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Abstract

Natural language processing for sign language001
video—including tasks like recognition, trans-002
lation, and search—is crucial for making ar-003
tificial intelligence technologies accessible to004
deaf individuals, and is gaining research inter-005
est in recent years. In this paper, we address006
the problem of searching for fingerspelled key-007
words or key phrases in raw sign language008
videos. This is an important task since signifi-009
cant content in sign language is often conveyed010
via fingerspelling, and to our knowledge the011
task has not been studied before. We propose012
an end-to-end model for this task, FSS-Net,013
that jointly detects fingerspelling and matches014
it to a text sequence. Our experiments, done015
on a large public dataset of ASL fingerspelling016
in the wild, show the importance of finger-017
spelling detection as a component of a search018
and retrieval model. Our model significantly019
outperforms baseline methods adapted from020
prior work on related tasks.021

1 Introduction022

Sign languages are a type of natural language023

which convey meaning through sequences of hand-024

shapes and gestures as well as non-manual ele-025

ments, and are a chief means of communication026

for about 70 million deaf people worldwide1 Au-027

tomatic sign language technologies would help to028

bridge the communication barrier between deaf and029

hearing individuals, and would make deaf video030

media more searchable and indexable.031

Automatic sign language processing has recently032

received growing interest in the computer vision033

(CV) and natural language processing (NLP) com-034

munities. Yin et al. (2021) make several recom-035

mendations for the study of sign languages in NLP036

research, including greater emphasis on real-world037

data. Most studies on sign language are based on038

data collected in a controlled environment, either039

1From https://wfdeaf.org/our-work/

in a studio setting (Martínez et al., 2002; Kim 040

et al., 2017) or in a specific domain (Forster et al., 041

2016). The challenges involved in real-world sign- 042

ing videos, including various visual conditions and 043

different levels of fluency in signing, are not fully 044

reflected in such datasets. Automatic processing 045

of sign language videos "in the wild" has not been 046

addressed until recently, and is still restricted to 047

tasks like isolated sign recognition (Albanie et al., 048

2020; Joze and Koller, 2019; Li et al., 2020) and 049

fingerspelling recognition (Shi et al., 2018, 2019). 050

In this work we take a step further and study search 051

and retrieval of arbitrary fingerspelled content in 052

real-world American Sign Language (ASL) video 053

(see Figure 1). 054

Fingerspelling is a component of sign language 055

in which words are signed by a series of handshapes 056

or movements corresponding to single letters (see 057

the Appendix for the ASL fingerspelling alphabet). 058

Fingerspelling is used mainly for lexical items that 059

do not have their own signs, such as proper nouns or 060

technical terms, and has an important place in sign 061

language. For example, fingerspelling accounts 062

for 12-35% of ASL (Padden and Gunsauls, 2003) 063

Since important content like named entities is of- 064

ten fingerspelled, the fingerspelled portions of a 065

sign language video often carry a disproportionate 066

amount of the content. 067

Most prior work on fingerspelling has focused 068

on recognition (Shi et al., 2018, 2019), that is, tran- 069

scription of a fingerspelling video clip into text. 070

However, automatic recognition assumes that the 071

boundaries of fingerspelled segments are known at 072

test time, and may not be the end goal in real-world 073

use cases. In addition, complete transcription may 074

not be necessary to extract the needed information. 075

Fingerspelling search, such as retrieving sign lan- 076

guage videos based on a query word, is often a 077

more useful task, and is an important component 078

of general video search involving sign language. 079

In addition to introducing the task, we address 080
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the research question of whether the explicit tem-081

poral localization of fingerspelling can help its082

search and retrieval, and how best to localize it.083

As fingerspelling occurs sparsely in the signing084

stream, explicit detection of fingerspelling could085

potentially improve search performance by remov-086

ing unrelated signs. To this end, we propose an087

end-to-end model, FSS-Net, which jointly detects088

fingerspelling from unconstrained signing video089

and matches it to text queries. Our approach con-090

sistently outperforms a series of baselines without091

explicit detection and a baseline with an off-the-092

shelf fingerspelling detector by a large margin.
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Figure 1: Our two search tasks: (a) fingerspelled
word search (FWS) for determining which words are
fingerspelled in a sign language video clip, and (b)
fingerspelling video search (FVS) for searching for
sign language videos that include a fingerspelled query
word/phrase. The sign language videos are untrimmed,
i.e. they include regular signs in addition to finger-
spelling, and are downsampled for visualization.093

