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Abstract

The increasing complexity of foundational mod-
els underscores the necessity for explainability,
particularly for fine-tuning, the most widely used
training method for adapting models to down-
stream tasks. Instance attribution, one type of
explanation, attributes the model prediction to
each training example by an instance score. How-
ever, the robustness of instance scores, specifi-
cally towards dataset resampling, has been over-
looked. To bridge this gap, we propose a no-
tion of robustness on the sign of the instance
score. We theoretically and empirically demon-
strate that the popular leave-one-out-based meth-
ods lack robustness, while the Shapley value be-
haves significantly better, but at a higher com-
putational cost. Accordingly, we introduce an
efficient fine-tuning-free approximation of the
Shapley value (FreeShap) for instance attribu-
tion based on the neural tangent kernel. We em-
pirically demonstrate that FreeShap outperforms
other methods for instance attribution and other
data-centric applications such as data removal,
data selection, and wrong label detection, and fur-
ther generalize our scale to large language mod-
els (LLMs). Our code is available at https:
//github.com/JTWang2000/FreeShap.

1. Introduction
Modern deep learning is primarily driven by pretrain-
ing foundation models (Bommasani et al., 2021) such as
BERT (Devlin et al., 2019), GPT3 (Brown et al., 2020), and
CLIP (Radford et al., 2021) on massive datasets with increas-
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ingly more model parameters, then fine-tuning them with
labeled training data for downstream tasks. However, as
larger foundation models have more complexity and opaque-
ness, their predictions are hard to explain and justify. The
lack of explainability reduces the trustworthiness of foun-
dation models, especially for systems in areas that involve
high-stakes decision-making such as healthcare, finance,
and legal justice (Rudin, 2019). As a result, instance attri-
bution, also known as example-based explanation, has been
proposed in response to the increasing need for explainable
AI. Different from other types of explanation (e.g., feature
attribution (Li et al., 2016; Madsen et al., 2022; Ribeiro
et al., 2016; Sundararajan et al., 2017)), instance attribution
traces the effect of the labeled training examples on the
resultant model parameters (Barshan et al., 2020; Guo et al.,
2021; Han et al., 2020; Pezeshkpour et al., 2021). On a
high level, this approach offers a better understanding of
the fine-tuned model by sifting the influential training ex-
amples with larger effects on the model performance. On a
detailed level, it explains the model prediction on each data
point by highlighting the most relevant training examples.
Besides, instance attribution can also be practically used for
data selection (Xia et al., 2024), the identification of dataset
artifacts (Han & Tsvetkov, 2021), model debugging (Lertvit-
tayakumjorn & Toni, 2021), wrong label detection, adversar-
ial example crafting (Koh & Liang, 2017), and data pricing
in collaborative machine learning (Sim et al., 2022).

Figure 1. An example of non-robust instance attribution. The same
training example receives different signs of the instance score when
it is placed in different datasets sampled from the same task.

Given a dataset for a downstream task, instance attribution
calculates an instance score for each training example. A
positive instance score deems the example “helpful” for
the task as it improves the model performance, while a
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negative score reflects the opposite. Thus, the sign of the
scores is a widely used criterion for the usefulness of the
data (Han et al., 2020; Yeh et al., 2018). It is important to
realize that approaches for instance attribution are dataset-
dependent, meaning that the instance scores can be different
when the dataset is resampled. If the instance score for one
example flips signs frequently when the rest of the training
examples change as shown in Fig. 1, this score results in
a confusing and less trustworthy analysis. Ideally, the in-
stance score for a “helpful” example should be consistently
positive even if the rest of the training data are resampled
from the same task, the same applies to a “harmful” exam-
ple. Thus, we define the robustness of instance attribution
as the ability of an approach to maintain the sign consistency
of the instance scores across different resampled datasets.
Our robustness definition is motivated from the perspec-
tive of data distribution, hence complementary to existing
perturbation-based robustness measures (Alvarez-Melis &
Jaakkola, 2018; Bhatt et al., 2020; Ghorbani et al., 2019;
Tang et al., 2022).

Figure 2. Mean and variance for instance scores of 10 examples
when computed using LOO or the Shapley value.

Most of the popular instance attribution approaches (Bar-
shan et al., 2020; Han et al., 2020; Guo et al., 2021; Garima
et al., 2020) are based on the leave-one-out (LOO) scheme,
which evaluates the marginal contribution (i.e., the gain
in model performance by adding the target data point) to
the rest of the training set. However, LOO tends to pro-
duce instance scores with small magnitude and high vari-
ance (Kwon & Zou, 2022). Therefore, LOO-based scores
are more likely to have inconsistent signs when the dataset
is resampled (see Tab. 2), leading to poor robustness. On
the contrary, the Shapley value (Ghorbani & Zou, 2019;
Jia et al., 2019; Wang & Jia, 2023) considers a weighted
average of marginal contributions to all training subsets.
As a result, it tends to enjoy a relatively larger magnitude
and smaller variance (see Fig. 2). Moreover, we theoreti-
cally and empirically show that, under mild assumptions,
the Shapley value possesses noticeably better robustness
compared to LOO in Sec. 3.2 and Sec. 4.2.

However, the time complexity to compute the exact Shapley
value grows exponentially w.r.t. the number of training data,

which is substantially amplified by the computational cost of
fine-tuning. Although existing approaches have attempted
to reduce the exponential time w.r.t. dataset size (Ghorbani
& Zou, 2019; Jia et al., 2019; Kolpaczki et al., 2023), the
cost of fine-tuning has been overlooked. As the size of foun-
dation models grows larger, there is an increasing need to
reduce the running time for fine-tuning in order to efficiently
approximate the Shapley value. To this end, we propose
an efficient fine-tuning-free approximation of the Shapley
value (FreeShap). Specifically, it has been shown that kernel
regression using empirical neural tangent kernel (eNTK)
(Jacot et al., 2018) resembles the fine-tuning process (Wei
et al., 2022; Malladi et al., 2023). An observation is that
the eNTK matrices for different data subsets are submatri-
ces of the eNTK matrices of the whole dataset. We exploit
this observation to accelerate FreeShap. Specifically, Free-
Shap amortizes the cost of calculating the Shapley values
by pre-computing the eNTK matrix to replace all subse-
quent training with kernel regression (i.e., fine-tuning-free)
which is significantly cheaper in computational cost than
fine-tuning. Our approach generally applies to any founda-
tion model, but we focus our demonstrations in the natural
language processing (NLP) domain in light of the break-
throughs in language models (LMs), especially LLMs. Our
contributions are:

• Introducing β-robustness, a notion of robustness for in-
stance attribution (Sec. 3.1), and theoretically analyzing
and empirically demonstrating that the Shapley value is
more robust than LOO (Sec. 3.2 and Sec. 4.2).

• Proposing an efficient fine-tuning-free approximation of
Shapley value, FreeShap, by replacing fine-tuning with
kernel regression, increasing the scalability of the Shapley
value significantly for NLP tasks (Sec. 3.3 and Sec. 4.1).

• Demonstrating the effectiveness of the FreeShap through
extensive experiments using pre-trained LMs and LLMs
for instance attribution, data removal, data selection, and
wrong label detection on real-world datasets (Sec. 5).

2. Background and Preliminaries
Let DN := {zi = (xi, yi)}ni=1 denote the training set,
where N := {1, . . . , n} is the set of indices, and zi con-
sisting of the input xi ∈ X and the label yi ∈ [C] is a
data point sampled from a data distribution P . Similar no-
tations apply to the test set DT := {zt = (xt, yt)}n+m

t=n+1,
the test indices T := {n + 1, . . . , n + m}, and the test
example zt. An attribution function g(zi, DT , DN ) quanti-
fies the contribution of a training example zi to the model
predictions on the test set DT (or the test example {zt}).
We define the utility for a subset of the training data
DS :=

⋃
j∈S{zj ∈ DN}, S ⊆ N as the test accuracy

on DT of its resultant model fS parameterized by θ:

U(S,DT ) :=
1

|DT |
∑

(xt,yt)∈DT
1[fS(xt; θ) = yt] . (1)
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2.1. Prompt-based Fine-tuning

The LMs are pretrained on tasks such as masked token pre-
diction (Devlin et al., 2019) or next-token prediction (Brown
et al., 2020). Prompt-based fine-tuning (Gao et al., 2021;
Schick et al., 2021) is an advanced technique that appends
natural language cues like “This is [MASK].” (i.e., prompt)
to the end of x and then employs the pretrained model to
predict the word for [MASK] from words that are relevant
to the task. For example, binary sentiment analysis can
be formulated as predicting only the task-specific terms in-
cluding “great” and “terrible” at the “[MASK]” location.
Prompt-based fine-tuning has been shown to have better
performance than fine-tuning with sentence representations
(e.g., the last hidden-layer representation for the [CLS] to-
ken) without prompts. Consequently, we focus on prompt-
based fine-tuning in this work.

2.2. LOO and Shapley Value for Instance Attribution

Most of the instance attribution approaches can be viewed as
some forms of marginal contributions (Kwon & Zou, 2022).
Define the marginal contribution of a data point zi to the
subset with size k of all other training data as:

∆DN
zi (k,DT ) :=

1

(n−1
k )

∑
S⊆N\{i}
|S|=k

U(S ∪ {i}, DT )− U(S,DT )

(2)
Since LOO (Koh & Liang, 2017) considers the change in
model accuracy by removing the target data point from the
training set, it can be viewed as the marginal contribution
of zi to DN\{zi}. Specifically, LOO can be written as the
following instance scoring function:

gLOO(zi, DT , DN ) = ∆DN
zi (n− 1, DT ) . (3)

Many existing instance attribution schemes including the
influence function (Han et al., 2020) and its subsequent
works (Barshan et al., 2020; Guo et al., 2021) approximate
the LOO scores in different ways. However, LOO only
considers the marginal contribution of zi to one subset of
DN with size n−1. The instance score of an example drops
significantly when another similar example appears in the
training set (Ghorbani & Zou, 2019), leading to the weak
reliability and robustness of the score.

Instead of considering only one subset, the Shapley
value (Shapley, 1953) generalizes it by considering the im-
pact of zi in all subsets (Ghorbani & Zou, 2019) and can be
written as the following instance scoring function:

gShap(zi, DT , DN ) = n−1
∑n−1

k=0 ∆
DN
zi (k,DT ) . (4)

This can be viewed as the average of the marginal contri-
butions of data point zi to subsets with all possible sizes.
However, calculating the Shapley value on the training set
with size n requires an exponential number (i.e., n!) of LM
fine-tuning, which necessitates acceleration for improved
scalability on real-world datasets and models.

2.3. Neural Tangent Kernel

The neural tangent kernel (NTK) theory is proposed to study
the training dynamics of infinite-width neural networks (Ja-
cot et al., 2018) , and has been extended to other applica-
tions, such as active learning (Hemachandra et al., 2023;
Lau et al., 2024). Existing works (Arora et al., 2019; Liu
et al., 2020) show that training a fully connected and suffi-
ciently wide neural network is equivalent to solving kernel
regression with the NTK at random initialization. However,
there are two challenges when applying the NTK theory
to fine-tuning LMs: (1) the prevalence of using pretrained
weights instead of random initialization; (2) the usage of
prompts. Malladi et al. (2023) extends the analysis to show
that solving the kernel regression with the empirical NTK
(eNTK) calculated from the pretrained weights can resem-
ble prompt-based fine-tuning. Moreover, kernel regression
using eNTK has been shown to have similar performance as
fine-tuning in both computer vision (Wei et al., 2022) and
NLP (Malladi et al., 2023), which indicates its applicability
as a surrogate to fine-tuning.

