
SMART: Self-Aware Agent for Tool Overuse Mitigation

Anonymous ACL submission

Abstract

Current Large Language Model (LLM) agents001
demonstrate strong reasoning and tool use ca-002
pabilities, but often lack self-awareness, fail-003
ing to balance these approaches effectively.004
This imbalance leads to Tool Overuse, where005
models unnecessarily rely on external tools006
for tasks solvable with parametric knowl-007
edge, increasing computational overhead. In-008
spired by human metacognition, we introduce009
SMART (Strategic Model-Aware Reasoning010
with Tools), a paradigm that enhances an011
agent’s self-awareness to optimize task han-012
dling and reduce tool overuse. To support this013
paradigm, we introduce SMART-ER, a dataset014
spanning three domains, where reasoning al-015
ternates between parametric knowledge and016
tool-dependent steps, with each step enriched017
by rationales explaining when tools are nec-018
essary. Through supervised training, we de-019
velop SMARTAgent, a family of models that020
dynamically balance parametric knowledge and021
tool use. Evaluations show that SMARTA-022
gent reduces tool use by 24% while improving023
performance by over 37%, enabling 7B-scale024
models to match its 70B counterpart and GPT-025
4o. Additionally, SMARTAgent generalizes to026
out-of-distribution test data like GSM8K and027
MINTQA, maintaining accuracy with just one-028
fifth the tool calls. These highlight the poten-029
tial of strategic tool use to enhance reasoning,030
mitigate overuse, and bridge the gap between031
model size and performance, advancing intelli-032
gent and resource-efficient agent designs.033

1 Introduction034

Recent advancements in Large Language Models035

(LLMs) (Ouyang et al., 2022; Team et al., 2023;036

Dubey et al., 2024) have led to remarkable improve-037

ments in reasoning capabilities, driving progress038

in diverse domains such as coherent text composi-039

tion (Wei et al., 2022a), code generation (Gao et al.,040

2023; Wang et al., 2025; Pan et al., 2024), complex041

Figure 1: An illustration of human metacognition in
problem-solving. The user recalls Tim Cook’s associ-
ation with Apple based on prior knowledge, as it is a
slow-changing fact. However, recognizing the newest
chip as a fast-changing fact beyond knowledge scope,
they switch to online search for up-to-date information.

