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Abstract

Continual learning (CL) exhibits a learning001
ability to well-learn all sequentially seen tasks002
drawn from various domains. Yet, existing se-003
quential training methods fail to consolidate004
learned knowledge from earlier tasks due to005
data distribution shifts, hereby leading to catas-006
trophic forgetting. We devise an optimization-007
based meta learning framework for CL in ac-008
cordance with MAML, where query samples009
are edited for generalization of learned knowl-010
edge. We conduct extensive experiments on011
text classification in a low resource CL setup,012
where we downsize training set to its 10%.013
The experimental results demonstrate the supe-014
riority of our method in terms of stability, fast015
adaptation, memory efficiency and knowledge016
retention across various domains.017

1 Introduction018

Existing sequential learning poses a challenge.019

Weights constantly vary along with the change of020

probability distribution, in which important infor-021

mation from earlier tasks can be easily erased or022

overwritten by information from the latest tasks.023

Consequently, catastrophic forgetting (McCloskey024

and Cohen, 1989) occurs and harms performance025

on preceding tasks. To address catastrophic for-026

getting, a continual learning (CL) method aims to027

guarantee the stability of handling various tasks028

that have been learned, while showing plasticity on029

the novel domain via previously acquired knowl-030

edge. The majority of CL methods tackle catas-031

trophic forgetting in attempts to realise general-032

ization or/and understand uncertainty using deep033

neural networks.034

Conventional machine learning improves de-035

cision making by training on multiple data in-036

stances. Whereas, meta learning learns an opti-037

mal learning algorithm by ingesting multiple learn-038

ing episodes. Meta learning has facilitated the re-039

cent work of CL mainly by Model-Agnostic Meta-040

Learning (MAML) (Finn et al., 2017) model. Exist- 041

ing CL models exploit MAML for fast adaptation to 042

a novel domain, coupling with extra means of pre- 043

venting forgetting, e.g., experience replay (Wang 044

et al., 2020; Holla et al., 2020; Joseph and Bala- 045

subramanian, 2020; Ho et al., 2021), introducing 046

regularisation term in loss (Acar et al., 2021). 047

We utilise meta learning to address CL from a 048

different angle. We argue that the nature of contin- 049

ual learning can be interpreted as a form of meta 050

learning. In a meta learning process, an inner loop 051

algorithm models over a task, while an outer loop 052

algorithm harnesses the optimization of the inner 053

loop algorithm as a result of realising an outer 054

objective. Limitation on shifting of weights in 055

CL is imperative to alleviate catastrophic forget- 056

ting, referring to a major research problem. In 057

this case, we adapt meta learning framework to 058

CL. Intuitively, the outer algorithm constrains the 059

task-specific learning algorithm by governing its 060

optimisation process on a novel domain. The outer 061

objective can be thereby defined as the generaliza- 062

tion of entire learned knowledge from preceding 063

tasks, such that the model is hardly prone to catas- 064

trophic forgetting. 065

Recent literature (Ho et al., 2021) has manifested 066

that existing CL methods have the instability is- 067

sue, where model performance severely depends 068

on input sets orders. Such an issue yields a hurdle. 069

The deficiency of existing CL models can be easily 070

masked or neglected. Therefore, we conduct exten- 071

sive experiments on Yelp, AGNews and Amazon 072

datasets (Zhang et al., 2015) to testify the stability 073

of MAML-CL. Additionally, further analysis on 074

MAML-CL exhibits its outstanding performance 075

as a CL learner. 076

We summarize our main contributions as: 077

• We fully exploit the potential of meta learning 078

for CL. We propose a model, namely MAML- 079

CL, to address CL problems by simply editing 080

query information of MAML. 081
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• MAML-CL enhances the effectiveness of082

