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Abstract

In safety-critical RL settings, the inclusion of an additional cost function is often
favoured over the arduous task of modifying the reward function to ensure the
agent’s safe behaviour. However, designing or evaluating such a cost function can
be prohibitively expensive. For instance, in the domain of self-driving, designing
a cost function that encompasses all unsafe behaviours (e.g., aggressive lane
changes, risky overtakes) is inherently complex, it must also consider all the actors
present in the scene making it expensive to evaluate. In such scenarios, the cost
function can be learned from feedback collected offline in between training rounds.
This feedback can be system generated or elicited from a human observing the
training process. Previous approaches have not been able to scale to complex
environments and are constrained to receiving feedback at the state level which
can be expensive to collect. To this end, we introduce an approach that scales to
more complex domains and extends beyond state-level feedback, thus, reducing
the burden on the evaluator. Inferring the cost function in such settings poses
challenges, particularly in assigning credit to individual states based on trajectory-
level feedback. To address this, we propose a surrogate objective that transforms
the problem into a state-level supervised classification task with noisy labels, which
can be solved efficiently. Additionally, it is often infeasible to collect feedback
for every trajectory generated by the agent, hence, two fundamental questions
arise: (1) Which trajectories should be presented to the human? and (2) How
many trajectories are necessary for effective learning? To address these questions,
we introduce a novelty-based sampling mechanism that selectively involves the
evaluator only when the the agent encounters a novel trajectory, and discontinues
querying once the trajectories are no longer novel. We showcase the efficiency of
our method through experimentation on several benchmark Safety Gymnasium
environments and realistic self-driving scenarios. Our method demonstrates near-
optimal performance, comparable to when the cost function is known, by relying
solely on trajectory-level feedback across multiple domains. This highlights both
the effectiveness and scalability of our approach. The code to replicate these results
can be found at https://github.com/shshnkreddy/RLSF

1 Introduction

Reinforcement Learning (RL) is known to suffer from the problem of reward design, especially in
safety-related settings [4]. In such a case, constrained RL settings have emerged as a promising
alternative to generate safe policies[3, 16, 34]. This framework introduces an additional cost function
to split the task related information (rewards) from the safety related information (costs). In this
paper, we address a scenario where the reward function is well-defined, while the cost function
remains unknown a priori and requires inference from feedback. This arises in cases where the cost
function is expensive to design or evaluate. For instance, consider the development of an autonomous
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driving system, where the reward function may be defined as the time taken to reach a destination
which is easy to define. However, formulating the cost function presents significant challenges.
Designing a comprehensive cost function that effectively penalizes all potential unsafe behaviors
is non-trivial, and ensuring safety often involves subjective judgments, which can vary based on
individual preferences. Even if one succeeds in devising such a function, it must account for all
environmental factors, such as neighboring vehicles and pedestrians. The evaluation of such a cost
function in high-fidelity simulators can be prohibitively expensive.

Feedback can be collected from either a human observer, who monitors the agent’s training process
and periodically provides feedback on presented trajectories, or from a system that computes the cost
incurred on selected trajectories. Throughout this paper, we use the term evaluator to refer to the
entity providing feedback, whether human or system-generated.

Cost inference in Constrained RL settings has gained recent attention. One key thread of research
has focused on learning cost from from constraint abiding expert demonstrations [28, 32]. However,
these expert demonstrations are not easily available in all settings. For example, consider robotic
manipulation tasks where the human and the robot have different morphologies. This paper focuses
on the second line of research in this area, where we generate trajectories and gather feedback from an
evaluator to infer the underlying cost function. Prior works in this thread make limiting assumptions
on the nature of the cost function such as smoothness or linearity [28, 32, 11, 5] and are limited to
obtaining feedback at the state level [8] which is expensive to collect from human evaluators. We do
not make such assumptions and can take feedback provided at over longer horizons, in some cases
the entire trajectory.

Frameworks for learning from feedback must exhibit the following properties as emphasized in
[8, 18, 12]: 1) Feedback must be collected offline in between rounds, since the agent may need to
act in real time. 2) The amount of feedback collected must be minimized. 3) Binary feedback is
more suitable as compared to numeric feedback as it is more intuitive to provide for humans. It has
also been shown that humans provide less consistent feedback if it is numeric [12]. 4) Each state is
assigned a binary cost value, indicating that it is inherently safe or unsafe, which is more intuitive for
humans when assessing the safety of policies [31] 1.

To this end we propose the Reinforcement Learning from Safety Feedback (RLSF) algorithm, which
embodies all the aforementioned properties. The key contributions of this algorithm include:

• Extends prior work to collect feedback over longer horizons. This is done by presenting
the evaluator with the entire trajectory, breaking the trajectory into segments and eliciting
feedback at the segment level. Inferring the costs directly by maximizing likelihood presents
new challenges due to the problem of credit assignment over longer horizons. To tackle this,
we present a surrogate loss that converts the problem from trajectory level cost inference to
a supervised binary classification problem with noisy labels.

• Introduces a novelty based sampling mechanism that reduces the number of queries by
sampling novel trajectories for feedback.

• Learns safe policies across diverse benchmark safety environments. We also show that the
learnt cost function can be transferred to train an agent with different dynamics/morphology
from scratch without collecting additional feedback.

2 Preliminaries

Markov Decision Process A Markov Decision Process (MDP) M is defined by the tuple
(S,A,P, r, γ, µ), where S denotes the set of states, A is the set of actions, P(s′|s, a) ∈ [0, 1]
is the transition probability, r(s, a) ∈ R is the reward function, γ ∈ [0, 1] is the discount factor and
µ(s) ∈ ∆(S) is the initial state distribution. A policy π(.|s) ∈ ∆(A) is a distribution over the set of
valid actions for state s. We denote the set of all stationary policies as Π. A trajectory τ = {(st, at)}
denotes the state-action pairs encountered by executing π inM. We use the short hand τi:j to denote
a trajectory segment, i.e, the subsequence of (st, at) pairs encountered from timestep i to j. The
expected value of a function f under π as J f (π) ≜ Eτ∼π[

∑∞
t=0 γ

tf(st, at)]. We also employ the
shorthand f(τ) to represent the discounted sum of f along the trajectory τ . The occupancy measure

1The last two points are specific to human evaluators
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of a policy is define as ρ(s, a) = Eτ∼π[
∑∞

t=0 γ
tI[(st, at) = (s, a)]], where I[.] denotes the indicator

function. ρ describes the frequency with which a state-action pair is visited by π.

Constrained Markov Decision Process A Constrained MDP [4] introduces a function c(s, a) ∈ R
and a cost threshold cmax ∈ R that defines the maximum cost that can be accrued by a policy. The
set of feasible policies is defined as Πc = {π ∈ Π : J c(π) ≤ cmax}. A policy is considered to be
safe w.r.t c if it belongs to Πc.

