
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCO: REINFORCEMENT WITH DIVERSITY
CONSTRAINTS FOR MULTI-HUMAN GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art text-to-image models excel at realism but collapse on multi-human
prompts—duplicating faces, merging identities, and miscounting individuals. We
introduce DISCO (Reinforcement with DiverSity Constraints), the first RL-based
framework to directly optimize identity diversity in multi-human generation.
DISCO fine-tunes flow-matching models via Group-Relative Policy Optimization
(GRPO) with a compositional reward that (i) penalizes intra-image facial similar-
ity, (ii) discourages cross-sample identity repetition, (iii) enforces accurate per-
son counts, and (iv) preserves visual fidelity through human preference scores. A
single-stage curriculum stabilizes training as complexity scales, requiring no extra
annotations. On the DiverseHumans Testset, DISCO achieves 98.6% Unique Face
Accuracy and near-perfect Global Identity Spread—surpassing both open-source
and proprietary methods (e.g., Gemini, GPT-Image) while maintaining competi-
tive perceptual quality. Our results establish DISCO as a scalable, annotation-free
solution that resolves the long-standing identity crisis in generative models and
sets a new benchmark for multi-human image generation.

Figure 1: DISCO enables identity-consistent multi-human generation. (a) SOTA methods often
produce duplicate or inconsistent faces, while (b) DISCO generates distinct, diverse identities. (c)
Quantitative results show clear gains in Count Accuracy, Unique Face Accuracy, Identity Spread,
and Overall quality(HPSv2 score).

1 INTRODUCTION

Text-to-image models have recently achieved impressive realism and controllability, powered by
diffusion models (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2024) and flow-based training
schemes such as rectified flow and flow matching (Liu et al., 2022; Lipman et al., 2023). However,
when tasked with generating scenes with multiple people, current systems frequently replicate nearly
identical faces, conflate identities, or miscount individuals, undermining realism and limiting practi-
cal utility. This limitation was recently pointed out in Borse et al. (2025). This is a severe constraint
in synthetic data generation for various applications such as training group photo personalization
models, consistent character generation and storytelling, narrative media, educational content cre-
ation, and simulation environments for social interaction research. As illustrated in Fig. 2, these
failures persist even when overall image quality is high, revealing a bottleneck in identity differenti-
ation within and across generations. We term this fundamental issue as the identity crisis.

Existing text-to-image methods rely mainly on generating realistic and aesthetically pleasing hu-
mans (Labs & AI, 2025; Cai et al., 2025). These models do not address identity diversity—especially
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Figure 2: The Identity Crisis. Observe the images carefully, which have been generated by the
recent SOTA text-to-image methods. From an initial glance, they look great. However, can you spot
the issue?
as the number of people and scene complexity increase. We noticed that Reinforcement learning
(RL) has been applied to the above models to optimize non-differentiable objectives such as prompt
adherence, aesthetics, or human preferences (Black et al., 2023; Lee et al., 2023; Yang et al., 2024),
and GRPO-style algorithms have improved stability and sample efficiency for flow-matching mod-
els (Liu et al., 2025; Xue et al., 2025). Additionally, RL has shown the ability to correct problematic
behaviors that may be ingrained in large models through limited or biased training data—effectively
breaking “bad habits" learned during pre-training. However, no prior approach explicitly optimizes
human-identity diversity both within a single image and across groups of generations for the same
prompt.

We introduce DISCO—Reinforcement with DiverSity Constraints—a novel, sample-efficient
RL framework for multi-human generation that directly targets identity diversity. DISCO fine-
tunes flow-matching text-to-image models using Group-Relative Policy Optimization (GRPO) (Liu
et al., 2025; Xue et al., 2025), guided by a compositional reward that: (i) penalizes facial similarity
within images, (ii) discourages repeated identities across groups, (iii) enforces count accuracy, and
(iv) preserves text–image alignment via an HPS-style score. RL enables flexible optimization of het-
erogeneous, non-differentiable rewards, overcoming the limitations of supervised fine-tuning, which
requires large, annotated datasets. To further enhance robustness as the number of people increases,
DISCO employs a single-stage curriculum that anneals the prompt distribution from simpler cases
to a uniform range (Liang et al., 2024).

