.1 System Overview

As shown in Fig. 2, HOMIE consists of a low-level policy πloco and an exoskeleton-based hardware
system. At any given time t, the first point of view (FPV) of the robot will be transferred by Wi-Fi to
the display inside the cockpit, so the operator can teleoperate the robot with FPV. By stepping on the
pedal, the operator provides the required locomotion commands Ct = [vx,t, ωyaw,t, ht] where vx,t is
the desired forward or backward speed, ωyaw,t is the turning speed, and ht is the target height of the
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Figure 2: System Overview. (a): how an operator uses the exoskeleton-based hardware system
to control humanoid robots in the real world and simulation. (b): how πloco controls the robots,
the data collection process for training πauto, and how πauto takes over the operator to control the
robots. Communication between the cockpit and the robot is achieved via Wi-Fi.

robot’s torso. The policy πloco controls the robot’s lower-body based on Ct. Meanwhile, the operator
controls the exoskeleton to provide the required joint angles qupper for the robot’s upper-body, which
are directly set to the robot. The upper and lower bodies work in coordination, continuously cycling
through the process, ultimately enabling teleoperating robots to complete loco-manipulation tasks
either in the real world or in simulation. Communications between the cockpit and the robot are
achieved via Wi-Fi, allowing operation even when the robot is far from the hardware system. We
can collect demonstrations while teleoperating the robot and use them to train an autonomous policy
πauto. Once trained successfully, πauto can take over the operator to give Ct and qupper, thus driving
the robot to perform tasks autonomously.

3.2 Humanoid Whole-body Control

To enable humanoid robots to perform loco-manipulation tasks, we design an RL-based training
framework, which trains different robots to accomplish squatting and walking under continuously
changing upper-body poses. We take Unitree G1 as an example and show the process of the frame-
work in Fig. 3. The policy πloco trained by this process is capable of zero-shot sim-to-real transfer.
We introduce the training settings and three key techniques of our framework in this section.

3.2.1 Training Settings
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Figure 3: RL training framework of HOMIE.

The observations of one
step are defined as Ot =
[Ct, ωt, gt, qt, q̇t, at−1], where
Ct is the command, ωt is the body’s
angular velocity, gt is the projection
of g⃗ = [0, 0,−1] in the robot’s torso
coordinate frame, qt is the joint an-
gles of all joints of the robot, q̇t is the
joint velocities of all joints of robot,
at−1 is the last time action. Then
we can get the whole observations of
πloco by concatenating Ot−5:t. The
actions at of the policy correspond
one-to-one with the joints of the
robot’s lower body. After the neural
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network computes at based on Ot−5:t, we use

τt,i = Kpi × (at,i − q0,t,i)−Kdi × ˙qt,i (1)

to calculate the torques for joint motors, thereby driving the motors to work and enabling the robot’s
movement. In the equation, i denotes the index of joints, {Kpi} and {Kdi} are stiffness and damp-
ing of each joint, {q0,t,i} are default joint positions of each joint. Our framework is implemented
based on the code of [48, 49], and more training details can be found in Appendix A.

3.2.2 Upper-body Pose Curriculum

We use a curriculum learning technique to ensure that πloco can still complete locomotion tasks
under any continuously varying poses of the robot’s upper-body. We adjust the sampling range of
the upper body joint angles using the upper action ratio ρa. At the start of training, ra is set to 0.
Each time the policy drives the robot to track the linear velocity with a reward function that reaches
the threshold, ρa increases by 0.05, eventually reaching 1. We first sample ρ′a from the probability
distribution

p(ρ′a|ρa) =
20(1− ρa) e

−20(1−rhoa)ρ
′
a

1− e−20(1−ρa)
, ρa ∈ [0, 1) (2)

and then resample ai by U(0, ρ′a). We actually sample ai by

ai = U(0,− 1

20(1− ρa)
ln

(
1− U(0, 1)

(
1− e−20(1−ρa)

))
) (3)

Figure 4: Different robots are trained to walk
and squat with continuous changing upper-body
poses in Isaac Gym.

As ra increases, the probability distribution grad-
ually transitions from being close to 0 to U(0, 1).
This ensures that during the curriculum process,
the probability distribution consistently satisfies
p(ρ′a|ρa) > 0,∀ρ′a ∈ [0, 1], ρa ∈ [0, 1). Com-
pared to directly using U(0, ρa), this method ap-
proaches the final target in a more gradual and
smoother manner. For better understanding of
Eq. (3), we visualize it in Appendix A. To simu-
late the continuous changes in upper body move-
ments when controlled by our cockpit, we resam-
ple target upper-body poses every 1 second ac-
cording to the above process. We then use uni-

form interpolation to ensure that the target movement gradually changes from the current value to
the desired value over the 1-second interval. Without this approach, we find that the robot struggles
to maintain balance under continuous motions.

3.2.3 Height Tracking Reward

Tracking heights can significantly expands the feasible operational workspace of humanoid robots,
thus helping the robots perform more loco-manipulation tasks. Therefore, πloco needs to enable the
robot to squat to the target height ht. To achieve this, we design a new reward function

rknee = −∥(hr,t − ht)× (
qknee,t − qknee,min

qknee,max − qknee,min
− 1

2
)∥, (4)

where hr,t is the robot’s actual height, qknee,min and qknee,max are the maximum and minimum
actions of knee joints, qknee,t is the current positions of robot’s knee joints. rknee encourages flex-
ion of the knee joints when hr,t < ht, and encourages extension when hr,t > ht. In the training
process, we resample all commands every 4 seconds. At this point, one-third of the environments
are randomly selected to train the robot to squat, while the remaining two-thirds focus on teaching
the robot to stand and walk. This strategy helps balance the learning of squatting and walking. Ad-
ditionally, the same environment switches between learning to squat and learning to walk, enabling
the policy to smoothly transition between squatting and walking tasks. For better understanding of
Eq. (4), we visualize it in Appendix A.
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3.2.4 Symmetry Utilization

We introduce the same trick as [50] to our training framework. Each time we obtain a transition
Tt = (st, at, rt, st+1) from the simulation, we perform a flip operation on it. Specifically, we apply
symmetry to the actor and critic observations with respect to the robot’s x-z plane. This involves
flipping elements such as the positions, velocities, and actions of the robot’s left and right joints, as
well as the desired turning velocity, across the x-z plane to obtain a mirrored transition T ′

t . Both Tt

and T ′
t are then added to the rollout storage. This process helps to improve data efficiency and ensure

symmetry in the sampled data, reducing the likelihood of the trained policy being asymmetrical in
terms of left and right performance. In the learning phase, we also apply this procedure to the
samples Tt got from the rollout storage to get T ′

t . Both Tt and T ′
t are passed through the actor and

critic networks to obtain at, a′t, Vt, V ′
t respectively, which are used to calculate additional losses:

Lactor
sym = MSE(at, a

′
t), (5)

Lcritic
sym = MSE(Vt, V

′
t ). (6)

These two losses are added to the network optimization process, thereby enforcing symmetry of the
neural network.

Figure 5: Upper-body Exoskeleton. (a): The model architecture and physical demonstration of
motion-sensing gloves. (b): The structural architecture of the upper-body exoskeleton system, com-
prising an isomorphic exoskeleton and motion-sensing gloves, with kinematic mapping methodol-
ogy between the isomorphic exoskeleton and Unitree G1.