logical deduction (Yao et al., 2023, 2024), and nu- 042

anced natural language understanding (Wang et al., 043

2023; Yu et al., 2024; Wu et al., 2025). However, 044

challenges remain, such as the inability to handle 045

real-time information (Yu and Ji, 2024), provide 046

accurate mathematical results (Lu et al., 2022), and 047

fully comprehend human intentions (Qian et al., 048

2024b). These limitations highlight the need for 049

LLMs to leverage external tools (Schick et al., 050

2023; Qin et al., 2023; Yuan et al., 2024; Qian et al., 051

2024a), enabling them to function as agents capa- 052

ble of assisting users in diverse tasks (Qin et al., 053

2024; Xi et al., 2023). Effective tool use and rea- 054

soning are thus complementary, each enhancing 055

the other to overcome current shortcomings. 056

Therefore, in problem-solving, a language agent 057

often combines reasoning with tool use, following 058

a ReACT-style approach (Yao et al., 2023), where 059

the model alternates between thought processes and 060

actions to derive solutions. This enables the core 061

agent to apply its parametric knowledge to advance 062

task-solving while using external tools to address 063

its limitations. However, this interplay raises a 064

critical question: when should the agent rely on 065

external tools versus its own knowledge? 066

To investigate this, we first conduct a preliminary 067

study on both LLMs and LM-driven agent systems 068

to assess their ability to dynamically and effectively 069

switch between external tool use and parametric 070

1

knowledge-driven reasoning. Our empirical results071

reveal a consistent bias, with LLMs unnecessarily072

invoking tools over 30% of the time, and agent sys-073

tems exhibiting similar behavior even when their074

parametric knowledge alone would suffice. We075

identify this phenomenon as Tool Overuse, which076

arises from the model’s inability to recognize when077

its internal knowledge is sufficient. This not only078

leads to unnecessary resource consumption but can079

also confuse the model, ultimately degrading per-080

formance. This observation highlights the need for081

better calibration of an agent’s self-awareness, en-082

suring it can discern when to rely on tools versus083

its own knowledge. Striking this balance is cru-084

cial for enhancing efficiency, scalability, and user085

experience as LM-driven agents are increasingly086

deployed in real-world applications.087

To address this challenge, we propose SMART088

(Strategic Model-Aware Reasoning with Tools),089

which draws inspiration from human decision-090

making to calibrate self-awareness in agent models091

for effective tool use and reasoning. In Metacog-092

nitive Theory (Schraw and Moshman, 1995), psy-093

chology highlights humans’ awareness of their094

thought processes, including when to apply spe-095

cific problem-solving strategies (Livingston, 2003).096

As Figure 1 illustrates, this implicit heuristic al-097

lows dynamic balancing between external strate-098

gies and internal knowledge (Minsky, 1986). Simi-099

larly, agents need metacognition to optimize tool100

usage. By aligning the model’s subjective percep-101

tion with its knowledge boundary, we enable agents102

to make more informed decisions on when to rely103

on external tools or internal knowledge.104

We adopt a data-driven approach to calibrate105

model decision-making by constructing SMART-106

ER (SMART-Enhanced Reasoning), a dataset span-107

ning three domains—Math, Time, and Intention. It108

addresses key LLM limitations, including computa-109

tional accuracy (Hendrycks et al., 2021), outdated110

knowledge (Vu et al., 2023), and user preference111

awareness (Qian et al., 2024b). Specifically, each112

question in SMART-ER combines sub-questions113

the model handles well (e.g., simple arithmetic,114

static facts, commonsense) with those it struggles115

with (e.g., complex math, dynamic facts, user-116

specific intentions). We break down each question117

into reasoning steps, categorizing them as either118

parametric knowledge-driven or tool-dependent.119

For parametric steps, we provide reasoning based120

on internal knowledge. For tool-dependent steps,121

we map them to appropriate tools, execute them,122

and integrate the results into the reasoning process. 123

Finally, inspired by metacognitive heuristics, we 124

refine each step with explicit justifications, clari- 125

fying when parametric knowledge suffices or ex- 126

ternal tools are needed. By transforming implicit 127

decision-making heuristics into explicit language- 128

based reasoning, we guide the model to develop 129

calibrated awareness of its knowledge boundaries. 130

Leveraging SMART-ER, we develop SMARTA- 131

gent, a family of agent models designed to dy- 132

namically balance reasoning between parametric 133

knowledge and external tools. Empirical results 134

show that SMARTAgent reduces tool use by 24% 135

while improving overall performance by over 37%, 136

effectively mitigating tool overuse. Notably, it en- 137

ables 7B-scale models to match the performance of 138

GPT-4 and 70B models, bridging the gap between 139

model size and capability. Additionally, SMARTA- 140

gent efficiently handles out-of-distribution (OOD) 141

tasks, requiring only one-fifth the number of tool 142

calls while preserving accuracy. Finally, analysis of 143

SMARTAgent’s confidence through logits reveals 144

more certain reasoning-tool-switching decisions, 145

further validating our approach in calibrating the 146

agent’s self-awareness. In summary: 147

• We identify and define the issue of Tool Overuse, 148

emphasizing that strategically balancing the com- 149

plementary strengths of knowledge-driven rea- 150

soning and external tool calls can mitigate this 151

problem in both LLMs and agent systems. 152

• We introduce SMART-ER, a multi-domain 153

dataset designed to address key limitations of 154

agent models by integrating metacognitive heuris- 155

tics to better help them recognize and adapt to 156

their knowledge boundaries. 157

• We develop SMARTAgent, a family of agents 158

that intelligently balances parametric reason- 159

ing and tool use, achieving improved perfor- 160

mance, reduced tool overuse, and more confident 161

decision-making in tool utilization. 162

2 Related Work 163

LM Knowledge Boundary. Recent studies high- 164

light that while LMs excel at standard tasks, they 165

struggle to recognize and acknowledge the lim- 166

its of their knowledge (Yin et al., 2023; Kadavath 167

et al., 2022). To address this gap, the concept of 168

knowledge boundary has been introduced to de- 169

fine the limits of knowledge in LLMs (Li et al., 170

2024; Amayuelas et al., 2023). Building on this, 171

some research evaluates LMs’ self-awareness of 172

2

their knowledge boundary through verbal prob-173

ing (Kadavath et al., 2022) and fine-grained bench-174

marks (Yin et al., 2024), enabling LMs to deter-175

mine whether a question is answerable. Other work176

focuses on mitigating hallucinations arising from177

the model’s unawareness of its limits through data178

augmentation (Chen et al., 2023, 2024b), retrieval179

augmentation (Ren et al., 2023), and confidence cal-180

ibration (Xue et al., 2024). Additionally, Chen et al.181

(2024a) and Zhang et al. (2024) trained LLMs to182

express their knowledge boundaries, enabling them183

to answer known questions and admit ignorance for184

unknown ones. Our work aligns with these stud-185

ies but focuses on enhancing agents’ awareness of186

their knowledge boundaries to enable wiser tool187

use and more efficient task handling.188

LM Tool Use. Integrating tool use into LLMs has189

gained significant attention as a way to comple-190

ment parametric knowledge and enhance decision-191

making (Qin et al., 2023; Qu et al., 2025). Some192

research focuses on enabling LLMs to access exter-193

nal tools to overcome knowledge limitations (Qin194

et al., 2024; Qian et al., 2024d), including up-to-195

date information (Vu et al., 2023; Wang et al.,196

2024b) and domain-specific expertise (Ling et al.,197

2023; Wang et al., 2024a). Others explore tool198

creation (Qian et al., 2023; Cai et al., 2024) and199

external module integration (Qian et al., 2024c) to200

improve tool learning robustness. Despite these,201

a key challenge lies in evaluating and enhancing202

LLMs’ ability to determine when and which tools203

to use. Benchmarks like MetaTool (Huang et al.,204

2023) and WTU-EVAL (Ning et al., 2024) high-205

light LLMs’ struggles with unnecessary or incor-206

rect tool usage, while dynamic frameworks (Wang207

et al., 2024c; Shen et al., 2024) propose adaptively208

invoking tools based on internal uncertainty thresh-209

olds. Unlike prior works, SMART rigorously de-210

fines and measures tool overuse, addressing overre-211

liance on tools despite intrinsic reasoning capabili-212

ties. We optimize the balance between parametric213

knowledge and tool use, reducing overuse while214

enhancing performance.215

3 Preliminaries216

To investigate how models decide between invok-217

ing tools and relying on their own knowledge, we218

conduct a preliminary study on both LLMs and219

LM-driven agent systems. Our findings reveal both220

LLMs and agent systems’ strong tendency for ex-221

cessive tool use, which we define as Tool Overuse,222

Figure 2: Statistics on Llama and Mistral’s tool overuse.

Table 1: Statistics on XAgent and AgentGPT’s tool
overuse. Both agents invoke tools multiple times across
50 samples, despite ideally requiring zero tool usage.

leading to unnecessary resource overhead. 223

Definition of Tool Overuse. Tool overuse refers 224

to the excessive reliance on external tools when 225

an agent model could have successfully completed 226

the task using its parametric knowledge alone. For- 227

mally, let Q be the total set of questions, and let 228

P be the subset of questions that the model can 229

correctly answer without using any tools. The 230

model’s intrinsic reasoning capability is then given 231

by α = |P |
|Q| . Now, suppose that when provided 232

with access to tools, the model chooses to invoke 233

at least one tool on a fraction β of these questions 234

in P . The Tool Overuse Rate is then defined as: 235

O = α · β 236

which quantifies the proportion of all questions 237

where tool use is unnecessary, highlighting ineffi- 238

ciencies in the model’s decision-making process. 239

Experiments on LLMs. We first experiment 240

with Llama-3.1-8B (Dubey et al., 2024) and 241

Mistral-7B (Jiang et al., 2023) on the GSM8K test 242

set (Cobbe et al., 2021). Each test question is pre- 243

sented under two conditions: i) the model reasons 244

through the question normally and provides a final 245

answer without using tools, and ii) the model has 246

access to tools and independently decides whether 247

to use them (see Appendix A.2). The statistics in 248

Figure 2 reveal two key insights. First, both models 249

exhibit significant tool overuse, with Llama’s rate 250

exceeding 50%. Second, in some cases, tool use 251

leads to incorrect answers, even for questions the 252

model could have solved correctly without external 253

assistance. This highlights how excessive reliance 254

on tools can introduce unnecessary complexity and 255

degrade performance. 256

Experiments on LM-driven Agents. In addition 257

to LLMs, we also experiment with two agent sys- 258

3

Figure 3: Three example queries and their reason-
ing chains from each domain. The inherent compo-
sitionality of a query naturally divides reasoning into
knowledge-driven steps and tool-reliant steps.

tems: XAgent (XAgent-Team, 2023) and Agent-259

GPT (Team, 2024), both designed for complex260

problem-solving and driven by closed-source GPT261

models. We sampled 50 queries from the GSM8K262

test set that can be answered correctly without tools263

(see Appendix A.1) and instructed the models to264

use tools only when necessary. The results in Ta-265

ble 1 show that, despite being equipped with vari-266

ous tools, both agent systems still tend to use them267

unnecessarily, significantly slowing down problem-268

solving (about 10x slower than using GPT alone).269

We further provide a case study in Appendix A.1270

highlighting issues such as XAgent redundantly271

saving results to files and AgentGPT unnecessarily272

invoking a code-writing tool after generating an273

answer. These observations underscore the need to274

address our core research question: How can we275

calibrate agent models to balance tool use and276

parametric reasoning, mitigating tool overuse277

while preserving utility?278

4 Method279

To address the challenge of tool overuse, we draw280

inspiration from how humans balance internal281

knowledge and external tools. Metacognitive the-282

ory (Schraw and Moshman, 1995) suggests that283

human decision-making relies on an implicit aware-284

ness of knowledge boundaries, enabling strategic,285

step-by-step problem-solving (Livingston, 2003).286

Inspired by this, we aim to equip agent models with287

a similar capability—calibrating their metacogni-288

tion to optimize reasoning and tool use.289

To address this, we propose SMART, a data-290

driven approach that enhances self-awareness in 291

agent models. While LLMs acquire broad knowl- 292

edge from large-scale corpora (Wang et al., 2022), 293

they are not explicitly trained to recognize their 294

own strengths and limitations. To bridge this gap, 295

we introduce SMART-ER, the first dataset contrast- 296

ing areas where models excel versus struggle. Cov- 297

ering three domains with 3K+ questions and struc- 298

tured reasoning chains, SMART-ER helps agents 299

strategically decide when to rely on internal knowl- 300

edge or external tools. 301

4.1 Data Collection 302

To train agents to strategically balance paramet- 303

ric knowledge and external tools within a sin- 304

gle reasoning chain, questions must be composi- 305

tional—blending aspects the model excels at with 306

those it struggles with. Building on prior stud- 307

ies (Hendrycks et al., 2021; Vu et al., 2023; Qian 308

et al., 2024b), we identify three key limitations 309

in LMs: i) math reasoning, where models strug- 310

gle with complex computations requiring precise 311

answers; ii) temporal knowledge, as LMs lack ac- 312

cess to up-to-date facts beyond their training cut- 313

off; and iii) user intent understanding, where im- 314

plicit preferences cannot be inferred without direct 315

queries. All these challenges necessitate a smarter 316

integration of external tools with the model’s rea- 317

soning ability. Building on this insight, we con- 318

struct data of three domains: 319

• Math: Adapted from MATH (Hendrycks et al., 320

2021), each query incorporates both challenging 321

math deductions and simple arithmetic to contrast 322

reasoning capabilities. 323

• Time: Adapted from FreshQA (Vu et al., 2023), 324

each query ensures a mix of fast-changing and 325

slow-changing factual knowledge. 326

• Intention: Adapted from Intention-in-Interaction 327

(IN3) (Qian et al., 2024b), each query requires ex- 328

plicit user intent while remaining solvable within 329

the model’s capabilities. 330

This compositional approach helps models cali- 331

brate their decision-making by distinguishing when 332

to rely on external tools versus when internal 333

knowledge is sufficient. To illustrate this, we 334

present three example queries from each domain in 335

Figure 3. For details on the question selection and 336

adaptation process, please refer to Appendix B.1. 337

4.2 Reasoning Chain Construction 338

As shown in Figure 4, each query Q is decomposed 339

into a structured reasoning plan with n subgoals, 340

4

Figure 4: The data pipeline to get SMART-ER. We divide the whole pipeline into several stages for better control
and quality of the generated reasoning chain.

Table 2: Statistics for SMART-ER. T/K Ratio denotes
the ratio of tool-reliant to knowledge-driven steps.