Empirically, DISCO sets a new standard for multi-human generation: it substantially re-
duces identity duplication and improves fidelity across diverse prompts and model backbones (e.g.,
SDXL/SD3.5, FLUX variants, proprietary models), without requiring auxiliary annotations. On
DiverseHumans and MultiHuman-TestBench, DISCO achieves consistent gains in Count Accuracy
and Unique-Faces/Non-overlapping Identity while maintaining perceptual quality (Figs. 1, 5; Ta-
bles 1-2).

Contributions.

• Identity and Count aware RL for multi-human scenes: We cast multi-human generation
as RL fine-tuning with diversity- and count-based rewards computed from facial embed-
dings, within images and across groups of generations.

• Group-wise diversity reward: We introduce a group-relative term that discourages cross-
sample identity repetition, improving exploration and advantage estimation under GRPO.

• Single-stage curriculum: A lightweight sampling curriculum improves stability and gen-
eralization as the requested number of people scales.

• State-of-the-art identity diversity with strong quality: DISCO delivers large gains in
identity uniqueness and count accuracy across models and prompts, without extra spa-
tial/semantic annotations.

2 RELATED WORK

Text-to-Image Generation. Diffusion models (Ho et al., 2020) and latent diffusion (Rombach
et al., 2022; Podell et al., 2024) have established high-fidelity text-to-image synthesis. Flow-
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based formulations—rectified flow and flow matching—enable efficient, deterministic sampling
with strong quality (Liu et al., 2022; Lipman et al., 2023; Labs, 2024; Labs & AI, 2025; Cai
et al., 2025). Unified multimodal transformers integrate text and image tokens for subject-driven
or reference-conditioned generation (Xiao et al., 2024; Xie et al., 2025; Mao et al., 2025; OpenAI,
2025; Wu et al., 2025). Despite these advances in realism and prompt alignment, multi-human
identity differentiation remains a persistent failure mode in unconstrained scenes.

Multi-Human Generation. A NeurIPS 2025 study Borse et al. (2025) discuses the limitations the
above methods on the multi-human generation task. They also identify the bias in Human generation
by these models, also pointed out by Chauhan et al. (2024). In their future work section, they
observed that current SOTA methods merge identities, repeat faces, or miscount people—the precise
error modes DISCO targets (Fig. 2).

Reinforcement Learning for Generative Image Models. RL and preference-optimization have
been used to optimize non-differentiable objectives such as prompt faithfulness, aesthetics, and hu-
man preferences (Black et al., 2023; Lee et al., 2023; Yang et al., 2024). In the flow-matching
setting, GRPO provides value-free, group-relative variance reduction and KL-controlled updates,
with curriculum and multi-objective extensions to improve stability and diversity (Liu et al., 2025;
Xue et al., 2025). In contrast to prior work that largely optimizes faithfulness, DISCO explicitly
encodes facial-identity diversity constraints both intra-image and inter-image, paired with an
identity-aware curriculum, yielding robust gains in multi-human scenes while maintaining quality.

3 METHOD

In this Section, we discuss our proposed DISCO finetuning approach in detail. We begin by estab-
lishing the mathematical foundations in Section 3.1. Section 3.2 introduces our proposed compo-
sitional reward function. To handle the increasing complexity as the number of people generated
grows, Section 3.3 presents a single-stage curriculum learning strategy that gradually transitions
from simple to complex multi-person scenarios.

3.1 PRELIMINARIES

Notation. Let c be a text prompt (conditioning), and t ∈ [0, 1] index the sampling trajectory from
noise (t=1) to data (t=0). The latent image distribution at time t is denoted by pt(x), and the time
grid by {tk}Kk=0 with t0=1 > · · · > tK=0. We write wt for a standard d-dimensional Wiener
process and use N (0, I) for the standard Gaussian.

