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Abstract

Continual learning (CL) exhibits a learning
ability to well-learn all sequentially seen tasks
drawn from various domains. Yet, existing se-
quential training methods fail to consolidate
learned knowledge from earlier tasks due to
data distribution shifts, hereby leading to catas-
trophic forgetting. We devise an optimization-
based meta learning framework for CL in ac-
cordance with MAML, where query samples
are edited for generalization of learned knowl-
edge. We conduct extensive experiments on
text classification in a low resource CL setup,
where we downsize training set to its 10%.
The experimental results demonstrate the supe-
riority of our method in terms of stability, fast
adaptation, memory efficiency and knowledge
retention across various domains.

1 Introduction

Existing sequential learning poses a challenge.
Weights constantly vary along with the change of
probability distribution, in which important infor-
mation from earlier tasks can be easily erased or
overwritten by information from the latest tasks.
Consequently, catastrophic forgetting (McCloskey
and Cohen, 1989) occurs and harms performance
on preceding tasks. To address catastrophic for-
getting, a continual learning (CL) method aims to
guarantee the stability of handling various tasks
that have been learned, while showing plasticity on
the novel domain via previously acquired knowl-
edge. The majority of CL methods tackle catas-
trophic forgetting in attempts to realise general-
ization or/and understand uncertainty using deep
neural networks.

Conventional machine learning improves de-
cision making by training on multiple data in-
stances. Whereas, meta learning learns an opti-
mal learning algorithm by ingesting multiple learn-
ing episodes. Meta learning has facilitated the re-
cent work of CL mainly by Model-Agnostic Meta-

Learning (MAML) (Finn et al., 2017) model. Exist-
ing CL models exploit MAML for fast adaptation to
a novel domain, coupling with extra means of pre-
venting forgetting, e.g., experience replay (Wang
et al., 2020; Holla et al., 2020; Joseph and Bala-
subramanian, 2020; Ho et al., 2021), introducing
regularisation term in loss (Acar et al., 2021).

We utilise meta learning to address CL from a
different angle. We argue that the nature of contin-
ual learning can be interpreted as a form of meta
learning. In a meta learning process, an inner loop
algorithm models over a task, while an outer loop
algorithm harnesses the optimization of the inner
loop algorithm as a result of realising an outer
objective. Limitation on shifting of weights in
CL is imperative to alleviate catastrophic forget-
ting, referring to a major research problem. In
this case, we adapt meta learning framework to
CL. Intuitively, the outer algorithm constrains the
task-specific learning algorithm by governing its
optimisation process on a novel domain. The outer
objective can be thereby defined as the generaliza-
tion of entire learned knowledge from preceding
tasks, such that the model is hardly prone to catas-
trophic forgetting.

Recent literature (Ho et al., 2021) has manifested
that existing CL methods have the instability is-
sue, where model performance severely depends
on input sets orders. Such an issue yields a hurdle.
The deficiency of existing CL models can be easily
masked or neglected. Therefore, we conduct exten-
sive experiments on Yelp, AGNews and Amazon
datasets (Zhang et al., 2015) to testify the stability
of MAML-CL. Additionally, further analysis on
MAML-CL exhibits its outstanding performance
as a CL learner.

We summarize our main contributions as:

* We fully exploit the potential of meta learning
for CL. We propose a model, namely MAML-
CL, to address CL problems by simply editing
query information of MAML.



e MAML-CL enhances the effectiveness of
MAML for knowledge retention across var-
ious domains. Under the same FOMAML
framework, our model outperforms recent CL
models by a large margin.

e With the same sample selection criteria,
MAML-CL realizes sample efficiency and fur-
ther optimizes memory footprints.

* In a low resource setup, we prove the superi-
ority of MAML-CL in terms of stability, fast
adaptation, forgetting mitigation and memory
efficiency.

2 Related Work

Existing CL methods can be categorised into
two mainstreams, i.e., memory replay-based ap-
proaches (de Masson d’Autume et al., 2019;
Chaudhry et al., 2019) and regularization-based
approaches (Aljundi et al., 2018; Huang et al.,
2021). In general, memory replay-based methods
address catastrophic forgetting by revisiting old
samples. Regularization-based methods employ
gradients or parameters constraints to achieve gen-
eralization, thereby retaining knowledge. Due to
the complexity of deep neural networks, memory
replay-based approaches are broadly deemed as a
plausible means for continual learning in NLP.