MAML for knowledge retention across var-083

ious domains. Under the same FOMAML084

framework, our model outperforms recent CL085

models by a large margin.086

• With the same sample selection criteria,087

MAML-CL realizes sample efficiency and fur-088

ther optimizes memory footprints.089

• In a low resource setup, we prove the superi-090

ority of MAML-CL in terms of stability, fast091

adaptation, forgetting mitigation and memory092

efficiency.093

2 Related Work094

Existing CL methods can be categorised into095

two mainstreams, i.e., memory replay-based ap-096

proaches (de Masson d’Autume et al., 2019;097

Chaudhry et al., 2019) and regularization-based098

approaches (Aljundi et al., 2018; Huang et al.,099

2021). In general, memory replay-based methods100

address catastrophic forgetting by revisiting old101

samples. Regularization-based methods employ102

gradients or parameters constraints to achieve gen-103

eralization, thereby retaining knowledge. Due to104

the complexity of deep neural networks, memory105

replay-based approaches are broadly deemed as a106

plausible means for continual learning in NLP.107

Recently, meta learning has been introduced into108

CL models, considering its ability of fast adap-109

tation and knowledge transfer. Existing works110

employ MAML to improve initial parameters of111

the model, such that it can fast adapt to various112

domains with few learning samples (Holla et al.,113

2020; Ho et al., 2021) or find an optimal initializa-114

tion state to perform episodic experience rehearsal115

(Wang et al., 2020). Additionally, Joseph and Bal-116

asubramanian (2020) uses preceding task-specific117

priors from meta distribution to replay previous118

parameters and consolidate the CL model. Reptile119

(Nichol et al., 2018) is also leveraged in some CL120

models to regularize the objective of experience121

replay (Riemer et al., 2019) or meta updates param-122

eters via augmented training set (Obamuyide and123

Vlachos, 2019).124

3 Problem Formulation125

A CL model f with a learnable parameters θ over126

a parameters space Θ sequentially ingests a stream127

of labeled samples {(x, y)} drawn from various128

data distributions over one pass. Concretely, it129

considers a sequence of K tasks {T1, T2, ..., TK}. 130

Given a task Tk and a ground truth label set Lk, the 131

initial parameters in Tk, namely θk, is a parameters 132

set that have been finetuned in the last task Tk−1, 133

i.e., θ̃k−1. Ideally, we expect a CL learner f : (1) 134

to update parameters from θ̃k−1 to θ̃k for Tk, such 135

that the loss LTk on the set of labeled instances 136

{(xk, yk)} is minimal, 137

θ̃k = arg min
θk∈Θ

LTk(θk), where θk = θ̃k−1

(1) 138

(2) to perform well with the learned θ̃k on all pre- 139

ceding tasks {T1, T2, ..., Tk−1} without the need of 140

presenting all previously seen training data. 141

Assuming that all tasks are equally important, 142

the objective is thereby minimising the expected 143

risk of |k| tasks that have seen so far, with respect 144

to θ̃k, 145

min
θ̃k

k∑
i=1

ETi [LTi(θ̃k)] (2) 146

CL setup allows models to preserve a certain 147

amount of training samples from previous tasks. 148

Whereas, optimizing memory footprint is also re- 149

garded as one major research problem in CL. There- 150

fore, we limit the memory budget of f to a constant 151

size B. That is, at step k, we allow the learner f 152

to only store samples from {T1, T2, ..., Tk−1} with 153

the amount less than or equals to B. 154

3.1 Online Meta Learning 155

A meta learner is able to perform fast adaptation 156

by learning an optimal initial state of an algorithm. 157

Given a task T , a set of initial parameters φ is over 158

a parameters space Φ. We expect φ that facilitates 159

the model to yield a low loss after m updates in T . 160

That is, 161

min
φ

ET [LT (UmT (φ))] (3) 162

where UmT is the update operation that performs 163

m times gradient-based updates on parameters φ, 164

using samples drawn from p(T ). In MAML, the 165

objective is to learn an algorithm with optimal ini- 166

tial parameters φ∗ such that the model efficiently 167

solves specified problems through example prob- 168

lem instances. Thereby, test samples that specified 169

problems are also required for loss computation, re- 170

ferring to as query samples Q. While, the training 171

samples are known as support samples S in meta 172
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learning. The training objective is,173

min
φ

ET [LT ,Q(UmT ,S(φ))] (4)174

In an online meta learning setup, each episode175

contains m batches as the support set and each task176

has multiple episodes as multiple training iterations.177

Note that the initial parameters φk is φ∗k−1, i.e., the178

optimal initial state derived after learning Tk−1. In179

an inner loop optimization process, MAML per-180

forms m steps of SGD on parameters φk.181

φ̃k = UmTk,Sk
(φk)

= φk − α∇φkLTk(φk)

= φk − α∇φk
m∑
i=1

L(fφk(Sik))