3.3 Hardware System Design

To enable a single operator to control the full body of humanoid robots, we design a low-cost
exoskeleton-based hardware system as shown in the left part of Fig. 2. For the upper-body tele-
operation of the humanoid robots, we design 3D-printed 7-DoF isomorphic exoskeleton arms for
precise mapping of the upper limb joint angles, specifically tailored for two types of humanoid
robots: Unitree G1 and Fourier GR-1. Additionally, we design a pair of low-cost motion-sensing
gloves capable of mapping up to to 15 DoF of finger angles. For locomotion command acquisition,
we design a foot pedal that simulates the press-and-release actions of the foot during driving, en-
abling control of the humanoid robot’s movements such as walking and squatting. The operator can
easily deploy this system and perform single-person teleoperation of the robot’s loco-manipulation,
similar to driving a car in a cockpit or playing a racing game.

3.3.1 Isomorphic Exoskeleton

To achieve accurate control and mapping of the upper limb joints of the humanoid robots, we employ
an isomorphic exoskeleton as the teleoperation solution for controlling the robot’s upper body. Based
on the morphology of the Unitree G1 and Fourier GR-1, our isomorphic exoskeleton design consists
of a symmetric pair of arms, each with 7 DoF, corresponding to the 7 DoF of each arm of the robot (3
DoF for the shoulder, 1 DoF for the elbow, and 3 DoF for the wrist), as shown in Fig. 5(b). Each joint
of the exoskeleton is equipped with a DYNAMIXEL XL330-M288-T servo, which provides joint
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angle readings and adjustments with an accuracy of 0.09°, enabling precise joint angle mapping and
initial calibration. Compared to incremental encoders, servo motors can store absolute position and
retain the current position data even after power loss, thus eliminating recalibration upon restarts.
The exoskeleton’s operational part is designed to match the length of the human arms. Considering
the challenge of fully replicating the robot’s upper arm structure, we align the servos with the robot’s
motor URDF joint coordinate system. We can obtain the offsets ot between the servos’ position
angles pt and the robot’s joint angles qt. Since Dynamixel servos can store absolute positions, ot
remains fixed after assembly. Additionally, the servo disc has four symmetric holes, which causes
ot to be an integer multiple of π/2. We use

qt = ±kt(pt +
ntπ

2
) + τt (7)

to achieve kinematic equivalence and calibration, where the offset follows ot = ntπ
2 , nt ∈ Z

, with ±kt is a coefficient that adjusts the direction and scale of the angle change, and τt is the
additional joint angle compensation. We set kt = 1 and τt = 0, meaning no additional scaling or
angle compensation is needed.

3.3.2 Motion-sensing Gloves

For fine teleoperation of the fingers, we adopt a joint-matching approach. Based on the Nepyone
glove project [25], we design a low-cost motion-sensing glove that connects directly to the exoskele-
ton for assembly and use, providing up to 15 DoF for finger capture to control dexterous hands.
Specifically, each finger is equipped with three sets of sensors, which map the pitch motion of the
finger tip and finger pad, as well as the yaw motion of the finger pad. This setup is sufficient to
enable the mapping of different dexterous hands for humanoid robots. We place Hall effect sensors
and small neodymium magnets at each joint. When the joint rotates, the neodymium magnet rotates
as well, thereby affecting the magnetic field sensed by the sensor and achieving the mapping of fin-
ger joint angles. Additionally, we design the glove’s microcontroller, sensor modules, and structural
model. The microcontroller is mounted on the back of the hand and can be directly connected to the
packaged sensors using terminal connectors, allowing for easy plugging and unplugging to reassign
and modify the mapping relationships, as shown in as shown in Fig. 5(a). Our motion-sensing gloves
can be easily attached to and detached from different exoskeletons, offering high versatility.

3.3.3 Foot Pedal

Height Yaw
Velocity

Linear 
Velocity

Mode
Switching

Mode
Switching

Left &
Right

Forward &
Backward

Figure 6: Pedal command control. The three
small pedals respectively control [0,±ωmax],
[Hmin, Hmax], and [0,±Vmax].

In our cockpit, the foot pedal is used as a re-
placement for a remote controller, enabling com-
mand control of the humanoid robot’s lower body
by giving commands Ct to πloco. The oper-
ator controls the acceleration and deceleration
of the robot’s lower body movement by press-
ing and releasing the foot pedal. We use high-
precision rotary potentiometers to map pedal
pressure changes to electrical signals. In our sys-
tem, we control the humanoid robot’s locomotion
through linear velocity, yaw velocity, and height
adjustment. These commands allow the robot to
fully demonstrate its locomotion capabilities. To
achieve this, we use three small pedals to control

these commands. Additionally, a pair of mode-switching buttons (foot-operated with momentary
switches) are used to toggle between forward/backward and left/right turning directions, as shown
in Fig. 6. Users can modify the pedal configuration and reassign commands to adapt to diverse
movement combinations.
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4 Experiments

4.1 Humanoid Whole-body Control

Lin. Vel. Error (m/s) ↓ Ang. Vel. Error (rad/s) ↓ Height Error (m) ↓ Sym. Loss ↓ Living Time (s) ↑

ours
w/o knee
hei

ours
w/o cur
rand

ours
w/ aug
w/ sym
none

Figure 7: Ablation experiments of our RL training framework. Each row from top to bottom
represents the ablation study for upper-body curriculum, height tracking reward, and symmetry
utilization, respectively. Each column represents the evaluation of the corresponding metrics for
checkpoints under different ablation settings. The ↑ and ↓ symbols beside the metrics indicate
whether a higher or lower value is better for the respective metric.

4.1.1 Ablation of training framework

In this section, we perform ablation experiments on the proposed upper-body pose curriculum, the
height tracking reward, and the use of symmetry. All ablation experiments are conducted based on
the methods described in Sec. 3.2. For each setting, we use three random seeds to train policies
for Unitree G1 and evaluate them in 1000 environments over a 20-second evaluation period with
random upper-body poses sampled from Eq. (3) with ρa → 1. Metrics for evaluation are tracking
linear velocity error, tracking angular velocity error, tracking height error, symmetry loss and living
time. The final performance for each setting is obtained by computing the average and standard
deviation of the results across the three policies trained from three random seeds. All trainings
are conducted on Nvidia RTX 4090 and simulated by Isaac Gym with 4096 parallel environments,
where components unrelated to the ablation are kept unchanged, and only relevant parts are modified
for training. Detailed parameters used in training and evaluation processes are listed in Appendix A.
We mark the setting of our proposed method as ours in the following sections.