S = {s1, s2, . . . , sn}. This decomposition is en-341

abled by the compositional nature of our queries342

and is empirically achieved using GPT-4o, an aux-343

iliary model in our pipeline, later denoted as M .344

Next, for each si, we determine whether it requires345

tool use (A(si) = 1) or can be resolved with346

parametric knowledge alone (A(si) = 0). Using347

ground truth from existing source data as heuris-348

tics, we guide M to annotate each subgoal. During349

this process, we also discard those queries where all350

subgoals rely exclusively on either tools or paramet-351

ric knowledge. After annotating the entire chain,352

we process each subgoal iteratively, starting from353

s1. For each subgoal si where A(si) = 1, we as-354

sign an appropriate tool ti from a predefined tool355

set using a mapping function T (·):356

ti =

{
T (si), if A(si) = 1

∅, otherwise
357

where ti = ∅ indicates the model relies solely on358

its parametric knowledge for reasoning. Empiri-359

cally, our tool set consists of Code, Search, and360

AskUser, covering all designed domains.361

Next, we proceed with the reasoning process362

using M . If A(si) = 0, M reasons over si, pro-363

ducing a reasoning step ki based on its parametric364

knowledge. Otherwise, we prompt M to generate365

the necessary parameters pi for tool invocation, re-366

trieving the tool output oi. The resulting outcome367

for each step is formulated as:368

ri =

{
(pi = M(si), oi = ti(pi)), if A(si) = 1

(ki = M(si)), otherwise
369

where ti(·) represents the invocation of tool ti. The370

iterative process also enables M to incorporate in- 371

formation from prior steps and tool outputs when 372

processing subsequent subgoals, ensuring a coher- 373

ent and context-aware reasoning flow. 374

Inspired by metacognitive heuristics that implic- 375

itly guide human reasoning, we refine the reasoning 376

chain ri by explicitly incorporating justifications 377

for whether parametric knowledge suffices or exter- 378

nal tool use is necessary. Specifically, we prompt 379

M to generate a justification ji = M(si, A(si)), 380

conditioned on the subgoal si and its annotation 381

A(si). This approach emulates human metacogni- 382

tion by transforming implicit heuristics into explicit 383

natural language explanations, thus enhancing in- 384

terpretability. Similar to Chain-of-Thought (Wei 385

et al., 2022b) leverages the cumulative probability 386

nature of autoregressive models to guide reasoning, 387

ji helps the model calibrate its decision-making, 388

improving its ability to strategically balance inter- 389

nal knowledge and external tools. 390

Finally, by integrating all subgoals, we 391

obtain the complete reasoning chain R = 392

{(r1, j1), . . . , (rn, jn)} for query Q, where each 393

step ri is either (ki), indicating a parametric 394

knowledge-driven step, or (pi, oi), representing a 395

tool-reliant step. Our method dynamically inte- 396

grates these steps, ensuring an adaptive balance be- 397

tween internal reasoning and external tool use. To 398

ensure quality, we conduct human supervision on 399

5% of the data for each step involving M , achiev- 400

ing a pass rate of over 95%. Please refer to Ap- 401

pendix B.2 for details. 402

4.3 Agent Training Implementation 403

We partition SMART-ER into training and test 404

splits with statistics in Table 2. For each (Q,R′) in 405

the training set, we generate multiple input-output 406

pairs for instruction tuning. The input comprises 407

{Q, (r1, j1), . . . , (rxi , jxi)}, while the output 408

consists of {(rxi+1, jxi+1), . . . , (rxi+1 , jxi+1)}}, 409

where xi indexes the tool-reliant steps. This setup 410

5

ensures iterative reasoning, allowing the agent to411

leverage prior steps until the next tool invocation412

or final solution. The number of input-output pairs413

per (Q,R′) also equals the number of tool-reliant414

steps, facilitating interactive inference.415

Using these instruction pairs, we finetune the416

Llama-3.1 8B and 70B instruct models (Dubey417

et al., 2024) as well as the Mistral 7B, Nemo(12B)418

and Small(24B) instruct models (Jiang et al., 2023),419

adapting them into a family of SMARTAgent.420

These agent models enable interactive tool use,421

recognizes its own limitations, and balances tool422

reliance with parametric knowledge-driven reason-423

ing to prevent tool overuse. See Appendix B.3 for424

training details and hyper-parameters.425

5 Experiment426

In this section, we present results demonstrat-427

ing SMARTAgent’s effectiveness in reducing tool428

overuse while enhancing reasoning performance.429

5.1 Settings430

Data. For in-domain testing, we evaluate431

SMARTAgent using the test split of adapted432

SMART-ER data across three domains: Math433

(MATH), Time (FreshQA), and Intention (IN3).434

For out-of-distribution (OOD) testing, we assess435

performance on GSM8K (Cobbe et al., 2021) and436

MINTQA (He et al., 2024), which test logical rea-437

soning and real-world knowledge.438

Baselines. We incorporate three main baselines:439

i) Normal Reasoning Trained: For each domain,440

we train the model using the training set queries441

to perform reasoning without tools, leveraging the442

original solution chain or ground truth. ii) Base443

Model Reasoning Prompt: We directly prompt the444

model to apply chain-of-thought reasoning without445

tools to solve the problem. iii) Base Model Tool446

Prompt: We provide the model with all available447

tools and their usage but allow it to decide indepen-448

dently whether and when to use them.449

Inference. For reasoning without tools, the model450

generates a response including the final answer. For451

tool-reliant reasoning, the inference is interactive:452

in each round, if a tool call is detected, we parse453

and execute it, integrating the tool’s output and454

reasoning into the input. This repeats until the final455

answer is reached. See Appendix C for details.456

Metrics. We use two main evaluation metrics: Tool457

Used, which measures the average number of times458

a tool is leveraged during reasoning, and Accuracy,459

which evaluates the average performance across 460

queries. For the IN3 dataset, where answers de- 461

pend on user preferences and lack a single correct 462

response, we adopt the original paper’s metrics: 463

Missing Details Recovery, assessing whether miss- 464

ing details in vague instructions are recovered, and 465

Summarized Intention Coverage, assessing whether 466

the final response covers all user-stated preferences. 467

5.2 Main Results 468

We present the main results in Table 3, along with 469

the baseline performance of GPT-4o and GPT-4o- 470

mini for comparison. We also present the OOD 471

results for Mistral-7B and Llama-3.1-8B in Sec- 472

tion 5.1, highlighting the following key findings. 473

SMARTAgent solves tasks efficiently. Compared 474

to the base model in Table 3, which autonomously 475

decides whether to use tools, SMARTAgent re- 476

duces tool usage time per query by 24% on av- 477

erage. At the same time, its performance improves 478

by over 37% across models compared to the best 479

baseline. This demonstrates SMARTAgent’s effi- 480

ciency in tool use, achieving higher results while 481

relying less on external resources. 482

7B-scale SMARTAgent can outperform GPT- 483

4o baselines. Despite being much smaller, the 484

7B- and 8B-scale SMARTAgent models can out- 485

perform GPT-4o and its 70B counterpart in Time 486

and Intention domains while using fewer tool calls, 487

showcasing their efficient tool use. In Math, where 488

reasoning scales with model size, SMARTAgent 489

lags behind larger models but remains competi- 490

tive against baselines using the same architecture. 491

These results demonstrate that strategic tool use 492

can bridge the gap between model size and perfor- 493

mance, making SMARTAgent a resource-efficient 494

yet powerful alternative. 495

SMARTAgent generalizes to OOD settings. As 496

shown in Section 5.1, SMARTAgent effectively 497

reduces tool calls while achieving better overall 498

performance on OOD test benchmarks. Notably, 499

SMARTAgent makes only one-fifth the number of 500

tool calls compared to the base model in MINTQA, 501

where tool prompting often leads to excessive re- 502

liance and decreased accuracy. 503

Improper tool uses degrade performance. In 504

the MINTQA and Math domain data, we find that 505

arbitrary tool use can degrade performance com- 506

pared to standard chain-of-thought reasoning. This 507

aligns with our argument in Section 3 that exces- 508

sive tool reliance can introduce unpredictable side 509

6

Method Model Math (MATH) Time (FreshQA) Intention (Intention-in-Interaction)

Tool Used↓

(Times)
Accuracy↑

(%)
Tool Used↓

(Times)
Accuracy↑

(%)
Tool Used↓

(Times)
Missing Details Recovery↑

(Lv3 / Lv2, %)
Summarized Intention

Coverage↑ (%)

Open-Source

Normal
Reasoning Trained

Mistral-7B 0.00 17.00 0.00 48.00 0.00 41.86 / 43.84 -
Llama-3.1-8B 0.00 41.00 0.00 48.00 0.00 38.37 / 42.49 -