Flow matching and rectified flows. We consider continuous-time normalizing flows trained with
flow matching (FM) (Lipman et al., 2023). Given a data sample x0 ∼ X0 and noise x1 ∼ N (0, I),
rectified flow (RF) Liu et al. (2022) defines the linear probability path

xt = (1− t)x0 + t x1, t ∈ [0, 1], (1)

and trains a velocity field vθ(xt, t) to regress the target velocity v = x1 − x0. FM yields efficient,
deterministic ODE sampling with few steps and high sample quality.

Denoising as an MDP. We cast iterative sampling as an MDP ⟨S,A, ρ0, P,R⟩ with state sk =
(c, tk, xtk), action ak = xtk+1

, deterministic transition sk+1 = (c, tk+1, xtk+1
), and initial distri-

bution ρ0(s0) = (p(c), δt0=1, N (0, I)). The policy is πθ(ak | sk) = pθ(xtk+1
| xtk , c), and we

compute a terminal reward R(sK) = r(xtK , c) at tK=0 (e.g., Black et al., 2023; Yang et al., 2024).

From ODE to Marginal-Preserving SDE. We begin with the deterministic sampler defined by
the probability-flow ODE:

dxt

dt
= vθ(xt, t), t ∈ [0, 1].

To enable exploration during RL while preserving marginals {pt}, we follow Flow-GRPO Liu et al.
(2025) and replace the ODE with an Itô SDE:

dxt = fθ(xt, t) dt+ σ(t) dwt, (2)
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Figure 3: DISCO training overview. Our method fine-tunes text-to-image models using Flow-
GRPO with a compositional reward. Given a prompt, the model generates a group of images eval-
uated by four components: (1) Intra-Image Diversity penalizes duplicate identities within images,
(2) Group-wise Diversity promotes variation across the group, (3) Count Accuracy enforces correct
person count, and (4) HPS Quality ensures prompt alignment and visual fidelity. The combined
reward guides GRPO updates to improve identity consistency and diversity.

which matches the same pt as the ODE. The relation between drift terms is:

vθ(x, t) = fθ(x, t)− 1
2σ(t)

2∇x log pt(x),

allowing controlled stochasticity via σ(t) and score-based compensation. We use Flow-GRPO’s
model-based score approximation; see Appendix D for details.

Trajectory Policy and GRPO Objective. Discretizing equation 2 over K steps defines the
trajectory policy πθ(τ | c) =

∏
k pθ(xtk+1

| xtk , c), with log-probability log πθ(τ | c) =∑
k log pθ(xtk+1

| xtk , c). Returns r(τ, c) are computed on the final image xtK , with gradients back-
propagated through all steps (Liu et al., 2025). For each prompt c, we sample a group G = {τi}Mi=1
and compute normalized advantages:

Ãi =
r(τi, c)− µc

σc + ϵ
, µc =

1

M

M∑
i=1

r(τi, c), σ2
c =

1

M

M∑
i=1

(
r(τi, c)− µc

)2
, (3)

We optimize:

max
θ

Ec

[
1

M

M∑
i=1

Ãi log πθ(τi | c)

]
− βKL Ec

[
KL

(
πθ(· | c) ∥πθref (· | c)

)]
, (4)

where πθref is the frozen base model and βKL controls drift and reward hacking. For efficiency, we
train with fewer denoising steps (Ktrain ≪ Ktest); full schedule is used at test time. See Appendix D
for hyperparameters.