2 Related Work094

In existing work on sign language video process-095

ing, search and retrieval tasks have been studied096

much less than sign language recognition (mapping097

from sign language video to gloss labels) (Koller098

et al., 2017; Forster et al., 2016), translation (map-099

ping from sign language video to text in another100

language) (Yin and Read, 2020; Camgöz et al.,101

2018). Work thus far on sign language search102

has been framed mainly as the retrieval of lexi-103

cal signs rather than fingerspelling. Pfister et al.104

(2013); Albanie et al. (2020) employ mouthing to105

detect keywords in sign-interpreted TV programs106

with coarsely aligned subtitles. Tamer and Saraçlar107

(2020a,b) utilize whole-body pose estimation to 108

search for sign language keywords (gloss or trans- 109

lated word) in a German Sign Language translation 110

dataset PHOENIX-2014T (Camgöz et al., 2018). 111

All prior work on keyword search for sign language 112

has been done in a closed-vocabulary setting, which 113

assumes that only words from a pre-determined set 114

will be queried. Searching in an open-vocabulary 115

setting, including proper nouns, typically requires 116

searching for fingerspelling. 117

Some related tasks in the speech processing liter- 118

ature are spoken term detection (STD) and query- 119

by-example search, which are the tasks of automat- 120

ically retrieving speech segments from a database 121

that match a given text or audio query (Knill et al., 122

2013; Mamou et al., 2007; Chen et al., 2015). In 123

terms of methodology, our model also shares some 124

aspects with prior work on moment retrieval (Gao 125

et al., 2017; Xu et al., 2019; Zhang et al., 2020), 126

which also combines candidate generation and 127

matching components. However, we incorporate 128

additional task-specific elements that consistently 129

improve performance. 130

3 Tasks 131

We consider two tasks: Fingerspelled Word Search 132

(FWS) and Fingerspelling-based Video Search 133

(FVS). FWS and FVS respectively consist of de- 134

tecting fingerspelled words within a given raw ASL 135

video stream and detecting video clips of inter- 136

est containing a given fingerspelled word.2 Given 137

a query video clip v and a list of n words w1:n, 138

FWS is the task of finding which (if any) of w1:n 139

are present in v. Conversely, in FVS the input 140

is a query word w and n video clips v1:n, and 141

the task consists of finding all videos containing 142

the fingerspelled word w. We consider an open- 143

vocabulary setting where the word w is not con- 144

strained to a pre-determined set. The two tasks cor- 145

respond to two directions of search (video−→text 146

and text−→video), as is standard practice in other 147

retrieval work such as video-text search (Zhang 148

et al., 2018; Ranjay et al., 2017; Ging et al., 2020). 149

4 Model 150

We propose a single model, FSS-Net (for "Finger- 151

Spelling Search Network"), summarized in Fig- 152

ure 2, to address the two aforementioned search 153

tasks. FSS-Net receives a pair of inputs—a raw 154

2We use "word" to refer to a fingerspelling sequence,
which could be a single word or a phrase.
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ASL video clip, and a written text sequence—and155

produces a score indicating the degree of match156

between the video clip and the text. The text is157

encoded into an embedding vector via a learned158

encoder. The visual branch of FSS-Net generates159

a number of fingerspelling segment proposals and160

each proposed visual segment is encoded into a fea-161

ture space shared with the text embeddings. Paired162

embeddings from both modalities are drawn to-163

wards each other in the shared embedding space164

during training.165

Image encoding The input image frames are en-166

coded into a sequence of feature vectors via an167

image encoder, which consists of the VGG-19 (Si-168

monyan and Zisserman, 2015a) convolutional lay-169

ers followed by a Bi-LSTM.3 We use raw RGB170

images as input, instead of signer pose as used in171

some prior work (Tamer and Saraçlar, 2020b,a) on172

sign language search, as estimating pose for hands173

is particularly hard for signing videos in the wild174

(see Section 6 for details).175

Temporal proposal generation Suppose the176

visual feature sequence is f1:T , where T is the177

number of frames in the video clip. The pur-178

pose of temporal proposal generation is to pro-179

duce a number of candidate fingerspelling seg-180

mentsH(I1:T ) = {(si, ti)}1≤i≤|H(I1:T )| from f1:T ,181

where si,ti are the start and end frame indices of182

the ith proposed segment. Below we use H as a183

shorthand ofH(I1:T ). Here we adopt the strategy184

in (Xu et al., 2017), which is commonly used to185

generate proposals for action detection. Briefly, the186

model assigns a probability pdet of each proposal187

being fingerspelling. See (Xu et al., 2017) for more188

details. We denote the detection loss as Ldet.189

Note that the training requires known ground-190

truth fingerspelling boundaries. In the finger-191

spelling datasets we use here (Shi et al., 2018,192

2019), the fingerspelling boundaries are already193

annotated, so no further annotation is needed.194

Filtering A visual embedding is produced for195

each segment. We denote a labeled fingerspelling196

segment (shortened as fingerspelling segment be-197

low) as a tuple (s, t, w), where s, t and w repre-198

sent the start frame index, the end frame index,199

and the written text it represents. A naive ap-200

proach would be to use only the ground-truth finger-201

spelling segments Pg = {(si, ti, wi)}1≤i≤|Pg | for202

training. However, this approach does not take into203

3Transformers (Vaswani et al., 2017) can also be used,
but in our initial experiments, they were outperformed by
Bi-LSTMs on our tasks and data.