(5)182

where α denotes the step size as a hyperparameter.183

φk is finetuned by gradients of loss on the support184

set Sk for task-specific learning on Tk. Then, the185

updated φ̃k are further optimised using the query186

set Qk to achieve the meta objective.187

3.2 Catastrophic Forgetting188

Performance degradation caused by catastrophic189

forgetting occurs in existing CL models, mainly190

due to the learning goal as shown in Equation 2.191

The optimizee for a task Tk in CL is generally192

the parameters that updated for current task Tk, θ̃k.193

The optimization direction indicates such a learning194

process solely focus on minimising expected loss195

for Tk, resulting in θ̃k is heavily skewed towards196

the probability distribution p(Tk). It is harmful to197

sequential learning by neglecting the next optimal198

update step, leading to catastrophic forgetting.199

Recently, some CL methods (Riemer et al., 2019;200

Obamuyide and Vlachos, 2019; Holla et al., 2020;201

Wang et al., 2020; Ho et al., 2021) exploit meta202

learning. In general, query set for existing CL meth-203

ods (Holla et al., 2020; Wang et al., 2020; Ho et al.,204

2021) under MAML framework contains examples205

merely from current task, and episodically adds pre-206

viously seen samples to diminish forgetting. Con-207

sequently, the meta objective mainly focuses on the208

expected risk of Tk and pays a little attention on209

preceding tasks, namely T1, T2, ..., Tk−1, thereby210

failing to achieve CL objective in Equation 2 and211

inducing catastrophic forgetting.212

4 Edited MAML for Continual Learning213

We propose a meta learning framework for CL,214

namely MAML-CL. Specifically, we utilise FO-215

MAML, a simple well-known parametric fast adap- 216

tation method. MAML-CL perform query informa- 217

tion editing in accordance with prototypes-guided 218

sample selection criteria, i.e., the choice of repre- 219

sentative examples to achieve the generalisation for 220

all task that have been learned. In such a way, we 221

address CL problems. 222

Query Information Editing To retain consis- 223

tency on objective loss under MAML framework 224

with CL, query information is prominent. Hence, 225

we expect query set Qk to contain examples that 226

generalize tasks drawn from various probability dis- 227

tributions of T = {T1, ..., Tk−1, Tk}. To optimize 228

memory footprint, efficient sample selection crite- 229

ria should opt for representative samples for each 230

task. Such that, Qk =
∑k

i=1Qk,i where Qk,i is a 231

set of representative examples for Ti while learning 232

Tk. The meta-objective with respect to φk is, 233

min
φk

ET [LT ,Qk
(UmTk,Sk

(φk))]

= min
φk

k∑
i=1

ETi [LTi,Qk,i
(UmTk,Sk

(φk))]

≈ min
φk

k∑
i=1

ETi [LTi(φ̃k)]

(6) 234

Through simply editing query information, the ex- 235

pected loss of meta objective (in Equation 6 ) is 236

consistent with that of CL objective (in Equation 2). 237

While, the same optimizee as MAML guarantees 238

that the optimization process performs in a meta 239

learning manner. 240

Prototypes-guided Sample Selection Schemes 241

The choice of query samples should provide gen- 242

eralized information regarding all tasks that have 243

been seen, T1, T2, ..., Tk. We apply prototypical 244

network (Snell et al., 2017) to generate prototypes 245

and use prototypes as selection criteria. Each pro- 246

totype is the mean vector of feature representations 247

of a specified problem(e.g., a class for a classifica- 248

tion task). This selection scheme chooses a certain 249

amount of examples with the shortest Euclidean dis- 250

tance to prototypes in a ranking-based manner, and 251

deem these examples as representatives samples 252

that can generalize all tasks that have been learned. 253

Note that the prototypical network is constantly 254

optimized and corrects prototypical information in 255

the training process. 256
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Algorithm 1: Meta Training
Input: Initial model parameters θ = φproto ∪ φpred,

support set S, support set buffer size m,
memory bufferM, inner-loop learning rate α,
outer-loop learning rate β.

Output: Trained model parameters θ
1 for i = 1, 2, ... do
2 [Inner Loop]
3 Si ← m batches from the stream
4 Lproto ← MemoryModule(φproto, Si,M, n)

5 Linner = Lproto + LCE(θ, Si)

6 φ̃pred = SGD(Linner,φproto,φpred, Si, α)

7 [Read Function]
8 Qi ← Sample(M, all)
9 or Qi ← RandomSample(M,m)

10 [Outer Loop]
11 J(θ) = LCE(φproto, φ̃pred, Qi)

12 θ ← Adam(J(θ), β)
13 if all the training data is seen then
14 Stop Iteration
15 end
16 end

Knowledge Transfer A CL model is expected to257

acquire the ability of knowledge transfer between258

different tasks. While, transfer learning aims to259

ensure the learning process of a task can benefit260

from acquired knowledge from another domain.261

Thereby, transfer learning is substantial in CL.262

Andrychowicz et al. (2016) state that the problem263

of transfer learning can be cast as one of generali-264

sation problems in meta learning. Given inner-loop265

updated parameters φ̃k that are heavily biased to-266

wards the distribution of the current domain p(Tk),267

MAML-CL interprets outer loop optimization as a268

generalization problem on all tasks that have been269

learned. Such a meta objective depicts a CL sce-270

nario and solves the same expected loss. In such a271

way, MAML-CL enables knowledge transfer to oc-272

cur not only within the current learning domain but273

also between all domains that have been learned.274

Fast Adaptation The optimizee in MAML-CL275

is initial parameters φk with optimization direction276

φk − φ̃k, implying the concern of optimization di-277

rection for the next update step. MAML-CL finds278

an optimal initial state with few update steps, such279

that yielding a minimal expected loss on all learned280

tasks. In other words, it learns optimal update di-281

rections on all learned tasks. By preserving optimi-282

sation information on all tasks, MAML-CL enables283

fast adaptation across all learned domains, thereby284

catastrophic forgetting mitigation.285

Algorithm 2: MemoryModule(φproto, Si,M, n)

Input: Initial model parameter φproto, support set
Si, memory bufferM, number of selected
samples per class n.

Output: Prototypical network loss LP , updated
memory bufferM

1 [Prototypical Network]
2 for class l in Si do
3 Sl ← RandomSample(Si,l, NS)
4 Ql ← RandomSample(Si,l\Sl, NQ)

5 cl ← 1
|Sl|

∑
(xi,yi)∈Sl

hφproto
(xi)

6 for (x, y) in Ql do
7 LP ← LP + 1

NQ
[d(hφproto

(x), cl) +

log
∑
l′
exp(−d(hφproto

(x), cl))]

8 end
9 Write or update cl inM

10 end
11 [Samples Selection]
12 for class l inM do
13 Xl← KNN (DM ∪ Si, cl, n)
14 Updates Xl inM
15 end

Algorithm 3: Meta Inference
Input: Initial model parameters θ = φproto ∪ φpred,

support set buffer size m, memoryM, batch
size b, inner-loop learning rate α, test set T .