3.2 REWARD SIGNAL

Our goal is to train identity-aware generators that (i) avoid duplicate identities within an image, (ii)
discourage reusing the same identity across samples of the same prompt, (iii) produce the requested
person count, and (iv) preserve text-image quality/alignment. We therefore optimize a compositional
reward evaluated at both image- and group-level. Given a prompt c and a group G = {τi}Mi=1 of
trajectories, the terminal image of trajectory i is xi ≡ xi,tK and the total reward is

r(τi, c, G) = α rdimg(xi) + β rdgrp(xi, G) + γ rcimg(xi) + ζ rqimg(xi), (5)

with α, β, γ, ζ > 0. Unless stated otherwise, all four components are bounded in [0, 1] to ensure a
stable scale under GRPO. We detail each term below, highlighting robustness choices.

Computing Facial Embeddings. Each image xi is processed with RetinaFace Deng et al. (2019)
Detector D, using a confidence threshold ηdet = 0.7, yielding bounding boxes Bi = {bi,j}mi

j=1.
Each face crop crop(xi, bi,j) is encoded via ArcFace Deng et al. (2022) encoder E to produce a
d-dimensional embedding:

fi,j = E
(
crop(xi, bi,j)

)
∈ Rd.
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We denote the set of embeddings for image i by Fi = {fi,1, . . . , fi,mi
}. Identity similarity between

embeddings u, v ∈ Rd is computed using cosine similarity s(u, v) = u⊤v
∥u∥2∥v∥2

, which simplifies to
u⊤v for ℓ2-normalized vectors. All similarity computations use s(·, ·) unless otherwise noted.

Intra-Image Diversity rdimg. This component utilizes {Fi} to enforce diversity by ensuring that
the same individual does not appear multiple times within a single generated image.

rdimg(xi) =

{
1−maxj ̸=k s(fi,j , fi,k) if mi ≥ 2

0.5 if mi < 2
(6)

Group-wise diversity rdgrp. Using this reward, we aim to discourage identity repetition across the
group G generated for the same prompt c. As the reward needs to be assigned per-image and not per-
group, we compute the counterfactual “remove-one” statistic for every image i. Let FG =

⋃M
i=1 Fi

denote all faces across the group and define

SG = AvgPairwiseSim(FG) =
2

|FG|(|FG| − 1)

∑
i,j∈{1,...,|FG|}

i<j

s(fi, fj) ∈ [0, 1].

For image i, we remove its faces to get FG−i and compute SG−i = AvgPairwiseSim(FG−i). We
define the contribution ∆i = SG − SG−i. If SG−i > SG then ∆i < 0, meaning i increases group
diversity; we reward such samples. We map to [0, 1] via

rdgrp(xi, G) = σ
(
− λ∆i

)
, σ(u) = 1

1+e−u , λ = 5 (7)

Pseudocode is provided in Appendix A.1. We observe the model performance generally increases
when tuned with rdimg and rdgrp. However, this model might be susceptible to reward hacking. The
nature of hacking, illustrated in Appendix E.4, includes “grid” artifacts and generating lesser number
of humans. Hence, we propose methods to regularize against them.

Count Control rcimg. To ensure the appropriate number of distinct people and prevent generation
of lesser faces, we use face count as a reward:

rcimg(xi) =

{
1 if mi = Ntarget

0 if mi ̸= Ntarget
(8)

where Ntarget is number of people in the prompt and mi is the number of faces detected.

Quality/alignment term rqimg. To prevent the “grid” artifacts and facial distortions, we use
HPSv3 Ma et al. (2025) as a reward. We normalize the HPSV3 score to [0, 1]:

rqimg(xi) = q̃(xi) =
HPSv3(xi)− qmin

qmax − qmin
, qmin = 0, qmax = 10. (9)

