
Published as a Tiny Paper at ICLR 2024

EMPIRICAL STUDY ON UPDATING KEY-VALUE MEM-
ORIES IN TRANSFORMER FEED-FORWARD LAYERS

12Zihan Qiu∗ †, 3Zeyu Huang∗, 4Youcheng Huang∗, 1Jie Fu‡
1CSE, HKUST 2IIIS, Tsinghua University,
3ILCC, University of Edinburgh 4College of Computer Science, Sichuan University
qzh11628@gmail.com, zeyu.huang@ed.ac.uk
youchenghuang@stu.scu.edu.cn, jiefu@ust.hk

ABSTRACT

The feed-forward networks (FFNs) in transformers are recognized as a group of
key-value neural memories to restore abstract high-level knowledge. In this work,
we conduct an empirical ablation study on updating keys (the 1st layer in the FFNs
layer) or values (the 2nd layer in the FFNs layer). We compare those two methods
in various knowledge editing and fine-tuning tasks of large language models to
draw insights to understand FFNs further. Code is available at this repo.

1 INTRODUCTION

How do pre-trained Transformer models process and store information? Geva et al. (2021; 2022)
suggest feed-forward networks (FFNs) operate as key-value neural memories (Sukhbaatar et al.,
2015). Specifically, given hidden states h ∈ Rde , where de is embedding size, FFNs(h) = f(h ·
KT ) · V , where K,V ∈ Rdm×de , dm is the width of FFNs and f is the non-linear activation. Each
row of K can be viewed as a key correlated with input textual patterns, and each row of V can be
viewed as a value that induces a distribution shift over the residual stream. For example, when a
model predicts the next token based on the prefix ‘Eiffel Tower is located in’, k2 is activated so that
v2 can promote the probability of ‘Paris’ in the output. On the contrary, values for irrelevant concepts
(e.g., v1 for ‘Cat’, vd for Soccer) are deactivated and can not dominate the output distribution.

... ...

0.1 1.3 0.1 0

Feed Forward Layer

ParisCat Seattle Soccer

Paris

1.3 0.1 0.3 1.2

Update Keys:

Modifying

activation scores


Update Values:

Modifying

vocab distribution

Paris SeattleUpdate

Eiffel Tower   located in

key

Activation

scores

value

vocabulary

distribution

hidden state

is

Figure 1: Left: FFNs operation is conceptualized as a key-value memory. The input hidden states interact
with keys (rows of K) through an inner product to obtain activation values. These activations then serve as
weights for summing values (rows of V ). Right: To update these key-value memories, one can either directly
modify the values that store relevant information or alter the keys to adjust the weights of existing values.

Based on this point of view, how can we update the information processing and storing? We employ
Knowledge Editing (KE) (Wang et al., 2023) as an illustrative example: altering ‘Paris’ to ‘Seattle’
in response to ‘Eiffel Tower is located in’ by modifying the model weights. In this work, we compare

∗Equal contribution
†Work done while interning at HKUST.
‡Corresponding author

1

ar
X

iv
:2

40
2.

12
23

3v
1 

 [
cs

.C
L

] 
 1

9 
Fe

b 
20

24

https://github.com/qiuzh20/Tuning-keys-v.s.-values


Published as a Tiny Paper at ICLR 2024

Table 1: Knowledge Editing on GPT-J (6B) Wang (2021)

Editing Target Efficacy ↑ Paraphrase ↑ Specificity ↑ Score ↑ Time (s) ↓
1 Counterfact Editing on GPT-J (6B)

On Value 100.00 98.18 6.04 16.15 0.79
On Key 100.00 98.44 28.89 54.77 0.83

1 zsRE Editing on GPT-J (6B)

On Value 99.11 56.32 21.81 40.71 83.12
On Key 98.57 69.19 24.64 46.02 12.63

two updating choices as shown in Figure 1: 1. Values: tuning v2 to shift its concept from ‘Paris’ to
‘Seattle’. 2. Keys: tuning k2 to boost the activation of vi for the target concept ‘Seattle’.

