Searching for fingerspelled content in American Sign Language

Anonymous ACL submission

Abstract

Natural language processing for sign language
video—including tasks like recognition, trans-
lation, and search—is crucial for making ar-
tificial intelligence technologies accessible to
deaf individuals, and is gaining research inter-
est in recent years. In this paper, we address
the problem of searching for fingerspelled key-
words or key phrases in raw sign language
videos. This is an important task since signifi-
cant content in sign language is often conveyed
via fingerspelling, and to our knowledge the
task has not been studied before. We propose
an end-to-end model for this task, FSS-Net,
that jointly detects fingerspelling and matches
it to a text sequence. Our experiments, done
on a large public dataset of ASL fingerspelling
in the wild, show the importance of finger-
spelling detection as a component of a search
and retrieval model. Our model significantly
outperforms baseline methods adapted from
prior work on related tasks.

1 Introduction

Sign languages are a type of natural language
which convey meaning through sequences of hand-
shapes and gestures as well as non-manual ele-
ments, and are a chief means of communication
for about 70 million deaf people worldwide! Au-
tomatic sign language technologies would help to
bridge the communication barrier between deaf and
hearing individuals, and would make deaf video
media more searchable and indexable.

Automatic sign language processing has recently
received growing interest in the computer vision
(CV) and natural language processing (NLP) com-
munities. Yin et al. (2021) make several recom-
mendations for the study of sign languages in NLP
research, including greater emphasis on real-world
data. Most studies on sign language are based on
data collected in a controlled environment, either

'From https://wfdeaf.org/our-work/

in a studio setting (Martinez et al., 2002; Kim
et al., 2017) or in a specific domain (Forster et al.,
2016). The challenges involved in real-world sign-
ing videos, including various visual conditions and
different levels of fluency in signing, are not fully
reflected in such datasets. Automatic processing
of sign language videos "in the wild" has not been
addressed until recently, and is still restricted to
tasks like isolated sign recognition (Albanie et al.,
2020; Joze and Koller, 2019; Li et al., 2020) and
fingerspelling recognition (Shi et al., 2018, 2019).
In this work we take a step further and study search
and retrieval of arbitrary fingerspelled content in
real-world American Sign Language (ASL) video
(see Figure 1).

Fingerspelling is a component of sign language
in which words are signed by a series of handshapes
or movements corresponding to single letters (see
the Appendix for the ASL fingerspelling alphabet).
Fingerspelling is used mainly for lexical items that
do not have their own signs, such as proper nouns or
technical terms, and has an important place in sign
language. For example, fingerspelling accounts
for 12-35% of ASL (Padden and Gunsauls, 2003)
Since important content like named entities is of-
ten fingerspelled, the fingerspelled portions of a
sign language video often carry a disproportionate
amount of the content.

Most prior work on fingerspelling has focused
on recognition (Shi et al., 2018, 2019), that is, tran-
scription of a fingerspelling video clip into text.
However, automatic recognition assumes that the
boundaries of fingerspelled segments are known at
test time, and may not be the end goal in real-world
use cases. In addition, complete transcription may
not be necessary to extract the needed information.
Fingerspelling search, such as retrieving sign lan-
guage videos based on a query word, is often a
more useful task, and is an important component
of general video search involving sign language.

In addition to introducing the task, we address

the research question of whether the explicit tem-
poral localization of fingerspelling can help its
search and retrieval, and how best to localize it.
As fingerspelling occurs sparsely in the signing
stream, explicit detection of fingerspelling could
potentially improve search performance by remov-
ing unrelated signs. To this end, we propose an
end-to-end model, FSS-Net, which jointly detects
fingerspelling from unconstrained signing video
and matches it to text queries. Our approach con-
sistently outperforms a series of baselines without
explicit detection and a baseline with an off-the-
shelf fingerspelling detector by a large margin.