account the potential shifts (errors) that may exist 204

at test time between the ground-truth and generated 205

segment proposals. The embeddings produced by 206

the fingerspelling encoder should be robust to such 207

shifts. To this end, we incorporate proposals in 208

forming positive pairs at training time. Formally, 209

let the set of time intervals from the temporal pro- 210

posal generator beH = {(si, ti)}1≤i≤|H|. We sam- 211

pleK intervals fromPt to form the set of generated 212

fingerspelling segments: 213

Pk ={(sk, tk, wg)|IoU((sk, tk), (sg, tg)) > δIoU ,

IS((st, tk), (sg, tg)) > δIS ,

(sk, tk) ∈ H, (sg, tg, wg) ∈ Pg}
(1)

214

where IS(x, y) = Intersection(x,y)
Length(y) and IoU(x, y) = 215

Intersection(x,y)
Union(x,y) . We use δkIoU and δkIS to control the 216

degree to which the proposals can deviate from the 217

ground-truth. In addition to the intersection over 218

union (IoU), we use the normalized intersection IS 219

to eliminate proposals with many missing frames. 220

We take the union of the two sets, P+ = Pg ∪ Pk, 221

as the filtered proposal set to be encoded. 222

Fingerspelling visual encoding (FS-encoding) 223

The visual encoding of each segment (s, t, w) ∈ 224

P+ is e(s,t)v = BiLSTM(fs:t).4 225

Text encoding A written word (or phrase) w is 226

mapped to an embedding vector ewx via a text en- 227

coder. To handle words not seen at training time 228

(and better handle rarely seen words), we first de- 229

compose w into a sequence of characters c1:|w| (e.g. 230

‘ASL’=‘A’-‘S’-‘L’) and feed the character sequence 231

c1:|w| into a text encoder (here, a Bi-LSTM5). 232

Visual-text matching With the above pairs of 233

visual and textual embeddings, we use a training 234

objective function consisting of two triplet loss 235

terms: 236

Ltri(I1:T ,P+) =∑
(s,t,w)∈P+

max{m+ d(e(s,t)v , ewx )

− 1

|Nw|
∑

w′∈Nw

d(e(s,t)v , ew
′

x ), 0}

+max{m+ d(e(s,t)v , ewx )

− 1

|Nv|
∑

(s′,t′)∈Nv

d(e(s
′,t′)

v , ewx ), 0}

(2) 237

4We compared the Bi-LSTM encoder with average/max
pooling of fs:t, and found the former to perform better.

5Again, transformers can also be used, but in our experi-
ments Bi-LSTM show better performance.
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Figure 2: FSS-Net: The proposed model for fingerspelling search and retrieval. The model maps candidate
fingerspelling segments and text into a shared embedding space. ◦: text embedding,2: visual embedding. The
colors correspond to different input fingerspelling sequences. As pictured, this is the training time model, where
the pairing between text and video segments is known. At test time, the labels (colors) of the visual embeddings
are unknown and we do not filter the proposals.

where d denotes cosine distance d(a,b) = 1 −238
a·b
‖a‖‖b‖ , m is a margin, and Nv and Nw are sets239

of negative samples of proposals and words. To240

form negative pairs we use semi-hard negative sam-241

pling (Schroff et al., 2015):242

Nv = {(s′, t′)|d(e(s
′,t′)

v , ewx ) > d(e(s,t)v , ewx )}

Nw = {w′|d(e(s,t)v , ew
′

x ) > d(e(s,t)v , ewx )}
(3)

243

For efficiency, negative samples are selected from244

the corresponding mini-batch.245

Overall loss The model is trained with a combi-246

nation of the detection loss and triplet loss:247

Ltot(I1:T ,Pg) = λdetLdet(I1:T ,Pg) + Ltri(I1:T ,P+)
(4)248

with the tuned weight λdet controlling the rela-249

tive importance of detection versus visual-textual250

matching.251

Inference At test time, the model assigns a score252

sc(I1:T , w) to a given video clip I1:T and word253

w. The word is encoded into the word embedding254

ewx . Suppose the set of fingerspelling proposals255

generated by the temporal proposal generator is256

H(I1:T ). We define a scoring function for the pro-257

posal h ∈ H(I1:T ) and word w258

scword(hm, w) = pdet(1− d(ehmv , ewx ))
β (5)259

where pdet is the probability given by the tempo-260

ral proposal generator and β controls the relative261

weight between detection and matching. In other262

words, in order for a segment and word to receive 263

a high score, the segment should be likely to be fin- 264

gerspelling (according to pdet) and its embedding 265

should match the text. Finally, the score for the 266

video clip I1:T and the word w is defined as the 267

highest score among the set of proposalsH(I1:T ): 268

sc(I1:T , w) = max
h∈H(I1:T )