Specifically, the eNTK is calculated using the Jacobian of
the model output when taking a data point xi: ψ(xi) :=
∂f(xi;θ0)

∂θ0
∈ RC×P , where θ0 ∈ RP consists of the pre-

trained weights. For a training dataset DS with indices
S := {1, . . . , k}, denote the input matrix by XS :=
[x1, . . . , xk]

⊤ and the corresponding labels in one-hot by
YS := [y11 , . . . , y

C
1 , . . . , y

1
k, . . . , y

C
k ]

⊤ ∈ {0, 1}kC , where
yjk is 1 if yi = j. A test input xt can be predicted using the
eNTK regression model as follows:

f entk
S (xt) = K(xt, XS)

⊤K(XS , XS)
−1YS (5)

where K(xt, XS) =
[
ψ(xt)ψ(xi)

⊤]k
i=1
∈ RkC×C and

K(XS , XS) =
[
ψ(xi)ψ(xj)

⊤]k
i,j=1

∈ RkC×kC .

3. Methodology
3.1. Definition of Robustness

Denote DN ∼ Pn−1|zi as sampling a new dataset DN with
zi fixed and other n− 1 data points i.i.d. sampled from P .
Definition 3.1 (Expected marginal contribution). Let τk :=
EDN∼Pn−1|zi

[
∆DN

zi (k,DT )
]

be the expected marginal con-
tribution of zi to the subsets of DN with size k.
Definition 3.2 (Consistently helpful/harmful data point). A
training data point zi is consistently helpful to test set DT

if τk ≥ 0,∀k ≥ {0, . . . , n− 1}. Similarly, it is consistently
harmful if τk < 0.

If zi is a consistently harmful data point, including zi in any
subset of the dataset is expected to hurt the model perfor-
mance on the test set. Intuitively, a consistently harmful
data point zi should receive a negative instance score. How-
ever, due to the randomness of the other data points when
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sampling the dataset, the attribution score might flip to non-
negative. This is undesirable, especially for high-stakes
applications, since a harmful data point can be interpreted
as helpful due to its positive score at one specific dataset
and hence not being removed. Therefore, it is preferable to
have a robust instance attribution scheme that could assign
the correct signs for the training examples more consistently
regardless of the companion dataset DN . We emphasize
the sign as it is the natural threshold that determines the
usefulness of the data (Han et al., 2020; Yeh et al., 2018).
Therefore, we define the following:

Definition 3.3 (Robustness of instance attribution). A sign
function is defined as sgn(x) = −1 if x < 0, and sgn(x) =
1 if x ≥ 0. For a consistently harmful point zi, let the
sgn*(zi) = −1 , while for a consistently helpful point zi,
let the sgn*(zi) = 1. An instance attribution approach is
β-robust in giving instance score for a data point if:

PDN∼Pn−1|zi

(
sgn

(
g(zi, DT , DN )

)̸
= sgn*(zi)

))
= β.

In other words, given a training example zi, an instance
attribution scheme is β-robust if it has a probability of β
in giving an instance score with the opposite sign when
resampling the dataset. Overall, a robust instance attribution
scheme should maintain a small β and ensure the sign-
consistency of the instance scores for a data point across
different datasets drawn from the same data distribution.

3.2. Robustness of Instance Attribution

Theorem 3.4 (Robustness for Shapley value & LOO). Let
δk := VarDN∼Pn−1|zi(∆

DN
zi (k,DT )),∀k ∈ {0, . . . , n−1}.

Shapley value is βShap-robust and LOO is βLOO-robust where

βShap ≤
n−1

∑n−1
k=0 δk

(n−1
∑n−1

k=0 τk)
2

and βLOO ≤ δn−1

τ2n−1

.

The proof is in App. A. On the variance δk, Theorem
1 (Kwon & Zou, 2022) shows that the asymptotic of
δk ∼ O(Ck2/n) (i.e., the upper bound of the δk scales
quadratically with the subset size, k), it is reasonable to
assume that n−1

∑n−1
k=0 δk ≤ δn−1. Additionally, as the

dataset size grows, the contribution of each training example
on the model typically diminishes, because the abundance
of other data points is more likely to compensate for the
performance drop. Hence, we also assume diminishing in-
fluence, i.e., |τ0| ≥ · · · ≥ |τn−1|, which coincides with the
assumptions in Killamsetty et al. (2021); Wang et al. (2021)
and is empirically verified in App. G.1. As a result:

Corollary 3.5 (Robustness Analysis between the Shapley
value and LOO). Assume that n−1

∑n−1
k=0 δk ≤ δn−1. Addi-

tionally, for any consistently harmful (or helpful) contribut-

ing data point zi, assume |τ0| ≥ · · · ≥ |τn−1|. Then,

n−1
∑n−1

k=0 δk

(n−1
∑n−1

k=0 τk)
2
≤ δn−1

τ2n−1

. (6)

This implies that the upper bound of the β-robustness of
the Shapley value is no more than that of LOO. The upper
bounds are valid proxies to the β-robustness for compar-
ison because they are derived with the same non-trivial
techniques. Having a better upper bound suggests that the
Shapley value can be less likely to give sign-inconsistent
scores, and hence more robust. Note that the robustness
analysis applies to every training example zi. We provide
empirical evidence to demonstrate that the Shapley value is
indeed more robust than LOO in Sec. 4.2, w, which further
validates our theoretical insights.

The numerator in the upper bounds of β is related to the
variance of the instance score, while the denominator is
related to the expectation of the instance score. Thus, the
robustness of the Shapley value can also be interpreted from
the expectation and variance. Without loss of generality, we
analyze for a consistently helpful data point.
Remark 3.6 (Relative relationship of expectation and vari-
ance between Shapley and LOO). For a consistently helpful
point zi, with the assumption that |τ0| ≥ · · · ≥ |τn−1|:

EDN∼Pn−1|zi
(
gShap(zi, DT , DN )

)
= n−1

∑n−1
k=0 τk

≥ τn−1 = EDN∼Pn−1|zi
(
gLOO(zi, DT , DN )

)
.

(7)

With the assumption that n−1
∑n−1

k=0 δk ≤ δn−1:

VarDN∼Pn−1|zi
(
gShap(zi, DT , DN )

)
≤ n−1

∑n−1
k=0 δk

≤ δn−1 = VarDN∼Pn−1|zi
(
gLOO(zi, DT , DN )

)
.

(8)

Overall, the Shapley value can have a larger magnitude
of expectation and smaller variance than LOO. For a con-
sistently helpful data point, the Shapley value has a lower
probability of fluctuating around the borderline 0 due to
the larger expectation and smaller variance. The remark is
further empirically verified in the App. G.2.

3.3. Fine-tuning-free Shapley Value (FreeShap)

Shapley value computation requires marginal contribution
computations. For each subset S, we need to retrain a model
fS . As there are 2n subsets for DN , exponential times of
fine-tuning are needed. Prior works have adopted Monte-
Carlo (MC) sampling (Castro et al., 2009; Maleki et al.,
2013; Ghorbani & Zou, 2019; Lin et al., 2023) to avoid the
exponential factor. Specifically, the marginal contribution
of each data point is evaluated in each MC iteration where
a random permutation is generated. The average result of
each iteration is the final estimation of the Shapley value.
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Algorithm 1 Fine-tuning-free Shapley Value (FreeShap)

1: Require: Training set DN , test set DT , utility function
U , maximum MC iteration M , eNTK function K

2: Output: Instance score of training examples computed
by the Shapley value: ϕ1, . . . , ϕn

3: Initialize ϕi ← 0 for i = 1, . . . , n, t← 0
4: Precompute the eNTK matrix K̃ := K(XT∪N , XN )
5: while t ≤M do
6: t← t+ 1
7: πt: A permutation of the training indices N
8: ut0 ← U(∅, DT )
9: for p ∈ {1, . . . , n} do

10: St
p ← {πt[1], . . . , πt[p]}

11: f entk
St
p
(DT ) = K̃[T, St

p]K̃[St
p, S

t
p]

−1YSt
p

▷See Eqn. (9)
12: utp ← U(St

p, DT |fSt
p
= f entk

St
p
)

13: ϕπt[p] ← t−1
t ϕπt−1[p] +

1
t (u

t
p − utp−1)

14: end for
15: end while

MC sampling gives an unbiased estimate of the Shapley
value with a tolerable error bound (Maleki et al., 2013).

Although MC sampling has reduced the exponential time to
polynomial time, it is still a large factor that multiplies with
the fine-tuning cost. Fine-tuning a large pre-trained LM
itself is computationally expensive. To further speed up the
Shapley value for large NLP datasets, we aim to improve the
complexity of computing the utility function which relies on
the fine-tuned model fS . Instead of fine-tuning, we adopt
kernel regression on the empirical NTK (eNTK) (Wei et al.,
2022), using f entk

S to resemble fS . Note that DN denotes
the training dataset of size n, while DT denotes the testing
dataset of size m, and DS denotes a subset of the training
dataset. We just need to precompute the eNTK matrix K̃
once, as shown in line 4 of Alg. 1, and then reuse it for all
marginal contributions by taking the submatrices of K̃ for
corresponding kernel regression. Specifically,

K̃[T, St
p] = K(XT , XSt

p
), K̃[St

p, S
t
p] = K(XSt

p
, XSt

p
). (9)

We refer to this method as the fine-tuning-free Shapley value
(FreeShap), which ensures the scalability of computing the
Shapley value with pretrained LMs on sizable datasets. We
further enhance the computational efficiency by truncated
Monte-Carlo (TMC) sampling (Ghorbani et al., 2019) and
employing efficient kernel approximation and blockwise
inversion (BI), which are discussed in App. B.

4. Experiments and Results
We first empirically demonstrate that the proposed FreeShap
effectively approximates the de facto implementation of the
Shapley value. Hence, it justifies the usage of FreeShap for

all subsequent experiments at scale. We then empirically
compare the β-robustness between the FreeShap and LOO
and show that the Shapley value is more robust, which is
aligned with our theoretical insights in Sec. 3.2.

Datasets: We conduct experiments on both single-sentence
tasks and sentence pair tasks for comprehensiveness. In
particular, we select Stanford Sentiment Treebank v2 (SST-
2) and Rotten Tomatoes Movie Review (MR) for the single-
sentence task, and Microsoft Research Paraphrase Corpus
(MRPC) and Recognizing Textual Entailment (RTE) for the
sentence pair task. Detailed information about the datasets
is in App. H. We use BERT for this experiment. More
hyperparameter settings are in the App. D.1.

4.1. FreeShap Approximates the Shapley Value Well

Setup. Due to the exponential time complexity for the exact
Shapley value, we use the Monte-Carlo (MC) Shapley value
as the reference. We perform prompt-based fine-tuning with
the Adam optimizer (Kingma & Ba, 2015) when calculating
its marginal contribution. We benchmark against gradient
Shapley (G-Shapley) (Ghorbani & Zou, 2019), which also
minimizes fine-tuning costs by limiting training to a single
epoch. For evaluation metrics, we utilize Pearson correlation
coefficients to capture linear relationships and Spearman
correlation coefficients to measure the degree of similarity
between rankings. For each dataset, we randomly sample a
subset of 500 training examples, then measure the similarity
of the Shapley values calculated by different methods on 50
random data points from the subset. The scale is limited here
because the reference algorithm MC-Shapley is extremely
slow. All experiments are repeated for 3 trials.

Table 1. Correlations with MC-Shapley when the dataset size is
500. The higher, the better.