(a) FWS Sign Language Video Query Word(EN) List
VoA o
1 CovID \zﬁ
1
1 VACCINE
1 CLIMATE O}
(b) FVS Sign Language Video List
: [AR RRRRRRRRRRRRRRRRRRRERAE]
p ; ﬁ
I A II ﬁ ’
. % 1% ﬁ
1
(L 1 111 111 1 1
Query Word !
(EN): (RN RN RRRRRRRE]
1
ASL VLOG

||§:i"||/ \tﬁillQli

SE el E Y ol 5

117 | W]

Figure 1: Our two search tasks: (a) fingerspelled
word search (FWS) for determining which words are
fingerspelled in a sign language video clip, and (b)
fingerspelling video search (FVS) for searching for
sign language videos that include a fingerspelled query
word/phrase. The sign language videos are untrimmed,
i.e. they include regular signs in addition to finger-
spelling, and are downsampled for visualization.

2 Related Work

In existing work on sign language video process-
ing, search and retrieval tasks have been studied
much less than sign language recognition (mapping
from sign language video to gloss labels) (Koller
et al., 2017; Forster et al., 2016), translation (map-
ping from sign language video to text in another
language) (Yin and Read, 2020; Camgoz et al.,
2018). Work thus far on sign language search
has been framed mainly as the retrieval of lexi-
cal signs rather than fingerspelling. Pfister et al.
(2013); Albanie et al. (2020) employ mouthing to
detect keywords in sign-interpreted TV programs
with coarsely aligned subtitles. Tamer and Saraclar

(2020a,b) utilize whole-body pose estimation to
search for sign language keywords (gloss or trans-
lated word) in a German Sign Language translation
dataset PHOENIX-2014T (Camgoz et al., 2018).
All prior work on keyword search for sign language
has been done in a closed-vocabulary setting, which
assumes that only words from a pre-determined set
will be queried. Searching in an open-vocabulary
setting, including proper nouns, typically requires
searching for fingerspelling.

Some related tasks in the speech processing liter-
ature are spoken term detection (STD) and query-
by-example search, which are the tasks of automat-
ically retrieving speech segments from a database
that match a given text or audio query (Knill et al.,
2013; Mamou et al., 2007; Chen et al., 2015). In
terms of methodology, our model also shares some
aspects with prior work on moment retrieval (Gao
et al., 2017; Xu et al., 2019; Zhang et al., 2020),
which also combines candidate generation and
matching components. However, we incorporate
additional task-specific elements that consistently
improve performance.

3 Tasks

We consider two tasks: Fingerspelled Word Search
(FWS) and Fingerspelling-based Video Search
(FVS). FWS and FVS respectively consist of de-
tecting fingerspelled words within a given raw ASL
video stream and detecting video clips of inter-
est containing a given fingerspelled word.? Given
a query video clip v and a list of n words wy.y,
FWS is the task of finding which (if any) of w.y,
are present in v. Conversely, in FVS the input
is a query word w and n video clips v1.,, and
the task consists of finding all videos containing
the fingerspelled word w. We consider an open-
vocabulary setting where the word w is not con-
strained to a pre-determined set. The two tasks cor-
respond to two directions of search (video—>text
and text——>video), as is standard practice in other
retrieval work such as video-text search (Zhang
et al., 2018; Ranjay et al., 2017; Ging et al., 2020).

4 Model

We propose a single model, FSS-Net (for "Finger-
Spelling Search Network"), summarized in Fig-
ure 2, to address the two aforementioned search
tasks. FSS-Net receives a pair of inputs—a raw

*We use "word" to refer to a fingerspelling sequence,
which could be a single word or a phrase.

ASL video clip, and a written text sequence—and
produces a score indicating the degree of match
between the video clip and the text. The text is
encoded into an embedding vector via a learned
encoder. The visual branch of FSS-Net generates
a number of fingerspelling segment proposals and
each proposed visual segment is encoded into a fea-
ture space shared with the text embeddings. Paired
embeddings from both modalities are drawn to-
wards each other in the shared embedding space
during training.

Image encoding The input image frames are en-
coded into a sequence of feature vectors via an
image encoder, which consists of the VGG-19 (Si-
monyan and Zisserman, 2015a) convolutional lay-
ers followed by a Bi-LSTM.? We use raw RGB
images as input, instead of signer pose as used in
some prior work (Tamer and Saraclar, 2020b,a) on
sign language search, as estimating pose for hands
is particularly hard for signing videos in the wild
(see Section 6 for details).