3 Problem Definition

In this paper, we consider the constrained RL problem defined as,

π∗ = argmin
π∈Πc

J r(π) (1)

We assume the threshold cmax is known, but the cost function is not known and must be inferred
from feedback collected from an external evaluator. In many scenarios cmax is typically known,
representing a predefined limit on acceptable costs or risks in the environment. However, crafting the
cost function c(s, a) such that it penalizes all unsafe behaviour can be infeasible.

We incorporate an additional constraint enforcing the cost function to be binary, i.e, c(s, a) ∈ {0, 1}.
This ensures that each state-action pair is inherently categorized as either safe or unsafe. We opt for
this approach because it is simpler for human evaluators to assign a binary safety value to state-actions
when assessing policy safety, as emphasized in [31].

4 Method

In this section, we introduce Reinforcement Learning from Safety Feedback (RLSF), an on-policy
algorithm that consists of two alternating stages: 1) Data/Feedback collection and 2) Constraint
inference/Policy improvement. In the first stage, data is collected via rollouts of the current policy
for a fixed number of trajectories. Next, a subset of these trajectories is presented for feedback from
evaluator, which are then stored in a separate buffer. The second stage consists of two parts: i)
Estimation of the cost function from the feedback data and ii) Improvement of the policy using the
collected trajectories and their inferred costs. We repeat stages (1) and (2) until convergence.

First, we highlight how the feedback is collected and propose a method to infer the constraint function
using this data. Next, we recognize the practical limitations of acquiring feedback for every trajectory
during training and detail our approach to sampling a subset of trajectories for efficient cost learning
of the cost function. Finally, we detail how the inferred cost function is used to improve the policy.

4.1 Nature of the Feedback

In the feedback process, the evaluator is first presented with the entire trajectory τ0:T . Afterward, the
trajectory is divided into contiguous segments τi:j of length k, and feedback is collected for each
segment. The segment length can be adjusted based on the complexity of the environment: in simpler
environments, feedback can be gathered for the entire trajectory, whereas for environments with long
horizons and sparse cost violations, shorter segments may be used. This approach simplifies the
challenge of assigning credit to individual states. Similar methods have been adopted in other works
that rely on human feedback [12, 18]. However, reducing segment length comes at an increased cost
of obtaining feedback from the evaluator.

The evaluator is tasked with classifying a segment as unsafe if the agent encounters an unsafe state
at any point within the segment. This decision was made to ensure consistent feedback from the
evaluator. Alternative approaches—such as marking a segment unsafe based on the number of unsafe
states visited or leaving the classification to the evaluator’s subjective judgment are more prone to
generating inconsistent feedback in the case of human evaluators [12].

4.2 Inferring the Cost Function

Let P = {τi:j , ysafe} represent the feedback collected from the evaluator, where ysafe = 1 if the
segment was labelled safe and ysafe = 0 otherwise. We assume there exists an underlying ground
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truth cost function cgt(s, a) ∈ [0, 1] based on which the evaluator provides feedback. Then, the
probability that a state is safe is defined as psafegt (s, a) = I[cgt(s, a) = 0].

Now, let psafe(s, a) represent our estimate of psafegt (s, a) that we intend to estimate from the collected
feedback. Then, by definition of how the feedback is collected, the probability that a trajectory
segment τi:j is labelled as safe is given by,

psafe(τi:j) =

j∏
t=i

psafe(st, at) (2)

We can infer psafe(s, a) by minimizing the likelihood loss,

Lmle = −E(τi:j ,ysafe)∼P

[
ysafe log psafe(τi:j) + (1− ysafe) log 1− psafe(τi:j)

]
= −E(τi:j ,ysafe)∼P

[
ysafe

j∑
t=i

log psafe(st, at) + (1− ysafe) log (1−
j∏

t=i

psafe(st, at))

]
(3)

Directly minimizing Eq 3 is challenging as the term
∏j

t=i p
safe(st, at) would collapse to 0 when

the segment length is long, causing unstable gradients. To address this issue, we propose using a
surrogate loss function where we replace 1−

∏j
t=i p

safe(st, at) by
∏j

t=i(1− psafe(st, at)).

Lsur = −E(τi:j ,ysafe)∼P

[
ysafe

j∑
t=i

log psafe(st, at) + (1− ysafe)

j∑
t=i

log (1− psafe(st, at))

]

= −E(τi:j ,ysafe)∼P

j∑
t=i

∑
s,a

I[(st, at) = (s, a)]

[
I[ysafe = 1] log psafe(s, a)

+ I[ysafe = 0] log (1− psafe(s, a))

]
= −

[
E(s,a)∼dg

log psafe(s, a) + E(s,a)∼db
log (1− psafe(s, a))

]
(4)

where dg(s, a) = E(τi:j ,ysafe)∼P

[∑j
t=i I[(st, at) = (s, a) ∩ ysafe = 1]

]
and db(s, a) =

E(τi:j ,ysafe)∼P

[∑j
t=i I[(st, at) = (s, a) ∩ ysafe = 0]

]
represent the densities with which states oc-

cur in safe and unsafe segments respectively.

The surrogate loss reformulates the objective from the segment level—where collapsing probabilities
over long segments can be problematic—to the state level, where this issue does not occur. Optimizing
Eq 4 involves breaking down the segments into individual states and assigning each state the label of
the segment. Subsequently, states are uniformly sampled at random, and the binary cross-entropy
loss is minimized. Consequently, Lsur represents a binary classification problem in which one
class contains noisy labels. While unsafe states are always accurately labeled—since their presence
necessitates an unsafe classification for the segment—a safe state may receive conflicting labels based
on the status of the segment it belongs to. Thus, with a sufficient number of samples, we believe it
becomes feasible to reliably differentiate between safe and unsafe states.
Proposition 1. The surrogate loss Lsur is an upper bound on the likelihood loss Lmle.

Thus, minimizing Lsur guarantees an upper bound on the likelihood loss of the estimated cost
function.

Having discussed the surrogate loss, we now examine the characteristics of its optimal solution.
Proposition 2. The optimal solution to Eq 4 yields the estimate,

psafe∗ (s, a) =
dg(s, a)

dg(s, a) + db(s, a)
(5)

Subsequently, we define the inferred cost function as c∗(s, a) ≜ I[psafe∗ (s, a) < 1
2 ]. Employing

c∗(s, a) in policy updates instead of cgt(s, a) introduces a bias in estimating the cost accrued by the

4



policy, that we analyse below. For this analysis, we assume that the feedback is sufficient, i.e, the
density d(s, a) is greater than zero for every state, otherwise p∗(s, a) is not defined.
Proposition 3. For a fixed policy π, the bias in the estimation of the incurred costs is given by,

Eπ[γ
tc∗(s, a)]− Eπ[γ

tcgt(s, a)] = E(s,a)∼ρπ
g
[I[db(s, a) > dg(s, a)]] (6)

where ρπg (s, a) = Eπ[
∑T

t=0 γ
t[I[(st, at) = (s, a) ∩ cgt(s, a) = 0]] is the occupancy measure of safe

states visited by π.