Dataset FreeShap G-shapley
Pearson Spearman Pearson Spearman

Single Sentence Task

SST-2 0.70±0.08 0.60±0.03 0.44±0.08 0.48±0.14
MR 0.57±0.15 0.53±0.04 0.32±0.22 0.32±0.23

Sentence Pair Task

MRPC 0.84±0.04 0.73±0.09 0.68±0.08 0.58±0.11
RTE 0.78±0.04 0.72±0.02 0.28±0.04 0.36±0.05

Results. Tab. 1 demonstrates that our approach is consis-
tently more effective in approximating the MC-Shapley com-
pared to G-Shapley on all four NLP datasets. In particular,
FreeShap has relatively high positive linear correlations and
ranking correlations, which are also positively correlated
with each other. The competitive correlations of FreeShap
persist when the subset size grows to 1000 (App. E.1).

FreeShap is also more computationally efficient than other
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Figure 3. Running time comparison. The time for 5k points for
G-Shapley and 500/5k points for MC-Shapley are projected.

methods, as shown in Fig. 3 which estimates the running
time on the SST-2 dataset. Due to the better efficiency and
more reliable performance, we use FreeShap for computing
the Shapley value in the following sections.

4.2. The Shapley Value is More Robust than LOO

Setup. To empirically compare the β-robustness of the
Shapley value and the LOO, we evaluate the consistency of
the signs for a data point’s instance score when the point lies
in different datasets drawn from the same distribution. Due
to the necessity of sampling numerous datasets when deter-
mining if a data point is consistently harmful or helpful, it is
impossible to calculate the exact β. To empirically estimate
the β-robustness, we design the experiments as follows: For
a data point, we place it into 5 sampled training sets. This
process yields 5 corresponding instance scores for the data
point. We use the majority sign of these scores to determine
whether the data point is consistently harmful or helpful.
If any score’s sign contradicts the majority, this is noted as
a non-robust occurrence. We evaluate 50 training examples
with the same 5 complementary dataset samples. We use the
percentage of non-robust occurrence out of the 50 training
examples as the empirical metric for β-robustness. An
illustrative figure of the setup is in Fig. 7 in the Appendix.
We approximate the Shapley value with FreeShap and
calculate the exact LOO score. The experiment is performed
comprehensively on datasets of various sizes.

Results. Tab. 2 shows that for each size of the training
set, the Shapley value generally has fewer non-robust occur-
rences, hence its instance scores are generally more robust
than the one from LOO. Results on more dataset sizes are
in App. E.2. We subsequently analyze a few exemplary
examples where the Shapley value succeeds but LOO fails
in computing consistent instance scores in Tab. 3. The
training example “it’s not going to be everyone’s bag of
popcorn, but it gives you something to chew on” reflects

a positive sentiment, but it lacks clear polarity. Including
such challenging training points can adversely impact test
performance. It might be better to categorize the example as
low-quality for further curation. Nonetheless, LOO-based
instance attribution might sometimes identify this sample
as helpful. Consequently, users might incorrectly conclude
that this sample is beneficial for the task and retain it in the
dataset, which impairs the performance. Furthermore, the
explanations could influence future data collection, resulting
in the accumulation of training instances with ambiguous
polarity. Overall, the Shapley value yields instance scores
that are much more sign-consistent and better aligned with
human intuition: negative scores indicate ambiguity, while
non-negative scores are associated with better clarity and
polarity. These results are further demonstrated in App E.2,
where we show more case studies of different dataset sizes.

Table 2. The empirical comparison of the β-robustness between
the Shapley value and LOO by the percentage of non-robust occur-
rences. The lower, the better.

|DN | = 500 |DN | = 1000 |DN | = 2000
dataset LOO Shapley LOO Shapley LOO Shapley

SST-2 86% 30% 38% 50% 90% 46%
MR 98% 18% 100% 28% 100% 44%

MRPC 96% 28% 92% 36% 90% 48%
RTE 86% 56% 98% 54% 78% 66%

5. Applications of Instance Attribution
In this section, we compare the quality of instance scores
calculated using various baselines on the 4 aforementioned
NLP datasets in Sec. 4. We adopt qualitative and quantita-
tive evaluation criteria including test prediction explanation,
data removal, data selection, and wrong label detection.
The other baselines include the influence function (Koh &
Liang, 2017), TracIn (Garima et al., 2020), and represen-
ter point (Yeh et al., 2018). For the influence function, we
use a more accurate approximation with conjugate gradi-
ents (Martens et al., 2010), which is perceived as the exact
influence function with enough iterations and often performs
better than the most used approximation, LiSSA, as shown
in App. G.4. Due to the improved scalability, we adopt the
modern practical prompt-based fine-tuning regime with siz-
able pre-trained models including BERT and RoBERTa (Liu
et al., 2019). More experimental set details are in App. D.2.

Test Prediction Explanation. To explain a test prediction,
we analyze the helpful and harmful training examples cat-
egorized by the sign of the instance scores. Tab. 4 shows
the most helpful/harmful examples (with the highest/lowest
scores) of the instance attribution approaches. FreeShap’s
explanations align more closely with the test example syn-
tactically, discussing related topics about films, while the
explanations provided by other approaches are less related.
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Table 3. Case study: We demonstrate the examples where Shapley value succeeds but LOO fails in computing sign-consistent instance
scores. [pos] means positive sentiment class, while [neg] means negative sentiment class. We report the mean and std of the scores scaled
by a factor of 1e−3 for readability. The dataset size n=2000.

Text example Label Shap Shapley value LOO LOO value

confident filmmaking and a pair of fascinating performances [pos] 5+/0- 0.45 ±0.23 4+/1- 0.23±1.52
seriously, rent the Disney version [neg] 5+/0- 1.85±0.72 3+/2- -0.69±2.36

it’s not going to be everyone’s bag of popcorn, but it definitely gives you something to chew on’ [pos] 0+/5- -1.91±0.57 3+/2- 0.23±1.34
would fit chan like a $ 99 bargain-basement special [neg] 0+/5- -0.36±0.20 2+/3- 0.00±1.45

Table 4. Correctly predicted test samples with positive sentiment in SST-2 interpreted by different instance attribution approaches. [pos]
means positive sentiment class, while [neg] means negative sentiment class. Words annotated in blue indicate negative sentiment, while
those in red suggest positive sentiment. These highlights are author-chosen for improved readability.

Test input: a quiet, pure, elliptical film [pos]

Attribution Most helpful training examples Most harmful training examples

FreeShap a funny little film [pos] a particularly slanted , *** */* fantasy [neg]

Influence goes down easy [neg] a guiltless film [pos]

TracIn
the only young people who possibly will
enjoy it [neg]

earnhart ’s film is more about the optimism of a group of people who are
struggling to give themselves a better lot in life than the ones [pos]

Representer a guiltless film [pos] seagal [neg]

Moreover, the helpful examples provided by FreeShap are
semantically akin to the test example, whereas the identified
harmful examples exhibit opposing semantics. Notably, by
looking at more top-ranked examples, FreeShap provides
consistently more meaningful explanations, as shown in
Tab. 11 in App. F.1. The advantages of FreeShap are likely
due to its consideration of the subset’s marginal contribution.
When trained with smaller subsets, the semantically and syn-
tactically relevant examples are likely to have more impact
and score higher. Additional case studies such as error
explanations and attribution analyses are also in App. F.1.

Data Removal. To quantitatively assess the correlation
between the instance scores and the contributions to the
test performance increase, we perform data removal experi-
ments. This involves sequentially removing the data points
10% at a time in order from the training set, followed by
evaluating the performance of the model retrained on the
remaining data. The order is either from the highest to the
lowest instance scores or vice versa, and we demonstrate
for both, which is more comprehensive than the setting
of Pezeshkpour et al. (2021) (i.e., only removing the high-
est score instances). As depicted in Fig. 4, the left four
columns show that when using the instance scores from
FreeShap, the performance degrades comparably faster than
other baselines when discarding the examples starting from
the highest scores. Conversely, when discarding from the
lowest scores, using FreeShap results in slower degradation
and even improves the test performance in 3 out of the 4
datasets except for SST-2. As other baselines are essentially
based on the LOO framework, the consideration of more
comprehensive marginal contributions in FreeShap leads to

a more accurate estimation of the instance scores.

Data Selection. With the effectiveness of FreeShap, we
further conduct an ablation study to examine its potential in
data selection settings. Specifically, we sequentially add the
data points with the highest score (computed on the test set)
and evaluate the generalized performance on a held-out set.
We empirically evaluate the instance attribution approaches
on the MR dataset with BERT model. From Tab. 5, using
FreeShap leads to faster performance improvements, vali-
dating its potential for data selection. More results on other
models and removal settings are in App. F.2.

Table 5. Data Selection: Difference between the model perfor-
mance of no training data (i.e., 0-shot) and the model performance
when trained on a subset that contains data points with high in-
stance scores. The subset size is given as a percentage of the full
set. The higher the difference, the better the approach.

Subset Size 2% 4% 6% 8% 10%
FreeShap 0.1951 0.2111 0.2148 0.2167 0.2223
Influence 0.0272 0.0647 0.0393 0.0647 0.0750

TracIn 0.1370 0.1904 0.2008 0.1548 0.1970
Representer 0.1182 0.1351 0.1388 0.0619 0.1238

Random 0.1970 0.1951 0.2073 0.2017 0.1529

Wrong Label Detection. Datasets can be mislabeled due to
crowd-sourcing errors (Frénay & Verleysen, 2013) or data
tampering (Steinhardt et al., 2017), which may have detri-
mental effects on model training such as increased reliance
on spurious correlations (Qiao & Low, 2024). We com-
pare the effectiveness of identifying mislabeled data using
different instance attribution approaches. We poison each
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Figure 4. Data Removal: The test accuracy on models retrained on subsets obtained by iteratively removing 10% of the data, either
from the highest or the lowest instance score. Faster degradation is preferable for high-score removals, while improvement or slower
degradation is ideal for low-score removals. Overall, the scores from FreeShap are better correlated with test performance.

training set by flipping 10% of the labels, then automatically
examine the poisoned data by reviewing the data points in
order of their instance scores, starting from the lowest to
the highest. As shown in Fig. 5, FreeShap is significantly
more effective in identifying mislabeled data in 7 out of 8
experiments, while being comparable otherwise. The su-
periority of FreeShap in detecting mislabeled data is likely
attributed to its comprehensive evaluation of the marginal
contributions for the subsets as smaller data subsets are
more vulnerable to the harmful effects of mislabeled data.

Figure 5. Wrong Label Detection: It shows the detected percent-
age of poisoned data when inspecting data from lowest to highest
instance score. In most cases, FreeShap leads to the earliest identi-
fication of incorrectly labeled instances.

Extension to LLMs. In light of the recent breakthroughs in
LLM (Achiam et al., 2023), we extend our empirical study
to assess the efficacy of FreeShap on Llama2 (Touvron et al.,
2023), which is made possible by the scalability of Free-
Shap. We perform data removal and wrong label detection
experiments on the prompt-based fine-tuning for Llama2
with LoRA (Hu et al., 2022). Details on experimental set-
tings are in App. D.3. Since the influence function with
conjugate gradients is not computationally feasible at the

scale of the Llama2, we use the LiSSA approximation.