Base Model
Reasoning Prompt

Mistral-7B 0.00 17.25 0.00 29.00 0.00 37.21 / 33.06 -
Llama-3.1-8B 0.00 53.00 0.00 26.00 0.00 40.70 / 25.76 -
Mistral-Nemo(12B) 0.00 47.00 0.00 33.00 0.00 44.19 / 28.37 -
Mistral-Small(24B) 0.00 72.25 0.00 34.00 0.00 41.86 / 31.82 -
Llama-3.1-70B 0.00 70.00 0.00 36.00 0.00 41.86 / 29.24 -

Base Model
Tool Prompt

Mistral-7B 3.90 13.25 1.67 49.00 3.80 48.84 / 21.70 63.04
Llama-3.1-8B 1.93 51.00 2.05 56.00 3.77 54.76 / 25.90 70.20
Mistral-Nemo(12B) 2.35 46.00 1.19 59.00 1.80 31.35 / 5.82 59.27
Mistral-Small(24B) 1.55 76.00 1.73 62.00 2.52 45.74 / 33.62 78.20
Llama-3.1-70B 3.53 67.50 2.08 63.00 2.71 45.74 / 35.96 61.68

SMARTAgent

Mistral-7B 0.60↓3.30 22.75↑5.50 1.00↓0.67 64.00↑15.00 3.60↓0.20 74.42↑25.58 / 65.44↑21.60 81.76↑18.72
Llama-3.1-8B 0.88↓1.05 54.75↑1.75 1.05↓1.00 67.00↑11.00 3.80↑0.03 81.40↑26.64 / 67.41↑24.92 78.28↑8.08
Mistral-Nemo(12B) 0.82↓1.53 49.50↑2.50 1.00↓0.19 70.00↑11.00 3.34↑1.54 77.91↑33.72 / 62.15↑33.78 82.30↑23.03
Mistral-Small(24B) 0.79↓0.76 69.75↓6.25 1.00↓0.73 66.00↑4.00 3.89↑1.37 74.42↑28.68 / 68.87↑35.25 84.99↑6.79
Llama-3.1-70B 0.94↓2.59 72.50↑2.50 1.01↓1.07 66.00↑3.00 3.51↑0.80 68.60↑22.86 / 58.15↑22.19 86.09↑24.41

Tool Used Macro-Average Decrease (%) 24.00 Performance Macro-Average Increase (%) 37.10

Closed-Source

Base Model
Reasoning Prompt

GPT-4o-mini 0.00 73.00 0.00 44.00 0.00 45.35 / 32.41 -
GPT-4o 0.00 79.50 0.00 47.00 0.00 38.37 / 28.54 -

Base Model
Tool Prompt

GPT-4o-mini 2.55 54.50 1.06 56.00 1.91 50.00 / 26.90 76.44
GPT-4o 0.27 79.25 1.01 65.00 1.17 40.70 / 15.61 86.80

Table 3: SMARTAgent’s performance on the test split across three in-domain task categories. The green and red
arrows indicate better or worse performance compared to the best baseline method. Its strong performance and
fewer tool calls highlight SMARTAgent’s efficient and strategic tool use.

Dataset GSM8K MINTQA

Metrics Tool Used↓

(Times)
Accuracy↑

(%)
Tool Used↓

(Times)
Accuracy↑

(%)

Llama-3.1-8B

Normal Reasoning Trained 0.00 80.29 0.00 21.65
Base Model Reasoning Prompt 0.00 82.26 0.00 12.37
Base Model Tool Prompt 2.53 83.17 4.03 16.49
SMARTAgent 0.76↓1.77 83.40↑0.23 1.06↓2.97 29.90↑8.25

Mistral-7B

Normal Reasoning Trained 0.00 58.68 0.00 21.65
Base Model Reasoning Prompt 0.00 50.57 0.00 19.59
Base Model Tool Prompt 3.56 55.34 6.46 10.31
SMARTAgent 0.45↓3.11 58.98↑0.30 0.99↓5.47 25.77↑4.12

Table 4: SMARTAgent’s performance on out-of-
distribution tasks compared with baseline methods. Re-
sults show SMARTAgent can successfully generalize.

effects, causing models to struggle with interactive510

tool calls. As a result, inference may become pro-511

longed over multiple rounds, ultimately leading to512

incorrect answers. Additionally, we observe that513

larger-scale models, including GPT-4o, use tools514

less frequently in the Intention domain data, result-515

ing in a greater performance drop than even the516

7B-scale SMARTAgent. This may stem from their517

overconfidence in assisting users, leading them to518

overlook specific user preferences.519

SMARTAgent achieves near-optimal tool use.520

Datasets such as Time and MINTQA contain up-521

to-date knowledge necessitating tool use. Ideally,522

Figure 5: Confidence analysis shows that SMART effec-
tively enhances the model’s decision-making confidence
in selecting the correct reasoning approaches.

at least one tool call per query is required for 523

a correct answer, and SMARTAgent consistently 524

maintains an average close to one, reflecting near- 525

optimal efficiency. Similarly, in the Intention do- 526

main, where queries contain two to four missing 527

details, SMARTAgent invokes tools three times per 528

query, aligning with the expected need. 529

5.3 Analysis and Case Studies 530

SMARTAgent effectively reduces tool overuse. 531

Beyond measuring tool use per query, we calculate 532

the tool overuse rate, as defined in Section 3, and 533

report results in Section 5.2 for GSM8K and Math 534

domain test data. Notably, SMARTAgent reduces 535

unnecessary tool calls by up to 50% compared to 536

prompting the base model with tool access. How- 537

ever, despite this reduction, tool overuse persists, 538

7

Table 5: Error analysis of common task failure causes, with explanations and examples.

Table 6: Statistics on tool overuse, defined in Section 3.