Proposition 3 illustrates that c∗(s, a) misclassifies certain safe states as unsafe when their frequency
in segments labeled unsafe exceeds that in segments labeled safe by the evaluator. We contend that
this misclassification is likely to diminish with increased data collection or shorter segment lengths.
However, it is important to note that this misclassification is guaranteed to be zero only when the
segment length is reduced to one, meaning feedback is provided at the state level.

Additionally, note that the bias is non-negative, meaning that the expected cost Eπ[c∗(s, a)] acts as
an upper bound on the true cost incurred by π. Therefore, ensuring that the policy does not exceed
the threshold cmax on c∗ guarantees that it adheres to the threshold on cgt.
Corollary 1. Any policy π that is safe w.r.t c∗ is guaranteed to be safe w.r.t cgt.

In practice, we represent psafeθ (s, a) using a neural network with parameters θ. The resulting cost
function is defined as cθ(s, a) ≜ I[psafe(s, a)] < 1

2 .

4.3 Efficient Subsampling of Trajectories

To reduce the burden on the evaluator and minimize the cost of feedback, we present a subset of
the trajectories collected by the policy for feedback. The common approach is to break the problem
into two parts: (1) define a schedule Nqueries(i) that determines the number of trajectories to be
shown to the user at the end of each data collection round i. Subsequently, Nqueries(i) trajectories
are sampled from those collected by the policy at data collection round i. While the ideal goal is
to sample a subset of trajectories that maximizes the expected value of information [19], achieving
this is computationally intractable [2]. To address this challenge, various sampling methods have
been employed, seeking to maximize a surrogate measure of this value. Among these, uncertainty
sampling stands out as the most prominent approach, wherein trajectories are sampled based on the
estimator’s uncertainty about their predictions [12, 18, 20]. However, quantifying the uncertainty is
challenging given the lack of calibration in neural network predictions. To address this challenge,
ensemble methods are frequently employed where the disagreement among the models is used as
an uncertainty measure. However, the training of n distinct neural networks can exact substantial
resource costs, prompting consideration for alternative approaches.

In light of this, we introduce a new form of uncertainty sampling called novelty sampling. With
novelty sampling, we gather all the novel trajectories after each round and present them to the evaluator
for feedback. Formally, we define a state as novel if its density in the feedback data collected so far
d(s) =

∑
a d(s, a) is 0. A trajectory is deemed novel if it comprises of at least e novel states. This

can be interpreted as ensuring that the edit distance—a well-known measure of trajectory distance
[27]—between the current trajectory and previously seen trajectories exceeds a threshold e. We do
not consider novelty for state-action pairs as we found that extending to this case adversely impacted
the performance.

The central notion is that the model is prone to errors on novel states- those it has not encountered
during training. This arises because the policy evolves over time, venturing into states that were not
previously encountered during data collection rounds. Therefore, this sampling strategy effectively
reduces the epistemic uncertainty of the model—error arising from insufficient training data—thereby
making it a form of uncertainty sampling. Furthermore, this sampling method offers the advantage of
implicitly establishing a decreasing querying schedule as novelty of trajectories reduces over time as
shown in Figure 6 in the Appendix.

We compute the density d(s) through a count-based method, utilizing a hashmap to track the frequency
of state occurrences in trajectories presented to the evaluator. Employing SimHash [10], we discretize
the state space using a hash function ϕ : S → {−1, 1}n, which maps locally similar states (measured
by angular distance) to a binary code as:

ϕ(s) = sgn(Ag(s)) (7)
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where g : S → Rd is an optional prepossessing function and A is an n× d matrix with i.i.d entries
drawn from a standard normal distribution. Also, note that n controls the granularity of the hash
function, i.e, the number of states mapped to the same value. In our setting, g(s) = s as we observed
no improvement when employing functions like autoencoders for feature extraction.

4.4 Policy Optimization

After the data collection round, where we sample trajectories {τ} and their corresponding rewards
{r(τ)} using π, we estimate their costs c(τ) using the inferred cost function. Our proposed method
allows for the policy to be updated utilizing any on-policy constrained RL algorithm. In this study, we
employ the PPO-Lagrangian algorithm[3] that combines the PPO algorithm [26] with a lagrangian
multiplier to ensure safety.

A detailed description of the proposed method can be found in Algorithm 1. Lines [6-17] describe
the data and feedback collection stage, and Lines [18-23] describe the cost inference and policy
improvement stage.

Algorithm 1 Reinforcement Learning from Safety Feedback (RLSF)
1: Input: cost threshold cmax, segment length k, novelty criterion e
2: Initialize: policy π0

3: Initialize: classifier cθ, learning rate lrθ and feedback buffer D
4: Initialize: A ∈ Rn×d with entries sampled i.i.d from N (0, 1), ϕ(.) = sgn(AT (.)), density map

d(.) ≡ 0.
5: while not converged do
6: Collect trajectories {τ}, {r(τ)} ∼ π ▷ Data Collection
7: for each trajectory τ i ∈ {τ} do ▷ Feedback Collection
8: novel← True if ∃ e states {se} ∈ τ i such that d(ϕ(se)) > 0
9: if novel then

10: Show τ i to the evaluator
11: for each segment τj:j+k−1 ∈ τ i do
12: Obtain feedback ysafe for the segment τ ij:j+k−1.
13: D ← D ∪ {((s, a), ysafe) ∀(s, a) ∈ τ ij:j+k−1}
14: d(ϕ(s))← d(ϕ(s)) + 1 ∀s ∈ τ ij:j+k−1 ▷ Update the densities
15: end for
16: end if
17: end for
18: for each gradient step do ▷ Update cost estimates
19: Sample random minibatch b← {(s, a), ysafe} ∼ D
20: θ ← θ − lrθ∇Lsur(b)
21: end for
22: Infer costs {cθ(τi)} for all τ i ∼ {τ}.
23: Update π using {r(τi)} and {cθ(τi)}. ▷ Policy Improvement
24: end while

5 Experiments

We investigate the following questions in our experiments:

1. Does RLSF succeed in effectively learning safe behaviours?

2. Can the inferred cost function be transferred across agents in the same task?

3. How does the proposed novelty based sampling scheme compare with other methods used
in the literature?

4. How accurate is inferred cost function compared to the true cost function?

5. How can we address the overestimation bias of the inferred cost function as described in
Section 4.2?
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5.1 Experiment Setup

Table 1: Performance of different algorithms on the Safety Benchmarks. The first 7 environments
represent the hard constraint case. The remaining environments illustrate the soft constraint case,
with values in brackets indicating the cost threshold. Each algorithm is run for 6 independent seeds.
(orange) and (blue) indicate the best performance in the known costs and inferred costs settings,
respectively. Algorithms with a cost violation (C.V) rate below 1% are deemed to have equal
performance in terms of safety.