Recently, meta learning has been introduced into
CL models, considering its ability of fast adap-
tation and knowledge transfer. Existing works
employ MAML to improve initial parameters of
the model, such that it can fast adapt to various
domains with few learning samples (Holla et al.,
2020; Ho et al., 2021) or find an optimal initializa-
tion state to perform episodic experience rehearsal
(Wang et al., 2020). Additionally, Joseph and Bal-
asubramanian (2020) uses preceding task-specific
priors from meta distribution to replay previous
parameters and consolidate the CL model. Reptile
(Nichol et al., 2018) is also leveraged in some CL
models to regularize the objective of experience
replay (Riemer et al., 2019) or meta updates param-
eters via augmented training set (Obamuyide and
Vlachos, 2019).

3 Problem Formulation

A CL model f with a learnable parameters 6 over
a parameters space © sequentially ingests a stream
of labeled samples {(x,y)} drawn from various
data distributions over one pass. Concretely, it

considers a sequence of K tasks {71, 72, ..., Tx }.
Given a task 7 and a ground truth label set Ly, the
initial parameters in 7, namely 6y, is a parameters
set that have been finetuned in the last task 7;_1,
ie., Op_1. Ideally, we expect a CL learner f: (1)
to update parameters from 051 to By, for T, such
that the loss L7, on the set of labeled instances
{(k, yx)} is minimal,

0, = arg emeiré L7, (0r), where 6= 01
k

1
(2) to perform well with the learned ék on all pre-
ceding tasks {71, T2, ..., Tr—1} without the need of
presenting all previously seen training data.
Assuming that all tasks are equally important,
the objective is thereby minimising the expected
risk of | k| tasks that have seen so far, with respect
to 0y,

min »  E7[L7(04)] )

CL setup allows models to preserve a certain
amount of training samples from previous tasks.
Whereas, optimizing memory footprint is also re-
garded as one major research problem in CL. There-
fore, we limit the memory budget of f to a constant
size B. That is, at step k, we allow the learner f
to only store samples from {77, 72, ..., Tr—1} with
the amount less than or equals to B.

3.1 Online Meta Learning

A meta learner is able to perform fast adaptation
by learning an optimal initial state of an algorithm.
Given a task 7, a set of initial parameters ¢ is over
a parameters space ®. We expect ¢ that facilitates
the model to yield a low loss after m updates in 7.
That is,

min Er{L7 (U7 ()] 3)

where U7 is the update operation that performs
m times gradient-based updates on parameters ¢,
using samples drawn from p(7). In MAML, the
objective is to learn an algorithm with optimal ini-
tial parameters ¢* such that the model efficiently
solves specified problems through example prob-
lem instances. Thereby, test samples that specified
problems are also required for loss computation, re-
ferring to as query samples (). While, the training
samples are known as support samples .S in meta



learning. The training objective is,
minEr{Cro(Ufs@)] (@)

In an online meta learning setup, each episode
contains m batches as the support set and each task
has multiple episodes as multiple training iterations.
Note that the initial parameters ¢y, is ¢;_,, i.e., the
optimal initial state derived after learning 7;_1. In
an inner loop optimization process, MAML per-
forms m steps of SGD on parameters ¢y.

ok = U7, 5, (Pk)
= ¢ — aVy, L7, (¢1)

m 4)
=&k =V, > Lo, (D)

i=1
where o denotes the step size as a hyperparameter.
@y 1s finetuned by gradients of loss on the support
set .S, for~ task-specific learning on 7. Then, the
updated ¢y, are further optimised using the query
set Qx to achieve the meta objective.

3.2 Catastrophic Forgetting

Performance degradation caused by catastrophic
forgetting occurs in existing CL models, mainly
due to the learning goal as shown in Equation 2.
The optimizee for a task 7; in CL is generally
the parameters that updated for current task 7, 9~k.
The optimization direction indicates such a learning
process solely focus on minimising expected loss
for Ty, resulting in 0y, is heavily skewed towards
the probability distribution p(7). It is harmful to
sequential learning by neglecting the next optimal
update step, leading to catastrophic forgetting.

Recently, some CL methods (Riemer et al., 2019;
Obamuyide and Vlachos, 2019; Holla et al., 2020;
Wang et al., 2020; Ho et al., 2021) exploit meta
learning. In general, query set for existing CL. meth-
ods (Holla et al., 2020; Wang et al., 2020; Ho et al.,
2021) under MAML framework contains examples
merely from current task, and episodically adds pre-
viously seen samples to diminish forgetting. Con-
sequently, the meta objective mainly focuses on the
expected risk of T and pays a little attention on
preceding tasks, namely 71, 72, ..., Tx_1, thereby
failing to achieve CL objective in Equation 2 and
inducing catastrophic forgetting.

4 Edited MAML for Continual Learning

We propose a meta learning framework for CL,
namely MAML-CL. Specifically, we utilise FO-

MAML, a simple well-known parametric fast adap-
tation method. MAML-CL perform query informa-
tion editing in accordance with prototypes-guided
sample selection criteria, i.e., the choice of repre-
sentative examples to achieve the generalisation for
all task that have been learned. In such a way, we
address CL problems.