3.3 SINGLE-STAGE CURRICULUM LEARNING

The difficulty of multi-human generation scales with the number of prompted faces. To handle
this complexity, we apply curriculum learning that starts with simple scenarios (2-4 people) and
gradually anneals to uniform sampling over the full range (2-Nmax people). Let {Pn}Nmax

n=2 be
prompts with n people. Here, Nmax is the max number of faces per prompt in training set. The
sampling strategy at training step t is:

pt(n) =

{
pannealed(n, t) if t ≤ tcurriculum

puniform(n) if t > tcurriculum
(10)

where the annealing phase interpolates between simple and uniform distributions:

pannealed(n, t) = λt · puniform(n) + (1− λt) · psimple(n), (11)

psimple(n) =

{
1
3 if n ∈ {2, 3, 4}
0 otherwise

, puniform(n) =
1

Nmax − 1
(12)
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with annealing weight λt =
(

t
tcurriculum

)γc

, where γc > 1 controls how long the curriculum remains
biased toward simple prompts. This strategy ensures gradual complexity increase from simple to
uniform sampling across all prompt complexities. See A.2 for more details and D for hyperparams.

We apply DISCO finetuning to two models: a generalist (Flux-Dev) model and a specialist (Krea-
Dev) model. Generalist models show lesser reliance on curriculum learning due to their broad
training on diverse datasets. However, specialist models, optimized for specific aesthetics, benefit
significantly from gradual complexity introduction. Curriculum learning is highly effective on the
specialist model, as studied in Table 2.

3.4 DISCO ALGORITHM

We provide the complete Pseudocode for DisCo finetuning in Appendix A.3. For each update,
we sample n ∼ pt(·), a prompt c ∈ Pn, generate a group G of M trajectories under the SDE
policy, detect faces and compute embeddings, evaluate rewards via Eqs. 6–9, compute advantages
via equation 3, and update θ with equation 4. In the following Section, we discuss the Results of
training using DisCo.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

Training Data. For training, we curated a dataset of 30,000 prompts containing group scenes with
2-7 people, with captions generated by GPT-5. The training prompts encompass diverse social con-
texts, settings, and activities including family gatherings, business meetings, recreational activities,
and professional teams to ensure robust multi-human generation capabilities across varied scenarios.

DiverseHumans. For evaluation, we developed DiverseHumans, a comprehensive test set of 1,200
prompts systematically organized into six sections of 200 prompts each (corresponding to 2-7 peo-
ple). Each prompt includes one of four diversity tag variants: no explicit diversity instruction (25%),
general “diverse faces” instruction (25%), single ethnicity specification (25%), and individual eth-
nicity assignments for each person (25%). The dataset deliberately features different contexts from
the training set to evaluate generalization capabilities, and for each prompt we generate multiple
samples (typically 8-16) to assess both intra-image identity consistency and inter-image diversity.

MultiHuman-TestBench. We further evaluate on MultiHuman-TestBench (MHTB), an estab-
lished recent benchmark introduced at NeurIPS 2025 for multi-human generation. MHTB provides
comparison protocols on general multi-human generation capabilities without specific emphasis on
identity diversity, and extend the scope of images to people performing simple and complex actions,
complementing our DiverseHumans evaluation. Additional details are in Appendix B.

4.1.2 MODELS

We compare against several baseline models including Nanobanana DeepMind (2025), SD3.5 AI
et al. (2024), FLUX Labs (2024), Krea Labs & AI (2025), HiDream-Full Cai et al. (2025), Qwen-
Image Wu et al. (2025), OmniGen2 Xiao et al. (2024), DreamO Mou et al. (2025) and GPT-
Image OpenAI (2025). We fine-tune two open source models, FLUX-Dev(generalist) and Krea-
Dev(specialist), using our DISCO framework to allow a direct performance comparison with their
baseline counterparts. All implementation details and hyperparameters are provided in Appendix D.

4.1.3 METRICS

To evaluate the performance of our model against the baseline, we report three key metrics: Count
Accuracy measures the percentage of generated images that contain the exact number of individuals
specified in the prompt. Unique Face Accuracy (UFA) quantifies the proportion of images in which
all depicted individuals correspond to visually distinct identities, ensuring no duplicates within a
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Table 1: Multi-Human Generation Evaluation. Results with * are possibly misleading, as the same
MLLM is being probed to perform Generation and act as a judge. Green scores indicate the highest
results and Red scores indicate the lowest results.