Output: Predictions on the test set
1 S ← Sample(M,m · b)
2 Q← T

3 φ̃pred = SGD(L,φproto,φpred, S, α)

4 Predict(Q,φproto, φ̃pred)

5 Model 286

We incorporate the devised MAML framework 287

with a prototypes-guided samples selection strat- 288

egy (Ho et al., 2021) to address text classification. 289

We employ First-order MAML (FOMAML) (Finn 290

et al., 2017) so as to reduce computational com- 291

plexity of MAML. 292

The proposed CL model fθ consists of a rep- 293

resentation learning network (RLN), hφproto
with 294

parameters φproto , and a prediction network (PN) 295

gφpred
with parameters φpred. In particular, RLN 296

trains a model hφproto
(·) : X → c ∈ RD×N where 297

c denotes a prototype with a D-dimensional repre- 298

sentation and N is the number of classes. While, 299

gφpred
(·) learns a mapping : c→ Y ∈ RN . We add 300

a single-hidden-layer feed-forward neural network 301

on top of a encoder to formulate a prototypical net- 302

work and use a single linear layer as the prediction 303

learning network. 304
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Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

MAML 34.58± 6.98 38.80± 11.19 32.36± 16.81 29.32± 14.23 22.55± 12.93 27.96± 3.88

Replay 42.52± 3.87 29.81± 0.19 29.64± 0.43 46.50± 5.31 40.43± 2.29 38.71± 2.26

AGEM 38.36± 3.12 29.84± 0.14 29.86± 0.18 40.35± 1.15 37.34± 1.39 37.82± 1.16

OML-ER 47.80± 3.41 25.43± 2.71 31.41± 4.19 40.76± 9.27 48.52± 5.58 39.20± 12.16

OML-ERlimit 36.78± 8.61 31.42± 4.78 37.19± 11.79 34.54± 4.38 39.19± 4.72 42.25± 10.43

PMR 26.89± 3.51 26.44± 1.68 21.57± 3.58 26.33± 1.44 19.84± 5.53 25.20± 3.61

MAML-CLall 56.25± 2.03 53.59± 2.79 49.41± 4.59 54.23± 3.15 47.93± 3.70 45.56± 3.71

MAML-CLrandom 52.09± 0.23 47.06± 5.74 41.44± 2.27 49.04± 8.55 42.98± 9.20 39.09± 1.85

Table 1: Performance Using Different Training Set Permutation in Terms of Accuracy.

Memory Size Method Overall Accuracy

All Seen Data

MAML 30.93± 5.64

Replay 37.94± 6.87

AGEM 35.60± 4.57

OML-ER 38.85± 9.09

45 Samples

OML-ERlimit 36.90± 3.73

PMR 24.38± 2.95

MAML-CLall 51.16± 4.15

MAML-CLrandom 45.28± 4.94

Table 2: Overall Performance in Terms of Accuracy.