Query Information Editing To retain consis-
tency on objective loss under MAML framework
with CL, query information is prominent. Hence,
we expect query set (i to contain examples that
generalize tasks drawn from various probability dis-
tributions of 7 = {71, ..., Tx—1, Tr.}. To optimize
memory footprint, efficient sample selection crite-
ria should opt for representative samples for each
task. Such that, Q) = Zle Qr,; where Q ; is a
set of representative examples for 7; while learning
Tr. The meta-objective with respect to ¢y is,

n;)in Er (LT, (UT. s, (6%))]
k

=min Y E7[L7.0., (UF. s, ()
=1

(6)

k
~ min > Er[L7(w)]
k=1

Through simply editing query information, the ex-
pected loss of meta objective (in Equation 6 ) is
consistent with that of CL objective (in Equation 2).
While, the same optimizee as MAML guarantees
that the optimization process performs in a meta
learning manner.

Prototypes-guided Sample Selection Schemes
The choice of query samples should provide gen-
eralized information regarding all tasks that have
been seen, 71,72, ..., Tr. We apply prototypical
network (Snell et al., 2017) to generate prototypes
and use prototypes as selection criteria. Each pro-
totype is the mean vector of feature representations
of a specified problem(e.g., a class for a classifica-
tion task). This selection scheme chooses a certain
amount of examples with the shortest Euclidean dis-
tance to prototypes in a ranking-based manner, and
deem these examples as representatives samples
that can generalize all tasks that have been learned.
Note that the prototypical network is constantly
optimized and corrects prototypical information in
the training process.



Algorithm 1: Meta Training

Input: Initial model parameters 0 = ¢,,,.,,, U @45
support set S, support set buffer size m,
memory buffer M, inner-loop learning rate «,
outer-loop learning rate (3.

Output: Trained model parameters 68

1 fori=1,2,..do

[Inner Loop]

Si <+ m batches from the stream
Lyproto + MemoryModule(d,,,. .z,

Einner - ['proto + £CE(0, Sz)

d)pred = SGD([”in’ﬂe’rv d)proto? ¢pred? Si7 Ot)
[Read Function]

Q; « Sample(M, all)

or Q; + RandomSample( M, m)

10 [Outer Loop]

1 J(8) = LoE(Pprotor Pprear Qi)
12 6 + Adam(J(0),3)

2
3
4 Si7/\/l7n)
5

e ® 9 &

13 if all the training data is seen then
14 | Stop Iteration

15 end

16 end

Knowledge Transfer A CL model is expected to
acquire the ability of knowledge transfer between
different tasks. While, transfer learning aims to
ensure the learning process of a task can benefit
from acquired knowledge from another domain.
Thereby, transfer learning is substantial in CL.
Andrychowicz et al. (2016) state that the problem
of transfer learning can be cast as one of generali-
sation problems in meta learning. Given inner-loop
updated parameters ¢y, that are heavily biased to-
wards the distribution of the current domain p(7y),
MAML-CL interprets outer loop optimization as a
generalization problem on all tasks that have been
learned. Such a meta objective depicts a CL sce-
nario and solves the same expected loss. In such a
way, MAML-CL enables knowledge transfer to oc-
cur not only within the current learning domain but
also between all domains that have been learned.

Fast Adaptation The optimizee in MAML-CL
is initial parameters ¢y with optimization direction
T — implying the concern of optimization di-
rection for the next update step. MAML-CL finds
an optimal initial state with few update steps, such
that yielding a minimal expected loss on all learned
tasks. In other words, it learns optimal update di-
rections on all learned tasks. By preserving optimi-
sation information on all tasks, MAML-CL enables
fast adaptation across all learned domains, thereby
catastrophic forgetting mitigation.

Algorithm 2: MemoryModule(¢,,,.ot, i, M, 1)

Input: Initial model parameter ¢,,,.;,, support set
Si, memory buffer M, number of selected
samples per class n.

Qutput: Prototypical network loss £ p, updated

memory buffer M

1 [Prototypical Network]

2 for class [ in S; do

3 S; < RandomSample(S; ;, Ns)

4 Q: < RandomSample(S;,;\St, Nq)

s | g X hey, (@)
(zi,y:)ES]

6 for (z,y) in Q; do

7 Lp <+ Lp+ NilQ[d(h(Pp'r'utu (%), Cl) +

log 3~ exp(—d(hg,,,,, (X), c1))]

l/

8 end

9 Write or update ¢; in M

10 end

11 [Samples Selection]

12 for class [ in M do

13 Xl%KNN(DMUS“Cz,n)

14 Updates X; in M

15 end

Algorithm 3: Meta Inference

Input: Initial model parameters @ = @,,.,;, U @,y.cq5
support set buffer size m, memory M, batch
size b, inner-loop learning rate «, test set 7.
Output: Predictions on the test set
1 S < Sample(M,m - b)
2 QT

3 (gpred = SGD([W ¢~proto7 ¢pred7 S’ a)
4 PrediCt(Q7 ¢p’r0to7 qbpred)

5 Model

We incorporate the devised MAML framework
with a prototypes-guided samples selection strat-
egy (Ho et al., 2021) to address text classification.
We employ First-order MAML (FOMAML) (Finn
et al., 2017) so as to reduce computational com-
plexity of MAML.