scword(h,w) (6) 269

5 Experimental Setup 270

5.1 Data 271

We conduct experiments on ChicagoFSWild (Shi 272

et al., 2018) and ChicagoFSWild+ (Shi et al., 2019), 273

two large-scale publicly available fingerspelling 274

datasets which contain 7,304 and 55,272 finger- 275

spelling sequences respectively. The ASL videos 276

in the two datasets are collected from online re- 277

sources and include a variety of viewpoints and 278

styles, such as webcam videos and lectures. 279

We follow the setup of (Shi et al., 2021) and split 280

the raw ASL videos into 300-frame clips with a 75- 281

frame overlap between neighboring chunks and 282

remove clips without fingerspelling. The numbers 283

of clips in the various splits can be found in the 284

Appendix. On average, each clip contains 1.9/1.8 285

fingerspelling segments in the ChicagoFSWild and 286

ChicagoFSWild+ respectively. 287

5.2 Baselines 288

We compare the proposed model, FSS-Net, to 289

the following baselines adapted from common ap- 290

proaches for search and retrieval in related fields. 291
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To facilitate comparison, the network architecture292

for the visual and text encoding in all baselines is293

the same as in FSS-Net.294

Recognizer In this approach, we train a rec-295

ognizer that transcribes the video clip into text.296

Specifically, we train a recognizer to output a297

sequence of symbols consisting of either finger-298

spelled letters or a special non-fingerspelling sym-299

bol <x>. We train the recognizer is trained300

with a connectionist temporal classification (CTC)301

loss (Graves et al., 2006), which is commonly used302

for speech recognition. need to say what the struc-303

ture of the recognizer model is At test time, we use304

beam search to generate a list of hypotheses ŵ1:M305

for the target video clip I1:T . Each hypothesis ŵm306

is split into a list of words {ŵnm}1≤n≤N separated307

by <x>. The matching score between video I1:T308

and w is defined as:309

sc(I1:T , w) = 1− min
1≤m≤M

min
1≤n≤N

LER(ŵnm, w)

(7)310

where the letter error rate LER is the Leven-311

shtein edit distance. This approach is adapted312

from (Saraçlar and Sproat, 2004) for spoken ut-313

terance retrieval. Fingerspelling boundary informa-314

tion is not used in training this baseline model.315

Whole-clip The whole-clip baseline encodes the316

whole video clip I1:T into a visual embedding eIv,317

which is matched to the textual embedding ewx of318

the query w. The model is trained with contrastive319

loss as in equation 2. At test time, the score for320

video clip I1:T and word w is:321

sc(I1:T ,w) = 1− d(eIv, ewx ) (8)322

where d is the cosine distance as in FSS-Net. Fin-323

gerspelling boundary information is again not used324

in this baseline.325

External detector (Ext-det) This baseline uses326

the off-the-shelf fingerspelling detectors (Shi et al.,327

2021) to generate fingerspelling proposals, instead328

of our proposal generator, and is otherwise identical329

to FSS-Net. For each dataset (ChicagoFSWild,330

ChicagoFSWild+), we use the detector trained on331

the training subset of that dataset.332

Attention-based keyword search (Attn-kws)333

This model is adapted from (Tamer and Saraçlar,334

2020b)’s approach for keyword search in sign lan-335

guage. The model employs an attention mecha-336

nism to match a text query with a video clip, where337

each frame is weighted based on the query embed-338

ding. The attention mechanism enables the model339

to implicitly localize frames relevant to the text. 340

The model of (Tamer and Saraçlar, 2020b) is de- 341

signed for lexical signs rather than fingerspelling. 342

To adapt the model to our open-vocabulary finger- 343

spelling setting, we use the same text encoder as 344

in FSS-Net to map words into embeddings instead 345

of using a word embedding matrix as in (Tamer 346

and Saraçlar, 2020b). Fingerspelling boundary in- 347

formation is again not used in training this model, 348

which arguably puts it at a disadvantage compared 349

to FSS-Net. More details on the formulation of the 350

model can be found in the Appendix. 351

5.3 Evaluation 352

For FWS, we use all words in the test set as the test 353

vocabularyw1:n. For FVS, all video clips in the test 354

are used as candidates and the text queries are again 355

the entire test vocabulary. We report the results in 356

terms of standard metrics from the video-text re- 357

trieval literature (Momeni et al., 2020; Tamer and 358

Saraçlar, 2020a): mean Average Precision (mAP) 359

and mean F1 score (mF1), where the averages are 360

over words for FVS and over videos for FWS. Ad- 361

ditional details on data, preprocessing and model 362

implementation can be found in the appendix. 363

6 Results and analysis 364

6.1 Main Results 365

Table 1: FWS/FVS performance on the ChicagoF-
SWild and ChicagoFSWild+ test sets.The range of
mAP and mF1 is [0, 1].