Temporal proposal generation Suppose the
visual feature sequence is fi.7, where T is the
number of frames in the video clip. The pur-
pose of temporal proposal generation is to pro-
duce a number of candidate fingerspelling seg-
ments H(L.7) = {(si, ti) hi<i<jp(1,.)) from fr.r,
where s;,t; are the start and end frame indices of
the i" proposed segment. Below we use H as a
shorthand of H(I1.7). Here we adopt the strategy
in (Xu et al., 2017), which is commonly used to
generate proposals for action detection. Briefly, the
model assigns a probability pg.; of each proposal
being fingerspelling. See (Xu et al., 2017) for more
details. We denote the detection loss as L ..

Note that the training requires known ground-
truth fingerspelling boundaries. In the finger-
spelling datasets we use here (Shi et al., 2018,
2019), the fingerspelling boundaries are already
annotated, so no further annotation is needed.

Filtering A visual embedding is produced for
each segment. We denote a labeled fingerspelling
segment (shortened as fingerspelling segment be-
low) as a tuple (s, t,w), where s, t and w repre-
sent the start frame index, the end frame index,
and the written text it represents. A naive ap-
proach would be to use only the ground-truth finger-
spelling segments Py = {(si, i, wi) }1<i<|p,| for
training. However, this approach does not take into

3Transformers (Vaswani et al., 2017) can also be used,

but in our initial experiments, they were outperformed by
Bi-LSTMs on our tasks and data.

account the potential shifts (errors) that may exist
at test time between the ground-truth and generated
segment proposals. The embeddings produced by
the fingerspelling encoder should be robust to such
shifts. To this end, we incorporate proposals in
forming positive pairs at training time. Formally,
let the set of time intervals from the temporal pro-
posal generator be H = {(s;,%i) }1<i<|z- We sam-
ple K intervals from P to form the set of generated
fingerspelling segments:

Pre ={ (S th, wg)|ToU ((sk, ti), (Sg:tg)) > 10U,
IS((Statk)7 (sgvtg)) > 5]57
(Skatk) € Ha (sgatngg) € Pg}

(D
Intersection(x,y) _
Lengih(y) and IoU(z,y) =
Intersection(z,y)

Union(z,y)~° We use 5’;0[] and 5’}5 to control the
degree to which the proposals can deviate from the
ground-truth. In addition to the intersection over
union (IoU), we use the normalized intersection IS
to eliminate proposals with many missing frames.
We take the union of the two sets, P, = Py U Py,
as the filtered proposal set to be encoded.

Fingerspelling visual encoding (FS-encoding)
The visual encoding of each segment (s,t,w) €
P, is el™ = BILSTM(£,,,).4

Text encoding A written word (or phrase) w is
mapped to an embedding vector € via a text en-
coder. To handle words not seen at training time
(and better handle rarely seen words), we first de-
compose w into a sequence of characters ¢y ,,| (€.g.
‘ASL’=‘A’-‘S’-‘L’) and feed the character sequence
C1:w| Into a text encoder (here, a Bi-LSTMP).

Visual-text matching With the above pairs of
visual and textual embeddings, we use a training
objective function consisting of two triplet loss
terms:

where IS(z,y) =

Liyi(hur, Py) =
Z max{m + d(el*! e?)

(syt, w)EP+
d
“ X o

—l—max{m—l—d((4 e?)

’ LL’

Z d(el)), 0}

s/t EN,

*We compared the Bi-LSTM encoder with average/max
pooling of fs.;, and found the former to perform better.