which we further examine in error analysis.539

Error analysis. We provide error analysis in Ta-540

ble 5, highlighting common failure causes. Tool541

prompting leads to errors across all categories,542

while SMARTAgent reduces repetitive calls and543

improves argument accuracy. However, feedback544

neglect still causes tool invocation failures, particu-545

larly with the Code tool, and excessive caution in546

ensuring calculation accuracy adds overhead. This547

mirrors human task-solving, where we sometimes548

rely on calculators despite knowing the steps. We549

provide a full case study in Appendix C.5. Future550

work may explore balancing convenience, budget,551

and efficiency to enhance decision-making.552

Confidence Validation Experiment. To evaluate553

SMARTAgents’ ability to choose between inter-554

nal reasoning and tool invocation, we conducted555

experiments using special tokens to analyze deci-556

sion confidence. Specifically, we trained the model557

on Time and Intention domains, introducing spe-558

cial tokens: “[[Reasoning]]” for internal reasoning,559

“[[AskUser]]” for the AskUser tool, and “[[Search]]”560

for the Search tool. These tokens, prepended at561

each step, guided decision-making during training562

(see Appendix C.6). For evaluation, we sampled563

50 decision steps from both domains’ test splits,564

measuring confidence via token logits. Decisions565

were categorized as correct or incorrect based on566

alignment with ground truth. As shown in Figure 5,567

the model exhibited higher confidence in correct de-568

cisions, demonstrating SMART’s effectiveness in569

boosting confidence and distinguishing between570

internal knowledge and tool use.571

6 Discussions and Future Work 572

Our empirical analysis reveals a notable phe- 573

nomenon of tool overuse, likely driven by the 574

agent’s uncertainty about its own capabilities and 575

the perceived ease of external lookups over internal 576

reasoning. Conversely, we also observe tool under- 577

use, especially in larger models, where agents mis- 578

judge task complexity and neglect essential tools. 579

Unlike human decision-making, which balances 580

intuitive and reflective strategies, language models 581

often lack this self-monitoring and rely on external 582

cues to determine when to trust internal knowledge. 583

This gap highlights opportunities for improvement, 584

such as confidence probing, self-checking mod- 585

ules, or reinforcement learning from feedback, to 586

refine tool-use thresholds and enhance the model’s 587

awareness of its boundaries. Future research could 588

explore how these mechanisms influence internal 589

representations and identify signals that capture 590

awareness, offering better safeguards against re- 591

source overuse and underuse. See Appendix D for 592

the full discussion insights. 593

7 Conclusion 594

Inspired by human metacognition in decision- 595

making, we propose the SMART paradigm for 596

agent reasoning, where agents recognize their 597

knowledge boundaries to decide when to use tools 598

or parametric knowledge. Specifically, SMART- 599

ER refines this decision boundary by incorporating 600

questions that highlight areas where current LMs 601

excel and struggle. Using these curated reasoning 602

chains, we train SMARTAgent to better balance 603

tool use and parametric knowledge, reducing tool 604

overuse. Our results show that a simple data-driven 605

approach can effectively calibrate model awareness, 606

paving the way for efficient, low-resource agent 607

development where “smartness” stems from both 608

performance and metacognitive ability to optimize 609

the reasoning strategy. 610

8

Limitations611

Our study focuses on three key domains where612

LLMs explicitly struggle—Math, Intention, and613

Time—building on insights from existing litera-614

ture. However, LLMs also face challenges in areas615

such as long-tail knowledge and domain-specific616

expertise, where external resources are essential.617

Expanding SMART-ER to these domains could fur-618

ther refine model self-awareness and improve cal-619

ibration in knowledge boundary, complementing620

the strong OOD performance that SMARTAgent621

has already demonstrated. Additionally, while we622

evaluate our approach on two major model families,623

extending our analysis to a broader range of archi-624

tectures, including Qwen, DeepSeek, and varying625

model sizes, could further validate and enhance the626

generalizability of our findings.627

References628

Alfonso Amayuelas, Kyle Wong, Liangming Pan,629
Wenhu Chen, and William Wang. 2023. Knowledge630
of knowledge: Exploring known-unknowns uncer-631
tainty with large language models. arXiv preprint632
arXiv:2305.13712.633

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,634
and Denny Zhou. 2024. Large language models as635
tool makers. In The Twelfth International Conference636
on Learning Representations.637

Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang,638
Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong639
Hao, Bing Han, and Wei Wang. 2024a. Teach-640
ing large language models to express knowledge641
boundary from their own signals. arXiv preprint642
arXiv:2406.10881.643

Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui644
Hsieh, Hsiang-Fu Yu, and Wei Wang. 2024b. Min-645
Prompt: Graph-based minimal prompt data augmen-646
tation for few-shot question answering. pages 254–647
266, Bangkok, Thailand.648

Xiusi Chen, Yu Zhang, Jinliang Deng, Jyun-Yu Jiang,649
and Wei Wang. 2023. Gotta: generative few-shot650
question answering by prompt-based cloze data aug-651
mentation. In Proceedings of the 2023 SIAM Inter-652
national Conference on Data Mining (SDM), pages653
909–917. SIAM.654

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,655
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias656
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro657
Nakano, et al. 2021. Training verifiers to solve math658
word problems. arXiv preprint arXiv:2110.14168.659

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,660
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,661

Akhil Mathur, Alan Schelten, Amy Yang, Angela 662
Fan, et al. 2024. The llama 3 herd of models. arXiv 663
preprint arXiv:2407.21783. 664

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 665
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 666
ham Neubig. 2023. Pal: Program-aided language 667
models. In International Conference on Machine 668
Learning, pages 10764–10799. PMLR. 669

Jie He, Nan Hu, Wanqiu Long, Jiaoyan Chen, and Jeff Z. 670
Pan. 2024. MINTQA: A multi-hop question answer- 671
ing benchmark for evaluating llms on new and tail 672
knowledge. arXiv preprint arXiv:2412.17032. 673

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 674
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 675
cob Steinhardt. 2021. Measuring mathematical prob- 676
lem solving with the math dataset. arXiv preprint 677
arXiv:2103.03874. 678

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 679
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 680
Neil Zhenqiang Gong, et al. 2023. Metatool bench- 681
mark for large language models: Deciding whether 682
to use tools and which to use. arXiv preprint 683
arXiv:2310.03128. 684

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 685
sch, Chris Bamford, Devendra Singh Chaplot, Diego 686
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 687
laume Lample, Lucile Saulnier, et al. 2023. Mistral 688
7b. arXiv preprint arXiv:2310.06825. 689

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 690
Henighan, Dawn Drain, Ethan Perez, Nicholas 691
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 692
Tran-Johnson, Scott Johnston, Sheer El-Showk, 693
Andy Jones, Nelson Elhage, Tristan Hume, Anna 694
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, 695
Deep Ganguli, Danny Hernandez, Josh Jacobson, 696
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka- 697
mal Ndousse, Catherine Olsson, Sam Ringer, Dario 698
Amodei, Tom Brown, Jack Clark, Nicholas Joseph, 699
Ben Mann, Sam McCandlish, Chris Olah, and Jared 700
Kaplan. 2022. Language models (mostly) know what 701
they know. arXiv preprint arXiv:2207.05221. 702

Moxin Li, Yong Zhao, Yang Deng, Wenxuan Zhang, 703
Shuaiyi Li, Wenya Xie, See-Kiong Ng, and Tat-Seng 704
Chua. 2024. Knowledge boundary of large language 705
models: A survey. arXiv preprint arXiv:2412.12472. 706

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, 707
Can Zheng, Junxiang Wang, Tanmoy Chowdhury, 708
Yun Li, Hejie Cui, Xuchao Zhang, et al. 2023. Do- 709
main specialization as the key to make large language 710
models disruptive: A comprehensive survey. arXiv 711
preprint arXiv:2305.18703. 712

Jennifer Livingston. 2003. Metacognition: An 713
overview. 714

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and 715
Kai-Wei Chang. 2022. A survey of deep learn- 716
ing for mathematical reasoning. arXiv preprint 717
arXiv:2212.10535. 718

9

https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16

Marvin Minsky. 1986. The Society of Mind. Simon &719
Schuster.720

Kangyun Ning, Yisong Su, Xueqiang Lv, Yuanzhe721
Zhang, Jian Liu, Kang Liu, and Jinan Xu. 2024.722
Wtu-eval: a whether-or-not tool usage evaluation723
benchmark for large language models. arXiv preprint724
arXiv:2407.12823.725

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,726
Carroll Wainwright, Pamela Mishkin, Chong Zhang,727
Sandhini Agarwal, Katarina Slama, Alex Ray, John728
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,729
Maddie Simens, Amanda Askell, Peter Welinder,730
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.731
Training language models to follow instructions with732
human feedback. In Advances in Neural Information733
Processing Systems, volume 35, pages 27730–27744.734
Curran Associates, Inc.735

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep736
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024.737
Training software engineering agents and verifiers738
with swe-gym. In arxiv.739

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan740
Liu, and Heng Ji. 2023. Creator: Tool creation for741
disentangling abstract and concrete reasoning of large742
language models. In Findings of the Association743
for Computational Linguistics: EMNLP 2023, pages744
6922–6939.745

Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He,746
Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui Yao, Xi-747
aocheng Yang, Denghui Zhang, et al. 2024a. Es-748
capebench: Pushing language models to think outside749
the box. arXiv preprint arXiv:2412.13549.750

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,751
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,752
Yankai Lin, Zhiyuan Liu, et al. 2024b. Tell me753
more! towards implicit user intention understand-754
ing of language model driven agents. arXiv preprint755
arXiv:2402.09205.756

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye,757
Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,758
and Maosong Sun. 2024c. Investigate-consolidate-759
exploit: A general strategy for inter-task agent self-760
evolution. arXiv preprint arXiv:2401.13996.761

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and762
Zhiyuan Liu. 2024d. Toolink: Linking toolkit cre-763
ation and using through chain-of-solving on open-764
source model. In Proceedings of the 2024 Confer-765
ence of the North American Chapter of the Associ-766
ation for Computational Linguistics: Human Lan-767
guage Technologies (Volume 1: Long Papers), pages768
831–854.769

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,770
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,771
Chaojun Xiao, Chi Han, et al. 2023. Tool772
learning with foundation models. arXiv preprint773
arXiv.2304.08354, 10.774

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 775
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 776
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 777
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, 778
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa- 779
cilitating large language models to master 16000+ 780
real-world apis. In The Twelfth International Confer- 781
ence on Learning Representations. 782

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 783
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 784
Wen. 2025. Tool learning with large language mod- 785
els: A survey. Frontiers of Computer Science, 786
19(8):198343. 787

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin 788
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen, 789
and Haifeng Wang. 2023. Investigating the fac- 790
tual knowledge boundary of large language mod- 791
els with retrieval augmentation. arXiv preprint 792
arXiv:2307.11019. 793

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 794
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 795
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 796
Toolformer: Language models can teach themselves 797
to use tools. Advances in Neural Information Pro- 798
cessing Systems, 36:68539–68551. 799

Gregory Schraw and David Moshman. 1995. Metacog- 800
nitive theories. Educational psychology review, 801
7:351–371. 802