Upper-body Pose Curriculum. We compare ours against two alternatives: w/o cur, which omits
the curriculum and directly samples ai = U(0,U(0, 1)), and rand, which uses the same ρa cur-
riculum but replaces Eq. (3) with ai = U(0,U(0, ρa)). Since all three methods adopt the same
sampling strategy ai = U(0,U(0, 1)) as ρa → 1, the final objective remains consistent, ensuring
a fair comparison. The experimental results, shown in the first row of Fig. 7, reveal that ours out-
performs both w/o cur and rand in linear velocity tracking, angular velocity tracking, and height
error, with faster convergence and smaller errors. There is no significant difference between w/o cur
and rand in the final results for these metrics. Given that the symmetry loss can reach values on
the order of 20 without constraints, no significant difference is observed across the three methods in
terms of symmetry loss. All three configurations achieve similar final living times, but ours and w/o
cur converge more quickly. Rand, despite employing some curriculum adjustments, is limited by
ρa, and values in the range (ρa, 1] are not sampled during training, making it harder for the model
to converge as ρa increases. In contrast, both ours and w/o cur sample the full [0, 1] range from
the beginning, enabling faster and more stable convergence. Thus, our curriculum approach leads
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to better performance compared to rand. Although w/o cur does not use a curriculum, allowing
ai to continuously sample from [0, 1], the lack of difficulty smoothing leads to worse final tracking
results, highlighting that our curriculum design offers a more effective training process.

Height Tracking Reward. We design two additional algorithms w/o knee, which does not use
rknee described in Eq. (4) and hei, which also omits rknee but increases the scale of the height
tracking reward. We show the results in the second row of Fig. 7. As shown in the figure, none of
the three settings cause significant changes in the symmetry loss during training. In terms of linear
velocity error and angular velocity error, ours and w/o knee perform similarly, while hei shows
much larger errors. For height error, our method converges faster than both w/o knee and hei, even
though hei initially performs better (at 400 steps). There is no significant difference among the three
settings in terms of living time. These results indicate that just scaling up the height tracking reward
in hei may initially lead to faster reduction in height tracking error, but it negatively affects the
feedback from other rewards, preventing the robot from balancing multiple tasks effectively. In fact,
hei ultimately does not achieve faster convergence in height tracking compared to ours. In contrast,
the inclusion of rknee in our method provides more specific guidance for squat tracking, allowing
the robot to reduce tracking error and converge more quickly. This highlights the effectiveness of
rknee in helping the robot learn squat motions.

Symmetry Utilization. We introduce three algorithmic variants for comparison with ours in terms
of symmetry utilization: w/ aug, which uses only symmetrical data augmentation; w/ sym, which
only uses symmetry loss; and none, which does not employ symmetrical data augmentation or sym-
metry loss. Testing results are presented in the third row of Fig. 7. Except for symmetry loss, the
performance of ours and w/ aug is similar. However, when considering overall tracking accuracy,
ours performs slightly better. On the other hand, w/ aug exhibits a very high symmetry loss, suggest-
ing that using symmetry loss helps maintain the robot’s left-right symmetry in the learned policy.
This indirectly supports the idea that a symmetric policy benefits the robot’s locomotion tasks [50].
Both nsym and none show a tendency for improvement, but their training speed is much slower.
Notably, a direct comparison between w/ sym and none reveals that w/ sym achieves lower sym-
metry loss. However, due to slower training, none exhibits less symmetry breaking compared to w/
aug. In summary, symmetry data augmentation significantly improves training efficiency, while the
use of symmetry loss effectively prevents the policy from sacrificing symmetry to complete tasks
and also benefits the task itself.

4.1.2 Training on Different Robots

Table 2: Evaluation of different robots trained with our RL training framework
Metrics Unitree G1 Fourier GR-1

Lin. Vel Error (m/s) 0.194 (±0.003) 0.273 (±0.003)

Ang. Vel Error (rad/s) 0.451 (±0.006) 0.540 (±0.002)

Height Error (m) 0.022 (±0.019) 0.038 (±0.003)

symmetry loss (-) 0.019 (±0.017) 0.009 (±0.001)

Living Time (s) 19.947 (±0.092) 19.960 (±0.035)

Unitree G1 Fourier GR-1

130 cm Height 165 cm Height

56 Kg Weight36.4 Kg Weight

1.04Kg Hands1.42Kg Hands

1.9% Hand
Weight ratio

3.9% Hand
Weight ratio

6DoF Hand7DoF Hand

Figure 8: Key parameters of robots.

We select another kind of robot, Fourier GR-1, which is
quite different from Unitree G1, to demonstrate the gen-
erality of our approach across different robot models. As
shown in Fig. 8, Fourier GR-1 is much taller and heav-
ier than Unitree G1 while having lower hand weight ra-
tio. Compared to the training setting of Unitree G1, we
only change the range of height tracking and some robot-
specific distance values, without any other changes in re-
ward scales or training pipeline. We evaluate the policy
trained after 2k steps of each robot with metrics used in
Sec. 4.1.1 and present them in Tab. 2. The results demon-

10



strate that even though these two kinds of robots are quite different, our RL training framework can
train them to converge to a policy which can drive robots to perform locomotion and squatting tasks
robustly under any upper-body poses. Training details for Fourier GR-1 can be found in Appendix
A.

4.2 Teleoperation Hardware Performance

LEAP
16Joints

Shadow
20Joints

Inspire
12Joints

Schunk
20Joints

Our Gloves
15Joints

Figure 9: Controlling different types of dexterous hands in simulation with gloves.

We list a series of hardware indicators for our teleoperation hardware system consisting of isomor-
phic exoskeleton arms, a pair of motion-sensing exoskeleton gloves, and a pedal in Tab. 3. We detail
their costs, with the primary expense attributed to the exoskeleton section. This is because we inde-
pendently design and solder the control boards (PCBs) and sensor modules for the motion-sensing
gloves and the pedal components. The acquisition frequency represents the update signal frequency
measured between the hardware components of the teleoperation system and the host computer via
a wired connection at a baud rate of 115200. Changing the baud rate can affect the acquisition
frequency. The acquisition accuracy represents the range of angular change (in degrees) and the
corresponding variation in acquisition readings, ranging from 0 to 4095( 212). Since the mapping
relationship for the motion-sensing gloves is not a clearly defined linear one, and the mapping an-
gles for each finger joint vary, more detailed information can be found in the Appendix B.2. For

Table 3: Hardware Indicators of three component of the hardware system.(Freq.:frequency,
Acc.:accuracy)

Hardware Cost ($) Acquisition Freq. Acquisition Acc.

Exoskeleton 430 0.26 kHz 212(with 360°)
Glove 30 (each) 0.3 kHz 212

Pedal 20 0.5 kHz 212(with 270°)

upper-body teleoperation, the task can be divided into two parts: arm control and dexterous hand
control. We select the arm pose frequency and hand pose frequency as evaluation metrics, which
measures the smoothness and fluidity of teleoperation. In Tab. 4, we compare the visual and VR
schemes with our joint-matching scheme. Since our joint-matching scheme directly sets the robot’s
upper-body poses without the need for additional time-consuming processes, the output frequency
to the robot closely matches the acquisition frequency. Therefore, our approach achieves a very high
output frequency without requiring GPU and System on Chip (SoC) intensive hardware.

Table 4: Upper-body teleoperation frequency of output to the robot’s arm and hand. (SoC: System
on Chip)

Teleop system Hardware Arm (Hz) Hand (Hz)

Telekinesis [20] 2 RTX 3080 Ti 16 24
AnyTeleop [10] RTX 3090 125 111
OpenTeleVision [7] M2 Chip 60 60
Ours No GPU / SoC 263 293
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To further demonstrate the extensibility of our motion-sensing gloves, we test different types of
dexterous hands from the Dex Retargeting library in AnyTeleop [10] within the SAPIEN [51] envi-
ronment. The results are presented in Fig. 9, with the upper line shows names of tested dexterous
hands while the lower line indicates number of joints of each hand.