5 Again, transformers can also be used, but in our experi-
ments Bi-LSTM show better performance.

Visual & Textual

: w
—(Fingerspelling Visual Encoder) Embeddings
) —
_ s &
(Positive samples P EEE .. T L L L L L A
- .. C N NN N NN BN BN BN BN BN BN N N NN NN BN BN BN BN BN B . < [<—AD
A Filtering O
Fingerspelling - .. (8' t') - - ..
prOposaIs - . : : : : : : : : - ’ -:::::: :- - ---------- . g
. [
[Temporal Proposal Generator] 0] rg” —NAD
f a
1:T)
—,IIIFIII,lll*lll*lll*lllﬂll ° B
Image Encoder B <—IT
[|

Figure 2: FSS-Net: The proposed model for fingerspelling search and retrieval. The model maps candidate
fingerspelling segments and text into a shared embedding space. O: text embedding, []: visual embedding. The
colors correspond to different input fingerspelling sequences. As pictured, this is the training time model, where
the pairing between text and video segments is known. At test time, the labels (colors) of the visual embeddings

are unknown and we do not filter the proposals.

where d denotes cosine distance d(a,b) = 1 —
%, m is a margin, and N, and N,, are sets
of negative samples of proposals and words. To
form negative pairs we use semi-hard negative sam-
pling (Schroff et al., 2015):

No = {(s,t)]d(el), el) > d(ef"), et}
Noy = {w'd(ef) el) > d(ef!, ef)}
3)

For efficiency, negative samples are selected from
the corresponding mini-batch.

Overall loss The model is trained with a combi-
nation of the detection loss and triplet loss:

Liot(Ii:7, Pg) = AdetLaet(In:r, Py) + Lri(Ii., P4)

“4)
with the tuned weight \g4.; controlling the rela-
tive importance of detection versus visual-textual
matching.

Inference At test time, the model assigns a score
sc(Iy.p,w) to a given video clip I;.p and word
w. The word is encoded into the word embedding
e?. Suppose the set of fingerspelling proposals
generated by the temporal proposal generator is
‘H(I1.7). We define a scoring function for the pro-
posal h € H(I;.7) and word w
4)

Scword(hm7 w) = pdet(l - d(egmaeg))ﬁ

where pge; is the probability given by the tempo-
ral proposal generator and 3 controls the relative
weight between detection and matching. In other

words, in order for a segment and word to receive
a high score, the segment should be likely to be fin-
gerspelling (according to pge¢) and its embedding
should match the text. Finally, the score for the
video clip I;.7 and the word w is defined as the
highest score among the set of proposals #(I;.7):

(6)

max

wor h’
heH(Iy.1) scwora(h,)

se(Iy.p,w) =

S Experimental Setup

5.1 Data

We conduct experiments on ChicagoFSWild (Shi
et al., 2018) and ChicagoFSWild+ (Shi et al., 2019),
two large-scale publicly available fingerspelling
datasets which contain 7,304 and 55,272 finger-
spelling sequences respectively. The ASL videos
in the two datasets are collected from online re-
sources and include a variety of viewpoints and
styles, such as webcam videos and lectures.

We follow the setup of (Shi et al., 2021) and split
the raw ASL videos into 300-frame clips with a 75-
frame overlap between neighboring chunks and
remove clips without fingerspelling. The numbers
of clips in the various splits can be found in the
Appendix. On average, each clip contains 1.9/1.8
fingerspelling segments in the ChicagoFSWild and
ChicagoFSWild+ respectively.

5.2 Baselines

We compare the proposed model, FSS-Net, to
the following baselines adapted from common ap-
proaches for search and retrieval in related fields.

To facilitate comparison, the network architecture
for the visual and text encoding in all baselines is
the same as in FSS-Net.

Recognizer In this approach, we train a rec-
ognizer that transcribes the video clip into text.
Specifically, we train a recognizer to output a
sequence of symbols consisting of either finger-
spelled letters or a special non-fingerspelling sym-
bol <x>. We train the recognizer is trained
with a connectionist temporal classification (CTC)
loss (Graves et al., 2006), which is commonly used
for speech recognition. need to say what the struc-
ture of the recognizer model is At test time, we use
beam search to generate a list of hypotheses w1.5s
for the target video clip I;.7. Each hypothesis w,,
is split into a list of words {0}, }1<n<n separated
by <x>. The matching score between video I;.p
and w is defined as:

sc(I.p,w) =1— min min LER(w,,,w)

1<m<M 1<n<N
(7

where the letter error rate LER is the Leven-
shtein edit distance. This approach is adapted
from (Saraglar and Sproat, 2004) for spoken ut-
terance retrieval. Fingerspelling boundary informa-
tion is not used in training this baseline model.