Environment Cost Known (Best Run) Cost Inferred (Mean ± Standard error)

PPOLag SIMKC SDM SIM RLSF (Ours)

Point Circle Return 45.26 46.09 36.20± 3.95 22.26± 9.59 36.42± 1.78
C.V Rate (%) 0.4 0.43 11.43± 0.69 35.21± 10.09 1.9± 0.09

Car Circle Return 14.34 15.21 5.18± 2.48 6.34± 2.87 9.37± 0.97
C.V Rate (%) 0.84 5.4 6.2± 6.18 4.53± 4.00 0.54± 0.30

Biased Pendulum Return 717.43 983.27 495.58± 160.84 577.15± 184.31 721.48± 111.49
C.V Rate (%) 0.0 0.1 39.91± 17.05 48.58± 21.67 0± 0

Blocked Swimmer Return 22.62 21.05 86.96± 10.69 2.15± 8.58 16.09± 1.44
C.V Rate (%) 3.91 0.01 92.8± 1.65 13.33± 12.11 0.01± 0.01

HalfCheetah Return 2786.71 2497.82 3031.7± 336.48 257.34± 147.35 2112.63± 161.26
C.V Rate (%) 0.42 0.06 59.4± 8.28 0.0± 0.0 0.06± 0.01

Hopper Return 1705.00 1555.25 1097.57± 56.35 990.08± 8.66 1408.71± 27.3
C.V Rate (%) 0.19 0.02 0.0± 0.0 0.0± 0.0 0.29± 0.02

Walker2d Return 2947.25 2925.23 2195.94± 134.21 993.38± 17.69 2783.29± 57.51
C.V Rate (%) 0.16 0.0 1.58± 1.53 0.0± 0.0 0.05± 0.01

Point Goal Return 26.16 26.10 1.61± 1.8149 10.86± 4.1 24.65± 0.59
Cost (40.0) 34.19 31.83 30.57± 13.29 52.76± 12.85 35.08± 1.08

Car Goal Return 27.37 26.44 1.05± 2.83 10.88± 7.1 24.28± 2.1
Cost (40.0) 41.67 35.41 34.71± 9.87 33.33± 11.26 41.25± 2.27

Point Push Return 6.00 10.84 0.16± 0.14 3.63± 1.77 2.68± 1.03
Cost (35.0) 26.08 26.96 22.89± 5.95 45.43± 3.86 30.51± 3.4

Car Push Return 3.07 2.68 −3.04± 3.3 1.56± 0.46 1.54± 0.51
Cost (35.0) 20.53 20.95 23.25± 7.78 36.55± 1.48 27.69± 1.19

We evaluate RLSF on multiple continuous control benchmarks in the Safety Gymnasium environment
[17] and Mujoco [30] based environments introduced in [22]. The Circle, Blocked Swimmer and
Biased Pendulum environments constrain the position of the agent whereas the Half Cheetah, Hopper
and Walker-2d environments constrain the velocity of the agent. The Goal and Push tasks are the most
challenging as they contain static and dynamic obstacles that the agent must avoid while completing
the task.All of the above environments reflect safety challenges that an agent could potentially face in
real-world scenarios. Additionally, we conduct experiments using the Driver simulator introduced
in [21], which presents two scenarios that an autonomous driving agent is likely to encounter on
the highway: lane changes and blocked paths. In this setup, the cost function is based on multiple
variables, including speed, position, and distance to other vehicles. Additionally, we introduce a third
scenario: overtaking on a two-lane highway. A detailed description of the tasks can be found in the
Appendix B.

We split the environments into two settings: (1) hard constraint setting (cmax = 0) where the safety
of the policy is measured in terms of the cost violation (CV) rate defined as the number of cost
violations divided by the length of the episode and (2) soft constraint setting where cmax > 0. We
utilize an automated script that leverages the underlying cost function to simulate the feedback
provided by the evaluator.

We compare the performance of our algorithm against the following baselines: Self Imitation Safe
Reinforcement Learning (SIM) [16]: SIM is a state-of-the-art method in constrained RL that also
supports the case where feedback is elicited from an external evaluator. Similar to RLSF, the method
consists of two stages, a data collection/feedback stage and a policy optimization stage. In the first
stage, a trajectory τ is labelled as good if [r(τ) ≥ rgood ∩ I[c(τ) ≤ cmax], and labelled as bad
if [r(τ) ≥ rbad ∪ I[c(τ) ≥ cmax], where rgood and rbad are predefined thresholds on the reward.
The information I[c(τ) ≤ cmax] is received from feedback. The idea is then to imitate the good
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Figure 1: Cost Violation rate of different algorithms in the Driver environment. Each algorithm is run
for 6 independent seeds, with the curves representing the mean and the shaded regions indicating the
standard error.

trajectories and stay away from the bad trajectories. If ρπ is the occupancy measure of the current
policy π and ρG, ρB are the occupancy measures of the good and bad trajectories respectively, then,
π is optimized as,

π∗ = argmax
π

KL(ρπ,G||ρB) (8)

where ρπ,G = (ρπ + ρG)/2 and KL denotes the Kullback–Leibler divergence.

Safe Distribution Matching (SDM): SIM combines rewards with safety feedback into a joint notion
of good and bad which may not be desirable when the cost function is unknown. Thus, we introduce
an additional baseline that keeps these two signals separate by labelling the trajectory as good if
c(τ) ≤ cmax and bad otherwise. The policy is then updated as,

π∗ = argmax
π

r + λKL(ρπ,G||ρB) (9)

where λ ∈ [0, 1] controls the tradeoff between the two objectives.

As an upper bound, we compare the performance of our algorithm to scenarios where the cost function
is known: PPO-Lagrangian (PPOLag) [3] and SIM with known costs (SIMKC) [16]. The objective
is not to surpass their performance, but to match it. Therefore, when reporting the results of these
algorithms, we present the best-performing seed across multiple runs.