5.1 Meta Training and Inference305

The inner optimization performs task-specific306

funetuning only on parameters φpred in PN, where307

inner loop loss Linner contains cross entropy loss308

LCE and prototypical network loss Lproto. The309

inner loop learning process defines decision mak-310

ing boundaries for current learning task Tk. The311

outer loop regularizes RLN and PN over all learned312

tasks, T1, ..., Tk−1, Tk, by meta learning model pa-313

rameters θ using stored samples fromDM as query314

samples. Note that θ = φproto ∪ φpred. The meta315

training and inference process are shown in Algo-316

rithm 1 and Algorithm 3 respectively.317

5.2 Query Samples Selection318

To optimize memory footprint and achieve sam-319

ple efficiency, we expect the stored data set DM,320

which serves as the query set Qk, consists of rep-321

resentative samples set for all tasks that have been322

learned. Akin to Prototypes-Guided Memory Re-323

play Network (Ho et al., 2021), each prototype324

selects representative instances for a correspond-325

ing class by similarity from current support set326

Si, where i denotes episode index. We use Eu-327

clidean distance d(·) to measure similarity between328

samples and prototypes. Following the memory329

constraint in the CL setup, we limit the number of330

stored samples for each class (i.e., 5 in this paper). 331

Note that prototypes are dynamically updated in 332

each learning iteration. We propose two read func- 333

tions: (1) read all from memory; (2) read randomly 334

from memory. 335

6 Experiments 336

6.1 Datasets 337

Following prior work on class-incremental learn- 338

ing, we leverage the benchmark datasets intro- 339

duced by de Masson d’Autume et al. (2019), where 340

each dataset contains 115,000 training samples 341

and 7,600 test samples. Each dataset is seen as 342

a separated learning task. We use three datasets 343

from two different domains, i.e., AGNews (news 344

classification; 4 classes), Yelp (sentiment analy- 345

sis; 5 classes) and Amazon (sentiment analysis; 5 346

classes). Hereby, we can observe CL models per- 347

formance between tasks from the same or different 348

domains. 349

6.2 Setup 350

Considering the real-world scenario, we use a 351

low resource CL setup where we reduce the size of 352

the training set to its 10% , i.e., 11, 500 per task 353

and 34, 500 in total. We further limit our memory 354

budget to a constant size B = 45, i.e., selecting 5 355

samples per class. 356

The encoder for all models is a pretrained 357

ALBERT-Base-v2 (Lan et al., 2020) from Hug- 358

ging Face Transformers, where the input sequence 359

length is pruned to 200. The setup for models using 360

MAML framework is as follows. The inner loop 361

optimizer is SGD with learning rate, α = 3e−3. 362

The outer loop optimizer is Adam with learning 363

rate, β = 3e−5. The baselines without a prototyp- 364

ical network utilise a random sampler with batch 365

size, b = 25. The models with a prototypical net- 366

work use a sampler that randomly selects 5 training 367
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Method Yelp AGNews Amazon Average Accuracy

OML-ERlimit 39.26 (-12.27) 13.04 (-20.44) 40.74 (-11.43) 31.02 (-14.71)
PMR 41.61 (-13.02) 0.19 (-66.62) 38.87 (-18.08) 26.89 (-32.57)
MAML-CLall 44.73 (-8.99) 79.54 (+5.28) 44.48 (-10.47) 56.25 (-4.73)
MAML-CLrandom 41.29 (-9.92) 74.32 (-0.77) 40.65 (-10.46) 52.09 (-7.05)
Method Amazon Yelp AGNews Average Accuracy

OML-ERlimit 10.41 (-9.63) 11.81 (-6.31) 84.17 (-2.72) 35.46 (-6.22)
PMR 0.0 (-9.75) 0.0 (-21.57) 64.72 (-23.07) 21.57 (-18.13)
MAML-CLall 38.61 (+16.37) 44.22 (+11.68) 65.39 (-19.88) 49.41 (+2.73)
MAML-CLrandom 34.37 (+6.60) 38.93 (-4.69) 51.01 (-32.08) 41.44 (-10.05)
Method AGNews Yelp Amazon Average Accuracy

OML-ERlimit 47.04 (-31.03) 37.29 (-12.98) 36.14 (-18.03) 40.16 (-20.67)
PMR 0.0 (-65.11) 28.15 (-27.21) 31.38 (-26.08) 19.84 (-39.47)
MAML-CLall 67.99 (+13.71) 38.18 (-11.78) 37.62 (-12.42) 47.93 (-3.49)
MAML-CLrandom 74.11 (+9.70) 26.85 (-15.49) 27.96 (-14.5) 42.98 (-6.75)

Table 3: Per Task and Overall Performance Using Training Set Order 1, Order 3 and Order 5. Note that the
values in brackets represent the accuracy difference, where “+” indicates an increase in accuracy after downsizing
training set and vice versa.

samples from each class for each epoch without re-368

placement, where b = 20 for AGNews and b = 25369

for Yelp and Amazon.370

6.3 Baselines371

We use the following CL models as baselines:372

• MAML (Finn et al., 2017) refers to FO-373

MAML model without extra means of for-374

getting mitigation in our evaluations.375

• Replay performs one gradient update on ran-376

domly selected samples from memory. Replay377

model utilises the sparse experience replay378

strategy with 1% replay rate.379

• A-GEM (Chaudhry et al., 2019) imposes one380

gradient constraint to restrict current task gra-381

dient projection regions. A-GEM randomly382

reads samples and decides the direction of383

optimization constraints.384

• OML-ER (Holla et al., 2020) is a recent385

CL model, which uses FOMAML framework386

with episodic experience replay. OML-ER387

writes all seen samples into memory and ran-388

domly chooses samples for episodic replay.389

Note that OML-ERlimit refers to OML-ER390

with limited memory budgets.391

• PMR (Ho et al., 2021) employs FOMAML392

framework with the prototypes-guided sam-393

ples selection scheme for episodic experience394

replay. It outperforms OML-ER given limited 395

memory budgets. 396

6.4 Results 397

We evaluate model performance in terms of test 398

set accuracy. Specifically, we test model perfor- 399

mance for each task after completing the learning 400

of the last task. Note that the test set has the same 401

permutation of tasks as the training set. Each result 402

of the different methods is the average accuracy 403

of the 3 best results in 5 runs. Table 1 presents 404

the evaluation results of all baselines and the pro- 405

posed models in all 6 different training set orders. 406

The permutations are detailed in Appendix A.2. In 407

particular, each result indicates average accuracy 408

and standard deviations of the 3 best runs. Table 2 409

shows the overall performance and standard devia- 410

tions across all training set orders. 411

As shown in Table 1 and Table 2, the proposed 412

model, MAML-CLall yields the highest average ac- 413

curacy in almost all orders. Its overall performance 414

surpasses the strong baseline, namely OML-ER, 415

by more than 12%, using only 45 samples occu- 416

pied in memory. Its standard deviations are all 417

less than 5%, which indicates strong stability of 418

performance in both random seeds and all train- 419

ing set permutations. The other proposed method, 420

MAML-CLrandom also exhibits good results across 421

all various permutations of tasks, with the second- 422

highest average accuracy. But its standard devi- 423

ations vary from 0.23% to 9.20 %, implying rel- 424
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Method Memory Size Yelp AGNews Amazon Average Accuracy