We test the two methods in various scenarios for different pre-trained transformers, including knowl-
edge editing (Cao et al., 2021; Huang et al., 2023), multi-task tuning (Aribandi et al., 2022), and
instruction-tuning (Wei et al., 2022). We generally recognize the superiority of updating keys over
updating values. We contend that compared to directly modifying the model’s knowledge (values),
altering the mechanism of controlling this knowledge (keys) can be more effective.

2 EXPERIMENTS

Knowledge Editing is to edit specific information in the model while leaving irrelevant ones un-
influenced. In KE, knowledge refers to the triplets of (subject, relationship, object). The editing is
done by maximizing the probabilities of the object tokens given a prompt containing (subject, rela-
tionship). We follow the same experiment settings as Meng et al. (2023), more details can be found
in Appendix A.1. We simply introduce the evaluation metrics: Efficacy measures the editing suc-
cess, Paraphrase measures the editing generalization in different but related contexts, Specificity
measures the editing locality in unrelated contexts, and Score aggregates the three metrics by taking
the harmonic mean. Meng et al. (2023) solves a constrained linear problem for model updating. But
the same method cannot update K because of the non-linear f(·). We thus update K and V through
back-propagation to examine their performances fairly. Table 1 reports the results of updating K
or V . While updating each component gives 100% efficacy, updating K shows more generalization
and locality, achieving a large performance gain on Score. Notably, updating V suffers from much
higher time-cost, indicating the hardness of shifting models ‘concept’ compared with updating the
‘concept’ usage. Reproducibility details and more results are in Appendix A.1 and A.2.

Table 2: LoRA instruction and multi-task tuning results.

Lora Target Trainable MMLU Bool-q CB 20-news Race COPA QNLI 6-Avg

LoRA rank=8 on Llama2-7B

q v 0.062% 46.77 58.20 46.43 61.50 60.50 73.00 57.90 59.59
Valuedown 0.057% 46.28 60.70 53.57 67.40 60.90 82.00 53.50 63.01
Keygate 0.057% 46.79 69.00 64.29 55.30 63.40 79.00 77.80 68.13
Keyup 0.057% 46.99 74.10 58.93 56.80 62.50 79.00 78.40 68.29

q v Valuedown 0.119% 46.92 66.30 48.21 59.10 64.80 68.00 62.30 61.45
q v Keygate 0.119% 46.99 59.20 62.50 61.20 66.10 69.00 63.10 63.52
q v Keyup 0.119% 47.13 64.20 51.79 66.00 65.00 68.00 68.80 63.96

LoRA rank=16 on Llama2-7B

q v 0.124% 46.9 68.30 51.79 65.00 63.60 76.00 52.70 62.90
Valuedown 0.115% 46.75 67.80 41.07 54.40 62.70 71.00 61.90 59.81
Keygate 0.115% 46.91 71.40 55.36 57.00 62.90 79.00 76.60 67.04
Keyup 0.115% 47.02 72.60 62.50 66.70 61.60 81.00 64.70 68.18

Instruction and Multi-task Tuning. We extend experiments to a more general LoRA-tuning of
the Llama2-7B (Touvron et al., 2023) model. This involves separately: 1. tuning the model on the
Alpaca dataset (Taori et al., 2023) and then testing on MMLU (Hendrycks et al., 2020). 2. multi-
task tuning on six diverse tasks and testing on their respective test sets. Given that Llama2’s FFNs
employ SwiGLU (Shazeer, 2020), formulated as FFNSwiGLU = (Swish(x ·KT

gate)⊗(x ·KT
up)) ·Vdown,

updating to the K correspond to changes in the Kgate and Kup, while changes to the V pertain to
Vdown. We explored combinations of LoRA weight additions in the standard attention’s q and v, and
in the three weighs of FFNs. More settings and reproducibility can be found in the Appendix A.1.
According to Table 2, across various settings (LoRA rank=8,16; with and without tuning q and
v), the performance of LoRA on Keygate and Keyup is significantly better than on Valuedown. More
consistent experiment results with 4-bit quantization can be found in Appendix Table 4.