All results presented use novelty-based sampling unless stated otherwise. We use a segment length of
1 in the Driver, Goal and Push environments. This is because the Safety Goal and Push environments
contain small obstacles that the agent interacts with for very brief periods of time, hence requiring
more fine-grained feedback. An example of this is present in Figure 11 in the Appendix. In the
Driver environments, a randomly initialized policy was highly unsafe. Thus a long segment length
would force the evaluator to label every segment unsafe, making cost inference infeasible. In the
remaining environments, the segment length corresponds to the length of the episode. Details on
the number of queries generated for feedback can be found in Table 4 in the Appendix. We grant the
two baseline methods (with unknown costs) an advantage by providing feedback for every trajectory
generated.

5.2 Cost Inference across various tasks

Benchmark Environments Table 1 presents the performance of the various algorithms on the
benchmark environments. RLSF significantly outperforms the two baselines in terms of reward and
safety in all of the environments 2. RLSF comes to within ≈ 80% of the performance of the best run
of PPOLag in 7/11 environments thereby underscoring its effectiveness in learning safe policies.

Driving Scenarios In the driving environments, we evaluate the performance of our algorithm
against two baseline methods: a naive PPO policy that solely maximizes reward and the PPO-Lag
algorithm. Figure 1 presents these results. Notably, our method demonstrates comparable safety

2except the Car Goal environment where RLSF and PPOLag marginally exceed the threshold
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Figure 2: Comparison of different sampling and scheduling schemes. Results are averaged over 3
independent seeds. The proposed sampling method generates on average ≈ 1950 queries, hence for
fair comparison the other methods were given a budget of 2000 queries.

performance to PPO-Lag while significantly outperforming PPO in terms of cost violations. This
highlights the effectiveness of our approach in learning safe autonomous driving policies. Video clips
showcasing the learned policies in the 3 scenarios are included in the supplementary material.

5.3 Cost Transfer

We also showcase the potential of using the inferred cost function to train an agent with a different
embodiment or morphology to solve the same task from scratch, without requiring any additional
feedback. We utilize the inferred cost function obtained during the training of a Point agent to
train the Doggo agent for the Circle and Goal tasks. The observation space in the environments
consists of agent-related telemetry (acceleration, velocity) and task-related information (lidar sensors
for goal/boundary/obstacle detection). In these experiments, we do not incorporate agent-related
information when learning the cost function, ensuring that it can be transferred to a new agent. Next,
the inferred cost function remains fixed during the training of the second agent, and the task-related
features are utilized for cost inference. We compare the performance of this approach with that of the
PPO-Lagrangian algorithm that utilizes the underlying cost function of the environment. From Table
2 we can infer that agents trained using transferred cost function are comparable in performance to
agents trained using the true underlying cost function.

Table 2: Comparison of PPOLag performance when trained with the underlying task cost function
versus the transferred cost function. Results are averaged over three independent seeds.

Source Env Target Env PPOLag with true cost PPOLag with transferred cost

Point Circle Doggo Circle Return 2.69± 0.24 2.00± 0.27
C.V Rate (%) 0.63± 0.09 0.18± 0.05

Point Goal Doggo Goal Return 1.45± 0.06 1.20± 0.26
Cost (40.0) 40.86± 4.80 37.31± 6.77

5.4 Effect of Novelty Sampling

Next, we demonstrate the effectiveness of the proposed novelty-based sampling mechanism by
comparing it with other popular querying methods from the literature [18, 20]. These methods
require a predefined budget for the number of trajectories presented to the evaluator. We evaluate two
schedules: (1) Uniform schedule, where a fixed number of trajectories is shown for feedback after
each round, and (2) Decreasing schedule, where the number of trajectories decreases in proportion
to 1

t each round. For each schedule, we test the following strategies for sampling the subset of
trajectories to be presented to the evaluator: (a) Random sampling, which selects a random subset
of trajectories, and (b) Entropy sampling, where trajectories are sampled in descending order of the
average entropy H(psafeθ (st, at)) of the estimator. As shown in Figure 2, entropy based sampling
outperforms random sampling, and a decreasing schedule outperforms a uniform schedule. However,
all the methods fall short compared the proposed novelty based sampling mechanism.
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5.5 Analyzing the Inferred Cost function

Figure 3: Comparing the inferred
cost to the true cost.

To further evaluate the quality of the inferred reward function,
we plot it alongside the true underlying cost function of the
environment as presented in Figure 3. In the Point Goal envi-
ronment, where feedback is collected for each state, the inferred
cost function closely aligns with the true cost given sufficient
data. However, in the Point Circle environment, where feedback
is collected at the trajectory level, the inferred cost function
exhibits a slight overestimation bias, as discussed in Section 4.2.
Nevertheless, from Figure 3, we can conclude that our method
learns cost functions that strongly correlate with the true costs.

5.6 Bias Correction

In Section 4.2, we established that when feedback is collected
over segments, the inferred cost function tends to exhibit an
overestimation bias. As a result, optimizing for a policy that
is deemed safe with respect to cmax using the inferred cost
function can lead to overly conservative policies. If the bias b,
could be calculated apriori, then adjusting the safety threshold
to cmax + b would still satisfy the safety guarantees outlined
in Corollary 1. However, since estimating b in advance is
infeasible, we propose a heuristic approach where a constant
δ ∈ R+ is added to cmax to account for the bias. It’s important
to note that Corollary 1 only holds if δ ≤ b, meaning this heuristic doesn’t guarantee that the resulting
policy will always be safe. Nevertheless, we tested this approach with different δ values in the Car
Circle environment, as this setting exhibited a higher overestimation bias (as reflected in Table 1).
The results, shown in Figure 4, demonstrate that adding this bonus does improve performance (with
higher δ values yielding better results), though it introduces the additional challenge of tuning δ.

6 Limitations, Future Work and Broader Impact

Figure 4: Increasing cmax by δ to
correct for the overestimation bias.

In this work, we consider the problem of learning cost func-
tions from feedback in scenarios where evaluating or defining
such functions is either costly or infeasible. We present a novel
framework which significantly reduces the burden on the eval-
uator by eliciting feedback over extended horizons, a challenge
that has not been addressed in previous research. To further
reduce their load, we propose a novelty-based sampling method
that only presents previously unseen trajectories to the evaluator.
Through experiments on multiple benchmark environments, we
demonstrate the effectiveness of our framework and the pro-
posed sampling algorithm in learning safe policies. However,
there are a few limitations we would like to acknowledge. First,
our method relies on state-level feedback in some environments,
which can be expensive to obtain. Second, while we simulate
feedback using the true cost function, real-world feedback is
often noisy, especially when provided by human evaluators. It
would be valuable to conduct experiments involving real human
subjects to validate the approach.

By enabling safer autonomous systems, our approach has the
potential to enhance safety across a range of applications, in-
cluding autonomous vehicles, drones used for delivery, and
industrial robots operating in environments like warehouses or
manufacturing plants. These improvements could significantly
reduce accidents, protect human operators, and increase the
overall reliability of automated systems.
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A Proofs

Proposition 1. The surrogate loss Lsur is an upper bound on the likelihood loss Lmle.