4.3 Teleoperation System

4.3.1 Real World

a

c

b

d

Figure 10: Desktop tasks for comparison of completion
time. a: Pick & Place; b: Scan Barcode; c: Hand Over;
d: Open Oven.

We deploy the trained policy on the
Unitree G1 in the real world and tele-
operate it to perform various loco-
manipulation tasks using our isomor-
phic exoskeleton hardware system.
We employ WiFi for communication
between the cockpit and the robot.
Since our system requires only 128
bytes(32-bit floats) per data packet,
the measured communication latency
under normal network conditions is
16 ms — a result considered accept-
able for real-time control. Further-
more, we implement network tech-

niques including checksum verification to guarantee data transmission integrity. The deployment
code for G1 is derived from [52]. Fig. 1 (a) and Fig. 1 (c) demonstrate the robot’s capability to
squat, pick objects from lower shelves, and place them on higher ones, as well as to grasp and trans-
fer boxes between shelves utilizing its locomotion abilities. Fig. 1 (b) highlights the extensibility
of our system, enabling two operators to control separate robots and collaboratively perform tasks,
such as transferring apples. In Fig. 1 (d), the robot is controlled to push a 60 kg person sitting in
a chair, who weighs roughly twice as much as the robot, demonstrating the robustness of the loco-
manipulation system. Fig. 1 (e) illustrates how the robot uses its loco-manipulation abilities to open
an oven by grasping the handle and moving backward simultaneously. Fig. 1 (f) shows that our tele-
operation system is capable of performing dual-hand collaborative tasks, such as one hand passing
an object to the other. Fig. 1 (g) demonstrates the robot’s ability to grasp objects from low ground,
while Fig. 1 (h) shows the robot’s capability to lift and place heavy items, such as a bundle of flowers,
into a box using both arms. Fig. 1 (i) demonstrates how the robot maintains balance with different
upper-body poses. In all these tasks, each robot is controlled by a single operator, and the com-
munication between the robot and operator is facilitated via Wi-Fi, without restricting the robot’s
movement space. These tasks showcase the robustness of our loco-manipulation policy and HOMIE
’s ability to teleopeate humanoids perform a wide range of complex tasks in various environments.

Pick & Place Scan Barcode Hand Over Open Oven
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Figure 11: Comparison of completion time to perform
desktop tasks between our hardware system and Open-
Television [7].

To demonstrate the efficiency of our tele-
operation system, we compare the task
completion time between our hardware
system and a VR-based method, Open-
Television [7], across four tasks as shown
in Fig. 10. These tasks are designed to
evaluate the system’s ability to precisely
control the robot’s arms and hands in var-
ious scenarios: Pick & Place: The robot
is required to grasp a tomato from the ta-
ble and place it into a fruit basket. Scan
Barcode: The robot must hold a scanner,
press its button using a finger, and scan a
barcode on a box. Hand Over: The robot
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needs to grasp a tomato and pass it to another hand. Open Oven: The robot must insert its finger
into a handle and open the oven door. These tasks test key capabilities of teleoperation, including
precise positioning, bimanual coordination, and fine-grained finger control. The results, shown in
Fig. 11, indicate that our system achieves task completion times nearly half of those of the VR-based
method. Notably, when tasks require precise positioning and orientation, the performance gap be-
tween our system and the VR method becomes even more pronounced. This is because VR-based
pose estimation tends to perform poorly in tangential directions, whereas our exoskeleton-based ap-
proach avoids such issues entirely. These results demonstrate that our exoskeleton system enables
operators to teleoperate robots more smoothly and efficiently, particularly in tasks requiring high
precision and dexterity.

4.3.2 User Study
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Figure 12: Teleoperation learning
curves[53]. New users can quickly
achieve expert speed on a new task with our
hardware.

We recruit five testers with varying heights, weights,
and genders to evaluate our hardware system for
teleoperating Unitree G1 in Hand Over task. All
novices don’t have any prior experience using the
system or teleoperating humanoid robots. Each trial
begins with the operator positioning both the robot
and a tomato at identical designated starting points.
Upon the ”Start” command, timing commences as
the operator guides the robot to first grasp the tomato
with one manipulator, then transfer it to the sec-
ondary manipulator. The trial concludes when the
tomato is securely gripped by the receiving manipu-
lator and the initial manipulator has fully retracted.
The elapsed time from initiation to successful trans-
fer completion is recorded as the ”completion time,”
serving as the primary metric for evaluating operator proficiency with this system. After a brief
tutorial, we record their completion times across five consecutive attempts. As shown in Fig. 12, the
average novice time progressively approached expert-level performance despite significant physical
differences among operators. This rapid improvement demonstrates our system’s intuitive usability.
This result also shows out system’s strong adaptability to diverse body types with straps. Tester
profiles with raw timing data are detailed in Appendix D.1, and the operational protocol in Ap-
pendix D.2.

4.3.3 Simulation

a b

1 2 3 4

Figure 13: Simulation migration. The upper row illustrates how the operator controls the robot
with FPV to perform loco-manipulation tasks. The lower row demonstrates the robot navigating
through realistic simulated environments.
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We transfer the trained policies for Unitree G1 and Fourier GR-1 from Isaac Gym to a scene devel-
oped by GRUtopia [54], which is based on Isaac Sim and IsaacLab [55]. This migration enables the
use of HOMIE to control robots within a variety of simulated environments. By leveraging these
simulated scenes, the robots can perform diverse loco-manipulation tasks more cost-effectively and
in a wider range of scenarios than would be feasible in the real world. As shown in Fig. 13, operators
can seamlessly direct the robots’ movements and actions in complex, realistic settings, demonstrat-
ing the versatility and applicability of HOMIE in diverse simulated contexts.

4.4 Autonomous Policy

4.4.1 Data Collection

To validate the effectiveness of the demonstratons collected by HOMIE for IL algorithms, we design
two distinct tasks: Squat Pick: squatting to pick a tomato on the lower sofa; Pick & Place: picking
and placing a tomato. We capture RGB images, robot states qt, the upper-body commands qupper,
and the locomotion commands Ct at 10Hz, and collect 50 episodes per task. The hardware setup for
image capture can be found in Fig. 14.

4.4.2 Training Setting

D435

D455

Figure 14: Hardware
Setup for Imitation
Learning

We adopt an end-to-end visuomotor control policy that takes images
and robot proprioceptive signals as inputs and continuously outputs
robot control actions. We employ a model named Seer [56], which fea-
tures an autoregressive transformer architecture. Multi-view images are
processed through a MAE-pretrained ViT encoder, and the features of
robot proprioceptive states are extracted using an MLP. These features
are subsequently concatenated into tokens. The information of these
tokens are then integrated by a transformer encoder. The transformer
encoder utilizes an autoregressive method to generate latent codes for
controlling upper arm joints, dexterous hand movements, and height
commands. The final control action output is generated by three distinct
regression heads. The whole network are optimized using SmoothL1
loss. In real-world training scenarios, we configure the sequence length
to 7, with both visual foresight and action prediction steps set to 3. We
employ the MAE pre-trained ViT-B encoder, using bfloat16 configura-
tion to speed up inference. This model is trained on eight A100 GPUs

for 40 epoches, and we select the checkpoint with the lowest average validation loss for evaluation.