2



Published as a Tiny Paper at ICLR 2024

3 CONCLUSION

We empirically find that updating keys within FFNs yields better performance than updating values
when tuning LLMs. One possible reason could be updating keys solely involves changing the inner
product between the keys and given hidden states. In contrast, updating values requires accurate
optimization corresponding to the intended update. These characteristics also translate into better
results when LoRA-tuning keys instead of values. It’s crucial to note that our objective isn’t to
propose a better tuning method, so some results may not differ significantly. Instead, we hope the
experiment provides insight for updating pre-trained LLMs: updating the mechanism of how the
model controls the knowledge may be more effective than directly modifying the knowledge itself.

4 URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni, Jai Prakash Gupta, Kai Hui, Sebastian
Ruder, and Donald Metzler. Ext5: Towards extreme multi-task scaling for transfer learning. In
The Tenth International Conference on Learning Representations, ICLR 2022. OpenReview.net,
2022.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, pp. 6491–6506. Association for Computational Linguistics, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, pp. 5484–5495. Association for Computational Linguistics,
2021.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, pp. 30–45.
Association for Computational Linguistics, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference
on Learning Representations, ICLR 2023. OpenReview.net, 2023.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
ICLR 2023. OpenReview.net, 2023.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory net-
works. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, pp. 2440–2448, 2015.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

3

https://github.com/tatsu-lab/stanford_alpaca


Published as a Tiny Paper at ICLR 2024

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for
large language models: A survey. arXiv preprint arXiv:2310.16218, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In The Tenth
International Conference on Learning Representations, ICLR 2022. OpenReview.net, 2022.

A APPENDIX

A.1 MORE DETAILS FOR KNOWLEDGE EDITING AND LORA TUNING

Knowledge Editing Task is to edit specific information in the model while leaving irrelevant ones
uninfluenced. In knowledge-editing, knowledge refers to the triplets of (subject, relationship, ob-
ject). For example, as shown in Fig 1, the knowledge is (‘Eiffel Tower’, ‘locates in’, ‘Paris’) and
the editing is to change the object from the existing one to a new one, i.e., from ‘Paris’ to ‘Seattle’.
The editing is done by maximizing the probabilities of the object tokens given a language prompt
containing the information of (subject, relationship), e.g., ‘Eiffel Tower is located in’.

The most difficult part is the data preprocessing and the evaluation. For these experimental settings,
we follow the same processions and codebase1 as Meng et al. (2023). While Meng et al. (2023)
solves a linear problem to update V , we update K and V with back-propagation for a fair compar-
ison. Back-propagation makes our results simple to implement. We freeze all other modules and
update the K or V in the selected layers to update. We adopt the Adam optimizer with a learning
rate of 5e− 4 and weight decay of 0.5.

LoRA Tuning Our Instruction tuning code is based on the code base2. We built upon the original
code by incorporating multi-task Instruction tuning, details of which can be found in our submitted
code. All training hyperparameters (including training steps) were directly adopted from the original
repository, ensuring consistency across all experiments except for differences in LoRA targets.

We utilized the 20-news group dataset for a 20-class news classification task, provided by the original
repository. For a broader task diversity, we selected Bool-q, CB, and COPA from the SuperGLUE
benchmark and QNLI from the GLUE benchmark, along with the QA task Race. It’s important to
note that the sizes of these chosen datasets vary significantly. Therefore, we limit each dataset to a
maximum of 5000 samples in constructing the multi-task training dataset. This limitation may result
in lower performance on some tasks than standard training approaches.

A.2 MORE EXPERIMENTAL RESULTS ABOUT THE KNOWLEDGE EDITING

We conduct more experiments about knowledge editing, especially in editing multi-counterfacts
using GPT2-XL. The reason for not editing multi-counteracts on GPT-J (6B) is that it runs out of
memory. Again, we gently refer readers to Meng et al. (2023) for the detailed experiment settings.