Yuanhao Shen, Xiaodan Zhu, and Lei Chen. 2024. 803
Smartcal: An approach to self-aware tool-use eval- 804
uation and calibration. In Proceedings of the 2024 805
Conference on Empirical Methods in Natural Lan- 806
guage Processing: Industry Track, pages 774–789. 807

AgentGPT Team. 2024. Agentgpt. 808

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 809
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 810
Schalkwyk, Andrew M Dai, Anja Hauth, Katie 811
Millican, et al. 2023. Gemini: a family of 812
highly capable multimodal models. arXiv preprint 813
arXiv:2312.11805. 814

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry 815
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny 816
Zhou, Quoc Le, et al. 2023. Freshllms: Refreshing 817
large language models with search engine augmenta- 818
tion. arXiv preprint arXiv:2310.03214. 819

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia, 820
Jingtao Cao, Zeming Liu, Jeff Pan, and Kam-Fai 821
Wong. 2024a. Appbench: Planning of multiple apis 822
from various apps for complex user instruction. In 823
Proceedings of the 2024 Conference on Empirical 824
Methods in Natural Language Processing, pages 825
15322–15336. 826

Hongru Wang, Boyang Xue, Baohang Zhou, Rui Wang, 827
Fei Mi, Weichao Wang, Yasheng Wang, and Kam- 828
Fai Wong. 2024b. UniRetriever: Multi-task candi- 829
dates selection for various context-adaptive conver- 830
sational retrieval. In Proceedings of the 2024 Joint 831

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://github.com/reworkd/AgentGPT
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/

International Conference on Computational Linguis-832
tics, Language Resources and Evaluation (LREC-833
COLING 2024), pages 17074–17086, Torino, Italia.834
ELRA and ICCL.835

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua836
Zhang, Cunxiang Wang, Huimin Wang, Guanhua837
Chen, and Kam-Fai Wong. 2024c. Self-DC: When to838
reason and when to act? self divide-and-conquer for839
compositional unknown questions. arXiv preprint840
arXiv:2402.13514.841

Jindong Wang, Cuiling Lan, Chang Liu, Yidong842
Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wen-843
jun Zeng, and S Yu Philip. 2022. Generalizing to844
unseen domains: A survey on domain generalization.845
IEEE transactions on knowledge and data engineer-846
ing, 35(8):8052–8072.847

Xingyao Wang, Boxuan Li, Yufan Song, Xiangru848
Tang, Frank F. Xu, Bowen Li, Jiayi Pan, Mingchen849
Zhuge, Niklas Muennighoff, Yizhe Zhang, Ren Ma,850
Hoang H. Tran, Yanjun Shao, Bill Qian, Fuqiang851
Li, Jaskirat Singh, Yueqi Song, Mingzhang Zheng,852
Binyuan Hui, Junyang Lin, Robert Brennan, Hao853
Peng, Heng Ji, and Graham Neubig. 2025. Open-854
hands: An open platform for ai software developers855
as generalist agents. In Proc. The Thirteenth Inter-856
national Conference on Learning Representations857
(ICLR2025).858

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi,859
Wangchunshu Zhou, Shaochun Hao, Guangzheng860
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen,861
et al. 2023. Interactive natural language processing.862
arXiv preprint arXiv:2305.13246.863

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten864
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,865
et al. 2022a. Chain-of-thought prompting elicits rea-866
soning in large language models. Advances in Neural867
Information Processing Systems, 35:24824–24837.868

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten869
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,870
et al. 2022b. Chain-of-thought prompting elicits rea-871
soning in large language models. Advances in neural872
information processing systems, 35:24824–24837.873

Shujin Wu, May Fung, Cheng Qian, Jeonghwan Kim,874
Dilek Hakkani-Tur, and Heng Ji. 2025. Aligning llms875
with individual preferences via interaction. In Proc.876
The 31st International Conference on Computational877
Linguistics (COLING2025).878

XAgent-Team. 2023. Xagent: An autonomous agent879
for complex task solving.880

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen881
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,882
Senjie Jin, Enyu Zhou, et al. 2023. The rise and883
potential of large language model based agents: A884
survey. arXiv preprint arXiv:2309.07864.885

Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang,886
Sheng Wang, Erxin Yu, Xuming Hu, and Kam-Fai887

Wong. 2024. Ualign: Leveraging uncertainty esti- 888
mations for factuality alignment on large language 889
models. arXiv preprint arXiv:2412.11803. 890

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 891
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 892
2024. Tree of thoughts: Deliberate problem solving 893
with large language models. Advances in Neural 894
Information Processing Systems, 36. 895

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 896
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023. 897
React: Synergizing reasoning and acting in language 898
models. In The Eleventh International Conference 899
on Learning Representations. 900

Xunjian Yin, Xu Zhang, Jie Ruan, and Xiaojun Wan. 901
2024. Benchmarking knowledge boundary for large 902
language model: A different perspective on model 903
evaluation. arXiv preprint arXiv:2402.11493. 904

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, 905
Xipeng Qiu, and Xuan-Jing Huang. 2023. Do large 906
language models know what they don’t know? In 907
Findings of the Association for Computational Lin- 908
guistics: ACL 2023, pages 8653–8665. 909

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou 910
Wang. 2024. Natural language reasoning, a survey. 911
ACM Computing Surveys, 56(12):1–39. 912

Pengfei Yu and Heng Ji. 2024. Information associa- 913
tion for language model updating by mitigating LM- 914
logical discrepancy. In Proceedings of the 28th Con- 915
ference on Computational Natural Language Learn- 916
ing, pages 117–129, Miami, FL, USA. Association 917
for Computational Linguistics. 918

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, 919
Hao Peng, and Heng Ji. 2024. Craft: Customiz- 920
ing llms by creating and retrieving from specialized 921
toolsets. In Proc. The Twelfth International Confer- 922
ence on Learning Representations (ICLR2024). 923

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing 924
Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and 925
Tong Zhang. 2024. R-tuning: Instructing large lan- 926
guage models to say ‘i don’t know’. In Proceedings 927
of the 2024 Conference of the North American Chap- 928
ter of the Association for Computational Linguistics: 929
Human Language Technologies (Volume 1: Long Pa- 930
pers), pages 7106–7132. 931

11

https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10

Appendix932

A Preliminary Study Details933

A.1 Agent Experiment Details934

The system instruction that we provide to both the935

XAgent and AgentGPT is:936

Prompt for Agent Preliminary Study

Solve the following task accurately, and use
tools to help you only if necessary.

937

n LM-driven agent systems, we first prompt GPT-938

4o with all the questions from the GSM8K test set939

without using any tools. We then filter out only940

the questions that GPT-4o can correctly answer941

through pure text-based reasoning. From this re-942

fined dataset, we randomly sample 50 questions943

to evaluate AgentGPT and XAgent’s performance.944

Surprisingly, despite the core model being capable945

of solving all sampled questions without external946

tools, it still heavily relies on tools during reason-947

ing, leading to tool overuse. Figure 6 presents a948

case study illustrating a specific instance of tool949

overuse by both agents.950

A.2 Model Experiment Details951

For both Llama-3.1-8B-Instruct and Mistral-7B-952

Instruct-v0.3, we prompt the model to do inference953

two times for each question from GSM8K’s test set.954

The first time we instruct the model to reason nor-955

mally to solve the query with the following system956

instruction:957

Prompt for Model Preliminary Study (Nor-
mal)

You are an advanced assistant designed to
solve tasks autonomously using your knowl-
edge and reasoning. Clearly articulate your
thought process and reasoning steps before
presenting the final response to ensure trans-
parency and accuracy.

958

The second time, we give the model access to959

tools and instruct it to independently decide when960

to use them based on the following system instruc-961

tion:962

Prompt for Model Preliminary Study (Tool)

Task
You are a highly capable assistant designed
to solve tasks effectively using your knowl-
edge and available tools.

Principles
1. Reason Independently:
• Leverage your own knowledge to analyze
and solve reasoning steps whenever possible.
Use external tools only when necessary.
2. Tool Usage:
• Use code snippet “‘python ... “‘ to write,
execute a python code snippet, and retrieve
the result from its printed output.
3. Step-by-Step Approach:
• Work through reasoning systematically,
breaking down the task into manageable
steps. Rely on your knowledge until a
gap is identified that requires tool support.
Employ tools to address gaps and integrate
the findings into your solution.
4. Goal-Oriented Resolution:
• Conclude your reasoning process by
achieving a clear, accurate, and succinct
solution based on your independent analysis
and insights gained from tools.