Model Metrics
Count Unique Face Global Identity HPS Action Average

Accuracy Accuracy (UFA) Spread (GIS) Score
DiverseHumans-TestPrompts (2-7 People)

Gemini-Nanobanana 72.3 57.2 42.7 31.9 95.7* 60.0Proprietary
GPT-Image-1 90.5 85.1 89.8 33.4 94.5 78.7
HiDream 57.9 32.3 16.2 32.2 92.4 46.2
Qwen-Image 79.8 49.0 45.9 32.6 93.3 60.1
OmniGen2 63.3 32.3 28.7 33.4 86.2 48.8
DreamO 70.5 31.8 35.2 32.0 82.7 50.4
SD3.5 55.3 69.1 72.5 28.1 71.3 59.3
Flux-Dev 70.8 48.2 50.5 31.7 78.9 56.0

Open-Source

Krea-Dev 73.6 45.8 50.6 31.2 87.9 57.8
DISCO(Flux) 92.4 98.6 98.3 33.4 85.6 81.7Ours
DISCO(Krea) 83.5 89.7 90.6 32.2 88.2 76.8

MultiHuman-TestBench (1-5 People)
Gemini-Nanobanana 74.0 67.7 59.7 31.9 98.3* 66.3Proprietary
GPT-Image-1 90.7 83.7 81.0 33.2 96.2 77.0
HiDream 61.1 44.8 22.4 32.6 93.6 50.9
Qwen-Image 80.3 47.9 50.6 33.2 94.5 61.3
OmniGen2 74.8 45.7 36.5 33.5 88.2 55.7
DreamO 79.1 39.0 50.4 31.8 88.6 57.8
Flux-Dev 61.8 56.5 51.2 31.4 88.5 57.9

Open-Source

Krea-Dev 67.3 52.2 55.0 31.2 92.6 59.7
DISCO(Flux) 86.6 94.3 88.7 33.3 88.9 78.4Ours
DISCO(Krea) 83.8 80.1 84.1 32.9 92.3 74.6

single image. Global Identity Spread (GIS) is a global metric and assesses identity diversity
across a dataset. by computing the ratio of total unique identities to the total prompted identities,
in the testset. It indicates how effectively the model avoids repeating the same identities across
different images. HPSv2 assesses image quality and prompt/image alignment. We measure the
MLLM Action scores for alignment with textual actions as proposed in MultiHuman-TestBench.
See Appendix C for the full mathematical details.

4.2 RESULTS

4.2.1 QUANTITATIVE SCORES

Diverse Humans Dataset. Table 1 presents comprehensive evaluation results on the
DiverseHumans-TestPrompts benchmark. Our DISCO approach demonstrates substantial improve-
ments across all metrics compared to baseline models. DISCO(Flux) achieves 92.4% Count Accu-
racy versus baseline Flux’s 70.8%, while DISCO(Krea) reaches 83.5% compared to Krea’s 73.6%.
The most significant gains are in UFA, where DISCO(Flux) reaches 98.6% versus 48.2% baseline,
and DISCO(Krea) achieves 89.7% versus 45.8% baseline. Similarly, Global Identity Spread im-
proves dramatically from 50.5% to 98.3% for Flux and from 50.6% to 90.6% for Krea. Notably,
generalist models like Flux show larger absolute improvements than specialist models like Krea,
though both benefit substantially from our approach. Remarkably, DISCO(Flux) surpasses even
proprietary models like Nanobanana and GPT-Image-1 in Overall metrics, achieving superior UFA
(98.6% vs 85.1%) and GIS (98.3% vs 89.8%).

Fig. 4 illustrates performance across varying numbers of individuals. While baseline models expe-
rience significant degradation as complexity increases, DISCO maintains consistently high perfor-
mance. This robustness is particularly evident in UFA, where DISCO sustains above 90% accuracy
even for scenes with 6-7 individuals, while baseline methods drop below 50%. This demonstrates
DISCO’s superior scalability. In panel (a), UFA performance shows DISCO does not produce over-
lapping identities even at high person counts, while baseline models exhibit a sharp drop. Panel

7
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Figure 4: Performance vs. number of people. We evaluate (a) Unique Face Accuracy, (b) Count
Accuracy, and (c) HPSv2 across varying face counts. Error bars show 95% confidence intervals.
DISCO(Flux)in Green consistently performs well across all metrics, maintaining high accuracy as
face count increases.