Table 5: Success Rate of Imitation Learning Tasks
Tasks Squat Pick Pick & Place

Success Rate (%) 73.3 80.0

4.4.3 Learning Results

a b

Figure 15: Autonomous policy controlling robot to per-
form tasks. a: Squat Pick; b: Pick & Place.

After training with collected data,
we deploy the trained model to hu-
manoid robot in the real world, with
the trained πauto taking over operator
to control the robot.

We employ an Nvidia RTX 4080 to
run the trained model and send the
output to robot. The detailed deploy-
ment configuration are introduced in
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Appendix C. For evaluation, we adopt the metric Success Rate (SR) of each task. After testing each
proposed task for 15 times, we report the result as task success rate in Tab. 5. This result shows that
data collected by our teleopertion system can actually drive robots to complete complex whole-body
loco-manipulation tasks. Robots that controlled by πauto to perform proposed tasks are shown in
Fig. 15.

5 Conclusion and Limitations

In this paper, we introduce HOMIE, a novel humanoid teleoperation cockpit for humanoid loco-
manipulation. With a low-cost isomorphic exoskeleton hardware system and a humanoid loco-
manipulation policy trained by our RL training framework, HOMIE enables a single operator to
teleoperate the whole body of humanoid robots and perform diverse loco-manipulation tasks either
in the real world or in the simulation. Owing to the incorporation of an upper-body pose curriculum,
a height-tracking reward, and symmetry-based techniques, Our training framework enables the de-
velopment of robust loco-manipulation policies, ensuring stable walking and squatting capabilities
across diverse robotic platforms, even under dynamically changing upper-body poses. Leveraging
isomorphic exoskeleton arms, HOMIE enables significantly faster task execution than other sys-
tems, and our gloves are compatible with multiple kinds of dexterous hands. We present several
ablation studies and real-world experiments to validate the robustness and accuracy of our system.
In addition, we show the usability of collected data for IL.

Limitations Our policies still fall short of ensuring reliable traversal over diverse terrains. Addi-
tionally, the 15-DoF design of the motion-sensing gloves for the thumb does not fully align with
human anatomy, resulting in less intuitive and smooth operation when controlling certain dexterous
robotic hands. The current system lacks force feedback, which limits its effectiveness in applications
requiring precise haptic interaction. Furthermore, our exoskeleton doesn’t afford teleoperation for
waist even though our policy can support arbitrary upper-body poses. Addressing these limitations
will be a central focus of our future research efforts.

Acknowledgments

If a paper is accepted, the final camera-ready version will (and probably should) include acknowl-
edgments. All acknowledgments go at the end of the paper, including thanks to reviewers who gave
useful comments, to colleagues who contributed to the ideas, and to funding agencies and corporate
sponsors that provided financial support.

References
[1] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn. Humanplus: Humanoid shadowing and

imitation from humans. In Conference on Robot Learning (CoRL), 2024.

[2] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi. Learning human-to-humanoid
real-time whole-body teleoperation. arXiv preprint arXiv:2403.04436, 2024.

[3] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani, C. Liu, and G. Shi. Omnih2o:
Universal and dexterous human-to-humanoid whole-body teleoperation and learning. arXiv
preprint arXiv:2406.08858, 2024.

[4] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang. Expressive whole-body control for
humanoid robots. arXiv preprint arXiv:2402.16796, 2024.

[5] M. Ji, X. Peng, F. Liu, J. Li, G. Yang, X. Cheng, and X. Wang. Exbody2: Advanced expressive
humanoid whole-body control. arXiv preprint arXiv:2412.13196, 2024.

[6] C. Lu, X. Cheng, J. Li, S. Yang, M. Ji, C. Yuan, G. Yang, S. Yi, and X. Wang. Mobile-
television: Predictive motion priors for humanoid whole-body control. arXiv preprint
arXiv:2412.07773, 2024.

15



[7] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immer-
sive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

[8] S. Yang, M. Liu, Y. Qin, R. Ding, J. Li, X. Cheng, R. Yang, S. Yi, and X. Wang. Ace: A
cross-platform visual-exoskeletons system for low-cost dexterous teleoperation. arXiv preprint
arXiv:2408.11805, 2024.

[9] Y. Ze, Z. Chen, W. Wang, T. Chen, X. He, Y. Yuan, X. B. Peng, and J. Wu. Generalizable
humanoid manipulation with improved 3d diffusion policies. arXiv preprint arXiv:2410.10803,
2024.

[10] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.
Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv
preprint arXiv:2307.04577, 2023.

[11] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[12] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black. AMASS: Archive
of motion capture as surface shapes. In International Conference on Computer Vision, pages
5442–5451, Oct. 2019.

[13] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

[14] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In Conference on Robot Learning (CoRL), 2024.

[15] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024.

[16] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv preprint arXiv:2404.16823, 2024.

[17] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[18] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators, 2023.

[19] H. Fang, H.-S. Fang, Y. Wang, J. Ren, J. Chen, R. Zhang, W. Wang, and C. Lu. Airexo: Low-
cost exoskeletons for learning whole-arm manipulation in the wild. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 15031–15038. IEEE, 2024.

[20] A. Sivakumar, K. Shaw, and D. Pathak. Robotic Telekinesis: Learning a Robotic Hand Imitator
by Watching Humans on YouTube. In Proceedings of Robotics: Science and Systems, New
York City, NY, USA, June 2022. doi:10.15607/RSS.2022.XVIII.023.

[21] J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu. Okami: Teaching humanoid
robots manipulation skills through single video imitation. In 8th Annual Conference on Robot
Learning, 2024.
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A RL Training and Evaluation Details.

A.1 Network Architecture

We use a network architecture similar to that employed in a previous quadruped locomotion work
called HIM [48]. The architecture consists of three main components: an estimator network E , a
follow-up network N that takes the output of E as part of its input, and a critic network C. To-
gether, E and N form the actor module, as illustrated in Fig. 3. All networks are implemented
as 3-layer multilayer perceptrons (MLPs). Below, we describe their specific architectures, where
Njoints = Nlower +Nupper, with Nlower representing the number of lower-body joints and Nupper

the number of upper-body joints of the robot. Given that the dimensions of the input vectors are
as follows: Dim([Ct, ωt, gt]) = 3 + 3 + 3 = 9 and Dim([vx, ωyaw]) = 2, we can determine the
input dimensions for each network. The workflow is as follows: The sequence Ot−5:t is fed into the
encoder of E . The encoder processes Ot along with the ground truth values ([vx, ωyaw]) and outputs
the encoded information Ît. Ît is then passed to N and is also used for contrastive learning with the
output Î ′t of the target network. Combining Ît and Ot, N produces the action at, whose dimension
equals Nlower. The critic network C takes Ot and the ground truth ([vx, ωyaw]) as its input.