Output Guidelines
• If you need to use the code tool, please
wrapped it “‘python ... “‘ and write the
code snippet inside. Make sure you include
all the packages necessary and the code
is executable. And then you should stop
generating.
• If you just begin to generate reasoning
steps, please directly reason after "###
Reasoning Steps".
• If you are generating after the output of
a code snippet, please continue to do the
reasoning in your output, you can still call
the tool if necessary.
• Finally you should give a succinct and
accurate final response to directly address
the task after "### Final Response".

963

We provide a code-writing and execution envi- 964

ronment, specifically designed to assist with com- 965

plex math tasks and calculations. Whenever the 966

model generates a code snippet in its output, we 967

12

Figure 6: Example cases on XAgent and AgentGPT’s
tool overuse.

parse and execute it, returning the result. The968

model then continues reasoning based on its pre-969

vious steps and the executed output. This process970

iterates until a final response is reached.971

B Data Construction Details972

B.1 Data Selection973

For the Math domain, we first collect questions974

that the current GPT model answers incorrectly,975

ensuring their inherent difficulty. We then decom-976

pose the ground truth reasoning chain to assess977

the complexity of each step, selecting questions978

that contain both straightforward and challenging979

aspects to provide a balanced reasoning task.980

For the Time domain, we filter out all questions981

explicitly labeled as involving fast-changing facts.982

Given the limited number of such questions, we983

further augment the dataset using a self-instruct ap-984

proach, prompting the GPT model to generate addi-985

tional queries related to rapidly evolving informa-986

tion. To introduce compositional reasoning, each987

generated query is expanded with an additional sub-988

question involving well-established, slow-changing989

facts, forming multi-hop queries that require a nu-990

anced understanding of temporal knowledge.991

For the Intention domain, we filter out all992

queries labeled as vague in task definition, par-993

ticularly those requiring explicit user clarification.994

To ensure that each query remains solvable with-995

out tool reliance, we probe GPT to verify that the996

model can generally answer each selected question997

without application of tools. This filtering process998

refines the dataset to only include queries where999

the model’s performance is not hindered by a lack1000

of inherent capability but rather by the absence of1001

user-provided intent. 1002

The data adaptation process is fully automated, 1003

with manual checks conducted on 5% of the sam- 1004

ples at each stage to ensure the quality of the final 1005

filtered questions. 1006

B.2 Reasoning Chain Construction 1007

Empirically, we incorporate three tools in our con- 1008

structed tool set: 1009

• Code: An environment for code writing and exe- 1010

cution, enhancing the model’s capability in com- 1011

plex calculations, equation solving, and related 1012

tasks. To use this tool, the model must gener- 1013

ate an executable code snippet within ”’python 1014

<code> ”’ and print the output to obtain the exe- 1015

cution results. 1016

• Search: A real-time web search tool for re- 1017

trieving the most up-to-date factual knowledge 1018

or information beyond the model’s parametric 1019

knowledge. To invoke this tool, the model 1020

should provide a search query in the format 1021

Search(<query>) to obtain relevant search en- 1022

gine results. We empirically use the Serper API 1023

as the backend search engine. 1024

• AskUser: A tool for querying the user to clarify 1025

intentions, preferences, or general inquiries. This 1026

tool enables the model to retrieve user-provided 1027

responses by issuing a user-oriented query in the 1028

format AskUser(<query>). To simulate user re- 1029

sponses in our experiments, we employ a GPT 1030

model as the backend. 1031

From the constructed reasoning chains, we empiri- 1032

cally observe that the Code tool is mainly used in 1033

the Math domain, the Search tool is mainly uti- 1034

lized in the Time and Intention domains, while the 1035

AskUser tool is mainly employed in the Intention 1036

domain. 1037

For each step involving the auxiliary model M , 1038

we manually verify data quality to ensure: i) tasks 1039

are decomposed into fine-grained, reasonable sub- 1040

goals, ii) tool-calling formats are correct, and iii) 1041

justifications align with labels and accurately ex- 1042

plain why parametric knowledge suffices or a spe- 1043

cific tool is required. Through iterative optimiza- 1044

tion of instructions to M , we achieve a final pass 1045

rate exceeding 95%. 1046

B.3 Training 1047

For fine-tuning, we used Llama-3.1-8B-Instruct1, 1048

Llama-3.1-70B-Instruct, Mistral-7B-Instruct- 1049

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

13

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Hyperparameter Value

Models Llama-3.1-8B, Mistral-7B
Fine-tuning Method SFT
PEFT LoRA
LoRA Rank 16
LoRA Alpha 32
LoRA Dropout 0.05
LoRA Target All Layers
Sequence Length (cutoff_len) 4096 tokens
Batch Size (Per Device) 2
Gradient Accumulation Steps 4
Learning Rate 1e-4
Learning Rate Scheduler Cosine
Warmup Ratio 0.1
Number of Epochs 3
Precision bfloat16

Table 7: Hyperparameters during Fine-Tuning.

v0.31, Mistral-Nemo-Instruct-24072, and1050

Mistral-Small-24B-Instruct-25013 as base1051

models. We applied supervised fine-tuning1052

(SFT) in the Alpaca instruction-following format1053

(Instruction-Input-Output), computing the loss1054

only on tokens in the Output field.1055

Training was conducted on 4 NVIDIA A401056

GPUs using LoRA (Low-Rank Adaptation) with1057

a rank of 16 and an alpha of 32, applied across1058

all model layers. The maximum sequence length1059

was set to 4096 tokens, and models were trained1060

for 3 epochs with a learning rate of 1e-4, using a1061

cosine learning rate scheduler with a 10% warmup1062

ratio. To manage memory constraints, we set a1063

per-device batch size of 2 and applied gradient ac-1064

cumulation over 4 steps. Training used bfloat161065

(bf16) precision, with evaluations every 100 steps,1066

using 1% of the dataset for validation. Fine-tuning1067

hyperparameters are detailed in Table 7.1068

The system instruction for finetuning is pre-1069

sented in the following:1070

System Instruction for Training

You are a highly capable assistant designed
to solve tasks effectively using your knowl-
edge and available tools. Follow these
principles:

1. Reason Independently: Leverage
1071

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

2https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

3https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501

your own knowledge to analyze and solve
reasoning steps whenever possible. Use
external tools only when necessary.
2. Tool Usage:
<Specific Tool Description>
3. Step-by-Step Approach:
• Work through reasoning systematically,
breaking down the task into manageable
steps.
• Rely on your knowledge until a gap is
identified that requires tool support.
• Employ tools to address gaps and integrate
the findings into your solution.
4. Goal-Oriented Resolution:
Conclude your reasoning process by achiev-
ing a clear, accurate solution based on your
independent analysis and insights gained
from tools. After your reasoning, provide
your response to directly address the task.

Your reasoning should be transparent,
logical, and concise. Stop and document the
reasoning whenever you need to use a tool
to gather more information. Continue until
you reach the final solution and give final
response.

1072

C Experiment Details 1073

C.1 Data Setting 1074

For in-domain testing, we use a subset of adapted 1075

SMART-ER data. Specifically, for the Math do- 1076

main, we randomly sample 400 test instances from 1077

MATH, ensuring coverage of all testing categories 1078

(algebra, geometry, number theory, etc.), while 1079

spanning five difficulty levels. For the Time do- 1080

main, we select 100 randomly sampled adapted 1081

data points from FreshQA, ensuring that each in- 1082

stance incorporates both fast-changing and slow- 1083

changing aspects. For the Intention domain, we 1084

randomly sample 100 data points from Intention-in- 1085

Interaction, ensuring that all selected instructions 1086

are vague and require specific user preferences to 1087

resolve. 1088

For out-of-domain testing, we directly use the 1089

full test set of GSM8K without modifications. For 1090

MINTQA, due to its large size, we randomly sam- 1091

ple 10% of the data points that meet the following 1092

criteria: the question requires multi-hop reasoning 1093

and contains both old and new knowledge. This se- 1094

lection ensures a challenging test set that evaluates 1095

14

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501

the model’s ability to generalize beyond in-domain1096

tasks while maintaining a focus on complex reason-1097

ing and real-world knowledge retrieval.1098

C.2 Baselines1099

For the baseline Normal Reasoning Trained, we1100

train a separate model for each domain. Specifi-1101

cally, for Math, Time, and Intention, we use the1102

same queries as in the SMART-ER training set.1103

In the Math domain, we leverage existing solution1104

chains from the MATH dataset as training data. For1105

the IN3 and Time domains, we use GPT-4o to gen-1106

erate normal reasoning chains, guided by existing1107

annotations on final answers or missing details as1108

heuristics. These domain-specific solution chains1109

are then used to train the model.1110

For the baseline Base Model Reasoning Prompt,1111

we use the following system instruction to evaluate1112

the model’s performance:1113

Base Model Reasoning Prompt

You are an advanced assistant designed to
solve tasks autonomously using your knowl-
edge and reasoning. Clearly articulate your
thought process and reasoning steps before
presenting the final response to ensure trans-
parency and accuracy.
In the field ’### Reasoning Steps’, clearly
articulate your thought process and reasoning
steps towards the final answer. Then you
should present a succinct and accurate final
response in the field ’### Final Response’.