The proposed CL model fy consists of a rep-
resentation learning network (RLN), h¢pr0to with
parameters ¢, , and a prediction network (PN)
9prea with parameters ¢,,,..q. In particular, RLN
trains amodel i (-) : X — ¢ € RP*N where
c denotes a prototype with a D-dimensional repre-
sentation and NV is the number of classes. While,
96,,.4(") learns amapping: ¢ — Y € RN . We add
a single-hidden-layer feed-forward neural network
on top of a encoder to formulate a prototypical net-
work and use a single linear layer as the prediction
learning network.



Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

MAML 34.58 + 6.98 38.80£11.19 32.36 +16.81 29.32 4+ 14.23 22.554+12.93 27.96 4+ 3.88
Replay 42.52 + 3.87 29.81 +0.19 29.64 + 0.43 46.50 £+ 5.31 40.43 £+ 2.29 38.71 + 2.26
AGEM 38.36 + 3.12 29.84 +0.14 29.86 + 0.18 40.35 £ 1.15 37.34 +1.39 37.82+1.16
OML-ER 47.80 + 3.41 25.43 +2.71 31.41 +4.19 40.76 £ 9.27 48.52 +5.58 39.20+ 12.16

" OML-ERjimic | 36.78 £8.61 31424478 37.10+11.79 34544438 39.10+4.72 42.25+ 1043

PMR 26.89 4+ 3.51 26.44 + 1.68 21.57 + 3.58 26.33 + 1.44 19.84 £+ 5.53 25.20 4+ 3.61
MAML-CL,y 56.25 +2.03 53.59+279 4941+459 54.23+3.15 47.93 £ 3.70 45.56 £ 3.71
MAML-CL,andom 52.09 4+ 0.23 47.06 + 5.74 41.44 £+ 2.27 49.04 £ 8.55 42.98 £+ 9.20 39.09 + 1.85

Table 1: Performance Using Different Training Set Permutation in Terms of Accuracy.

Memory Size | Method Overall Accuracy
MAML 30.93 £ 5.64
All Seen Data Replay 37.94£6.87
AGEM 35.60 £+ 4.57

L OMLER | 3885£9.09

OML-ERimit 36.90 £+ 3.73
45 Samples PMR 24.38 +2.95
MAML-CL.,; 51.16 +4.15
MAML-CL;andom 45.28 +4.94

Table 2: Overall Performance in Terms of Accuracy.

5.1 Meta Training and Inference

The inner optimization performs task-specific
funetuning only on parameters ¢,,.., in PN, where
inner loop loss Ly contains cross entropy loss
Lcr and prototypical network 10ss Lpot0. The
inner loop learning process defines decision mak-
ing boundaries for current learning task 7. The
outer loop regularizes RLN and PN over all learned
tasks, 71, ..., Te—1, Tr, by meta learning model pa-
rameters 6 using stored samples from D 4 as query
samples. Note that 0 = ¢,,..;, U @,,.cq- The meta
training and inference process are shown in Algo-
rithm 1 and Algorithm 3 respectively.

5.2 Query Samples Selection

To optimize memory footprint and achieve sam-
ple efficiency, we expect the stored data set D4,
which serves as the query set (), consists of rep-
resentative samples set for all tasks that have been
learned. Akin to Prototypes-Guided Memory Re-
play Network (Ho et al., 2021), each prototype
selects representative instances for a correspond-
ing class by similarity from current support set
S;, where ¢ denotes episode index. We use Eu-
clidean distance d(-) to measure similarity between
samples and prototypes. Following the memory
constraint in the CL setup, we limit the number of

stored samples for each class (i.e., 5 in this paper).
Note that prototypes are dynamically updated in
each learning iteration. We propose two read func-
tions: (1) read all from memory; (2) read randomly
from memory.

6 Experiments

6.1 Datasets

Following prior work on class-incremental learn-
ing, we leverage the benchmark datasets intro-
duced by de Masson d’ Autume et al. (2019), where
each dataset contains 115,000 training samples
and 7,600 test samples. Each dataset is seen as
a separated learning task. We use three datasets
from two different domains, i.e., AGNews (news
classification; 4 classes), Yelp (sentiment analy-
sis; 5 classes) and Amazon (sentiment analysis; 5
classes). Hereby, we can observe CL models per-
formance between tasks from the same or different
domains.