FWS (Video =⇒ Text) FVS (Text =⇒ Video)

ChicagoFSWild

Method mAP mF1 mAP mF1

Whole-clip .175 .154 .142 .119
Attn-KWS .204 .181 .246 .229
Recognizer .318 .315 .331 .305
Ext-detector .383 .385 .332 .312
FSS-Net .434 .439 .394 .370

ChicagoFSWild+

Method mAP mF1 mAP mF1

Whole-clip .466 .457 .548 .526
Attn-KWS .545 .530 .573 .547
Recognizer .465 .462 .398 .405
Ext-detector .633 .641 .593 .577
FSS-Net .674 .677 .638 .631

Table 1 shows the performance of the above ap- 366

proaches on the two datasets. First, we notice that 367

embedding-based approaches consistently outper- 368

form the word-list baseline in the larger data setting 369

(ChicagoFSWild+) but not the smaller data setting 370
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(ChicagoFSWild), which suggests that embedding-371

based models generally require more training data.372

The inferior performance of word-list also shows373

that explicit fingerspelling recognition is not neces-374

sary for the search tasks. In addition, explicit fin-375

gerspelling detection (Ext-det, FSS-Net) improves376

performance over implicit fingerspelling detection377

(attn-KWS) and detection-free search (whole-clip).378

Explicit fingerspelling detection requires boundary379

information during training. Of the models that380

don’t use such supervision, Attn-KWS is the best381

performer given enough data, but is still far be-382

hind FSS-Net. Our model outperforms all of the383

alternatives. The relative performance of differ-384

ent models is consistent across the various metrics385

and the two search tasks. For completeness, we386

also measure the performance of different mod-387

els in terms of ranking-based metrics (e.g., Preci-388

sion@N, Recall@N), as in prior work on video-text389

retrieval (Ging et al., 2020; Ranjay et al., 2017) (see390

full results in the Appendix). The relative perfor-391

mance of different models is consistent on different392

metrics. The analysis below is done on ChicagoF-393

SWild for simplicity. The conclusions also hold for394

ChicagoFSWild+ .395

6.2 Model analysis396

Does better localization lead to better search?397

In the previous section we have seen that models398

that explicitly detect and localize fingerspelling399

outperform ones that do not. Next we look more400

closely at how well several models—Ext-det, Attn-401

KWS and FSS-Net—perform on the task of lo-402

calizing fingerspelling, which is a byproduct of403

these models’ output. We measure performance via404

AP@IoU, a commonly used evaluation metric for405

action detection (Idrees et al., 2016; Heilbron et al.,406

2015) that has also been used for fingerspelling407

detection (Shi et al., 2021). AP@IoU measures the408

average precision of a detector under the constraint409

that the overlap of its predicted segments with the410

ground truth is above some threshold Intersection-411

over-Union (IoU) value. For attn-KWS, the model412

outputs an attention vector, which we convert to413

segments as in (Shi et al., 2021).414

In general, the models with more accurate local-415

ization also have higher search and retrieval perfor-416

mance, as seen by comparing Table 2 with Table 1.417

However, differences in AP@IoU do not directly418

translate to differences in search performance. For419

example, the AP@IoU of ext-detector (0.344) is an420

Table 2: Fingerspelling localization performance for
detection-based models.

AP@0.1 AP@0.3 AP@0.5

Attn KWS 0.268 0.104 0.035
Ext detector 0.495 0.453 0.344

Ours 0.568 0.519 0.414

order of magnitude higher than that of attn-KWS 421

(0.035) while their FVS mAP results are much 422

closer (0.593 vs. 0.573). 423

Raw images vs. estimated pose as input Prior 424

work on sign language search (Tamer and Saraçlar, 425

2020a,b) has used estimate pose keypoints as input, 426

rathan than raw images as we do here. For com- 427

parison, we extract body and hand keypoints with 428

OpenPose (Cao et al., 2019) and train a model with 429

the pose skeleton as input. 430

Table 3: Impact of input type (pose vs. raw RGB im-
ages) on search performance.

FWS (Video =⇒ Text) FVS (Text =⇒ Video)

Input mAP mF1 mAP mF1

Pose .142 .147 .127 .121
RGB .434 .439 .394 .370

As is shown in Table 3, the pose-based model 431

has much poorer search performance than the RGB 432

image-based models. We believe this is largely be- 433

cause, while pose estimation works well for large 434

motions and clean visual conditions, in our dataset 435

much of the handshape information is lost in the 436

estimated pose (see the Appendix for some qualita- 437

tive examples). 438

6.3 Ablation Study 439

Table 4: Effect of various components of FSS-Net on
FWS and FVS.