We present the results for the test prediction explanation
in Tab. 6. FreeShap consistently provides more insightful
explanations in terms of both syntactic similarity to the test
example and semantic alignment. We also present the re-
sults for data removal (of high instance score) and wrong
label detection in Fig. 6. The high-score examples identi-
fied by FreeShap have more impact on model performance,
especially for RTE, and the low-score examples are more
accurate in pinpointing mislabeled data. We also demon-
strate more case studies when FreeShap offers explanations,
data removal of low instance score, time efficiency, and an
extension to Llama2-13B in App F.5.

6. Related work
We discuss related works on instance attribution and dif-
ferent existing notions of robustness. More discussions on
Shapley value approximation and its usage in NLP explain-
ability are in App. C.

Instance attribution in NLP. Various methods have been
developed to assess the influence of training instances on
model predictions (Pezeshkpour et al., 2021). The influ-
ence function (Koh & Liang, 2017) identifies the impact of
a training instance by approximating the LOO score. Its
explainability and time complexity are subsequently im-
proved by Barshan et al. (2020); Grosse et al. (2023); Guo
et al. (2021); Kwon et al. (2023). Han et al. (2020) applies
the influence function to the BERT model and shows its
faithfulness and the ability to reveal the reasoning process.
TracIn (Garima et al., 2020) quantifies the effect of each
training example on a test prediction based on the overall
loss reduction using the first-order Taylor approximation.
Its NLP variant, TracIn-WE (Yeh et al., 2022), exploits the
word embedding layer for better instance scores. Represen-
ter point (Tsai et al., 2023; Yeh et al., 2018) enables the
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Table 6. A correctly predicted example with positive sentiment in SST-2 interpreted by different attribution approaches on prompt-based
fine-tuned Llama2 model. [pos] means positive sentiment class and predicted correctly, while [pos(neg)] means a positively labeled
training example being wrongly predicted as negative.

Test input: ... a magnificent drama well worth tracking down . [pos]

Attribution Most helpful training examples Most harmful training examples

FreeShap a consummate actor incapable of being boring [pos]
others will find their humor-seeking dollars
best spent elsewhere. [neg]

Influence most of it given to children [pos(neg)]
4ever has the same sledgehammer
appeal as pokemon videos , but [pos(neg)]

TracIn superb [pos] the book ’s irreverent energy , and scotches most [neg]

Representer
you ’ve endured a long workout without
your pulse ever racing [pos(neg)] self-deprecating, biting and witty feature [neg]

Figure 6. Data Removal and Wrong Label Detection for Llama2: When removing data from the highest instance scores, the data points
identified by FreeShap cause relatively faster degradation (more significant on the RTE dataset) and hence are more essential for the
model. For wrong label detection, FreeShap identifies the incorrectly labeled instances earlier.

model diagnosis for misclassified instances. These works all
fall under the LOO scheme. In contrast, our work focuses
on the Shapley value and we demonstrate its robustness
and quality for data over the LOO methods. Source attri-
bution (Wang et al., 2023), another attribution scheme that
finds the sources of the contents present in a sentence gener-
ated from an LLM, is different from the instance attribution
and hence is omitted from our discussion here.

Robust Explanations. Robustness determines the stabil-
ity of explanations when inputs are slightly altered (Sub-
hash et al., 2022). The explanations are expected to remain
similar when inputs are insignificantly modified. Robust
explanations have been shown to increase user trust (Yeh
et al., 2019). Robustness to three types of perturbations are
discussed: general perturbations which modify the input ran-
domly and locally (Alvarez-Melis & Jaakkola, 2018; Bhatt
et al., 2020; Tang et al., 2022); adversarial perturbations
that mislead explanations (Ghorbani et al., 2019; Ivankay
et al., 2022); and group-based perturbations that change
the membership of sensitive features in inputs, examining
fairness (Dai et al., 2021). The prior work of robustness
focuses more on feature attributions and perturbation-based
robustness, while we raise a complimentary notion of ro-
bustness, targeting instance attribution w.r.t. training data’s
distribution. The work of Lin et al. (2024) also studies the
notion of distributional robustness in data valuation. How-
ever, the robustness result is w.r.t. validation distribution,

hence different from our work.

7. Conclusion
We propose a new notion of robustness for instance attri-
bution and demonstrate the superiority of Shapley value
in achieving robustness compared to other methods. To
mitigate the high computational cost of the Shapley value,
we introduce FreeShap and empirically demonstrate its ef-
ficiency and effectiveness in providing better instance at-
tribution in prompt-based fine-tuning for LMs and LLMs.
Our approach facilitates improving the trustworthiness of
the model and can inspire future research in model inter-
pretation, data curation, and data selection. However, our
study is limited to the NLP domain with the assumption
of having white-box access to the models. Additionally,
we concentrate on explaining predictions oriented toward
classification. Extending FreeShap to text generation tasks
is non-trivial due to their autoregressive nature, which is left
for future work.
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A. Proof for the Main Paper
A.1. Proof of Theorem 3.4

Proof. When zi is a consistently helpful point: PDN∼Pn−1|zi

(
sgn

(
gShap(zi, DT , DN )

)
̸= sgn∗(zi)

)
is equivalent to

PDN∼Pn−1|zi

(
gShap(zi, DT , DN ) < 0

)
.

PDN∼Pn−1|zi

(
gShap(zi, DT , DN ) ≤ EDN∼Pn−1|zi

(
gShap(zi, DT , DN )

)
−t

)
≤ P(

∣∣gShap(zi, DT , DN )− E
(
gShap(zi, DT , DN )

)∣∣≥ t)
≤
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gShap(zi, DT , DN )

)
t2

(10)

The second inequality of Eqn. (10) holds according to Chebyshev’s inequality.
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The first inequality of Eqn. (11) holds because:
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Substituting t in Eqn. (10) to EDN∼Pn−1|zi
(
gShap(zi, DT , DN )

)
, we have:

PDN∼Pn−1|zi

(
gShap(zi, DT , DN ) < 0

)
≤ PDN∼Pn−1|zi

(
gShap(zi, DT , DN ) ≤ 0

)
≤

n−1
∑n−1

k=0 δk(
EDN∼Pn−1|zi

(
gShap(zi, DT , DN )

))2

≤
n−1

∑n−1
k=0 δk

(n−1
∑n−1

k=0 τk)
2
.

Similarly, we have:

PDN∼Pn−1|zi

(
gLOO(zi, DT , DN ) < 0

)
≤ δn−1

τ2n−1

.

Consider two edge cases when EDN∼Pn−1|zi
(
gLOO(zi, DT , DN )

)
= 0 while the expectation of Shapley is not 0 and when

EDN∼Pn−1|zi
(
gShap(zi, DT , DN )

)
= 0 while the expectation of LOO is 0: For the first case, the upper bound for Shapley

value is still well defined, and the upper bound for LOO is infinite. For the latter case, both upper bounds for Shapley and
LOO are infinite. Even if the bounds derived from Chebyshev’s inequality are not well-defined, the bounds still apply to
both Shapley and LOO. The subsequent bound comparison is valid as well.

When zi is an consistently harmful data point: PDN∼Pn−1|zi

(
sgn

(
gShap(zi, DT , DN )

)
̸= sgn∗(zi)

)
is equivalent to
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≤
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(
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)
t2

.

(13)

The second inequality of Eqn. 13 holds according to Chebyshev’s inequality. Substituting t in Eqn. (10) to
−EDN∼Pn−1|zi

(
gShap(zi, DT , DN )

)
, we have:

PDN∼Pn−1|zi

(
gShap(zi, DT , DN ) ≥ 0

)
≤
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k=0 δk(
−EDN∼Pn−1|zi

(
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2
.

(14)

Similarly, we have:

PDN∼Pn−1|zi

(
gLOO(zi, DT , DN ) ≥ 0

)
≤ δn−1

τ2n−1

. (15)

B. Improving the Efficiency of FreeShap
We adopt two tricks when using the eNTK to emulate fine-tuning: one for efficient kernel approximation and the other for
efficient kernel regression.

B.1. Efficient Kernel Approximation

For eNTK matrix K(XN , XN ) where N := {1, . . . , n}, the matrix belongs to RnC×nC . The complete eNTK can be
approximated by IC ⊗Kc, where Kc ∈ Rn×n is a kernel matrix concerning the output logit of class c, and IC is the C ×C
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identity matrix. This approximation allows kernel regression for K(XN , XN ) to be split into C separate kernel regression
tasks, each concerning Kc. If the model has randomly initialized output layers, Wei et al. (2022) further approximates the
kernel matrix by IC ⊗K0 where K0 is the eNTK concerning a random output logit. As we adopt prompt-based fine-tuning,
our output layer is based on the embedding layer which is not randomly initialized. Thus, we experiment with computing
only one K0 (which is more time efficient) as well as computing different Kc. Following the setting in Sec 4.1 using SST-2
dataset, we compare the correlation for one seed with MC-Shapley when using each class’s Kc for kernel regression and
using K0 (the eNTK concerning a random output logit). It shows a similar correlation, the former is 0.69 while the latter is
0.71. Considering the similar approximation performance and computing only one K0 shows an even better approximation,
we use the same K0 which is the eNTK concerning one of the class’s outputs to conduct C separate kernel regression tasks
in all our experiments for computational efficiency.

B.2. Efficient Kernel Regression

When generalizing to the dataset with a larger size, the computation of the kernel regression can be more computationally
expensive as it requires the inversion of the matrix K(XS , XS), as shown in Eqn. (5). Instead of inverting the full matrix
from scratch, we use a blockwise inversion (BI) approach: we make use of the last step’s inverse matrix and reduce the
average time complexity of kernel regression from O(n3) to O(n2). Specifically, when computing K(XS , XS)

−1, we
partition this inverse into four blocks:

K(XS , XS)
−1

=

[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(16)

Technically, BI is a dynamic programming approach that efficiently computes the exact inverse. Nonetheless, to check the
possible numerical instability in practice, we still empirically compare the Shapley value of the SST-2 dataset computed
using the BI and without the BI (the exact inverse). We compute the Shapley value for 5k SST-2 points. For each test point,
there is a (5000,1) vector, denoting the instance score for each training point. For each test point, there is a correlation value
between computing using the BI and without the BI. We average all test points’ correlation values and get a 0.9984 Pearson
correlation and 0.9963 Spearman correlation. The decent correlation demonstrates that kernel regression using BI offers an
efficient yet accurate computation of the inverse. This justifies our later usage of BI when the dataset is relatively larger in
Sec. 5.

C. More Related Works
Approximating the Shapley Value. Numerous works have focused on improving the scalability of the Shapley value by
reducing the number of computations of the subset’s utility, such as using Monte-Carlo sampling (Ghorbani & Zou, 2019),
adopting group testing for fewer subsets utility computation (Jia et al., 2019), or updating multiple estimates simultaneously
with one time of utility computation (Kolpaczki et al., 2023). On the other hand, some works aim to reduce the computation
of the utility function as ours. Gradient Shapley (Ghorbani & Zou, 2019) approximates the full training with just one
epoch, while All-S Influence Shapley and Largest-S Influence Shapley (Jia et al., 2019) leverage the influence function to
approximate the marginal contribution. The influence-function-based approximations require repeated Hessian calculations
or consider only a single subset, losing some of Shapley value’s essential properties. Consequently, they are not selected
as baselines in our analysis. We show that our work provides a better approximation to the original Shapley values with
comparable efficiency. The work of Wu et al. (2022) proposes a domain-aware approximation of generalization error of
neural network model based on NTK and distributional distance. However, it is unclear how it can be used to approximate
validation accuracy in the setting of prompt-based fine-tuning. Other works extract fixed representations from the last
hidden state and then conduct KNN (Jia et al., 2021) or last-layer fine-tuning (Schoch et al., 2023). We did not make further
comparisons with the previous two works as they focus solely on using representations and fine-tuning the last hidden layer,
which Yeh et al. (2022) suggest can lead to suboptimal results for language models. In contrast, we aim to resemble a more
comprehensive fine-tuning phase. FreeShap uses validation accuracy as the utility function to define Shapley value and more
discussion on other utility functions can be found in Wu et al. (2024).