(b) reveals similar trends for Count Accuracy. Panel (c) confirms that these improvements do not
compromise perceptual quality, as HPS scores remain competitive across all configurations.

MultiHuman-TestBench. The MHTB results validate our findings across an independent dataset.
DISCO(Flux) achieves 86.6% Count Accuracy and 94.3% UFA compared to baseline performance
of 61.8% and 56.5% respectively, while DISCO(Krea) reaches 83.8% and 80.1% versus Krea’s
67.3% and 52.2%. These consistent improvements across different evaluation protocols demonstrate
the generalizability of our approach.

Importantly, over both datasets, HPS quality scores and MLLM Action scores show improvements
over, or remain competitive with the respective (Flux/Krea) baselines. This demonstrates that our
identity-focused optimization does not compromise overall generation quality or prompt adherence.

4.2.2 QUALITATIVE RESULTS

Fig. 5 showcases the clear visual improvements that DISCO brings to multi-human generation.
Where baseline models struggle with repetitive faces and inaccurate person count, our approach
delivers different individuals within each scene. Visualizing the examples, several patterns emerge
that highlight DISCO’s strengths. Most notably, we see an end to the identity crisis from Fig. 2,
haunting SOTA methods. Instead, DISCO generates individuals with authentic variation in facial
features, age, and appearance while preserving the natural demographic diversity we expect in real-
world groups. The scenes maintain their coherence and visual appeal.

4.3 ABLATION STUDY

Table 2 ablates individual contributions of each DISCO component. This analysis is conducted on
the Krea-Dev baseline, which proved more challenging to converge compared to Flux-Dev.

Table 2: Ablation Study: Progressive Addition of DISCO Components on Flux-Krea baseline
Model Rewards Curriculum Metrics

Image Group Count HPS Count Unique Face Global Identity HPS
Diversity Diversity Accuracy Score Accuracy Accuracy (UFA) Spread (GIS) Score

Krea 73.6 45.8 50.6 31.2
✓ 66.2 78.6 50.8 31.7
✓ ✓ 67.3 80.2 72.5 32.0
✓ ✓ ✓ 81.1 83.2 68.3 31.9
✓ ✓ ✓ ✓ 79.2 82.6 73.7 32.4

+DisCo

✓ ✓ ✓ ✓ ✓ 83.5 89.7 90.6 32.2

Intra-image diversity dramatically improves unique face accuracy but leaves Global Identity Spread
limited, as duplicate identities simply spread across different images rather than being eliminated.
Adding group-wise diversity addresses this by enforcing diversity across the entire generation group,
substantially improving cross-image identity variation.

Count accuracy drops when applying only group-wise rewards due to reward hacking—the model
exploits generating fewer people as an easier optimization target. The count control component
provides essential regularization, recovering count performance while maintaining identity diversity.
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Figure 5: DISCO vs. Related Work DISCO finetuning improves performance over current SOTA
methods to consistently generate accurate number of people without overlapping identity. It also
maintains high perceptual quality while accurately following input prompts.

However, this introduces perceptual quality issues including unnatural “grid” arrangements of faces
that technically satisfy requirements but appear artificial. HPS quality control effectively mitigates
these artifacts by penalizing obvious visual anomalies.

The curriculum learning component delivers substantial improvements. Since Flux-Krea is not a
generalist model, training convergence proved challenging without proper task decomposition. Cur-
riculum learning addresses this by progressing from simple to complex scenarios, enabling the spe-
cialized model to learn the difficult multi-human generation task incrementally.