FWS FVS

mAP mF1 mAP mF1

Full model .434 .439 .394 .370

(1) w/o generator .186 .180 .259 .270
(2) λdet = 0, β = 0 .411 .420 .373 .350
(3) λdet = 0.1, β = 0 .418 .432 .360 .348
(4) w/o Pk .411 .420 .386 .366

Within our model, the proposal generator pro- 440

duces a subset of all possible fingerspelling pro- 441

posals, intended to represent the most likely fin- 442
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Figure 3: Examples of FWS predictions. For each example video, the ground truth (GT) is shown along with
the top 5 predicted fingerspelling sequences. Top red line: ground-truth fingerspelling segment. Bottom blue line:
highest-scoring predicted fingerspelling segment. Segment locations are shown here for qualitative analysis, but
they are not part of the task evaluation. Note that many fingerspelling sequences (both ground-truth and predictions)
are abbreviations, and some are misspelled; we include all fingerspelling sequences that appear in the test set in
the query vocabulary.

Successful retrieval

GT: LITERACYS TO↔ Pred: LITERACYS TO, LITERACY, DISTRACT, ILOW, LIST

GT: ASL↔ Pred: ASL, ALL, ASLIED, ALLAH, HOME

GT: US↔ Pred: US, USA, CAMUS, LS, SUCH AS

Failure cases

GT: BACK↔ Pred: BA, AEBSP, BAK, AS, AT BTH BEACH

GT: JETS↔ Pred: IT, OF, OFF, IE, IX

GT: TXPU↔ Pred: FISH, F EST, RG, GER, TOSS

gerspelling segments. To measure whether this443

component is important to the performance of the444

model, we compare our full model with the pro-445

posal generator to one where the proposal generator446

is removed (see Table 4). When the proposal gen-447

erator is not used, the model is trained only with448

ground-truth fingerspelling segments (PG) and con-449

siders all possible proposals within a set of sliding450

windows. Such a "sliding-window" approach is451

commonly used in previous sign language keyword452

search (Albanie et al., 2020; Pfister et al., 2013) and453

spoken keyword spotting (Chen et al., 2015). As454

can be seen from Table 4 (top), the proposal gener-455

ator greatly improves search performance. This is456

not surprising, since the proposal generator greatly457

reduces the number of non-fingerspelling segments,458

thus lowering the chance of a mismatch between459

the text and video, and also refines the segment460

boundaries through regression, which should im-461

prove the quality of the visual segment encoding.462

The fingerspelling detection component of our463

model has two aspects that may affect performance:464

imposing an additional loss during training, and 465

rescoring during inference. We disentangle these 466

two factors and show their respective benefits for 467

our model in Table 4 (middle). The auxiliary detec- 468

tion task, which includes classification between fin- 469

gerspelling and non-fingerspelling proposals, helps 470

encode more comprehensive visual information 471

into the visual embedding. In addition, the pro- 472

posal probability output by the detector contains 473

extra information and merging it into the matching 474

score further improves the search performance. 475

Table 4 (bottom) shows the effect of sampling 476

additional proposals (Pg) in fingerspelling detec- 477

tion. Additional positive samples makes the visual 478

embedding more robust to temporal shifts in the 479

generated proposals, thus improving search perfor- 480

mance. 481

6.4 Result analysis 482

The performance of our model is worse for short 483

fingerspelled sequences than for long sequences 484

(see Figure 4). may be because shorter words are 485

7



harder to spot, as is shown from the trend in finger-486

spelling detection in the same figure.487

Figure 4: Performance as a function of fingerspelled
word length. Red: FVS mAP, Blue: detection AP.
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The datasets we use are collected from multiple488

sources, where the video quality varies. To quantify489

the effect of visual quality on search/retrieval per-490

formance, we categorize the ASL videos into three491

categories according to their source: YouTube,492

DeafVIDEO, and other miscellaneous sources493

(misc). YouTube videos are mostly ASL lec-494

tures of high resolution. DeafVIDEO videos are495

vlogs from deaf users of the social media site496

deafvideo.tv, where the style, camera angle,497

and image quality vary greatly. The visual qual-498

ity of videos in the miscellaneous category tends499

to fall between the other two categories. Typical500

image examples from the three categories can be501

found in the Appendix. The FWS performance of502

our model on videos in YouTube, DeafVIDEO, and503

misc are 0.684, 0.584, 0.629 (mAP) respectively.504

The results are overall consistent with the perceived505

relative visual qualities of these categories.506

As a qualitative analysis, we examine exam-507

ple words and videos on which our model is508

more or less successful. Table 5 shows the query509

words/phrases with the highest/lowest FVS perfor-510

mance, where the best-performing queries tend to511

be long and drawn from the highest-quality video512

source.513

We also visualize the top FWS predictions made514

by our model in several video clips (see Appendix).515

As expected, we see more errors on DeafVIDEO516

clips. Another common source of error is confusion517

between letters with similar handshapes (e.g., "i" vs.518

"j"). A final failure type is fingerspelling detection519

failure.520

7 Conclusion521

Our work takes one step toward better addressing522

the need for language technologies for sign lan-523

guages, by defining fingerspelling search tasks and524

Table 5: Example words with low/high mAP in FVS.
Insde () is the source of the corresponding video