OML-ER
27

49.81 19.38 49.06 39.4
MAML-CLall 44.04 67.58 43.75 51.79
MAML-CLrandom 36.16 63.57 35.10 44.94
OML-ER

45
47.96 13.05 49.31 36.78

MAML-CLall 44.73 79.54 44.48 56.25
MAML-CLrandom 41.29 74.32 40.65 52.09
OML-ER

63
52.67 24.63 50.25 42.51

MAML-CLall 55.05 86.21 52.21 64.59
MAML-CLrandom 40.89 69.33 39.25 49.83
OML-ER

All Seen Data
46.83 49.24 47.32 47.80

MAML-CLall
1 − − − −

MAML-CLrandom 55.05 86.21 52.21 64.59

Table 4: Per Task and Overall Performance Using Various Memory Limitations

atively weak stability. Remarkably, the two pro-425

posed models even outperform baselines that have426

unlimited memory budgets. In addition, we surpris-427

ingly noted that PMR underperforms the non-CL428

model, MAML. It implies insufficient training iter-429

ations leads to an immature prototypical network,430

which severely impacts the performance of PMR.431

Such a deficiency do not cause the inadequate per-432

formance of our models. Arguably, MAML-CL433

lessens the burden of the prototypical network, by434

editing query information instead of episodic mem-435

ory replay. It manifests the benefit of MAML-CL436

framework in terms of forgetting mitigation.437

Note that per-task performance across all models438

is detailed in Appendix A.3. It shows the outstand-439

ing performance of MAML-CL models on each440

task.441

6.5 Analysis442

Fast Adaptation Table 3 shows per task and443

overall performance in Order 1, Order 3 and Or-444

der 5 respectively 2. To evaluate in terms of fast445

adaptation, we compare model performance of in-446

gesting full and downsized training sets. The accu-447

racy differences are given in brackets. PMR shows448

its vulnerability of model performance with insuf-449

ficient training instances. The accuracy is even450

down to 0 for some preceding tasks. OML-ERlimit451

also exhibits a large decline in performance. Even452

though its performance in the latest tasks are com-453

petitive, OML-ERlimit still underperforms in all454

earlier tasks compared to MAML-CLall, suggesting455

its insufficient ability to ease forgetting. MAML-456

2For training set permutations, we found similar learning
behaviours using Order1 and Order 4, Order 2 and Order 3,
and Order 5 and Order 6.

CLall yields the best performance on almost all 457

tasks by a relatively small degradation. Intrigu- 458

ingly, MAML-CLall can even improve the accuracy 459

of some preceding tasks given a smaller set of train- 460

ing data. Especially, MAML-CLall rises accuracy 461

of preceding tasks to more than 10% in Order 3 and 462

Order 5, indicating its impressive ability of knowl- 463

edge retention. Similarly, MAML-CLrandom also 464

poses a small degradation of performance or im- 465

provements in previously seen tasks. It testifies the 466

superior of the proposed framework, MAML-CL in 467

terms of fast adaptation and forgetting mitigation. 468

The reason behind might be immature prototypical 469

network solves the over-fitting problem (i.e., over- 470

fitting towards training samples) , thereby more 471

generalised samples are selected as query samples. 472

Memory Efficiency We choose OML-ER for 473

comparison, given its similar FOMAML frame- 474

work with MAML-CL and competitive perfor- 475

mance. We present the experimental results of us- 476

ing the training set permutation in Order 1, shown 477

in Table 4. With the same random read function 478

and memory size, MAML-CL models are superior 479

to OML-ER, especially in the average accuracy and 480

accuracy of the second task. Notably, the second 481

task, AGNews belongs to news classification task, 482

which is a different domain compared to sentiment 483

analysis for Yelp (i.e., the first task) and Amazon 484

(i.e., the latest task). We argue that the MAML-CL 485

can strike an optimized balance of its performance 486

between two different domains, rather than skewing 487

towards the latest one. Considering its outstand- 488

ing ability of knowledge retention despite various 489

memory size, we argue that MAML-CL models 490

achieve memory efficiency. 491
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Method Yelp AGNews Amazon Average Accuracy

PMR 41.61 0.19 38.87 26.89
MAML-CLall 44.73 79.54 44.48 56.25
OML-ER 46.83 49.24 47.32 47.80
MAML-CLrandom 55.05 86.21 52.21 64.59

Table 5: Per Task and Overall Performance Using Various Forgetting Mitigation Strategies

Sample Selection Method Yelp AGNews Amazon Average Accuracy

Random 20.98 0.0 21.72 14.23

Prototypes-Guided
Diversity† 41.29 74.32 40.65 52.09
Uncertainty 28.8 63.43 28.77 40.33

Table 6: Per Task and Overall Performance Using Various Sample Selection Methods. † The proposed method.