Listing 1: Architecture of Neural Networks Used by Our RL Training Framework.
(E): HIMEstimator(

(encoder): Sequential(
(0): Linear(in_features=6× (9 + 2×Njoints +Nlower), out_features=256,

bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=35, bias=True)

)
(target): Sequential(
(0): Linear(in_features=9 + 2×Njoints +Nlower, out_features=256, bias=

True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=32, bias=True)

)
(proto): Embedding(64, 32)

)
(N): Sequential(

(0): Linear(in_features=35 + 9 + 2×Njoints +Nlower, out_features=512,
bias=True)

(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=256, out_features=Nlower, bias=True)

)
(C): Sequential(

(0): Linear(in_features=2 + 9 + 2×Njoints +Nlower, out_features=512, bias
=True)

(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=256, out_features=1, bias=True)

)
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A.2 Reward Scales

We present the reward functions and their corresponding scales used in training the Unitree G1
and Fourier GR-1 robots in Tab. 6. Our reward functions adapt from PIM [38], a previous work
on humanoid locomotion, with several modifications and new additions. In addition to the ”Squat
knee” term rknee introduced in Sec. 3.2.3, we revise the ”Base height tracking” reward to align it
with other tracking terms, as our objective is to track the changing target base height. Furthermore,
we decompose the linear velocity tracking reward into separate components for x and y velocity
tracking to better distinguish the robot’s performance in these directions. To encourage the robot to
remain stationary when zero velocity is required, we introduce a ”stand still” reward. However, we
observe that this reward can cause the robot to become overly inclined to maintain stillness, leading
to instability during transitions between stationary and moving states. Experimental results indicate
that reducing the Kp of the ankle joint alleviates this issue. The rationale is that a lower Kp tends to
produce smaller torque outputs, making the ankle joint more responsive to positional changes when
the center of gravity shifts. This positional change provides proprioceptive feedback to the policy,
prompting necessary adjustments. The reward scales used in the training processes of these two
heterogeneous robots are largely similar, further demonstrating the generality of our framework.

A.3 Domain Randomization

To improve the robustness of the trained policy, we employ domain randomization to simulate sev-
eral kinds of random noises that may occur while deploying in the real world. The terms used for
randomization, along with their descriptions and ranges, are listed in Tab. 7. Specifically, we intro-
duce a term to randomize the mass of the hands, enhancing the robot’s capability to hold objects
effectively. The ranges for the Unitree G1 and Fourier GR-1 are the same.

A.4 Other Key Parameters

We list other key parameters used to train the Unitree G1 and Fourier GR-1 in Tab. 8. The same
settings are applied for both training and evaluation. Additionally, we adjust the base height target
value when the environment is used to train squatting; otherwise, the robot is required to track a
constant height value while walking. Terms marked with ∗ indicate that exceeding the specified
range will result in penalties through corresponding rewards.

A.5 Function Visualization

For better understanding of the equations we proposed in Eq. (3) and Eq. (4), we visualize them in
Fig. 16. As shown in the left figure, p(x|ra) can take any value in the range [0, 1] when ra ∈ [0, 1).
When ra is small, it is more likely to take smaller values of x. As ra increases, the probability of
taking larger values of x also increases. When ra → 1, the entire distribution becomes U(0, 1). In
the right figure, we can observe that regardless of the position of (h, q), rknee encourages qknee,t
to change in a direction that brings hr,t closer to ht. This achieves the goal of guiding the robot to
track the base height by either bending or straightening its knees.

A.6 Terrain Traverse

In order to expand the feasible workspace of robots, we integrate our training framework with a
previous humanoid locomotion method called PIM [38] to enable our robots to traverse stairs. As
shown in the left figure of Fig. 17, we successfully train the Unitree G1 in Isaac Gym to traverse
high stairs. However, when deploying the trained policy in the real world, as shown in the right
figure of Fig. 17, the robot struggles to walk stably and collides with the stair, despite eventually
stepping onto it. This instability arises because the head of the Unitree G1 cannot remain fixed,
causing movement of the LiDAR mounted on it. Additionally, the elevation map acquisition method
used by PIM lacks high resolution, further exacerbating the sim2real gap. In the future, we will
explore methods to truly enable our robots to traverse any terrain effectively.
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Table 6: Reward Functions and Weights Used to Train Low-manipulation Policy
Reward Equation Weight of Unitree G1 Weight of Fourier GR-1

x Vel. tracking exp
{
−4∥vx − vr,x∥22

}
1.5 1.5

y Vel. tracking exp
{
−4∥vy − vr,y∥22

}
1.0 1.0

Ang. Vel. tracking exp
{
−4 ∥ωyaw − ωr,yaw ∥2

}
2.0 1.0

Base height tracking exp
{
−4 ∥ht − hr,t∥2

}
2.0 2.0

Lin. Vel. z v2r,z -0.5 -0.5

Ang. Vel. xy ∥ωr,xy∥22 -0.025 -0.025

Orientation ∥gx∥22 + ∥gy∥22 -1.5 -1.5

Action rate ∥at − at−1∥22 -0.01 -0.01

Hip joint deviation
∑

hip joints
|θi − θdefaulti |2 -0.2 -0.5

Ankle joint deviation
∑

ankle joints
|θi − θdefaulti |2 -0.5 -0.75

Squat knee −∥(hr,t − ht)× (
qknee,t−qknee,min

qknee,max−qknee,min
− 1

2 )∥ -0.75 -0.75

Dof Acc.
∑

all joints

∥q̇t,i−q̇t−1,i∥2

dt −2.5× 10−7 −2.5× 10−7

Dof pos limits
∑

all joints
outi -2.0 -2.0

Feet air time 1{first contact}(Tair − 0.5) 0.05 0.05

Feet clearance
∑
feet

(
ptarget
z − piz

)2 · vixy -0.25 -0.25

Feet lateral distance |yBleft foot − yBright foot| − dmin 0.5 0.5

Knee lateral distance |yBleft knee − yBright knee| − dmin 1.0 1.0

Feet ground parallel
∑
feet

V ar(Hi) -2.0 -2.0

Feet parallel V ar(D) -3.0 -3.0

Smoothness ∥at − 2at−1 + at−2∥22 -0.05 -0.05

Joint power |τ∥θ̇|T
∥v∥2

2+0.2∗∥ω∥2
2

−2.0× 10−5 −2.0× 10−5

Feet stumble 1 {∃i, |Fxy
i | > 3 |F z

i |} -1.5 -1.5

Torques
∑

all joints
| τi
kpi

|22 −2.5× 10−6 −2.5× 10−6

Dof Vel.
∑

all joints
θ̇i|22 −1× 10−4 −1× 10−4

Dof Vel. limit
∑

all joints
RELU(θ̂i − θ̂max

i ) −2× 10−3 −2× 10−3

Torque limits
∑

all joints
RELU(τ̂i − τ̂max

i ) -0.1 -0.2

No fly 1{only one feet on ground} 0.75 0.5

Joint tracking error
∑

all joints
|θi − θtargeti |2 -0.1 -0.25

Feet slip
∑
feet

|vtoot
i | ∗ ∼ 1new contact -0.25 -0.25

Feet contact force
∑
feet

RELU(F z
i − Fth) −2.5× 10−4 −2.5× 10−4

Contact momentum
∑
feet

|vzi ∗ F z
i | 2.5× 10−4 2.5× 10−4

Action vanish
∑

all joints
(max{0, ai,t − ai,max}+min{0, ai,min − ai,t}) -1.0 -1.0

Stand still Num{feet not on ground} × 1stand still -0.15 -0.2

B Hardware System Details

In Fig. 2, we present the hardware system design framework of HOMIE, which comprises three
integral components: isomorphic exoskeleton arms, a pair of motion-sensing gloves, and a pedal.
The primary structural elements of these components are fabricated using 3D printing technology
with PLA basic material. PLA provides adequate strength at a low cost, and 3D-printed components
can be easily built and modified. Building hardware with other materials is feasible using our CAD
models.
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Table 7: Randomization Terms, Description, and Ranges
Term Description Ranges