Whole-clip The whole-clip baseline encodes the
whole video clip I;.7 into a visual embedding ei,
which is matched to the textual embedding e}’ of
the query w. The model is trained with contrastive
loss as in equation 2. At test time, the score for
video clip I;.7 and word w is:

sc(Inr,w) =1—d(el, e?) (8)
where d is the cosine distance as in FSS-Net. Fin-
gerspelling boundary information is again not used
in this baseline.

External detector (Ext-det) This baseline uses
the off-the-shelf fingerspelling detectors (Shi et al.,
2021) to generate fingerspelling proposals, instead
of our proposal generator, and is otherwise identical
to FSS-Net. For each dataset (ChicagoFSWild,
ChicagoFSWild+), we use the detector trained on
the training subset of that dataset.

Attention-based keyword search (Attn-kws)
This model is adapted from (Tamer and Saraglar,
2020b)’s approach for keyword search in sign lan-
guage. The model employs an attention mecha-
nism to match a text query with a video clip, where
each frame is weighted based on the query embed-
ding. The attention mechanism enables the model

to implicitly localize frames relevant to the text.
The model of (Tamer and Saraglar, 2020b) is de-
signed for lexical signs rather than fingerspelling.
To adapt the model to our open-vocabulary finger-
spelling setting, we use the same text encoder as
in FSS-Net to map words into embeddings instead
of using a word embedding matrix as in (Tamer
and Saraglar, 2020b). Fingerspelling boundary in-
formation is again not used in training this model,
which arguably puts it at a disadvantage compared
to FSS-Net. More details on the formulation of the
model can be found in the Appendix.

5.3 Evaluation

For FWS, we use all words in the test set as the test
vocabulary wy.,,. For FVS, all video clips in the test
are used as candidates and the text queries are again
the entire test vocabulary. We report the results in
terms of standard metrics from the video-text re-
trieval literature (Momeni et al., 2020; Tamer and
Saraclar, 2020a): mean Average Precision (mAP)
and mean F1 score (mF1), where the averages are
over words for FVS and over videos for FWS. Ad-
ditional details on data, preprocessing and model
implementation can be found in the appendix.

6 Results and analysis

6.1 Main Results

Table 1: FWS/FVS performance on the ChicagoF-
SWild and ChicagoFSWild+ test sets.The range of
mAP and mF1 is [0, 1].

FWS (Video = Text) FVS (Text = Video)

ChicagoFSWild
Method mAP mF1 mAP mF1
Whole-clip .175 154 142 119
Attn-KWS 204 181 .246 229
Recognizer .318 315 331 .305
Ext-detector .383 .385 332 312
FSS-Net 434 439 394 370
ChicagoFSWild+
Method mAP mF1 mAP mF1
Whole-clip .466 457 .548 .526
Attn-KWS 545 .530 573 .547
Recognizer .465 462 .398 405
Ext-detector .633 .641 593 577
FSS-Net 674 677 .638 .631

Table 1 shows the performance of the above ap-
proaches on the two datasets. First, we notice that
embedding-based approaches consistently outper-
form the word-list baseline in the larger data setting
(ChicagoFSWild+) but not the smaller data setting

(ChicagoFSWild), which suggests that embedding-
based models generally require more training data.
The inferior performance of word-list also shows
that explicit fingerspelling recognition is not neces-
sary for the search tasks. In addition, explicit fin-
gerspelling detection (Ext-det, FSS-Net) improves
performance over implicit fingerspelling detection
(attn-KWS) and detection-free search (whole-clip).
Explicit fingerspelling detection requires boundary
information during training. Of the models that
don’t use such supervision, Attn-KWS is the best
performer given enough data, but is still far be-
hind FSS-Net. Our model outperforms all of the
alternatives. The relative performance of differ-
ent models is consistent across the various metrics
and the two search tasks. For completeness, we
also measure the performance of different mod-
els in terms of ranking-based metrics (e.g., Preci-
sion@N, Recall@N), as in prior work on video-text
retrieval (Ging et al., 2020; Ranjay et al., 2017) (see
full results in the Appendix). The relative perfor-
mance of different models is consistent on different
metrics. The analysis below is done on ChicagoF-
SWild for simplicity. The conclusions also hold for
ChicagoFSWild+ .