Proof. We have,

Lsur − Lmle = −E(τi:j ,ysafe)∼P (1− ysafe)

[
j∑

t=i

log (1− psafe(st, at))

− log (1−
j∏

t=i

psafe(st, at))

]

= E(τi:j ,ysafe)∼P (1− ysafe)

[
log

(
1−

∏j
t=i p

safe(st, at)∏j
t=i 1− psafe(st, at)

)]

Notice that the term,

log

(
1−

∏j
t=i p

safe(st, at)∏j
t=i 1− psafe(st, at)

)
≥ 0

This is because

1−
j∏

t=i

psafe(st, at) ≥
j∏

t=i

1− psafe(st, at)

which we prove subsequently.

Lemma 1. For any sequence of numbers {x1, . . . , xn}, where xi ∈ [0, 1] for all i ∈ 1, . . . , n we
have 1−

∏n
i=1 xi ≥

∏n
i=1(1− xi).

Proof. Using the AM-GM inequality we have,

n

√√√√ n∏
i=1

xi ≤
∑n

i=1 xi

n

1−
n∏

i=1

xi ≥ 1−
(∑n

i=1 xi

n

)n

≥ 1−
(∑n

i=1 xi

n

)
(10)

Similarly, we have,

n

√√√√ n∏
i=1

(1− xi) ≤
∑n

i=1(1− xi)

n

−
n∏

i=1

(1− xi) ≥ −
(∑n

i=1(1− xi)

n

)n

≥ −
(∑n

i=1(1− xi)

n

)
(11)

Adding Eq 10 and Eq 11, we get,

1−
n∏

i=1

xi −
n∏

i=1

(1− xi) ≥ 1−
(∑n

i=1 xi

n

)
−
(∑n

i=1(1− xi)

n

)

1−
n∏

i=1

xi −
n∏

i=1

(1− xi) ≥ 0

1−
n∏

i=1

xi ≥
n∏

i=1

(1− xi) (12)
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Proposition 2. The optimal solution to Eq 4 yields the estimate,

psafe∗ (s, a) =
dg(s, a)

dg(s, a) + db(s, a)

Proof. The proof is obtained by differentiating Eq 4 w.r.t psafe(s, a) and setting it to 0.

Proposition 3. For a fixed policy π, the bias in the estimation of the incurred costs is given by,

Eπ[c∗(s, a)]− Eπ[cgt(s, a)] = E(s,a)∼dπ
g
[I[db > dg]]

where ρπg (s, a) = Eπ[
∑T

t=0[I[(st, at) = (s, a) ∩ cgt(s, a) = 0]] is the occupancy measure of true
safe states visited by π.

Proof. The estimated cost function c∗(s, a) = I[psafe∗ (s, a) < 1
2 ], from Eq 5 we get psafe∗ (s, a) < 1

2
when db(s, a) > dg(s, a). Thus, c∗(s, a) = I[db(s, a) > dg(s, a)].

Eπ[c∗(s, a)− cgt(s, a)] = Eτ∼π

T∑
t=0

[c∗(st, at)− cgt(st, at)]

= Eτ∼π

T∑
t=0

∑
s,a

I[(st, at) = (s, a)][c∗(st, at)− cgt(st, at)]

= Eτ∼π

T∑
t=0

∑
s,a

[
I[(st, at) = (s, a) ∩ cgt(s, a) = 0]

[
c∗(st, at)− cgt(st, at)

]
+ I[(st, at) = (s, a) ∩ cgt(s, a) = 1]

[
c∗(st, at)− cgt(st, at)

]]
= Eτ∼πE(s,a)∼ρπ

g
[c∗(s, a)− 0] + E(s,a)∼ρπ

b
[c∗(s, a)− 1]

where ρπg (s, a) = Eτ∼π[
∑T

t=0[I[(st, at) = (s, a) ∩ cgt(s, a) = 0]] and ρπb (s, a) =

Eτ∼π[
∑T

t=0[I[(st, at) = (s, a) ∩ cgt(s, a) = 1]].

Note that when a state is unsafe, i.e, cgt(s, a) = 1, then, psafe∗ (s, a) = 0 as ng(s, a) = 0. Thus for
all of these states, c∗(s, a) = 1. Hence, we are left with,

Eπ[c∗(s, a)− cgt(s, a)] = E(s,a)∼ρπ
g
[c∗(s, a)]

= E(s,a)∼ρπ
g
[I[db > dg]]

Corollary 2. Any policy π that is safe w.r.t c∗ is guaranteed to be safe w.r.t cgt.

Proof. From Proposition 3, we know that Eπ[c∗(s, a)] − Eπ[cgt(s, a)] = E(s,a)∼ρπ
g
[I[db > dg]].

Since E(s,a)∼ρπ
g
[I[db > dg]] ≥ 0, we have Eπ[c∗(s, a)] ≥ Eπ[cgt(s, a)].

Thus, Eπ[c∗(s, a)] ≤ cmax =⇒ Eπ[cgt(s, a)] ≤ cmax.

B Environments

B.1 Benchmark environments:

Mujoco [30]-based environments extend traditional locomotion tasks by incorporating safety
constraints. These environments are categorized into two types: position-based and velocity-based
constraints. A detailed description of each is provided below:

1. Position Based: These environments, recently introduced as benchmarks in [22], are
explained in more detail below.
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(a) Blocked Swimmer: The agent controls a robot composed of three segments joined
at two points. The objective is to move the robot to the right as quickly as possible
by applying torque through rotors at the joints. The agent receives a reward at each
time step, proportional to its displacement in the X-direction. The episode concludes
after 1000 time steps. To increase the challenge, a cost is imposed when the agent’s
X-coordinate exceeds 0.5, constraining it to the region −∞ ≤ X < 0.5.

(b) Biased Pendulum: The agent’s goal is to balance a pole on a cart. Each episode ends
if the pole falls or after a maximum of 1000 time steps. The agent receives a reward
of 1 when its X-coordinate is within the range (−∞,−0.01], which monotonically
decreases to 0.1 as the X-coordinate approaches 0. Beyond this, the agent receives a
constant reward of 0.1, encouraging movement in the leftward direction. To prevent
excessive leftward movement, a cost of 1 is incurred when the X-coordinate is in the
region (−∞,−0.015], constraining the agent from moving too far left.

2. Velocity Based: These environments are part of the Safety Gymnasium benchmarks,
introducing a velocity constraint for the Half-Cheetah, Hopper, and Walker-2d agents. The
agent incurs a cost of 1 whenever it exceeds a velocity threshold of vmax/2, where vmax is
the maximum velocity achieved by the agent when trained with PPO for 1× 107 steps.