Table 3 reports the average metrics of 20877 runs on counteract editing and 19086 runs on zsRE
editing. Updating K achieves robust and considerable performance gains on the Score, especially
since we can observe a large gap on the Specificity. Although updating V sometimes consumes
slightly less time, it becomes largely inefficient when updating takes longer. The results demonstrate
the superiority of updating K rather than V to intervene in pre-trained transformer models about how
it processes and stores information.

1https://github.com/kmeng01/memit
2https://github.com/georgian-io/LLM-Finetuning-Hub/tree/main/llama2

4

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kmeng01/memit
https://github.com/georgian-io/LLM-Finetuning-Hub/tree/main/llama2


Published as a Tiny Paper at ICLR 2024

Table 3: Results of the Knowledge Editing

Editing Target Efficacy ↑ Paraphrase ↑ Specificity ↑ Score ↑ Time (s) ↓
1 Counterfact Editing on GPT2-xl

On Value 100.00 71.02 68.33 77.49 1.21
On Key 100.00 83.78 66.16 80.97 0.97

10 Counterfacts Editing on GPT2-xl

On Value 100.00 45.50 66.74 63.88 49.92
On Key 100.00 57.14 73.48 72.97 9.49

1 Counterfact Editing on GPT-J (6B)

On Value 100.00 98.18 6.04 16.15 0.79
On Key 100.00 98.44 28.89 54.77 0.83

1 zsRE Editing on GPT2-xl

On Value 99.89 57.86 24.28 43.81 1.27
On Key 99.89 69.90 24.75 46.35 0.88

10 zsRE Editing on GPT2-xl

On Value 99.89 98.11 19.36 41.75 0.68
On Key 99.89 96.94 27.80 53.29 0.71

1 zsRE Editing on GPT-J (6B)

On Value 99.11 56.32 21.81 40.71 83.12
On Key 98.57 69.19 24.64 46.02 12.63

A.3 MORE EXPERIMENTAL RESULTS ABOUT THE LORA TUNING

Our research compares the performance of different LoRA target settings in the more user-friendly
context of 4-bit quantization. This approach is significant as it addresses the practical concerns of
model size and computational efficiency, which are crucial for real-world applications.

Our findings consistently show that modifying keys outperforms modifying values. This consistent
superiority is notable, especially considering that the models with modified keys have fewer trainable
parameters than those with modifications in q and v projections. Despite the reduced parameter
count, the key-modified models still achieve better results.

Table 4: LoRA instruction and multi-task tuning results under a 4-bit quantization setting

Lora Target Trainable Bool-q CB 20-news Race COPA QNLI 6-Avg

LoRA rank=8

q v 0.062% 67.80 42.86 53.90 52.80 68.00 48.20 55.59
Valuedown 0.057% 55.30 50.00 65.40 52.80 34.00 48.60 51.02
Keygate 0.057% 71.60 55.71 68.50 53.00 63.00 49.30 60.19
Keyup 0.057% 71.30 60.71 61.00 55.80 70.00 54.30 62.19

q v Valuedown 0.119% 55.40 41.07 50.80 58.10 58.00 50.00 52.23
q v Keygate 0.119% 59.30 50.00 55.40 62.60 66.00 52.70 57.67
q v Keyup 0.119% 69.20 48.21 59.30 61.80 56.00 54.90 58.24

LoRA rank=16

q v 0.124% 70.20 41.07 61.30 56.70 63.00 51.40 57.28
Valuedown 0.115% 62.60 53.57 60.10 53.40 66.00 51.20 57.81
Keygate 0.115% 72.10 46.43 60.20 56.10 64.00 59.90 59.79
Keyup 0.115% 68.30 50.00 60.20 57.40 74.00 52.70 60.43

5


	Introduction
	Experiments
	Conclusion
	URM statement
	Appendix
	More Details for Knowledge Editing and LoRA Tuning
	More experimental results about the Knowledge Editing
	More experimental results about the LoRA Tuning