Low High

script (youtube)
agent (misc)
kc (youtube)

pati (deafvideo)
mexer (deafvideo)

flow (youtube)
yr (deafvideo)
exalted (misc)

poem (youtube)

cabol erting (youtube)
vp ron stern (youtube)

co chairs (youtube)
dr kristin mulrooney (youtube)

myles (youtube)
camaspace (youtube)
electronics (youtube)

brain (youtube)
land (deafvideo)

developing a model tailored for these tasks. These 525

tasks are complementary to existing work on key- 526

word search for lexical signs, in that it addresses 527

the need to search for a variety of important content 528

that tends to be fingerspelled, like named entities. 529

Fingerspelling search is also more challenging in 530

that it requires the ability to handle an open vo- 531

cabulary and arbitrary-length queries. Our results 532

demonstrate that a model tailored for the task in fact 533

improves over baseline models based on related 534

work on signed keyword search, fingerspelling de- 535

tection, and speech recognition. However, there 536

is room for improvement between our results to 537

the maximum possible performance. We make our 538

data sets and code for training and evaluation pub- 539

licly available, to encourage additional research in 540

this area.6 One important aspect of our approach is 541

the use of explicit fingerspelling detection within 542

the model. An interesting avenue for future work is 543

to address the case where the training data does not 544

include segment boundaries for detector training. 545

Finally, a complete sign language search system 546

should consider both fingerspelling and lexical sign 547

search. 548
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A Appendix679

A.1 Fingerspelling alphabet680

Figure 5: The ASL fingerspelling alphabet,
from (Keane, 2014)

A.2 Data681

Figure 6 shows the distribution of fingerspelling682

length in the two datasets. Figure 7 shows im-683

age examples from the following three categories:684

Youtube, deafvideo, misc.685

Table 6: Numbers of 300-frame video clips in
ChicagoFSWild and ChicagoFSWild+.

Dataset Train Dev Test

ChicagoFSWild 3,539 691 673
ChicagoFSWild+ 13,011 867 885

A.3 Implementation Details686

Pre-processing The raw images in ChicagoF-687

SWild and ChicagoFSWild+ datasets contain di-688

verse visual scenes which can involve multiple per-689

sons. We adapt the heuristic approach used in (Shi690

et al., 2019) to select the target signer. Specifically,691

we use an off-the-shelf face detector to detect all692

the faces in the image. We extend each face bound-693

ing boxes by 1.5 times size of the bounding box694

in 4 directions and select the largest one with high-695

est average magnitude of optical flow (Farnebäck,696

2003). We further use the bounding box averaged697

in the whole sequence to crop the ROI area, which698

roughly denotes the signing region of a signer.699

Each image is resize to 160× 160 before feeding700

into the model.701

Model implementation The backbone convolu-702

tional layers are taken from VGG-19 (Simonyan703

and Zisserman, 2015b). We pre-train the convolu-704

tional layers with a fingerspelling recognition task705

using the video-text pairs from the corresponding706

dataset. In pre-training, the VGG-19 layers are707

first pre-trained on ImageNet (Deng et al., 2009)708

and the image features further go through a 1-709

layer Bi-LSTM with 512 hidden units per direc-710

tion. The model is trained with CTC loss (Graves711

Figure 6: Distribution of fingerspelling length in
ChicagoFSWild and ChicagoFSWild+
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et al., 2006). The output unit include English al- 712

phabet plus the few special symbols: <space>, ’, 713

&, ., @ as well as the blank symbol for CTC. 714

The model is trained with SGD with batch size 715

1 at the initial learning rate of 0.01. The model 716

is trained for 30 epochs and the learning rate is 717

decayed to 0.001 after 20 epochs. The recog- 718

nizer achieved 52.5%/64.4% lettter accuracy on 719

ChicagoFSWild/ChicagoFSWild+ test sets. The 720

VGG-19 convolutional layers are frozen in FSS- 721

Net training. 722

In FSS-Net, the visual features output from 723

convolutional layers are passed through a 1- 724

layer Bi-LSTM with 256 hidden units per direc- 725

tion to capture temporal information. To gen- 726

erate proposals, we first transform the feature 727

sequence via a 1D-CNN of following architec- 728

ture: conv layer (512 output dimension, kernel 729

width 8), max pooling (kernel width 8, stride 730

4), conv layer (256 output dimension, kernel 731

width 3) and conv layer (256 output dimension, 732

kernel width 3). The scale of anchors fixed 733

from the range: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 734

16, 18, 20, 24, 32, 40, 60, 75}, chosen according 735

to the typical fingerspelling lengths in the two 736
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Figure 7: Example image frames from different sources in ChicagoFSWild and ChicagoFSWild+