6.2 Model analysis

Does better localization lead to better search?
In the previous section we have seen that models
that explicitly detect and localize fingerspelling
outperform ones that do not. Next we look more
closely at how well several models—Ext-det, Attn-
KWS and FSS-Net—perform on the task of lo-
calizing fingerspelling, which is a byproduct of
these models’ output. We measure performance via
AP@IoU, a commonly used evaluation metric for
action detection (Idrees et al., 2016; Heilbron et al.,
2015) that has also been used for fingerspelling
detection (Shi et al., 2021). AP@IoU measures the
average precision of a detector under the constraint
that the overlap of its predicted segments with the
ground truth is above some threshold Intersection-
over-Union (IoU) value. For attn-KWS, the model
outputs an attention vector, which we convert to
segments as in (Shi et al., 2021).

In general, the models with more accurate local-
ization also have higher search and retrieval perfor-
mance, as seen by comparing Table 2 with Table 1.
However, differences in AP@IoU do not directly
translate to differences in search performance. For
example, the AP@IoU of ext-detector (0.344) is an

Table 2: Fingerspelling localization performance for
detection-based models.

AP@0.1 AP@0.3 AP@O0.5
Attn KWS 0.268 0.104 0.035
Ext detector 0.495 0.453 0.344
Ours 0.568 0.519 0.414

order of magnitude higher than that of attn-KWS
(0.035) while their FVS mAP results are much
closer (0.593 vs. 0.573).

Raw images vs. estimated pose as input Prior
work on sign language search (Tamer and Saraclar,
2020a,b) has used estimate pose keypoints as input,
rathan than raw images as we do here. For com-
parison, we extract body and hand keypoints with
OpenPose (Cao et al., 2019) and train a model with
the pose skeleton as input.

Table 3: Impact of input type (pose vs. raw RGB im-
ages) on search performance.

FWS (Video = Text) FVS (Text = Video)

Input mAP mF1 mAP mF1
Pose .142 147 127 121
RGB .434 439 394 370

As is shown in Table 3, the pose-based model
has much poorer search performance than the RGB
image-based models. We believe this is largely be-
cause, while pose estimation works well for large
motions and clean visual conditions, in our dataset
much of the handshape information is lost in the
estimated pose (see the Appendix for some qualita-
tive examples).

6.3 Ablation Study

Table 4: Effect of various components of FSS-Net on
FWS and FVS.

FWS FVS
mAP mF1 mAP mFl
Full model 434 439 .394 .370
(1) w/o generator 186 .180 .259 .270
2)Aget =0,6=0 411 420 .373 .350
B) At =0.1,3=0 418 432 360 .348
(4) wlo Py, 411 420 386 .366

Within our model, the proposal generator pro-
duces a subset of all possible fingerspelling pro-
posals, intended to represent the most likely fin-

Figure 3: Examples of FWS predictions. For each example video, the ground truth (GT) is shown along with
the top 5 predicted fingerspelling sequences. Top red line: ground-truth fingerspelling segment. Bottom blue line:
highest-scoring predicted fingerspelling segment. Segment locations are shown here for qualitative analysis, but
they are not part of the task evaluation. Note that many fingerspelling sequences (both ground-truth and predictions)
are abbreviations, and some are misspelled; we include all fingerspelling sequences that appear in the test set in
the query vocabulary.