Safety Gymnasium [17] has emerged as a prominent benchmark for evaluating constrained re-
inforcement learning algorithms, providing a challenging framework for cost inference. The envi-
ronments feature multiple agents, including the Point, Car, and Doggo, listed in increasing order
of difficulty in controlling the agent. The objective is to complete specific tasks using one of these
agents.

In the Circle task, the agent must navigate around the boundary of a circle centered at the origin
while remaining within a safe region defined by two vertical boundaries at x = ±0.7. A cost of 1 is
incurred each time the agent exceeds this boundary (|x| ≥ 0.7).

In the Goal task, the agent must reach a designated goal area as quickly as possible while avoiding
both static and dynamic obstacles, incurring a cost of 1 for each collision.

The Push task builds upon the Goal task by adding the challenge of pushing a block to the goal area
while still avoiding collisions with obstacles in the environment.

B.2 Safe Driver

Driving-based environments are emerging as key benchmarks for addressing the problem of constraint
inference [22], particularly due to the complex safety considerations involved in driving. We evaluate
our algorithm using the Driver simulator introduced in [21, 24] to learn safe behaviors from feedback.
This environment encompasses two scenarios that a self-driving agent is likely to encounter on the
highway: a blocked road and a lane change. Additionally, we introduce a third scenario that involves
overtaking on a two-lane highway, where the agent must safely pass a slower car in its lane by
utilizing the second lane. This maneuver poses risks, as traffic in this lane is moving in the opposite
direction, necessitating careful execution. Below, we provide a brief description of the environment.

The Driver environment utilizes point-mass dynamics and features continuous state and action spaces.
The state of a vehicle in the simulation is represented by the tuple (x, y, ϕ, v), which includes the
agent’s position (x, y), heading ϕ and velocity v. The observation of the ego vehicle is formed by
concatenating the states of all vehicles in the scene. The environment allows for two actions (a1, a2)
where a1 represents the steering input a2 denotes the applied acceleration.

The state of the agents evolves as,

st+1 = (x+ δx, y + δy, ϕ+ δϕ, v + δv)

(δx, δy, δϕ, δv) = (v cosϕ, v sinϕ, a2 − αv)

where α is used to control the friction. Additionally, the velocity is clipped to the range [−1, 1] at
each timestep.

The task is to control the ego vehicle (white in Figure 5) to reach the top of the road as soon as
possible while adhering to costs on the velocity and proximity to other vehicles. The trajectories of
the other vehicles are fixed, with some random noise applied to their steering and acceleration inputs.
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SafeDriverBlocking SafeDriverTwoLanes SafeDriverLaneChange

Figure 5: Driver Environments

The agent receives a reward rt = 10(yt− yt−1) at each time step, incentivizing it to navigate through
traffic rapidly. Additionally, it incurs a penalty of −1 for going off the road, driving backward,
or failing to stay in the center of the lane. A collision results in a penalty of −100. The episode
terminates when the agent reaches the top of the road or collides with another vehicle. Although
these constraints can be integrated into the reward function, they can still lead to unsafe behaviors,
highlighting the necessity for an additional cost function. The PPO agent is trained using this reward
function.

In the CMDP settings, the cost function incorporates some of the constraints from the reward function.
For instance, the agent incurs a cost of 1 when it goes off the road or drives backward. Additional
costs are incurred when the agent crosses the speed limit vmax or gets too close to any nearby vehicles.
The ego car is deemed to close to a neighbouring vehicle if exp−b(c1d2x + c2d

2
y) + ba ≥ 0.4, where

a = 0.01, b = 30, c1 = 10, c2 = 2 and dx and dy represent the distance of the nearby vehicle from
the ego vehicle.

C Related Work

Constrained RL The Constrained Markov Decision Process (CMDP) framework [4] has emerged
as a valuable tool in safety-critical settings, offering a clear separation between task-related infor-
mation (rewards) and safety-related information (costs). This separation simplifies environment
specification and allows for easier transfer of cost functions across similar environments. While
previous research has extensively addressed this problem [1, 35, 34, 16], these studies typically
assume that the cost function is known. However, this assumption can be limiting when designing the
cost function is complex or costly to evaluate. Consequently, there is a need to infer the cost function
from external data in such cases.
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Cost Inference Historically, cost inference has primarily depended on two types of data: (1)
evaluator feedback and (2) constraint abiding demonstrations obtained from an expert.

Previous work on learning from feedback often relies on limiting assumptions such as deterministic
transitions and smoothness [28, 32, 11] or linearity assumptions [5] on the cost function. Moreover,
none of these approaches address the problem of actively querying humans to minimize the required
feedback. Although this has been theoretically explored in [8], the proposed algorithm has not
yet been adapted for complex environments. Additionally, these methods are typically limited to
feedback on individual state-action pairs, which can be expensive when relying on human evaluators.
Our RLSF approach addresses these limitations by reducing the amount of feedback required and
avoiding assumptions about the cost function.

Inferring cost functions from constraint-satisfying expert demonstrations has gained significant
attention recently [6, 33, 22]. However, acquiring such expert demonstrations can be challenging in
many scenarios. An alternative form of feedback is human interventions. For instance, [23] rely on
the human evaluator to terminate the episode when the agent is about to engage in unsafe behavior,
while [25] depend on the human to take control of the agent in such situations and guide it to a safe
state.

Novelty-Based Sampling Novelty estimation has been widely explored in the context of active
exploration in reinforcement learning. The connection between prediction accuracy and state novelty
has been extensively studied, as highlighted by [9]. Additionally, state density estimation has been
investigated in works such as [29, 7, 13], where infrequently visited states are assigned an exploration
bonus. Notably, [29] also uses Simhash [10] to maintain state density estimates.

Reward Inference This work also connects to the analogous problem of reward inference in
standard MDPs, which similarly rely on human feedback [12, 18, 20] and expert demonstrations
[15, 14].

D Experiments

D.1 Hyperparameters

We conducted the experiments on a cluster quipped with 4 NVIDIA RTX A5000 GPUs and 96 core
CPUs. The experiments took an approximate of two weeks to run. The detailed hyperparameters
utilized in the experiments are presented in Table 3. All results presented in both the main paper and
the appendix are based on three independent seeds, with the mean and standard error reported, unless
explicitly stated otherwise.