1114

For the baseline Base Model Tool Prompt, we1115

use the same system prompt as in appendix A.2,1116

allowing the model to access tools and freely decide1117

whether and when to use them.1118

C.3 Interactive Inference1119

For both the baseline Base Model Tool Use and our1120

SMARTAgent, we adopt an interactive approach for1121

inference. Specifically, we first prompt the target1122

model with the query and obtain its output. In this1123

output, we use a rule-based natural language match-1124

ing method to determine whether a tool call or a1125

final answer is present (e.g., detecting whether “###1126

Final Response” appears in the output to identify1127

the final response).1128

If the final response is found, we extract it and1129

terminate the iterative process. If a tool call is1130

detected, we parse the parameters provided by the1131

model to execute the tool call. Based on the specific 1132

tool’s name, we invoke the corresponding API and 1133

integrate its output into the model’s response. Next, 1134

we append the model’s reasoning before the tool 1135

call, the tool call itself, and its output to the model’s 1136

input. We then re-prompt the model to continue 1137

reasoning, given the previously executed tool call 1138

and its result. 1139

This iterative process continues until the final 1140

response is successfully parsed and retrieved, form- 1141

ing the complete interactive inference process. 1142

Below, we illustrate the respective input and out- 1143

put in an iterative inference process consisting of 1144

two iterations: 1145

Interactive Inference

——— Iterate 2 Input Begin ———

— Iterate 1 Input Begin —
Task
<target task>
Reasoning Steps
— Iterate 1 Input End —

== Iterate 1 Output Begin ==
- Step 1: <title>, general reasoning
<reasoning>
- Step 2: <title>, tool: <tool name>
<tool call parameter>
== Iterate 1 Output End ==
- Output: <tool execution output>

——— Iterate 2 Input End ———

====== Iterate 2 Output Begin ======
- Step 3: <title>, general reasoning
<reasoning>
- Step 4: ...
...
...
Final Response
<final answer>
====== Iterate 2 Output End ======

1146

C.4 Additional Results 1147

We also provide results from the latest Llama-3.3- 1148

70B-Instruct1 model in Appendix C.3, comparing 1149

1https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

15

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Method Model Math (MATH) Time (FreshQA) Intention (Intention-in-Interaction)

Tool Used↓

(Times)
Accuracy↑

(%)
Tool Used↓

(Times)
Accuracy↑

(%)
Tool Used↓

(Times)
Missing Details Recovery↑

(Lv3 / Lv2, %)
Summarized Intention

Coverage↑ (%)

Open-Source

SMARTAgent Llama-3.1-70B 0.94 72.50 1.01 66.00 3.51 68.60 / 58.15 86.09
Llama-3.3-70B 0.61 76.25 1.00 65.00 3.15 61.63 / 59.01 84.45

Table 8: Performance of SMARTAgent when using Llama-3.3-70B-Instruct as the base model, compared to the
original results with its Llama-3.1-70B-Instruct counterpart.

its performance with the Llama-3.1-70B-Instruct-1150

based SMARTAgent. Although Llama-3.3 is the1151

newest version, we use the 3.1 series to maintain1152

consistency with the 8B model, which is also from1153

the 3.1 version. Empirically, we found no signifi-1154

cant difference in performance between the 3.3 and1155

3.1 versions of the 70B model.1156

C.5 Case Study1157

In Figure 7, we compare the solution chains1158

of SMARTAgent and the base model with tool1159

prompting. SMARTAgent demonstrates logical1160

planning, context corroboration, and an awareness1161

of its limitations and knowledge boundaries, with1162

clear justifications for its decisions. This metacog-1163

nitive approach closely mirrors human reasoning1164

processes, making SMARTAgent’s reasoning more1165

interpretable and significantly reducing tool use1166

overhead.1167

C.6 Confidence Validation1168

We independently train the Llama-3.1-8B-Instruct1169

and Mistral-7B-Instruct models with the added spe-1170

cial tokens. At each reasoning step, we prepend1171

a special token at the very beginning to indicate1172

the model’s chosen approach—whether it relies on1173

external tools (e.g., “[[AskUser]]” or “[[Search]]”)1174

or its own parametric knowledge (e.g., “[[Reason-1175

ing]]”).1176

By analyzing the probability of generating each1177

special token, we can assess the model’s confidence1178

in its decision-making process. Apart from the1179

added special tokens, the rest of the original rea-1180

soning chain remains unchanged, maintaining the1181

following structured format:1182

Step Format

- Step <index>: [[Special Token]] <title>
<content>
- Step <index>: ...

1183

We train the model using the exact same hyper-1184

parameter setting introduced in Appendix B.3. Dur- 1185

ing inference, we randomly sample 50 decision- 1186

making steps from the test split of both the 1187

Time and Intention domains. A decision-making 1188

step refers to the final action in a reasoning se- 1189

quence—given the previous n− 1 steps, we evalu- 1190

ate whether the model correctly decides between 1191

using a tool or relying on its parametric knowl- 1192

edge for the nth step. This evaluation is performed 1193

within the context of the full solution chain, which 1194

consists of m steps in total (m ≥ n). 1195

D Discussions 1196

Agent’s improper tool usage. Our empirical anal- 1197

ysis reveals a notable phenomenon of tool overuse, 1198

where agents frequently rely on external tools 1199

even when internal knowledge is sufficient. This 1200

over-reliance likely arises from two factors: i) the 1201

agent’s uncertainty about its own capabilities, and 1202

ii) the perceived ease of external lookups compared 1203

to internal reasoning. We also observe instances 1204

of tool underuse, especially in large-scale models 1205

like GPT-4o and Llama-70B, where agents neglect 1206

to call essential tools, possibly due to misjudging 1207

the complexity of the task. Both overuse and un- 1208

deruse contribute to concerns over computational 1209

efficiency and solution accuracy. Future research 1210

could explore methods to better balance these trade- 1211

offs, such as by introducing explicit resource con- 1212

straints or budgets for tool calls. 1213

Mechanisms behind human and LM’s 1214

decision-making. Cognitive science suggests that 1215

human decision-making arises from both intuitive 1216

judgments and reflective strategies. Similarly, in 1217

language models (LMs), problem-solving is in- 1218

fluenced by implicit heuristics (e.g., memorized 1219

patterns) and explicit tool-using behaviors. When 1220

tools are available, LMs often default to external 1221

queries, akin to humans seeking external confir- 1222

mation when uncertain. However, unlike humans, 1223

LMs lack self-monitoring and rely on external or 1224

data-driven cues to determine when to trust their 1225

16

Figure 7: Case study comparing the performance of Tool Prompting and SMARTAgent.

internal knowledge. Developing frameworks that1226

integrate implicit heuristics with explicit reasoning1227

could lead to more adaptive and efficient decision-1228

making in LMs.1229

Enhancement of model’s self-awareness. Our1230

data-driven calibration strategy, which provides1231

explicit rationales for when to rely on internal1232

knowledge versus external tools, shows promis-1233

ing results. Other approaches, such as confidence1234

probing via logits, integration of specialized self-1235

checking modules, or reinforcement learning from1236

feedback, might also refine tool usage thresholds.1237

Future research could investigate how these signals1238

affect the model’s internal distributions and iden-1239

tify representations that capture the awareness of1240

boundaries. Additionally, iterative or in-context1241

learning could allow real-time metacognitive cali-1242

bration, offering a more efficient safeguard against1243

both overuse and underuse of resources.1244

17

	Introduction
	Related Work
	Preliminaries
	Method
	Data Collection
	Reasoning Chain Construction
	Agent Training Implementation

	Experiment
	Settings
	Main Results
	Analysis and Case Studies

	Discussions and Future Work
	Conclusion
	Preliminary Study Details
	Agent Experiment Details
	Model Experiment Details

	Data Construction Details
	Data Selection
	Reasoning Chain Construction
	Training

	Experiment Details
	Data Setting
	Baselines
	Interactive Inference
	Additional Results
	Case Study
	Confidence Validation

	Discussions