Shapley Value in NLP Explainability. Shapley value has been employed for feature-attribution explanations (Lundberg
& Lee, 2017; Mosca et al., 2022), treating each word as a player in a game, with the model’s performance as the
outcome. In terms of NLP, this approach has been adapted for text classification, identifying keywords or phrases
influencing classification decisions. Various strategies for efficient Shapley value approximation have been developed,
such as KernelSHAP, LinearSHAP, and DeepSHAP (Lundberg & Lee, 2017), targeting different model types. However,
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these methods oversimplify text data by not accounting for word interactions and context. HEDGE (Chen et al., 2020)
offers hierarchical explanations, considering phrases and multiple relevance levels. In contrast to these feature-attribution
applications, recent works have started using Shapley value for instance scores in NLP (Schoch et al., 2023), focusing on
selecting training points with high Shapley values. Our work differs from these in both purpose and technique, aiming at
robust instance attribution and utilizing eNTK to resemble fine-tuning.

D. Detailed Experiment Setup
D.1. Detailed Experiment Setup for Sec. 4

In terms of the model, we adopt the BERT (Devlin et al., 2019), comprised of 12 layers of encoders. To address time
complexity, we freeze the first eight layers of encoders and fine-tune the remaining layers. We adopt Adam optimizer during
the training process. We disable the dropout in the BERT model to reduce the other uncertainty. We also disable the data
shuffling when feeding data to the model. In terms of implementation, we adopt the huggingface transformers package
to implement BERT’s fine-tuning. In terms of hyperparameters, we use a learning rate of 1e−5 (G-Shapley has a 2e−5
learning rate), batch size 16, and 10 epochs. The max sequence length set for SST-2 dataset and MR dataset is 64, for
MRPC is 128, and for RTE is 256. The prompts for each dataset are listed in Tab. 7, which is the same as Malladi et al.
(2023)’s. We adopt 200 Monte-Carlo iterations for experiments in this section. In terms of eNTK, we adopt the standard
neural tangent kernel described in the main paper (Sec. 2.3), different from the suggested signGD kernel (Malladi et al.,
2023). The analysis for the signGD kernel applies only to “early-stage” training with Adam, and previous empirical work
is limited to few-shot classification. We experiment with both kernels: We compare the correlation between MC-Shapley
and FreeShap when using the standard neural tangent kernel or signGD kernel and for seed 2023 on four datasets, and
find that the standard neural tangent kernel overall has a relatively higher correlation compared with the signGD kernel.
Therefore, we proceed with the standard neural tangent kernel. In terms of hardware, fine-tuning and eNTK precomputation
are conducted on L40 GPUs. Notably, kernel regression can be efficiently computed with just CPU.

Figure 7. Experiment setup for robustness comparison.

Table 7. Prompts used in experiments. [x] in the single sentence task means the training input, while [x0] and [x1] are two sentences in
the sentence pair task. The prompts for SST-2 and MR are the same for encoder-only or decoder-only models.

Dataset Type Prompts Task-specific term

encoder-only model

SST-2 sentiment [x] It was mask. terrible, great
MR sentiment [x] It was mask. terrible, great

MRPC paraphrase [x0] mask, [x1] No, Yes
RTE NLI [x0]? mask, [x1] No, Yes

decoder-only model

MRPC paraphrase [x0] Question: [x1] Yes or No? mask No, Yes
RTE NLI [x0]? [x1] Entailment or not? mask No, Yes
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D.2. Detailed Experiment Setup for Sec. 5

In terms of the model, we adopt BERT and RoBERTa (Liu et al., 2019). The practical implementation and hyperparameters
for both models are the same as the setup described in App. D.1. One difference is that we adopt TMC sampling (Ghorbani
& Zou, 2019) here instead of MC sampling for FreeShap, which has a performance tolerance of 0.05 and 200 Monte-Carlo
iterations. Another difference is that we adopt BI as described in App. B for the experiments in this section as the size of the
dataset is larger.
In terms of other instance attributions: for the influence function, the damping factor is 0.003, while the maximum iterations
are 1000; for TracIn, the checkpoint step is 3; for representer point, the λ is 1e−4. Influence function and TracIn are
computed on unfrozen parameters.

D.3. Detailed Experiment Setup for Llama2

In terms of the model, we adopt Llama2-7B, comprised of 32 layers of decoders. We do not freeze the decoders as we adopt
LoRA for efficient fine-tuning. In the LoRA experiment setup, the rank is 16 while the alpha value is also 16. Targeted
modules for LoRA adjustments include query, key, value, output, gate, down, and up projections in the transformer’s
attention mechanism. We adopt no bias and dropout. Additionally, the final predictive layer is fine-tuned. In terms of
hyperparameters, we use a learning rate of 1e−5 or 1e−6 and 5 epochs. The batch size for the SST-2 dataset and MR
dataset is 4, and for MRPC and RTE is 2. For Llama2, a decoder-only model, slightly different prompts are adopted. The
prompts employed for Llama2 are similar to those used in transformer structure models in Du et al. (2022). The prompts for
each dataset for Llama2 are also listed in Tab. 7. The SST-2 dataset and MR dataset share similar prompts as the previous
setting so it is not repeated showing. The setup for FreeShap is the same as the setup described in App. D.2. In terms of
other instance attributions: for the influence function, the damping factor is 0.003, repeat time is 1, depth is 2500 and the
scaling factor is 1e4; for TracIn, the checkpoint step is 1; for representer point, the λ is 1e−4. Influence function and TracIn
are computed on unfrozen parameters.

E. More Experimental Results
E.1. FreeShap Approximates the Shapley Value Well

Tab. 8 compliments the results of Tab. 1, further demonstrating that our approach is more effective in approximating
MC-Shapley under different sizes of the dataset. Additionally, comparing Tab. 1 and Tab. 8, we also observe that when
the dataset size is 500, both FreeShap and G-Shapley have a generally better approximation. Shapley values in size of 500
points and 1000 points share similar variance as they use the same number of Monte-Carlo iterations; while Shapley values
in size of 500 points have a larger magnitude, and hence they may fluctuate less and better at maintaining the correlation.

Table 8. Correlation between MC-Shapley when the dataset size is 1k. Each correlation is computed using three trials. The higher the
better and FreeShap consistently has a higher correlation.

Dataset FreeShap G-Shapley
pearson spearman pearson spearman

Single Sentence Task

SST-2 0.65±0.06 0.50±0.01 0.35±0.08 0.39±0.16
MR 0.55±0.08 0.41±0.06 0.17±0.07 0.17±0.04

Sentence Pair Task

MRPC 0.79±0.05 0.75±0.03 0.51±0.06 0.42±0.02
RTE 0.61±0.10 0.59±0.13 0.16±0.02 0.24±0.07

E.2. The Shapley Value Is More Robust than LOO

Table 9 is a more comprehensive version of Tab. 2, demonstrating the Shapley value is more robust in instance scores
compared to LOO. Across various training set sizes, the Shapley value generally exhibits fewer non-robust occurrences. Note
that for the RTE dataset, the maximum size of the training data is 2,490. Therefore, the column |DN | = 3000 represents the
scenario where |DN | is at its maximum.
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Table 10 presents more exemplary examples across various dataset sizes, where the Shapley value consistently has sign-
consistent scores but LOO fails. This mirrors the main paper’s findings: the Shapley value produces sign-consistent scores
for training instances that resonate with human intuition, where negative scores signal confusing examples, and non-negative
scores indicate more straightforward and stronger polarized examples. In the main paper, we have discussed an example
with a negative instance score, while here we use “looks great, has solid acting and a neat premise” when dataset size is 3000
as a case study. This example, with its clear positive sentiment, demonstrates that including clear-polarity training points
can enhance test performance. The Shapley value consistently assigns a positive score to this example. However, LOO may
incorrectly label this example as harmful, leading to potential misunderstandings about its influence or underrepresentation
in future data collection and curation.

Table 9. A complete version of the empirical comparison of the β-robustness between the Shapley value and LOO by the percentage of
non-robust occurrences when the complementary dataset is resampled. The lower, the better.

size |DN | = 300 |DN | = 500 |DN | = 1000 |DN | = 2000 |DN | = 3000
dataset LOO Shapley LOO Shapley LOO Shapley LOO Shapley LOO Shapley

SST-2 44% 56% 86% 30% 38% 50% 90% 46% 100% 52%
MR 44% 24% 98% 18% 100% 28% 100% 44% 98% 36%

MRPC 100% 26% 96% 28% 92% 36% 90% 48% 98% 4%
RTE 98% 58% 86% 56% 98% 54% 78% 66% 100% 48%

Table 10. Case study: we demonstrate the examples with consistent instance scores computed by Shapley value and sign-inconsistent
instance scores computed by LOO. [pos] means positive sentiment class, while [neg] means negative sentiment class. We report the mean
and std of the scores scaled by a factor of 1e−3 for readability. The dataset size n=1000, 2000, 3000.

Text example Label Shap Shapley value LOO LOO value

1000 points

prefer to keep on watching [pos] 0+/5- -1.01±0.26 4+/1- 0.00±1.26
it seems impossible that an epic four-hour indian musical
about a cricket game could be this good [pos] 0+/5- -1.09±0.29 3+/2- 0.69±2.96

2000 points

confident filmmaking and a pair of fascinating performances [pos] 5+/0- 0.45 ±0.24 4+/1- 0.23±1.52
seriously, rent the Disney version [neg] 5+/0- 1.85±0.72 3+/2- -0.69±2.36

it’s not going to be everyone’s bag of popcorn, but it definitely
gives you something to chew on’ [pos] 0+/5- -1.91±0.57 3+/2- 0.23±1.34

would fit chan like a $ 99 bargain-basement special [neg] 0+/5- -0.36±0.20 2+/3- 0.00±1.45

3000 points

looks great, has solid acting and a neat premise. [pos] 5+/0- 0.58 ±0.40 3+/2- 0.46±1.72
seriously, rent the Disney version [neg] 5+/0- 1.17±0.60 2+/3- -0.69±3.04

it’s not going to be everyone’s bag of popcorn, but it definitely
gives you something to chew on ’ [pos] 0+/5- -1.27±0.68 2+/3- 0.00±2.71

they shovel into their mental gullets to simulate sustenance [neg] 0+/5- -0.28±0.14 3+/2- 0.23±2.22
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F. More Results for Applications of Instance Attributions
F.1. More Test Prediction Explanations

For the tables in this section: [pos] means positive sentiment class, while [neg] means negative sentiment class. Each
training example shown here is predicted correctly so we do not include its prediction result. Words annotated in blue
indicate negative sentiment, while those in red suggest positive sentiment. These highlights are author-chosen for improved
readability. The dataset used in this section is SST-2.

We provide a more complete example for the most helpful/harmful examples (with the highest/lowest scores) of the correct
prediction in Tab. 11. The Shapley value yields consistently more insightful explanations for the top three most significant
training examples, both in terms of syntactic similarity to the test example and semantic alignment. Specifically, helpful
examples share identical semantics with the test example, whereas harmful examples demonstrate contrasting semantics.
Other instance attribution methods might offer a film-related example in their explanations but fail to provide consistently
meaningful explanations.