6.2 Setup

Considering the real-world scenario, we use a
low resource CL setup where we reduce the size of
the training set to its 10% , i.e., 11, 500 per task
and 34, 500 in total. We further limit our memory
budget to a constant size B = 45, i.e., selecting 5
samples per class.

The encoder for all models is a pretrained
ALBERT-Base-v2 (Lan et al., 2020) from Hug-
ging Face Transformers, where the input sequence
length is pruned to 200. The setup for models using
MAML framework is as follows. The inner loop
optimizer is SGD with learning rate, & = 3e~3.
The outer loop optimizer is Adam with learning
rate, 5 = 3e°. The baselines without a prototyp-
ical network utilise a random sampler with batch
size, b = 25. The models with a prototypical net-
work use a sampler that randomly selects 5 training



Method Yelp AGNews Amazon Average Accuracy
OML-ERjimit 39.26 (-12.27)  13.04 (-20.44)  40.74 (-11.43) 31.02 (-14.71)
PMR 41.61 (-13.02) 0.19 (-66.62)  38.87 (-18.08) 26.89 (-32.57)
MAML-CL.y 44.73 (-8.99) 79.54 (+5.28) 44.48 (-10.47) 56.25 (-4.73)
MAML-CL;andom | 41.29(-9.92) 74.32 (-0.77)  40.65 (-10.46) 52.09 (-7.05)
Method Amazon Yelp AGNews Average Accuracy
OML-ERjimit 10.41 (-9.63) 11.81 (-6.31) 84.17 (-2.72) 35.46 (-6.22)
PMR 0.0 (-9.75) 0.0 (-21.57) 64.72 (-23.07) 21.57 (-18.13)
MAML-CL,y; 38.61 (+16.37) 44.22 (+11.68)  65.39 (-19.88) 49.41 (+2.73)
MAML-CL;andom | 34.37 (+6.60) 38.93 (-4.69)  51.01 (-32.08) 41.44 (-10.05)
Method AGNews Yelp Amazon Average Accuracy
OML-ERimit 47.04 (-31.03)  37.29(-12.98)  36.14 (-18.03) 40.16 (-20.67)
PMR 0.0 (-65.11) 28.15(-27.21)  31.38 (-26.08) 19.84 (-39.47)
MAML-CL.; 67.99 (+13.71) 38.18 (-11.78)  37.62 (-12.42) 47.93 (-3.49)

MAML'CLrandom

74.11 (+9.70)

26.85 (-15.49)

27.96 (-14.5)

42.98 (-6.75)

Table 3: Per Task and Overall Performance Using Training Set Order 1, Order 3 and Order 5. Note that the
values in brackets represent the accuracy difference, where “+” indicates an increase in accuracy after downsizing

training set and vice versa.

samples from each class for each epoch without re-
placement, where b = 20 for AGNews and b = 25
for Yelp and Amazon.

6.3 Baselines

We use the following CL models as baselines:

e MAML (Finn et al., 2017) refers to FO-
MAML model without extra means of for-
getting mitigation in our evaluations.

* Replay performs one gradient update on ran-
domly selected samples from memory. Replay
model utilises the sparse experience replay
strategy with 1% replay rate.

* A-GEM (Chaudhry et al., 2019) imposes one
gradient constraint to restrict current task gra-
dient projection regions. A-GEM randomly
reads samples and decides the direction of
optimization constraints.

¢ OML-ER (Holla et al., 2020) is a recent
CL model, which uses FOMAML framework
with episodic experience replay. OML-ER
writes all seen samples into memory and ran-
domly chooses samples for episodic replay.
Note that OML-ER};,,;; refers to OML-ER
with limited memory budgets.

* PMR (Ho et al., 2021) employs FOMAML
framework with the prototypes-guided sam-
ples selection scheme for episodic experience

replay. It outperforms OML-ER given limited
memory budgets.

6.4 Results

We evaluate model performance in terms of test
set accuracy. Specifically, we test model perfor-
mance for each task after completing the learning
of the last task. Note that the test set has the same
permutation of tasks as the training set. Each result
of the different methods is the average accuracy
of the 3 best results in 5 runs. Table 1 presents
the evaluation results of all baselines and the pro-
posed models in all 6 different training set orders.
The permutations are detailed in Appendix A.2. In
particular, each result indicates average accuracy
and standard deviations of the 3 best runs. Table 2
shows the overall performance and standard devia-
tions across all training set orders.