Actuation offset (N ·m) Random torque offsets applied to the computed motor torques [−0.05, 0.05]
Torso payload mass (Kg) Additional random mass attached to the torso and hand links [−5.00, 10.00]
Hand payload mass (Kg) Additional random mass attached to the hand links [−0.10, 0.30]
CoM displacement (m) Random offsets applied to the center of mass (CoM) position of the torso link [−0.1, 0.1]
Link mass (−) Random scaling factors applied to the masses of the robot’s links [0.80, 1.20]
Friction coefficient (−) Random friction coefficients applied to the robot’s links [0.10, 2.00]
Restitution (−) Random restitution coefficients applied to the robot’s links [0.00, 1.00]
Kp (N/rad) Random scaling factors applied to the proportional gain (Kp) of the robot’s joints [0.90, 1.10]
Kd (N/(m/s)) Random scaling factors applied to the derivative gain (Kd) of the robot’s joints [0.90, 1.10]
Initial joint pos scale (−) Random scaling factors applied to the initial positions of the robot’s joints [0.80, 1.20]
Initial joint pos offset (rad) Random offsets added to the initial positions of the robot’s joints [−0.10, 0.10]
Push robot (m/s) Random x and y velocities applied to the robot to simulate external pushes [−0.50, 0.50]
Dof pos obs (rad) Random dof velocity added to the observation of joint positions [−0.02, 0.02]
Dof vel obs (rad/s) Random dof velocity added to the observation of joint velocities [−2.00, 2.00]
Ang vel obs (rad/s) Random dof velocity added to the observation of body angular velocities [−0.50, 0.50]
Gravity obs (m/s2) Random dof velocity added to the observation of gravities projected to robot’s body frame [−0.05, 0.05]

Table 8: Key Parameters Used to Train Robots

Term Unitree G1 Fourier GR-1

Height target while walking (m) 0.74 0.90
X Lin. Vel. range (m/x) [−0.80, 1.20] [−0.80, 1.20]
Y Lin. Vel. range (m/s) [−0.50, 0.50] [−0.80, 0.80]
Yaw Ang. Vel. range (rad/s) [−0.80, 0.80] [−1.00, 1.00]
Squat height range (m) [−0.24, 0.74] [−0.30, 0.90]
Soft dof pos limit scale * (−) 0.975 0.975
Soft dof vel limit scale * (−) 0.80 0.80
Soft dof torque limit scale * (−) 0.95 0.95
Max contact force * (N) 400.00 500.00
Least feet distance * (m) 0.20 0.20
Least knee distance * (m) 0.20 0.20
Most feet distance * (m) 0.35 0.40
Most knee distance * (m) 0.35 0.40
Clearance height target * (m) 0.14 0.15
Push interval (s) 4.00 4.00
Upper-body poses resampling interval (s) 1.00 1.00
Commands resampling interval (s) 4.00 4.00

Figure 16: Visualization of proposed functions. Left: Visualization of p(x|ra) in Eq. (3). Right:
Visualization of rknee in Eq. (4).

B.1 Isomorphic Exoskeleton Details

The Isomorphic Exoskeleton adopts a hollowed-out and mortise-and-tenon design, which not only
ensure structural integrity but also significantly reduce the overall weight and assembly complexity,
as well as facilitate the routing of servo motor connections. The structural components are fixed to
the servos through four types of connection methods: two methods that directly connect to the servo
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Figure 17: Training robots to traverse stairs. Left: Training in simulation; Right: Deployment in the
real world.

body Fig. 18(a), (b) and two methods that connect to the servo disks Fig. 18(c) To further enhance
stability and strength, additional servo disks are installed on the opposite side of the servos at certain
joints, allowing the structural components to connect directly to the servo disks on both sides, as
illustrated in Fig. 18(c). We present the physical models of the Isomorphic Exoskeletons adapted for
the Unitree G1 and Fourier GR1 in Fig. 19(a). Due to the different configurations of the Humanoid,
there are significant structural differences in the wrist and shoulder components between the two sets
of Isomorphic Exoskeletons, while the other components and their usage remain identical. The two
sets of Exoskeletons share the same back connector, which integrates functionalities for operator
attachment, docking station fixation, U2D2 placement, and bilateral arm linkage, as illustrated in
Fig. 19(b).

Figure 18: The assembly methods of the servos and structural components, along with the screw
requirements, are as follows: (a), (b:) The structural components are directly assembled and fixed
to the servo body; (c:) The structural components are assembled and fixed to the servos via one or
two servo disks, respectively.

Figure 19: (a:) Physical models of two different Humanoids’ Isomorphic Exoskeletons, equipped
with servos, back connectors, and motion-sensing gloves; (b:) Schematic diagram of the back con-
nector assembly and functionality, where the connectors can be fixed using a dovetail structure and
plugs. The U2D2 board and docking station are external physical components.
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B.2 Motion-sensing Glovesc Details

The Unitree G1 is equipped with the Unitree Dex3-1, a three-fingered dexterous hand with 7
DoF(three in the thumb and two each in the middle and index fingers). Our motion-sensing gloves
can track up to 15 DoF, enabling direct mapping of thumb, middle finger, and index finger move-
ments to the corresponding fingers on the Unitree Dex3-1. The motion-sensing gloves are secured
to the palm via a length-adjustable elastic strap and connected to the fingertips through five smaller
length-adjustable elastic straps, which facilitate finger fixation and critical angle mapping, ensuring
adaptability to operators with varying hand sizes. A microcontroller is embedded within the palm
section of the gloves, featuring exposed ports that allow direct connection to the 15 Hall sensor
modules located at the fingers, as depicted in Fig. 20(a). For the joint mapping angle range and ac-
quisition accuracy of each finger, we have listed the data in Tab. 9. Each finger of the glove has three
degrees of freedom, which are shown in Fig. 20(a), namely the pitch motion of the fingertip (α),
the pitch motion of the finger pad (β), and the yaw motion of the finger pad (γ). Due to differences
in the structural length of the thumb, the pinky, and the other three fingers, we have divided them
into three parts. It should be noted that the angular movement of the finger joints does not exhibit
a significant linear relationship with the changes in the Hall sensor readings caused by the induced
magnetic field variation. This is related to the positioning of the magnets and Hall sensors, as well as
the structural design of the gloves. In our motion-sensing gloves design, the relationship between the
two follows an exponential pattern within their transformation range, especially in the pitch motion
of the fingers and finger pads, from open to fist. Furthermore, our gloves have undergone control
testing on the Inspire Dexterous Hands RH56DFTP actual device, illustrated in Fig. 20(b).

Figure 20: (a): The schematic diagrams of the three degrees of freedom for each finger and the
rotation of the magnet affecting the magnetic field direction. (b): Physical images of the Inspire
Hands actual device in both open and clenched fist states.

Table 9: 15 DoF Joint Mapping Angle Range and Acquisition Accuracy. (Acc:accuracy)
Term Description Angle Range Acquisition Range Acquisition Acc.