We further list the explanations for an incorrect prediction in Tab. 12. The helpful examples provided by the Shapley value
are syntactically similar to the test example in that they contain a mix of words with positive and negative connotations.
This mixture could potentially confuse a deep learning model. The representer point also provides a meaningful explanation,
“peril”, a negative sentiment yet labeled under the positive class. This aligns with the findings of Yeh et al. (2018) that
representer points can offer insights into the neural network’s tendency to predict the positive sentiment for this test example.
This tendency stems from its reliance on examples that, despite conveying a negative sentiment, are labeled within the
positive class.

Analyzing training data with high instance scores relative to the test set, as shown in Table 13, guides new data collection by
targeting similar profiles. Specifically, the Shapley value indicates that adding examples with longer sequences and clear
polarity could significantly enhance model performance. Conversely, the model struggles with sarcasm, as evident from the
most harmful examples. The influence function effectively identifies examples with incorrect labels. Interestingly, the most
supportive example per the influence function aligns with the representer point but lacks clear positive polarity, with the
term ”odd” suggesting uniqueness rather than positivity. This example is assigned a negative score by Shapley, suggesting it
may hinder performance in smaller subsets. Additionally, TracIn may be biased towards the same training examples when
they have large gradients.

Table 12. A wrongly predicted test example with negative sentiment in SST-2 interpreted by different instance attribution approaches.

Test input: unflinchingly bleak and desperate [neg]

Attribution Most helpful training examples Most harmful training examples

FreeShap self-defeatingly decorous [neg] excessively quirky [pos]
oddly moving [pos] it tight and nasty [pos]

vicious and absurd [neg] damning and damned compelling [pos]

Influence is completely at sea [neg] of businesses [pos]

more slowly [neg]
retread , with the emphasis on self-empowering
schmaltz and big-wave surfing that gives pic its
title an afterthought

[neg]

a guiltless film [pos] are more interesting ways of dealing with the subject [neg]

TracIn by surrounding us with hyper-artificiality [neg] effective film [pos]
standard thriller and drag audience
enthusiasm to crush depth [neg] are crisp and purposeful without overdoing it [pos]

i did n’t care. [neg] lend some dignity to a dumb story [neg]

Representer a guiltless film [pos] seagal [neg]
their own mortality [pos] more slowly [neg]

peril [pos] puzzling [neg]
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Table 11. A correctly predicted example with positive sentiment in SST-2 interpreted by different instance attribution approaches.

Test input: a quiet, pure, elliptical film [pos]

Attribution Most helpful training examples Most harmful training examples

FreeShap a funny little film [pos] a particularly slanted , *** */* fantasy [neg]
pretty good little movie [pos] overly-familiar and poorly-constructed comedy [neg]

a well-put-together piece [pos] a shaky, uncertain film [neg]

Influence goes down easy [neg] a guiltless film [pos]
is like nothing we westerners have seen before [pos] money-oriented [neg]
retread, with the emphasis on self-empowering
schmaltz and big-wave surfing that gives pic
its title an afterthought

[neg] is not as well-conceived as either of those films [neg]

TracIn
the only young people who
possibly will enjoy it [neg]

earnhart ’s film is more about the optimism of
a group of people who are struggling to give
themselves a better lot in life than the ones

[pos]

’re down [neg]
ditched the saccharine sentimentality
of bicentennial man [pos]

authentic to the core of his being [pos] highlander [pos]

Representer a guiltless film [pos] seagal [neg]
it is different from others in its genre in that it is
does not rely on dumb gags, anatomical humor,
or character cliches; it primarily relies
on character to tell its story

[pos] macaroni and cheese [neg]

between flaccid satire and what [pos] grasping actors’ workshop that it is [neg]

Table 13. The most helpful/harmful examples for SST-2 test datasets prediction interpreted by different attribution methods.

Attribution Most helpful training examples Most harmful training examples

FreeShap
a dramatic comedy as pleasantly dishonest
and pat as any hollywood fluff. [neg]

the paranoid claustrophobia of a submarine movie
with the unsettling spookiness of the supernatural –
why did n’t hollywood think of this sooner ?

[pos]

it ’s anchored by splendid performances from
an honored screen veteran and a sparkling
newcomer who instantly transform themselves
into a believable mother/daughter pair .

[pos]
kids who are into this thornberry stuff
will probably be in wedgie heaven [pos]

Influence is about something very interesting and odd that [pos] it tight and nasty [pos]

exercise in formula crash-and-bash action [neg]
its characterization of hitler and the contrived
nature of its provocative conclusion [pos]

TracIn the only young people who possibly will enjoy it [neg]
earnhart ’s film is more about the optimism of a
group of people who are struggling to
give themselves a better lot in life than the ones

[pos]

’re down [neg]
ditched the saccharine sentimentality of
bicentennial man [pos]

Representer is about something very interesting and odd that [pos]
4ever has the same sledgehammer appeal
as pokemon videos , but ’ [pos]

is the one [pos] a guiltless film [pos]

We further demonstrate the explanations for natural language inference tasks in Tab. 14. [yes] means entailment, while
[no] means not entailment. Each training example shown here is predicted correctly. The dataset used in this section is
RTE, while the model used here is RoBERTa. Similar to the previous examples, the Shapley value yields consistently more
insightful explanations since among the top three most significant training examples, there exists one that has almost the
same semantics as the test example.
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Table 14. A correctly predicted example with an entailment pair in RTE interpreted by different instance attribution approaches.

Test input:
sentence1: As spacecraft commander for Apollo XI, the first manned lunar landing mission, Armstrong was the first man to walk on the Moon.
”That’s one small step for a man, one giant leap for mankind.” With these historic words, man’s dream of the ages was fulfilled.
sentence2: Neil Armstrong was the first man who landed on the Moon.

[yes]

Attribution Most helpful training examples Most harmful training examples

FreeShap

sentence1: In 1867, Nobel obtained a patent on a special type of
nitroglycerine, which he called ”dynamite”. The invention quickly proved
its usefulness in building and construction in many countries.
sentence2: Alfred Nobel is the inventor of dynamite.

[yes]

sentence1: Gabriel Garcia Marquez was a liberal thinker whose left-wing
politics angered many conservative politicians and heads of state.
His job as a reporter for the Cuban news agency Prensa Latina, in 1960,
and and friendship with Fidel Castro resulted in his being ultimately
denied entry to the United States for political reasons
sentence2: Gabriel Garcia Marquez was a conservative politician.

[no]

sentence1: Neil Armstrong was an aviator in the Navy and was chosen
with the second group of astronauts in 1962. Made seven flights in the
X-15 program 1960 photo), reaching an altitude of 207,500 feet. Was
backup command pilot for Gemini 5, command pilot for Gemini 8, backup
command pilotfor Gemini 11, backup commander for Apollo 8, and
commander for Apollo 11: successfully completing the first moonwalk.
sentence2: Neil Armstrong was the first man who landed on the Moon.

[yes]

sentence1: Evan Wolfson, the founder of the modern gay marriage
movement, tells the waiter he would like an iced decaf and ”the usual.”
Wolfson, one of Time Magazineś Most Influential People in the World, is
a man who unflinchingly knows what he wants and stays his course,
whether it be in his choice of restaurant or in his choice of battle.
And others always know when they see
Evan coming what it is that he wants.
sentence2: Time Magazine was created by Evan Wolfson.

[no]

sentence1: Located just three miles from Tullamore and only 45 minutes
from the K Club, venue of the 2006 Ryder Cup, is Esker Hills, a genuine
hidden gem and one of Irish golf’s best kept secrets.
sentence2: The K Club will host the 2006 Ryder Cup.

[yes]

sentence1: Hugh Jackman has done it all - almost. He’s hosted the Oscars,
danced on Broadway, flashed his winning grin and flexed his acting
muscles, but Friday is the first time the Australian actor will claw his way
into movie theaters as the main attraction. In ”X-Men Origins: Wolverine,”
there’s no Halle Berry or Nicole Kidman by his side to buoy the box office.
This time itś just Jackman, his claws and a heap of Hollywood expectations
to the tune of $150 million.
sentence2: Hugh Jackman will play the magician Harry Houdini.

[no]

Influence
sentence1: Rather than deterring crime, capital punishment actually
increases the level of brutality in society.
sentence2: Capital punishment is a deterrent to crime.

[no]
sentence1: A male rabbit is called a buck and a female rabbit
is called a doe, just like deer.
sentence2: A female rabbit is called a doe.

[yes]

sentence1: On Feb. 1, 1945, the Polish government made Warsaw
its capital, and an office for urban reconstruction was set up.
sentence2: Warsaw remained Poland’s capital after the war.

[no]

sentence1: Bountiful arrived after war’s end, sailing into San Francisco
Bay 21 August 1945. Bountiful was then assigned as hospital ship
at Yokosuka, Japan, departing San Francisco 1 November 1945.
sentence2: Bountiful reached San Francisco on 1 November 1945.

[no]

sentence1: Vera Beers, of Olivet, recently was named employee
of the month at Standard Printing in Marshall.
sentence2: Vera Beers works for Standard Printing.

[yes]
sentence1: ’In other words, with its 2 million inhabitants,
Slovenia has only 5.5 thousand professional soldiers.
sentence2: Slovenia has 5.5 million inhabitants.

[no]

TracIn
sentence1: Martin was taken to New Orleans Ochsner Foundation Hospital,
where nurse Jinny Resor said he was treated for dehydration.
sentence2: Martin works for the Ochsner Foundation Hospital.

[no]
sentence1: Prime Minister Mahmoud Abbas has offered ’the hand of peace’
to Israel after his landslide victory in Sunday’s presidential election.
sentence2: Mahmoud Abbas has claimed victory in the presidential elections.

[yes]

sentence1: In other words, with its 2 million inhabitants,
Slovenia has only 5.5 thousand professional soldiers.
sentence2: Slovenia has 5.5 million inhabitants.

[no]

sentence1: Canada is officially a bilingual country but, with nearly 60% of
the population speaking English as their mother-tongue, and only 24%
speaking French as their first language, some people are questioning
whether Canada is truly a bilingual nation or rather, a bilingual nation on
paper only. French is not the only linguistic minority in Canada, and some
of the languages spoken, in order of popularity, are Chinese, Italian,
German, Polish, Spanish, Portuguese, Punjabi, Ukrainian, Arabic, Dutch,
Tagalog, Greek, Vietnamese, Cree and Inuktitut.
sentence2: French is the most widely spoken language in Québec.

[no]

sentence1: With half of the vote counted, the ANC has 66% of the
vote. Its nearest rival, the Democratic Alliance, has 16%,
while ANC splinter-group the Congress of the People trails with 8%.
The results will see ANC leader Jacob Zuma elected as President of
South Africa when the National Assembly reconvenes in May.Provincial
elections are also being held, and the ANC looks likely to lose power
in the province of Western Cape to the Democratic Alliance. This will
be the first time an opposition party has won control of a provincial
parliament since the end of apartheid. The election campaign has
focused on crime, poverty, and the suitability of Zuma to be
President. Zuma was acquitted of rape in 2006, and corruption
charges against him were withdrawn shortly before the election after
prosecutors found the charges had been politically motivated.
sentence2: Jacob Zuma is the leader of the ANC party.

[yes]

sentence1: Christopher Reeve, an actor and director who became an
inspiration worldwide after being paralyzed in a horse riding accident, died
Sunday of heart failure.
sentence2: Christopher Reeve had an accident.

[yes]

Representer
sentence1: A male rabbit is called a buck and
a female rabbit is called a doe, just like deer.
sentence2: A female rabbit is called a doe.