As shown in Table 1 and Table 2, the proposed
model, MAML-CL,}; yields the highest average ac-
curacy in almost all orders. Its overall performance
surpasses the strong baseline, namely OML-ER,
by more than 12%, using only 45 samples occu-
pied in memory. Its standard deviations are all
less than 5%, which indicates strong stability of
performance in both random seeds and all train-
ing set permutations. The other proposed method,
MAML-CL, 11dom also exhibits good results across
all various permutations of tasks, with the second-
highest average accuracy. But its standard devi-
ations vary from 0.23% to 9.20 %, implying rel-



Method Memory Size | Yelp AGNews Amazon | Average Accuracy
OML-ER 49.81 19.38 49.06 394
MAML-CL,1; 27 44.04 67.58 43.75 51.79
MAML-CL;andom 36.16 63.57 35.10 44.94
"OMLER | | 4796 1305 4931 | 3678
MAML-CL,y 45 44.73 79.54 44.48 56.25
MAML-CL,andom 41.29 74.32 40.65 52.09
"OML-ER | | 5267 2463 5025 | 0251
MAML-CL,y; 63 55.05 86.21 52.21 64.59
MAML-CL;andom 40.89 69.33 39.25 49.83
"OMLER | | 4683 4924 4732 | 4780
MAML-CL,; All Seen Data — — _ _
MAML-CL;andom 55.05 86.21 52.21 64.59

Table 4: Per Task and Overall Performance Using Various Memory Limitations

atively weak stability. Remarkably, the two pro-
posed models even outperform baselines that have
unlimited memory budgets. In addition, we surpris-
ingly noted that PMR underperforms the non-CL
model, MAML. It implies insufficient training iter-
ations leads to an immature prototypical network,
which severely impacts the performance of PMR.
Such a deficiency do not cause the inadequate per-
formance of our models. Arguably, MAML-CL
lessens the burden of the prototypical network, by
editing query information instead of episodic mem-
ory replay. It manifests the benefit of MAML-CL
framework in terms of forgetting mitigation.

Note that per-task performance across all models
is detailed in Appendix A.3. It shows the outstand-
ing performance of MAML-CL models on each
task.

6.5 Analysis

Fast Adaptation Table 3 shows per task and
overall performance in Order 1, Order 3 and Or-
der 5 respectively 2. To evaluate in terms of fast
adaptation, we compare model performance of in-
gesting full and downsized training sets. The accu-
racy differences are given in brackets. PMR shows
its vulnerability of model performance with insuf-
ficient training instances. The accuracy is even
down to O for some preceding tasks. OML-ERjj,i¢
also exhibits a large decline in performance. Even
though its performance in the latest tasks are com-
petitive, OML-ER; ;¢ still underperforms in all
earlier tasks compared to MAML-CL,j;, suggesting
its insufficient ability to ease forgetting. MAML-

%For training set permutations, we found similar learning
behaviours using Order1 and Order 4, Order 2 and Order 3,
and Order 5 and Order 6.

CL, yields the best performance on almost all
tasks by a relatively small degradation. Intrigu-
ingly, MAML-CL,); can even improve the accuracy
of some preceding tasks given a smaller set of train-
ing data. Especially, MAML-CL, rises accuracy
of preceding tasks to more than 10% in Order 3 and
Order 5, indicating its impressive ability of knowl-
edge retention. Similarly, MAML-CL,,qom also
poses a small degradation of performance or im-
provements in previously seen tasks. It testifies the
superior of the proposed framework, MAML-CL in
terms of fast adaptation and forgetting mitigation.
The reason behind might be immature prototypical
network solves the over-fitting problem (i.e., over-
fitting towards training samples) , thereby more
generalised samples are selected as query samples.

Memory Efficiency We choose OML-ER for
comparison, given its similar FOMAML frame-
work with MAML-CL and competitive perfor-
mance. We present the experimental results of us-
ing the training set permutation in Order 1, shown
in Table 4. With the same random read function
and memory size, MAML-CL models are superior
to OML-ER, especially in the average accuracy and
accuracy of the second task. Notably, the second
task, AGNews belongs to news classification task,
which is a different domain compared to sentiment
analysis for Yelp (i.e., the first task) and Amazon
(i.e., the latest task). We argue that the MAML-CL
can strike an optimized balance of its performance
between two different domains, rather than skewing
towards the latest one. Considering its outstand-
ing ability of knowledge retention despite various
memory size, we argue that MAML-CL models
achieve memory efficiency.