youtube

deafvideo

misc

datasets. The positve/negative threshold of the an-737

chors are 0.6/0.3 respectively. The δIoU/δIS are738

1.0/0.8. The FS-encoder and text encoder are 3-739

layer/1-layer BiLSTM with 256 hidden units re-740

spectively. The margin m, number of negative741

samples in Nv and Nw are tuned to be 0.45, 5742

and 5. The model is trained for 25 epochs with743

Adam (Kingma and Ba, 2015) at initial learning744

rate of 0.001 and batch size of 32. The learning rate745

is halved if the mean average precision on dev set746

does not improve for 3 epochs. λdet in equation 4747

is 0.1. At test time, we generate M = 50 proposals748

after NMS with IoU threshold of 0.7. β is tuned to749

be 1.750

Implementation of Attn-KWS The model as-751

signs score to video clip I1:T and word w as equa-752

tion 9, where e1:Tv is the visual feature sequence of753

I1:T and ewx is the text feature of w, W and b are754

learnable parameters. The model is trained with755

cross-entropy loss.756

s(etv, e
w
x ) = β(

etv · ewx
||etv|| · ||ewx ||

)2 + θ

a(t) =
exp(s(etv, e

w
x ))∑

t exp(s(e
t
v, e

w
x ))

sc(I1:T , e
w
x ) = σ(W

T∑
t=1

a(t)etv + b)

(9)757

A.4 Full results758

In addition to mAP and mF1, we also report759

ranking-based metrics: Precision@N and Re-760

call@N (N=1, 10). For top-N retrieved X, we com-761

pute the percentage of correct X among N retrieved762

X as precision@N and the percentage of correct X763

among all correct X as recall@N, where X is text764

for FWS and video for FVS. Note the maximum765

value of R@1 and P@10 can be less than 1 as there766

are clips with multiple fingerspelling sequences and767

clips with fewer than 10 fingerspelling sequences.768

The performance of different models measured by769

all the above metrics is shown in table 7.770

A.5 Examples of fingerspelling localization 771

Figure 8 shows examples fingerspelling localiza- 772

tion produced by different methods. 773

Figure 8: Examples of fingerspelling localization pro-
duced by different methods. Upper: Ground-truth, Bot-
tom: Attention weight curve and proposals generated
by our model.

GT MYTH
Pr

ed
GT ASL ABCD

Pr
ed

GT IF SPAM BULK EIL

Pr
ed

GT ASLIED ASL JASLL

Pr
ed

A.6 Precision-recall curve in FVS 774

Figure 9 shows the precision-recall curves of the 775

most common words in ChicagoFSWild+ test set. 776

Overall the performance of our model on frequent 777

words is higher than average. 778

A.7 Qualitative examples of pose estimation 779

Figure 10 shows typical failure cases of pose esti- 780

mation on ChicagoFSWild test set. The estimated 781

hand pose is of low quality due to the motion blur 782

and hand occlusion. 783
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Table 7: FWS/FVS performance on the ChicagoFSWild and ChicagoFSWild+ test sets. Below each metric: (
maximum). The minimum value of each metric is 0.

FWS (Video =⇒ Text) FVS (Text =⇒ Video)

ChicagoFSWild

Method mAP mF1 P@1 P@10 R@1 R@10 mAP mF1 P@1 P@10 R@1 R@10
(1) (1) (1) (.16) (.75) (1) (1) (1) (1) (.17) (.86) (1)

Whole-clip .175 .154 .116 .043 .092 .293 .142 .119 .106 .039 .070 .251
Attn-KWS .204 .181 .158 .059 .108 .358 .246 .229 .238 .061 .179 .411
Recognizer .318 .315 .352 .072 .284 .465 .331 .305 .323 .071 .220 .474
Ext-detector .383 .385 .334 .085 .268 .529 .332 .312 .296 .079 .205 .510
FSS-Net .434 .439 .384 .093 .300 .591 .394 .370 .370 .091 .255 .580

ChicagoFSWild+

Method mAP mF1 P@1 P@10 R@1 R@10 mAP mF1 P@1 P@10 R@1 R@10
(1) (1) (1) (.16) (.76) (1) (1) (1) (1) (.18) (.84) (1)

Whole-clip .466 .457 .416 .100 .326 .626 .548 .526 .546 .101 .421 .711
Attn-KWS .545 .530 .485 .112 .392 .727 .573 .547 .541 .111 .408 .748
Recognizer .465 .462 .470 .094 .390 .620 .398 .405 .394 .090 .292 .617
Ext-detector .633 .641 .589 .118 .491 .769 .593 .577 .568 .114 .419 .786
FSS-Net .674 .677 .637 .123 .530 .796 .638 .631 .596 .123 .442 .825

Figure 9: FVS precision-recall curve of common words in ChicagoFSWild+ test set. Inside (): mAP
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Figure 10: Estimated signer pose using Openpose on ChicagoFSWild test set
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