[yes]
sentence1: In other words, with its 2 million inhabitants, Slovenia has
only 5.5 thousand professional soldiers.
sentence2: Slovenia has 5.5 million inhabitants.

[no]

sentence1: A small bronze bust of Spencer Tracy sold for £174,000.
sentence2: A small bronze bust of Spencer Tracy made £174,000. [yes]

sentence1: Bountiful arrived after war’s end, sailing into San Francisco
Bay 21 August 1945. Bountiful was then assigned as hospital ship at
Yokosuka, Japan, departing San Francisco 1 November 1945.
sentence2: Bountiful reached San Francisco on 1 November 1945.

[no]

sentence1: In other words, with its 2 million inhabitants,
Slovenia has only 5.5 thousand professional soldiers.
sentence2: Slovenia has 2 million inhabitants.

[yes] grasping actors’ workshop that it is [no]
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F.2. Extension to Data Selection

As elaborated in the main paper, we examine the potential of FreeShap in data selection. In this setting, we have a training
set, a separate test set (validation set in the conventional sense, we refer to it as the test set to be consistent with the main
paper) used for computing instance scores, and a held-out set (test set in the conventional sense) used for reporting the
performance of the model trained on the selected data subset. Note that the setting of data selection is different from data
removal as described in Sec. 5 in that data selection uses a separate held-out set to evaluate the performance of the selected
data subset and hence is more applicable to selecting data in real-life applications. The setting of data removal is meant to
validate the effectiveness of the instance attribution and hence is designed for analytical purposes. We conduct experiments
on the MR dataset as its labeled held-out set is easily accessible. To evaluate FreeShap for data selection, we conduct two
types of data selection tasks: data selection with addition and data selection with removal. The addition involves sequentially
adding the data points with the highest score (included in the main paper), followed by evaluating the performance of the
model on the held-out dataset retrained on the selected data; while the removal involves sequentially removing the data
points with the lowest scores in order from the training set. Intuitively, in data selection with addition, a good data selection
scheme should result in faster improvements in performance; while in data selection with removal, a good data selection
scheme should result in improved performance or slower degradation of performance. We supplement the results for data
addition in LLama 2 in Tab. 15. FreeShap achieves faster improvements, validating its effectiveness as a data selection
scheme in both models. However, for the removal setting in Tab. 16, FreeShap is less competitive. We hypothesize that
FreeShap is computed primarily based on the marginal contributions of small subsets due to TMC sampling and hence is
less effective in removing data points from large datasets w.r.t. the held-out set. Enhancing FreeShap for such scenarios
remains a future research.

Table 15. Data Selection with Addition: Difference between the model performance of no data (i.e., 0-shot) and the model performance
when training on a subset that contains data points with high instance scores. The subset size is given as a percentage of the full set. The
higher the difference, the better the approach.

BERT

Subset size 2% 4% 6% 8% 10%
FreeShap 0.1951 0.2111 0.2148 0.2167 0.2223
Influence 0.0272 0.0647 0.0393 0.0647 0.0750

TracIn 0.1370 0.1904 0.2008 0.1548 0.1970
Representer 0.1182 0.1351 0.1388 0.0619 0.1238

Random 0.1970 0.1951 0.2073 0.2017 0.1529

Llama2

Subset size 2% 4% 6% 8% 10%
FreeShap 0.0816 0.1398 0.1754 0.2186 0.2458
Influence -0.0038 -0.0038 -0.0038 -0.0038 -0.0038

TracIn 0.0638 0.1144 0.1304 0.1773 0.2092
Representer -0.0019 0.0000 0.0019 0.0066 0.0056

Random 0.0638 0.1041 0.1529 0.1792 0.1951

F.3. More Experiments for Multi-class on MNLI Dataset

For multi-class classification, we perform experiments on MNLI datasets (with 3 classes). Regarding data removal, as shown
in Fig. 8, performance drops more rapidly when removing examples with the highest scores from FreeShap, and removing
data based on the lowest scores from FreeShap even improves the performance. In wrong label detection, as shown in Fig. 9,
FreeShap is highly efficient at pinpointing mislabeled data.

F.4. Scalability to Larger Datasets

To verify the scalability of FreeShap on larger datasets, we have extended our experiments on data removal and wrong
label detection (described in Sec. 4) to 25k SST2 training data, demonstrating the practical advantages of FreeShap over
other baselines at a larger scale. TracIn is not included due to the computational inefficiency and its weak performance in
main paper experiments (Fig. 4, 5). To further improve the efficiency of experiments, the hyperparameter of tolerance for
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Table 16. Data Selection with Deletion: Difference between the model performance of all data and the model performance when training
on a subset that removes data points with low instance scores. The subset size is given as a percentage of the full set. The smaller the
difference, the better the approach. If the value is positive, which means the removal of low-value data improves the performance and is
even better.

BERT

Subset size 98% 96% 94% 92% 90%
FreeShap -0.0066 -0.0009 -0.0019 -0.0150 -0.0122
Influence -0.0038 -0.0009 -0.0019 -0.0056 -0.0141

TracIn -0.0009 -0.0056 -0.0009 -0.0093 -0.0113
Representer -0.0028 -0.0066 -0.0046 -0.0066 -0.0066

Random -0.0046 -0.0094 -0.0103 -0.0047 -0.0188

Llama2

Subset size 98% 96% 94% 92% 90%
FreeShap -0.0018 -0.0009 -0.0009 -0.0018 0.0009
Influence 0.0028 0.0019 0.0 0.0 0.0019

TracIn 0.0 -0.0009 -0.0009 -0.0019 -0.0009
Representer -0.0028 -0.0047 -0.0084 -0.0103 -0.0122

Random -0.0056 -0.0103 0.0 -0.0009 -0.0009

Figure 8. Data Removal: The test accuracy on models retrained on subsets obtained by iteratively removing 10% of the data, either
from the highest or the lowest instance score. Faster degradation is preferable for high-score removals, while improvement or slower
degradation is ideal for low-score removals. Overall, the scores from FreeShap are better correlated with test performance.

FreeShap is further increased to 0.1 and the Monte-Carlo iterations are increased to 800. The influence function is computed
with LiSSA and depth is 1000. From Fig. 10, when removing data with high instance scores, FreeShap outperforms other
approaches. When removing data with low instance scores, the performance of FreeShap is comparable to other approaches.
This is because the task is relatively simple as even random removal performs well. In addition, FreeShap performs well in
identifying wrong labels.

F.5. More Experiments for Llama2

We further empirically show FreeShap’s effectiveness as explanations, data removal, time efficiency, and a further upscaling
to Llama2-13B here.
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Figure 9. Wrong Label Detection: It shows the detected percentage of poisoned data from the subsets with the lowest instance scores.
For the MNLI dataset, FreeShap leads to the earliest identification of mislabeled instances.

Figure 10. Data Removal and Wrong Label Detection: The two figures on the left show the test accuracy on models retrained on subsets
obtained by iteratively removing 10% of the data. The rightmost figure shows the detected percentage of poisoned data from the subsets
with the lowest instance scores. FreeShap is either superior or comparable in data removal while remaining effective at identifying wrong
labels.

F.5.1. TEST PREDICTION EXPLANATIONS

For the tables in this section: [pos] means positive sentiment class and predicted correctly, while [pos(neg)] means a
positively labeled training example being wrongly predicted as negative, and vice versa. We use SST-2 in this section.

We list more explanations using different instance attributions for the most helpful/harmful examples (with the highest/lowest
scores) of a correct prediction in Tab. 17. Like previous case studies, FreeShap consistently offers insightful explanations for
the top three examples. Other methods may present drama-related examples but lack consistently decent performance.

We provide explanations for an incorrect prediction in Table 18, noting that the most supportive examples identified by
FreeShap are syntactically similar to the test case, particularly in film-related content, and feature a mix of positive and
negative words.

Additionally, we highlight training data with the highest/lowest instance scores relative to the test set in Table 19. Interestingly,
most harmful training examples are incorrectly predicted. FreeShap and representer point both identify potentially wrongly
labeled examples among the harmful examples, while the Influence function identifies potentially wrongly labeled examples
among the helpful examples. Additionally, there’s an overlap between FreeShap’s helpful examples in the current table and
those in Table 13, as well as between the represented point’s harmful examples across the two tables.

Last but not least, we also notice that the influence function and representer point tend to provide wrongly predicted training
examples in explanations, aligning with Garima et al. (2020)’s experiments on the computer vision dataset.
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Table 17. A correctly predicted example with positive sentiment in SST-2 interpreted by different attribution approaches on prompt-based
fine-tuned Llama2 model.

Test input: ... a magnificent drama well worth tracking down . [pos]

Attribution Most helpful training examples Most harmful training examples

FreeShap a consummate actor incapable of being boring [pos]
others will find their humor-seeking dollars
best spent elsewhere. [neg]

moving and solidly entertaining [pos] and undemanding armchair tourists [neg]
increasingly diverse french director [pos] bogs down in a surfeit of characters and [neg]

Influence most of it given to children [pos(neg)]
4ever has the same sledgehammer
appeal as pokemon videos , but [pos(neg)]

’s because the laughs come from fairly
basic comedic constructs [pos(neg)]

kids who are into this thornberry stuff will
probably be in wedgie heaven [pos(neg)]

is consistently [pos(neg)]
definitely funny stuff, but it’s more of
the ‘laughing at’ variety than the ‘laughing with.’ [pos(neg)]

TracIn superb [pos] the book ’s irreverent energy , and scotches most [neg]
what–and has all the dramatic weight of a raindrop [neg] develop her own film language [pos]

scored and powered by a set of heartfelt performances [pos] something of a public service – [pos]

Representer
you ’ve endured a long workout without
your pulse ever racing [pos(neg)] self-deprecating, biting and witty feature [neg]

an hour ’s worth of actual material [pos(neg)] on its taut performances and creepy atmosphere [neg]

beyond the cleverness, the weirdness and the
pristine camerawork, one hour photo is a sobering
meditation on why we take pictures.

[pos(neg)]

the ethos of the chelsea hotel may shape
hawke ’s artistic aspirations , but he has n’t yet
coordinated his own dv poetry with the
beat he hears in his soul

[neg]

Table 18. A wrongly predicted example with positive sentiment in SST-2 interpreted by different attribution approaches on prompt-based
fine-tuned Llama2 model.

Test input: like leon, it’s frustrating and still oddly likable. [pos(neg)]

Attribution Most helpful training examples Most harmful training examples

FreeShap
it’s an effort to watch this movie, but it eventually
pays off and is effective if you stick with it [pos(neg)] ended so damned soon [neg]

this is lightweight filmmaking, to be sure, but it’s
pleasant enough – and oozing with attractive men. [pos]

if even the filmmakers didn’t know what kind of
movie they were making [neg]

, it still manages to string
together enough charming moments to work. [pos]

the story passes time until it’s time for an absurd
finale of twisted metal, fireballs and revenge. [neg]

Influence
4ever has the same sledgehammer appeal as
pokemon videos , but [pos(neg)] blood-curdling family intensity [pos]

kids who are into this thornberry stuff
will probably be in wedgie heaven. [pos(neg)]

to feel-good , follow-your-dream
hollywood fantasies [pos(neg)]

have strip-mined the monty
formula mercilessly since 1997. [pos(neg)] an hour ’s worth of actual material [pos(neg)]

TracIn superb [pos] the book ’s irreverent energy , and scotches most [neg]
what – and has all the dramatic weight of a raindrop [neg] develop her own film language [pos]

scored and powered by a set of heartfelt performances [pos] something of a public service – [pos]

Representer self-deprecating, biting and witty feature [neg] feel the screenwriter at every moment [pos(neg)]

on its taut performances and creepy atmosphere [neg]
the sentimental cliches mar an otherwise
excellent film . [pos(neg)]

the ethos of the chelsea hotel may shape hawke’s
artistic aspirations, but he hasn’t yet coordinated his
own dv poetry with the beat he hears in his soul

[neg]
kids who are into this thornberry stuff will
probably be in wedgie heaven. [pos(neg)]
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Table 19. The most helpful/harmful examples for SST-2 test datasets prediction interpreted by different attribution methods on prompt-
based fine-tuned Llama2 model.