Method Yelp AGNews Amazon | Average Accuracy
PMR 41.61 0.19 38.87 26.89
MAML-CL,j; 44.73 79.54 44.48 56.25
OML-ER 46.83 49.24 47.32 47.80
MAML-CL;andom | 55.05 86.21 52.21 64.59

Table 5: Per Task and Overall Performance Using Various Forgetting Mitigation Strategies

Sample Selection Method Yelp AGNews Amazon | Average Accuracy
Random 20.98 0.0 21.72 14.23
Diversity' 41.29 74.32 40.65 52.09
Prototypes-Guided tverst y
Uncertainty | 28.8 63.43 28.77 40.33

Table 6: Per Task and Overall Performance Using Various Sample Selection Methods. T The proposed method.

Effect of Query Information Editing MAML-
CL,j has the same prototypes-guided sample se-
lection scheme and the same read mechanisms (i.e.,
read all samples from memory) as PMR. We com-
pare these two models to analyze the effect of query
information editing and memory replay. Table 5
illustrates that MAML-CL,); surpasses PMR in
all tasks. In particular, MAML-CL,; outperforms
PMR in terms of average accuracy by nearly 30%.
As for the ability of knowledge retention from vari-
ous domains, the performance of MAML-CL,;; on
AGNews exceeds that of PMR by more than 75%.
Additionally, we replace the prototypes-guided se-
lection strategy with OML-ER’s selection criteria
in MAML-CL,,1dom to maintain the consistency
of read and write mechanisms between these two
methods. Table 5 displays that MAML-CL,1dom
still manage to outperform OML-ER in all tasks
and overall performance, showing a strong sequen-
tial learning ability for various tasks. It is obvious
that MAML-CL successfully beats the most widely-
used episodic memory replay method in CL. The
proposed MAML-CL framework exhibits its su-
periority of alleviating catastrophic forgetting by
simply editing query information given low train-
ing resources.

Effect of Prototypes-Guided Sample Selection
Under the same MAML-CL framework with the
same random read mechanism and the same mem-
ory size limitation (i.e., B = 45), we consider
two main samples selection strategies >, i.e., ran-
dom selection and prototypes-guided selection. As
for the prototypes-guided sample selection, we fur-
ther deliberate two popular paradigms in active

3Note that sample selection strategy refers to the selection
criteria of storing examples into memory in this paper.

learning, namely the diversity-based method and
the uncertainty-based method (Wang et al., 2020).
We consider selecting representative samples of
all classes as a diversity-based method. Opting
for samples that are far away from prototypes is
an uncertainty-based method. Table 6 displays
that prototypes-guided selection methods clearly
outperform random selection, especially diversity-
based criteria. Random selection is considered as
a simple but efficient sample selection strategy in
memory replay (de Masson d’ Autume et al., 2019;
Wang et al., 2020). But, we find that random selec-
tion is incompetent for query information editing
of MAML-CL, when training resources are lim-
ited. Arguably, not enough training iterations for
the random selection strategy leads to inadequate
generalization information, thereby prone to forget-
ting. Furthermore, the uncertainty-based method is
inferior to the diversity-based method. It proves the
verity that using representative samples as query
information is competent to solve CL problems.

7 Conclusion

We introduce a meta learning framework to ad-
dress CL problems, namely MAML-CL. It is de-
signed to enhance MAML framework in CL, by
editing query information. In particular, MAML-
CL edits query information coupling with the
prototypes-guided sample selection scheme to
achieve generalization. Given limited training re-
sources, MAML-CL shows its robustness in terms
of stability, fast adaptation, forgetting mitigation
and memory efficiency. A future research direc-
tion can be exploring and redesigning other meta
learning frameworks that are conducive to CL.
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A Appendix

A.1 Comparison of Continual Learning,
MAML and MAML-CL

As shown in Table 7, we illustrate the differences
and similarities of CL, MAML and MAML-CL. In
such a way, we explain how MAML-CL augments
knowledge transfer and fast adaptation across var-
ious domains so as to prevent catastrophic forget-
ting, detailed in Section 4.

A.2 Training Set Orders for Evaluations

For model stability evaluation, we use three
datasets, i.e., Yelp, AGNews and Amazon and form
a total of 6 different training set orders as follows:

1. Yelp — AGNews — Amazon

2. Yelp — Amazon — AGNews

. Amazon — Yelp — AGNews
Amazon — AGNews — Yelp
AGNews — Yelp — Amazon

6. AGNews — Amazon — Yelp

A.3 Extra Evaluations Using Downsized

Training set

We conduct extra evaluations on the proposed
models using the downsize training set.

Per Task Performance Figure 1 demonstrates
that the proposed methods outstanding ability to
retain knowledge across various domains. In par-
ticular, both MAML-CL,; and MAML-CL.2nd0m
only store 45 samples in memory and significantly
outperform the strong baseline, OML-ER, where
OML-ER writes all training data into memory. It
suggests that MAML-CL models achieve samples
efficiency. Clearly, MAML-CL,; and MAML-
CL,andom €xhibit impressive performance in terms
of stability, forgetting mitigation and memory effi-
ciency across various domains.