Effect of Query Information Editing MAML-492

CLall has the same prototypes-guided sample se-493

lection scheme and the same read mechanisms (i.e.,494

read all samples from memory) as PMR. We com-495

pare these two models to analyze the effect of query496

information editing and memory replay. Table 5497

illustrates that MAML-CLall surpasses PMR in498

all tasks. In particular, MAML-CLall outperforms499

PMR in terms of average accuracy by nearly 30%.500

As for the ability of knowledge retention from vari-501

ous domains, the performance of MAML-CLall on502

AGNews exceeds that of PMR by more than 75%.503

Additionally, we replace the prototypes-guided se-504

lection strategy with OML-ER’s selection criteria505

in MAML-CLrandom to maintain the consistency506

of read and write mechanisms between these two507

methods. Table 5 displays that MAML-CLrandom508

still manage to outperform OML-ER in all tasks509

and overall performance, showing a strong sequen-510

tial learning ability for various tasks. It is obvious511

that MAML-CL successfully beats the most widely-512

used episodic memory replay method in CL. The513

proposed MAML-CL framework exhibits its su-514

periority of alleviating catastrophic forgetting by515

simply editing query information given low train-516

ing resources.517

Effect of Prototypes-Guided Sample Selection518

Under the same MAML-CL framework with the519

same random read mechanism and the same mem-520

ory size limitation (i.e., B = 45), we consider521

two main samples selection strategies 3, i.e., ran-522

dom selection and prototypes-guided selection. As523

for the prototypes-guided sample selection, we fur-524

ther deliberate two popular paradigms in active525

3Note that sample selection strategy refers to the selection
criteria of storing examples into memory in this paper.

learning, namely the diversity-based method and 526

the uncertainty-based method (Wang et al., 2020). 527

We consider selecting representative samples of 528

all classes as a diversity-based method. Opting 529

for samples that are far away from prototypes is 530

an uncertainty-based method. Table 6 displays 531

that prototypes-guided selection methods clearly 532

outperform random selection, especially diversity- 533

based criteria. Random selection is considered as 534

a simple but efficient sample selection strategy in 535

memory replay (de Masson d’Autume et al., 2019; 536

Wang et al., 2020). But, we find that random selec- 537

tion is incompetent for query information editing 538

of MAML-CL, when training resources are lim- 539

ited. Arguably, not enough training iterations for 540

the random selection strategy leads to inadequate 541

generalization information, thereby prone to forget- 542

ting. Furthermore, the uncertainty-based method is 543

inferior to the diversity-based method. It proves the 544

verity that using representative samples as query 545

information is competent to solve CL problems. 546

7 Conclusion 547

We introduce a meta learning framework to ad- 548

dress CL problems, namely MAML-CL. It is de- 549

signed to enhance MAML framework in CL, by 550

editing query information. In particular, MAML- 551

CL edits query information coupling with the 552

prototypes-guided sample selection scheme to 553

achieve generalization. Given limited training re- 554

sources, MAML-CL shows its robustness in terms 555

of stability, fast adaptation, forgetting mitigation 556

and memory efficiency. A future research direc- 557

tion can be exploring and redesigning other meta 558

learning frameworks that are conducive to CL. 559
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A Appendix667