αthumb Pitch motion of the thumb tip 65° 528 units 0.123°/unit
βthumb Pitch motion of the thumb pad 100° 1024 units 0.098°/unit
γthumb Yaw motion of the thumb pad 90° 832 units 0.108°/unit
αpinky Pitch motion of the pinky tip 70° 880 units 0.080°/unit
βpinky Pitch motion of the pinky pad 90° 1136 units 0.079°/unit
γpinky Yaw motion of the pinky pad 45° 416 units 0.108°/unit
αother Pitch motion of the index, middle, and ring finger tips 70° 928 units 0.075°/unit
βother Pitch motion of the index, middle, and ring finger pads 90° 1072 units 0.088°/unit
γother Yaw motion of the index, middle, and ring finger pads 40° 512 units 0.078°/unit

B.3 Foot Pedal Details

The foot pedal consists of three small pedals and two mode-switching buttons, all fixed onto a large
base plate, as shown in Fig. 6. The operator can press the small pedals, which cause the structural
components to rotate, thereby driving the potentiometer at the bottom to rotate. The spring within the
structure ensures that when the operator releases the pedal, it springs back, returning to the initial
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position, as shown in Fig. 21(a). The potentiometer we use, model 0932, has a range of angular
movement of 270°, with the actual pedal movement range being 40°. As for the mode-switching
buttons, the operator can press the buttons on the surface, which will cause a change in the high and
low levels of the micro switch, as shown in Fig. 21(b). The function of the tapered spring is the same
as the spring in the small pedals.

Figure 21: (a): Schematic diagram of the small pedal principle, where the operator’s foot press
drives the potentiometer to rotate. (b): Schematic diagram of the mode-switching buttons, where the
operator’s foot press changes the state of the micro switch.

C Deployment Details

C.1 System Deployment

We deploy our trained policy πloco directly onto the Unitree G1’s onboard computing unit—a Nvidia
Jetson Orin capable of 275 TOPS—allowing πloco to run at 50 Hz using the robot’s state information
to control walking and squatting, matching the frequency used during Isaac Gym training. We use
an isomorphic exoskeleton-based approach to control the robot, as shown in Fig. 22(b). A CPU-
only host computer connects via four data lines to the isomorphic arm, left and right gloves, and the
pedal’s microcontroller, reading real-time data. It then transmits qupper and Ct to the G1 over Wi-Fi
via TCP, enabling the robot to set upper-body poses and compute lower-body actions at through
πloco for full-body control, while simultaneously returning real-time images to the host. The D455
camera provides 640×480 images at roughly 30Hz over TCP. Due to hardware constraints and TCP
network limitations, the G1 cannot directly process high-frequency data. In our deployment, we
therefore update the arm joint position targets at 10Hz and interpolate these targets 50 times to drive
the robot’s upper body smoothly. However, if a robot can accept higher-frequency control signals,
our system can support an update frequency over 200Hz.
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Figure 22: Deployment of our system with cockpit and autonomous policy. (a): Deployment with
robot controlled by isomorphic exoskeleton cockpit. (b): Deployment with robot controlled by
autonomous policy πauto.
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C.2 IL Deployment

Once we train the policy πauto using the method described in Sec. 4.4.2, we deploy it as illustrated
in Fig. 22(b). We connect the Unitree G1 to a host equipped with an Nvidia RTX 4080 GPU via
an Ethernet cable, enabling wired TCP communication. This wired setup provides the faster data
transfer needed for transmitting images. The runtime involves two processes on the G1, labeled 1
and 2, and one process on the host, labeled 3. Process 1 captures images from the D455 camera
mounted on the G1’s head and from the D435 cameras on its arms, along with the robot’s joint
information qt,i. This data is then sent to the host. Process 3 receives the inputs, performs inference
of πauto to compute Ct and qupper, and returns these results to the G1. Finally, process 2 controls
the robot’s motion using the inferred commands. The entire loop runs at a frequency of 10Hz.

C.3 Simulation Deployment

We train the policies in Isaac Gym, which is sufficient for training locomotion policies but lacks
the capability to simulate realistic scenes. Therefore, we employ a sim2sim process to transfer our
policies to Isaac Sim. The core of this process involves aligning the joint order and quaternion
conventions between the two platforms. In Isaac Gym, the joint order follows depth-first ordering,
and quaternions are formatted as xyzw. In contrast, Isaac Sim uses breadth-first ordering for joints
and wxyz for quaternions [55]. As a result, both the neural network’s observation Ot−5:t and the
computed action at must undergo corresponding order adjustments. To simulate the real-world
camera perspective in the simulation, we directly add a Camera to the robot’s USD file and place its
prim path under the prim path of the link to which it is bound. This ensures that the camera moves
along with the corresponding link during motion in the simulation. The camera parameters, such as
resolution and focal length, are configured to match those used in the real world.

D User Study

D.1 User Study Raw Data

We list raw data got in user study in Tab. 10. Our testers represented a diverse spectrum of heights,
body types, and genders performing handover tasks. All participants were equipped with identi-
cal exoskeleton hardware throughout trials. Despite anthropometric variations from the system’s
design specifications, every tester achieved expert-level proficiency within minimal practice time,
demonstrating the system’s strong adaptability to diverse body types and inherent user-friendliness.

Table 10: User Study Raw Data
User ID User Height (cm) User Weight (kg) User Gener Time1(s) Time2(s) Time3(s) Time4(s) Time5(s)

1 185 71 Male 34 28 15 16 9
2 185 90 Male 19 16 13 7 6
3 160 55 Female 19 28 14 17 12
4 170 63 Male 29 21 14 13 6
5 175 80 Male 23 22 15 12 7

Average - - - 24.8 23.0 14.2 13.0 8.0

D.2 Teaching Procedure

The standardized onboarding protocol comprises six key phases as shown below, with operational
objectives paired with corresponding verbal guidance examples:

• Customized exoskeleton fitting with adjustable straps for user-centric anthropometric adap-
tation: “Please wear the exoskeleton backpack-style by fastening the two back straps, then
secure the finger straps on each fingertip. Adjust strap tightness according to your comfort
level.”
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• Ergonomic positioning featuring seat-height optimization and pedal placement calibration:
“Please sit on the chair and adjust the pedal distance to your legs for optimal comfort. Try
pressing the pedal to experience the operation.”

• Systematic briefing on pedal control layout with functional mapping visualization: “The
white center pedal controls robot squatting. The large right pedal controls forward/back-
ward movement - press the small right pedal to toggle direction. The large left pedal con-
trols turning, with its small pedal switching left/right orientation.”

• Motion-sensing glove familiarization through bidirectional mapping demonstrations: “The
dexterous hand control program is now active. Move your fingers to experience how each
robotic finger’s 2-3 joints correspond to your glove’s knuckle joints and fingertip sensors.”

• Immersive exoskeleton-arm coordination training via real-time manipulation exercises:
“The full-body control program is activated. Move your arms to observe mirrored robot
movements. Use pedals for squatting or locomotion commands.”

• Structured task execution guidance for teleoperation mastery: “You may now combine
exoskeleton movements with pedal operations to complete loco-manipulation tasks through
the humanoid robot.”

The entire protocol is typically completed within 5 minutes from initial fitting to task execution.
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