As evident from the scores, each component contributes meaningfully to the final performance, with
the complete framework achieving optimal results across all metrics despite the challenging baseline
characteristics.

5 CONCLUSION

Current state-of-the-art text-to-image models suffer from a fundamental identity crisis when gener-
ating multi-human scenes: they produce duplicate faces, conflate identities across individuals, and
frequently miscount the requested number of people. We introduced DISCO, a reinforcement learn-
ing framework that directly targets this crisis through a novel compositional reward system that (i)
penalizes intra-image facial similarity to eliminate duplicate identities, (ii) discourages cross-sample
identity repetition to ensure diversity across generations, (iii) enforces accurate person counts, and
(iv) preserves aesthetic quality and prompt alignment. By coupling GRPO fine-tuning with a prin-
cipled single-stage curriculum, DISCO robustly solves the multi-human generation challenge while
maintaining visual fidelity. Our empirical results demonstrate that DISCO not only resolves the iden-
tity crisis but achieves substantial performance improvements that surpass even proprietary models.
On DiverseHumans, DISCO(Flux) achieves 98.6% Unique Face Accuracy—effectively eliminating
identity duplication—compared to baseline Flux’s 48.2% and proprietary Gemini-Nanobanana’s
57.2%. Similar superiority holds across MultiHuman-TestBench, where DISCO(Flux) achieves
94.3% Unique Face Accuracy versus 56.5% baseline. Critically, these identity-focused optimiza-
tions enhance rather than compromise overall generation quality, establishing a new paradigm that
pushes beyond existing proprietary model capabilities.
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ETHICS STATEMENT

Our work focuses on improving identity diversity in multi-human text-to-image generation to en-
hance fairness and realism in generative models. No human subjects, images or real identities were
used; all experiments relied on (sanitized) text prompts and synthetic data. We anticipate positive
societal benefits from our advancements in AI-driven multi-human image generation. By develop-
ing models that accurately generate diverse individuals across age, ethnicity, and gender, we aim
to contribute to more equitable and inclusive digital media. Our work can enhance creative tools
for artists and developers, enrich AR/VR/XR experiences, and improve assistive technologies. At
the same time, we recognize potential risks, including misuse for misinformation campaigns or for
impersonation. We also disclose the use of large language models (LLMs) for prompt generation,
formatting assistance(for tables, plots), and text refinement. All generated outputs were carefully
reviewed for quality and accuracy, and the scientific contributions, experiments, and conclusions re-
main the original work of the authors. We emphasize the importance of transparency, fairness audits,
and responsible release practices, and strongly discourage malicious applications of this technology.

REPRODUCIBILITY

To ensure reproducibility, we provide comprehensive implementation details as part of this submis-
sion. Our DISCO framework is implemented on top of the publicly available Flow-GRPO codebase,
with training configurations specified in Appendix D (480 epochs, learning rate 1 × 10−4, compo-
sitional reward weights (α = 0.50, β = 0.10, γ = 0.15, ζ = 0.15), and curriculum parameters
(γ = 2.0, tcurriculum = 40,000 steps)). Appendix A provides complete algorithmic descriptions and
pseudocode for group-wise diversity computation (Algorithm 1), curriculum learning (Algorithm 2),
and the full DISCO training procedure (Algorithm 3). We also reference the publicly available de-
tector and face embedding models. Our training dataset and the DiverseHumans evaluation set
of 1,200 prompts are described in Appendix B, along with the (publicly available) MultiHuman-
TestBench dataset used for evaluation. All evaluation metrics (Count Accuracy, Unique Face Ac-
curacy, Global Identity Spread) are mathematically defined in Appendix C, with explicit similarity
thresholds (κdup = 0.5) and clustering procedures. Baseline model evaluations follow official hyper-
parameters as documented in Appendix D, ensuring fair comparison. Finally, our distributed training
setup (21 H100 GPUs with specified batch sizes and gradient accumulation) is fully documented in
Appendix D to facilitate replication of our results.
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