A.1 Comparison of Continual Learning,668

MAML and MAML-CL669

As shown in Table 7, we illustrate the differences670

and similarities of CL, MAML and MAML-CL. In671

such a way, we explain how MAML-CL augments672

knowledge transfer and fast adaptation across var-673

ious domains so as to prevent catastrophic forget-674

ting, detailed in Section 4.675

A.2 Training Set Orders for Evaluations676

For model stability evaluation, we use three677

datasets, i.e., Yelp, AGNews and Amazon and form678

a total of 6 different training set orders as follows:679

1. Yelp→ AGNews→ Amazon680

2. Yelp→ Amazon→ AGNews681

3. Amazon→ Yelp→ AGNews682

4. Amazon→ AGNews→ Yelp683

5. AGNews→ Yelp→ Amazon684

6. AGNews→ Amazon→ Yelp685

A.3 Extra Evaluations Using Downsized686

Training set687

We conduct extra evaluations on the proposed688

models using the downsize training set.689

Per Task Performance Figure 1 demonstrates690

that the proposed methods outstanding ability to691

retain knowledge across various domains. In par-692

ticular, both MAML-CLall and MAML-CLrandom693

only store 45 samples in memory and significantly694

outperform the strong baseline, OML-ER, where695

OML-ER writes all training data into memory. It696

suggests that MAML-CL models achieve samples697

efficiency. Clearly, MAML-CLall and MAML-698

CLrandom exhibit impressive performance in terms699

of stability, forgetting mitigation and memory effi-700

ciency across various domains.701

Memory Insight To further analyze the effect of702

Prototypes-Guided Sample Selection, we visual-703

ize unigram distribution change inside memory in704

three different learning iterations, i.e., Episode 50,705

Episode 150 and Episode 250. In Figure 2, the706

y-axis presents the counts of each unigram. While707

the x-axis presents the unigram index. It shows708

that the saved samples provide a good diversity709

of information. Consequently, we testify that the710

prototypical-guided selection strategy enables sam- 711

ples efficiency, thereby optimizing memory foot- 712

prints. Note that we perform this evaluation using 713

training set permutation follows Order 1. 714

A.4 Evaluations Using Full Training set 715

We further conduct evaluations on the proposed 716

models given the full training set. 717

Overall Performance Table 8 shows perfor- 718

mance using different training set permutations 719

given the full training set. The proposed model, 720

MAML-CLall yields the highest average accuracy 721

in Order 1, Order 2, Order 4 and overall perfor- 722

mance. Its standard deviation is relatively small, 723

compared to two strong baselines, OML-ERlimit 724

and PMR. While, the other proposed method, 725

MAML-CLrandom exhibits strong stability across 726

all various permutations of tasks, with the second- 727

highest average accuracy and the smallest standard 728

deviations among all methods. Notably, the two 729

proposed methods surpass OML-ERlimit and PMR, 730

which also use FOMAML framework, by approx- 731

imately 1 ∼ 4% in accuracy and 3 ∼ 7% in stan- 732

dard deviations. 733

Per Task Performance As shown in Figure 3, 734

the proposed methods demonstrate a stable per- 735

formance on each task, in comparison of OML- 736

ERlimit and PMR. Especially, MAML-CLall ob- 737

tains a higher than 50% accuracy for each task in 738

Order 1, Order 4, Order 5 and Order 6. It mani- 739

fests that the proposed method provides stability 740

for solving catastrophic forgetting in CL. 741

Impact of Memory Size Limitations We eval- 742

uate the proposed models using various memory 743

size limitations as shown in Table 9. We spot a 744

phenomenon that the variation of performance is 745

not obvious between MAML-CLall and MAML- 746

CLrandom regardless of memory limitation size. 747

When the memory constraint reaches 45 samples 748

and above (i.e., B >= 45), performance are not 749

improved or improved by a small margin. Note that 750

MAML-CLall has a restriction on the size of the 751

saved sample set, given the size of the query set in 752

each iteration should not be large. Hence, we only 753

conduct this evaluation with the memory size of 27, 754

45, and 63 samples. 755
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Paradigm Continual Learning MAML MAML-CL
Initial Parameters θk φk φk

Finetuned Parameters θ̃k φ̃k φ̃k

Expected Loss
∑k

i=1 ETi [LTi(θ̃k)] ET [LT (φ̃k)]
∑k

i=1 ETi [LTi(φ̃k)]

Optimizee θ̃k φk φk

Optimization Direction θ̃k − θk φk − φ̃k φk − φ̃k

Transferred Parameters θ̃k φk φk

Table 7: Comparison of Continual Learning, MAML and MAML-CL.

(a) Order 1 (b) Order 2 (c) Order 3

(d) Order 4 (e) Order 5 (f) Order 6

Figure 1: Per Task and Overall Performance Using Various Training Set Permutations (Downsized Training set).

Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Overall
AGEM† 37.62 30.20 30.55 41.94 39.59 39.75 36.61± 5.02

Replay† 43.76 30.07 30.45 41.91 42.12 44.42 38.79± 6.68

OML-ER†
limit 45.73 46.44 41.68 47.49 60.83 62.11 50.71± 8.57

PMR† 59.46 35.38 39.70 56.56 59.31 62.19 52.09± 11.50

MAML-CLall 60.98 54.88 46.68 61.43 51.42 53.30 54.78± 5.69

MAML-CLrandom 59.14 53.70 51.49 58.29 49.73 46.81 53.19± 4.84

Table 8: Performance Using Different Training Set Permutation in Terms of Accuracy. Note that the same memory
limitation apply to all methods shown above. † Results obtained from (Ho et al., 2021).

Method Memory Size Yelp AGNews Amazon Average Accuracy

MAML-CLall 27
46.90 61.46 48.37 52.25

MAML-CLrandom 44.35 72.62 43.68 53.55
MAML-CLall 45

53.72 74.26 54.95 60.98
MAML-CLrandom 51.21 75.09 51.11 59.14
MAML-CLall 63

54.38 71.41 54.46 60.08
MAML-CLrandom 51.67 75.38 51.54 59.53

Table 9: Per Task and Overall Performance Using Various Memory Limitations
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(a) Unigram Distribution of Saved Samples in Episode 50

(b) Unigram Distribution of Saved Samples in Episode 150

(c) Unigram Distribution of Saved Samples in Episode 250

(d) Comparison of Unigram Distributions in Episode 50, Episode 150 and Episode 250

Figure 2: Visualization of Unigram Distribution Shift in Memory. Note that y-axis is in the range [1, 26). The
data points on the x-axis indicate the count of the corresponding unigram is 1.

(a) Order 1 (b) Order 2 (c) Order 3

(d) Order 4 (e) Order 5 (f) Order 6

Figure 3: Per Task and Overall Performance Using Various Training Set Permutations (Full Training set).
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