Attribution Most helpful training examples Most harmful training examples

FreeShap a culture clash comedy only half as clever as it thinks it is [neg]
lush and beautifully photographed ( somebody
suggested the stills might make a nice coffee table book ) [pos(neg)]

it’s anchored by splendid performances from
an honored screen veteran and a sparkling
newcomer who instantly transform themselves
into a believable mother/daughter pair.

[pos]
finding the characters in slackers or their
antics amusing, let alone funny [pos(neg)]

Influence
far too polite to scale the lunatic heights of
joe dante ’s similarly styled gremlins [pos(neg)] is as delightful as it is derivative. [pos(neg)]

4ever has the same sledgehammer
appeal as pokemon videos , but [pos(neg] his rental car [pos(neg)]

TracIn superb [pos] the book ’s irreverent energy , and scotches most [neg]
what – and has all the dramatic weight of a raindrop [neg] develop her own film language [pos]

Representer a masterpeice [pos(neg)]
have strip-mined the monty formula
mercilessly since 1997 [pos(neg)]

to the nonconformist in us all [pos(neg)]
4ever has the same sledgehammer appeal
as pokemon videos , but [pos(neg)]

F.5.2. REMOVE LOW INSTANCE SCORE

We include the results for removing low-instance sore points for Llama2. Fig. 11 shows using FreeShap leads to a slower
decrease in performance (most significant on the MRPC and RTE datasets) and even slight improvement for performance
(in SST-2 and MR datasets).

Figure 11. Data Removal for Llama2: When removing data from the lowest instance scores, the data points identified by FreeShap cause
relatively slower degradation (slower is better).

F.5.3. TIME EFFIENCY

Fig. 12 shows the performance of BERT and Llama2-7B on the SST-2 dataset when using FreeShap with TMC and BI. The
results indicate that FreeShap is still time efficient even with LLM. Initially, FreeShap takes a longer time to build the eNTK
matrix for Llama2 due to the larger model size, but since the kernel regression avoids fine-tuning, the computational cost
becomes independent of the model size. Interestingly, FreeShap on Llama2 can be even faster than BERT when the dataset
becomes larger. This is because when TMC is applied, LoRA-finetuned Llama2 has better representation, which results in a
more representative eNTK, and hence faster convergence (more pronounced diminishing marginal contribution) w.r.t. the
number of training data and early termination for each Monte Carlo iteration when computing the Shapley value.
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Figure 12. Running time comparison for dataset SST-2 when the model is BERT and Llama2.

F.5.4. SCALING UP FROM LLAMA2-7B TO LLAMA2-13B

To demonstrate the scalability of FreeShap w.r.t. the size of the model, we extend our experiments to the Llama2-13B model
which is larger than the Llama2-7B model for wrong label detection on the SST2. We use a dataset with a size of 1k to
demonstrate the scalability of the proposed method. As shown in Fig. 13, FreeShap remains more effective in identifying
mislabeled data with a larger model. We also demonstrate the time complexity when using Llama2-7B and Llama2-13B
in Fig. 14, showing the efficiency and scalability of FreeShap w.r.t. model size. Hence, our approach has the potential to
be applied to larger models (70B or even more), and we encourage the community to explore this further with the right
resources.

Figure 13. Wrong Label Detection for dataset 1k SST-2 on Llama2-13b.
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Figure 14. Running time comparison for dataset SST-2 when the model is Llama2-7B and Llama2-13B.

G. Ablation Studies
G.1. Diminishing Influence of Data Point

We empirically examine the assumption of diminishing influence of a data point. Specifically, for a consistently harmful
(or helpful) contributing data point zi, we examine if |τ0| ≥ · · · ≥ |τn−1|. We randomly select a data point and compute
the marginal contribution of this data point within subsets of varying sizes, ranging from 0 to 300. For each subset of size
k, we calculate the mean marginal contribution from three sampled subsets. Figure 15 plots the absolute mean marginal
contribution of the data point across different subset sizes. The fitted curve illustrates a decreasing trend in the absolute
marginal contribution, which is in accordance with our hypotheses and corroborated by previous studies (Killamsetty et al.,
2021; Wang et al., 2021).

Figure 15. Diminishing Marginal Contribution.

G.2. Expectation and Variance for Shapley value and LOO

When comparing the robustness of Shapley and LOO, the upper bound is bounded by variables related to the expectation
and variance. We can intuitively explain that the Shapley value is more robust as the Shapley value has a larger expectation
and smaller variance, as illustrated in the remark 3.6. The relative relationship for expectation and variance between the
Shapley value and LOO is further verified in the figure 16, where the figure on the left demonstrates that the Shapley value
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generally has a larger expectation, and the figure on the right demonstrates that the Shapley value has a smaller variance.

(a) Mean of instance scores when the dataset is of size 500.
The average of absolute mean among 50 points is 0.50e−3
for LOO and 1.20e−3 for Shapley.

(b) Standard deviation of instance scores when the dataset
is of size 500. The average of standard deviation among 50
points is 1.89e−3 for LOO and 0.61e−3 for Shapley.

Figure 16. This figure shows each point’s mean and standard deviation of five instance attribution scores computed by Shapley and LOO.
The figure on the left demonstrates each point’s mean of instance scores. Each index denotes a point’s average instance score among five
instance scores computed when the point is placed in five datasets. The figure on the right demonstrates each point’s standard deviation of
instance scores. Each index denotes a point’s standard deviation of five instance scores. Matching with our analysis, the Shapley value has
a higher expectation and a lower standard deviation.

G.3. Kernel Behavior of Prompt-based Fine-tuning

Previous work investigates the kernel behavior of prompt-based fine-tuning using experiments but on a few shot settings (Mal-
ladi et al., 2023). To further empirically verify the kernel behavior of prompt-based fine-tuning for each training data size,
we conduct the following ablation study. We perform both prompt-based fine-tuning and eNTK kernel regression on training
points with sizes ranging from 1 to 1k. We record test performance for each size and plot them in Figure 17. At each training
size, the eNTK (orange line) consistently provides a decent approximation to the fine-tuning method (blue line), evident
from a small gap between the two curves. As the number of training points increases, both the eNTK and fine-tuning trends
rise almost in tandem, indicating that eNTK offers a reliable approximation throughout the training process.

Figure 17. We plot the test performance as the number of training points increases when using eNTK kernel regression and fine-tuning.
The two lines have a Pearson correlation of 0.97 and a Spearman correlation of 0.94.

G.4. Ablation Studies for FreeShap and Influence on Different Approximations

We compare the data removal performance (Fig.18) and wrong label detection (Fig.19) between FreeShap with TMC and
FreeShap with MC, finding similar efficacy in identifying both high/low instance scores and mislabeled data.
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Further, we evaluated the performance of the influence function with conjugate gradients (CG) (as used in the main paper)
against the influence function with LiSSA in data removal (Fig.18) and wrong label detection (Fig.19). The CG-based
influence function demonstrated superior or comparable effectiveness in detecting low instance scores (slower degradation
of performance is better) and mislabeled data, but it was comparable or less effective in identifying high instance scores
(faster degradation of performance is better). Due to CG’s proficiency in two of the three tasks, we choose CG for a more
equitable comparison.

Figure 18. Data Removal: Data removal performance comparison: FreeShap with TMC vs. FreeShap with MC show similar results.
In contrast, the influence function with CG (used in the main paper) versus the influence function with LiSSA reveals disparities. The
CG-approximated influence function excels at identifying low instance scores in most datasets but performs comparably or poorly in
identifying high instance scores.

Figure 19. Wrong label detection: Wrong label detection comparison: FreeShap with TMC vs. FreeShap with MC demonstrates similar
efficacy in identifying mislabeled data. Further comparison between the influence function with CG (as used in the main paper) and the
influence function with LiSSA shows the CG-approximated influence function to be more effective in pinpointing mislabeled examples.

H. Dataset Information
Single sentence task involves classifying a single sentence independently to produce an output, like sentiment analysis
(SST-2). The sentence pair task involves taking two sentences as input to determine a relationship between them, such as
textual entailment or paraphrasing.

For the single-sentence task, we utilize two datasets:

1. The SST-2 (Socher et al., 2013) dataset is used for binary sentiment classification, aiming to categorize text snippets as
either positive or negative. The dataset consists of movie reviews annotated with their corresponding sentiment labels.
Dataset is retrieved from https://huggingface.co/datasets/sst2.

2. The Rotten Tomatoes movie review(MR) dataset is a collection of film reviews used for sentiment analysis tasks (Pang
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& Lee, 2005). The reviews are labeled as either positive or negative, based on the sentiment expressed by critics and au-
dience members. The dataset is retrieved from https://huggingface.co/datasets/rotten_tomatoes.

For the sentence-pair task, we utilize three datasets:

1. The MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005) dataset is a collection of sentence pairs
labeled as either paraphrases of each other or not. It is commonly used for evaluating natural language processing
tasks related to semantic textual similarity and paraphrase identification. Dataset is retrieved from https://
huggingface.co/datasets/glue/viewer/mrpc.

2. The RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009) dataset consists of sentence pairs labeled to indicate
if the second sentence entails, contradicts, or is neutral concerning the first. It is widely used for natural language
understanding tasks like textual entailment and inference. The dataset is retrieved from https://huggingface.
co/datasets/glue/viewer/rte.

3. The MultiNLI (MNLI) (Williams et al., 2018) dataset is a large-scale, multi-genre natural language inference dataset de-
signed for the training and evaluation of machine learning models on the NLI task. It contains pairs of sentences labeled
as ”entailment,” ”contradiction,” or ”neutral,” drawn from a variety of sources, including fiction, government documents,
and forums. The dataset is retrieved from https://huggingface.co/datasets/glue/viewer/mnli.

As our objective is to interpret the model predictions from the training data and obtain a better understanding of the dataset
such as dataset debugging and mislabeled data detection, we directly evaluate all experiments on the test set. Since the
test set label is not fully available (SST-2 and RTE), we use the validation set as the test set for simplicity. The necessary
information for single sentence task datasets is in Tab. 20, while the information for the sentence pair task datasets is in
Tab. 21, and the test column in tables below is the information of validation datasets.

Table 20. Detailed information about single sentence task dataset

Dataset SST-2 MR
train test train test

length 67.3k 872 8.53k 1.07k
min length of tokens 3 4 3 5
max length of tokens 66 55 78 67

average length of tokens 13.32 25.16 27.37 27.66

Table 21. Detailed information about sentence pair task dataset

Dataset MRPC RTE MNLI
train test train test train test

length 3668 1725 2490 3000 392k 9.8k
min length of premise 9 10 7 6 3 3
max length of premise 52 51 282 240 428 219

average length of premise 27.13 26.95 57.6 54.39 26.72 26.06
min length of hypothesis 10 10 5 4 3 3
max length of hypothesis 52 54 53 65 77 56

average length of hypothesis 27.12 27.03 13.59 13.24 14.19 14.12
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