Table 3: Hyper Parameters

Hyper Parameter Point Circle Car Circle Biased Pendulum Blocked Swimmer Half Cheetah Hopper Walker 2d Point/Car Goal Point/Car Push Safe Driver

Actor hidden size [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [64]
(Value/Cost) Critic hidden size [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [256, 256, 256] [64]
Classifier Network [64,64] [64,64] [32] [32] [32] [32] [32] [64, 64] [64, 64] [64]
Gamma 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
lr (Actor/Critics/Classifier) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
lr Lagrangian 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
n_epochs (PPO/Critics) 160 160 160 160 160 160 160 160 160 160
n_epochs Classifier 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
Classifier batch size 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096
SimHash Embedding size (k) 11 13 64 16 15 15 15 16 16 24

D.2 Main Experiments

The training curves for the benchmark experiments and the Driver environment are presented in
Figure 7 and Figure 8. Additionally information on the number of queries presented for feedback is
presented in Table 4.

D.3 Novelty based Sampling

Figure 6 shows the implicit decreasing schedule encountered when using novelty based sampling in
various environments. Figure 9 shows additional comparison with other querying mechanisms in
the Biased Pendulum environment. To further assess the effectiveness of novelty based sampling,
we categorized the trajectories collected during a data collection round based on novelty. We then
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Figure 7: Training curves depicting the performance of different algorithms, based on six independent
seeds. The curves show the mean returns, with shaded regions representing the standard error. Parallel
lines indicate the best-performing run.
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Table 4: Number of trajectories presented to the evaluator for feedback

Nature of Costs Environment Number of Trajectories shown Episode Length Segment Length (k)

Position

Point Circle 889.66± 185.27 500 500
Car Circle 1063± 73.48 500 500

Biased Pendulum 3939.33± 231.89 1000 1000
Blocked Swimmer 646.83± 127.56 1000 1000

Velocity
HalfCheetah 4112.83± 134.26 1000 1000

Hopper 1924.99± 92.59 1000 1000
Walker2d 4170.33± 174.83 1000 1000

Obstacles

Point Goal 7892± 178.15 1000 1
Car Goal 3866.5± 80.83 1000 1

Point Push 6409.33± 77.46 1000 1
Car Push 3368.33± 176.36 1000 1

Driving
Blocking 6242.3± 778.13 100 1

Two Lanes 2912.37± 443.31 100 1
Lane Change 3510.82± 644.28 100 1

Figure 8: Performance of algorithms in different driving scenarios. Each algorithm is run for
6 independent seeds, curves represent the mean and shaded regions represent the standard error.
Normalized return is given by the formula r = r−rPPO

r−rrandom
where rPPO is the return of PPO and rrandom

is the return of a random policy.
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Figure 9: Comparison of different sampling and scheduling schemes. The results are averaged over 3
independent seeds. The proposed sampling method generates on average 3600 queries, hence for fair
comparison the other methods were given a budget of 4000 queries.

Figure 10: Model prediction accuracy (mean ± standard error) in the surrogate task (averaged over
3 seeds) with trajectory level feedback. Predictions are made on the next 50k steps following 250k
training steps.

evaluated the model’s accuracy on the pseudo-prediction task for these two trajectory types, as
shown in Figure 10. This analysis indicates that the model’s accuracy is lower for novel trajectories,
corroborating the claims made in Section 4.3.

D.4 Number of Queries generated
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Figure 6: Implicit decreasing schedule
observed when following novelty based
sampling across different environments.
The results are averaged over 6 indepen-
dent seeds.

The number of trajectories queried for feedback is of the
order of O(1e3), the exact number differs across environ-
ments and individual runs due to novelty based sampling.
Detailed information on the number of queries can be
found in Table 4. We provide the two baseline methods
with an advantage, whereby feedback is obtained for every
trajectory generated by the policy, which is of the order
O(1e4).

D.5 Complexity of Constraint Inference

Figure 11 highlights the difficulty of inferring constraints
when cost violations are sparse. The brief interaction peri-
ods with obstacles in the environment make it challenging
to assign credit to unsafe states when feedback is collected
over long horizons. Consequently, feedback was collected
at the state level in such settings. This is illustrated in
Figure 12, where the overestimation bias is considerably
higher in the Point Goal environment compared to Point Circle, resulting in a significant drop in
performance.
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Figure 11: Costs incurred by a policy after 500K and 20M training interactions over a randomly
sampled trajectory in the Point Goal environment.

D.6 Ablation on the size of the feedback buffer

We conducted an ablation study on the size of the feedback buffer, the results of which are presented
in Figure 13. We can observe that the policy becomes overly conservative when the size of the
feedback buffer is small (100k, which corresponds to approximately two data collection rounds). We
hypothesize that this is because of two interacting factors: (a) discarding past feedback can result
in forgetting, which in turn leads to inaccuracies in estimating unsafe regions, and (b) there exists a
feedback loop in which the inferred cost function influences on-policy data collection. If the inferred
cost function overestimates costs in certain regions, the policy will avoid them and fail to gather the
necessary feedback to correct this error. Conversely, if the costs are underestimated, the policy will
visit those states and receive feedback, allowing for corrections. Therefore, smaller feedback buffer
sizes can result in the learning of overly conservative policies.

D.7 Need for the surrogate loss

In Section 4.2, we highlighted the challenges associated with minimizing Eq 3 particularly due
to the term

∏j
t=i p

safe(st, at) which tends to collapse to 0 with longer segment lengths, resulting
in unstable gradients. To investigate this further, we conducted a simple experiment in which we
performed a few gradient steps to optimize Eq 3 and plotted the gradient norm. The results, shown
in Figure 14 reveal that (a) directly optimizing Eq 3 produces gradients with a large norm that
either quickly vanish or explode, rendering the learning process infeasible. In contrast, the surrogate
objective in Eq 4 yields stable gradients allowing for convergence.
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Figure 12: Ablation on the segment length for feedback elicitation.
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Figure 13: Impact of the size of the feedback buffer on performance.

Figure 14: Norm of the gradient when optimising the MLE loss v/s the proposed surrogate loss with
trajectory level feedback.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are backed by theoretical
and empirical results shown in Section 4.2 and 5 respectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed approach are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the assumptions are discussed in Sections 3 and 4 and the complete proof
can be found in the Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Apart from the Safety Gymansium environments that are publicly available,
all other environments are described in detail so that they can be reproduced from scratch.
The hyper parameters used to train the proposed approach are given in Appendix D.1 to
ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the environments used are described in Section B. The code (with instruc-
tions on how to run) is publicly available: https://github.com/shshnkreddy/RLSF

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters used to run our propsed approach is present in Section
D.1 in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results presented in the paper are averaged over multiple seeds and are
presented with the standard error.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the compute and time taken to produce the results is available in
Section D.1 in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The presented research is compliant with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The social impacts of our work is discussed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work presented in this paper has no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The README file present in the code credits the authors, and the license and
terms of use of has been properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The Safety Driver environments are described in Section B in the Appendix
and instructions to run them are present in the README file included with the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not conduct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not conduct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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