Memory Insight To further analyze the effect of
Prototypes-Guided Sample Selection, we visual-
ize unigram distribution change inside memory in
three different learning iterations, i.e., Episode 50,
Episode 150 and Episode 250. In Figure 2, the
y-axis presents the counts of each unigram. While
the x-axis presents the unigram index. It shows
that the saved samples provide a good diversity
of information. Consequently, we testify that the
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prototypical-guided selection strategy enables sam-
ples efficiency, thereby optimizing memory foot-
prints. Note that we perform this evaluation using
training set permutation follows Order 1.

A.4 Evaluations Using Full Training set

We further conduct evaluations on the proposed
models given the full training set.

Overall Performance Table 8 shows perfor-
mance using different training set permutations
given the full training set. The proposed model,
MAML-CL, yields the highest average accuracy
in Order 1, Order 2, Order 4 and overall perfor-
mance. Its standard deviation is relatively small,
compared to two strong baselines, OML-ERjy;;;
and PMR. While, the other proposed method,
MAML-CL,,n40m €xhibits strong stability across
all various permutations of tasks, with the second-
highest average accuracy and the smallest standard
deviations among all methods. Notably, the two
proposed methods surpass OML-ER};,,,;t and PMR,
which also use FOMAML framework, by approx-
imately 1 ~ 4% in accuracy and 3 ~ 7% in stan-
dard deviations.

Per Task Performance As shown in Figure 3,
the proposed methods demonstrate a stable per-
formance on each task, in comparison of OML-
ERjin;¢ and PMR. Especially, MAML-CL,;; ob-
tains a higher than 50% accuracy for each task in
Order 1, Order 4, Order 5 and Order 6. It mani-
fests that the proposed method provides stability
for solving catastrophic forgetting in CL.

Impact of Memory Size Limitations We eval-
uate the proposed models using various memory
size limitations as shown in Table 9. We spot a
phenomenon that the variation of performance is
not obvious between MAML-CL,;; and MAML-
CL;andom regardless of memory limitation size.
When the memory constraint reaches 45 samples
and above (i.e., B >= 45), performance are not
improved or improved by a small margin. Note that
MAML-CL,j; has a restriction on the size of the
saved sample set, given the size of the query set in
each iteration should not be large. Hence, we only
conduct this evaluation with the memory size of 27,
45, and 63 samples.



Paradigm Continual Learning MAML MAML-CL

Initial Parameters 0 Dk Ok
Finetuned Parameters ék (;3;C <Z~5k
Expected Loss SUAELILT(0k)]  Er(Lr(dr)] Y E7lLT(dk)]
Optimizee O Ok ok
Optimization Direction O — O br — P b — bi
Transferred Parameters 0y, bk o33

Table 7: Comparison of Continual Learning, MAML and MAML-CL.
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Figure 1: Per Task and Overall Performance Using Various Training Set Permutations (Downsized Training set).

Method Order1 Order2 Order3 Order4 Order5 Order6 Overall

AGEM' 37.62 30.20 30.55 41.94 39.59 39.75 36.61 £+ 5.02
ReplayT 43.76 30.07 30.45 41.91 42.12 44.42 38.79 £ 6.68
OML-ER}Limit 45.73 46.44 41.68 47.49 60.83 62.11 50.71 £ 8.57
PMR' 59.46 35.38 39.70 56.56 59.31 62.19 52.09 + 11.50
MAML-CL,) 60.98 54.88 46.68 61.43 51.42 53.30 54.78 + 5.69
MAML-CL:andom 59.14 53.70 51.49 58.29 49.73 46.81 53.19 + 4.84

Table 8: Performance Using Different Training Set Permutation in Terms of Accuracy. Note that the same memory
limitation apply to all methods shown above. { Results obtained from (Ho et al., 2021).

Method Memory Size | Yelp AGNews Amazon | Average Accuracy
MAML-CL.11 27 46.90 61.46 48.37 52.25
MAML-CL;andom 44.35 72.62 43.68 53.55

" MAML-CL., | 4 | 5372 7426 s4es [ 6098
MAML-CL;andom 51.21 75.09 51.11 59.14

" MAML-CL., | | 438 TL4L sdde | 60.08
MAML-CL;andom 51.67 75.38 51.54 59.53

Table 9: Per Task and Overall Performance Using Various Memory Limitations
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Figure 2: Visualization of Unigram Distribution Shift in Memory. Note that y-axis is in the range [1,26). The
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data points on the x-axis indicate the count of the corresponding unigram is 1.
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Figure 3: Per Task and Overall Performance Using Various Training Set Permutations (Full Training set).
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