Successful retrieval

GT: LITERACYS TO ¢ Pred: LITERACYS TO, LITERACY, DISTRACT, ILOW, LIST

GT: US <« Pred: US, USA, CAMUS, LS, SUCH AS

ALALAARLMSLAAARARARSAALAAALARA

Failure cases

GT: BACK < Pred: BA, AEBSP, BAK, AS, AT BTH BEACH

A2l S R Z NN NS EEEEEN

GT: JETS < Pred: IT, OF, OFF, IE, IX

Pl R WA R

GT: TXPU < Pred: FISH, F EST, RG, GER, TOSS

T T T T T 5 2 s T e e P

gerspelling segments. To measure whether this
component is important to the performance of the
model, we compare our full model with the pro-
posal generator to one where the proposal generator
is removed (see Table 4). When the proposal gen-
erator is not used, the model is trained only with
ground-truth fingerspelling segments (Pg) and con-
siders all possible proposals within a set of sliding
windows. Such a "sliding-window" approach is
commonly used in previous sign language keyword
search (Albanie et al., 2020; Pfister et al., 2013) and
spoken keyword spotting (Chen et al., 2015). As
can be seen from Table 4 (top), the proposal gener-
ator greatly improves search performance. This is
not surprising, since the proposal generator greatly
reduces the number of non-fingerspelling segments,
thus lowering the chance of a mismatch between
the text and video, and also refines the segment
boundaries through regression, which should im-
prove the quality of the visual segment encoding.

The fingerspelling detection component of our
model has two aspects that may affect performance:

imposing an additional loss during training, and
rescoring during inference. We disentangle these
two factors and show their respective benefits for
our model in Table 4 (middle). The auxiliary detec-
tion task, which includes classification between fin-
gerspelling and non-fingerspelling proposals, helps
encode more comprehensive visual information
into the visual embedding. In addition, the pro-
posal probability output by the detector contains
extra information and merging it into the matching
score further improves the search performance.

Table 4 (bottom) shows the effect of sampling
additional proposals (Py) in fingerspelling detec-
tion. Additional positive samples makes the visual
embedding more robust to temporal shifts in the
generated proposals, thus improving search perfor-
mance.

6.4 Result analysis

The performance of our model is worse for short
fingerspelled sequences than for long sequences
(see Figure 4). may be because shorter words are

harder to spot, as is shown from the trend in finger-
spelling detection in the same figure.

Figure 4: Performance as a function of fingerspelled
word length. Red: FVS mAP, Blue: detection AP.

0.8

N mAPFVS B AP@O0.3,DET
0.6 1
0.4
0.2
[0,20) [20,40) [40,60) [60,80) [80,200)

Number of frames

The datasets we use are collected from multiple
sources, where the video quality varies. To quantify
the effect of visual quality on search/retrieval per-
formance, we categorize the ASL videos into three
categories according to their source: YouTube,
DeafVIDEO, and other miscellaneous sources
(misc). YouTube videos are mostly ASL lec-
tures of high resolution. DeafVIDEO videos are
vlogs from deaf users of the social media site
deafvideo.tv, where the style, camera angle,
and image quality vary greatly. The visual qual-
ity of videos in the miscellaneous category tends
to fall between the other two categories. Typical
image examples from the three categories can be
found in the Appendix. The FWS performance of
our model on videos in YouTube, Deaf VIDEO, and
misc are 0.684, 0.584, 0.629 (mAP) respectively.
The results are overall consistent with the perceived
relative visual qualities of these categories.

As a qualitative analysis, we examine exam-
ple words and videos on which our model is
more or less successful. Table 5 shows the query
words/phrases with the highest/lowest FVS perfor-
mance, where the best-performing queries tend to
be long and drawn from the highest-quality video
source.

We also visualize the top FWS predictions made
by our model in several video clips (see Appendix).
As expected, we see more errors on Deaf VIDEO
clips. Another common source of error is confusion
between letters with similar handshapes (e.g., "i" vs.
"i"). A final failure type is fingerspelling detection
failure.

7 Conclusion

Our work takes one step toward better addressing
the need for language technologies for sign lan-
guages, by defining fingerspelling search tasks and

Table 5: Example words with low/high mAP in FVS.
Insde () is the source of the corresponding video

Low ‘ High

script (youtube)
agent (misc)
kc (youtube)
pati (deafvideo)
mexer (deafvideo)
flow (youtube)
yr (deafvideo)
exalted (misc)
poem (youtube)

cabol erting (youtube)
vp ron stern (youtube)
co chairs (youtube)
dr kristin mulrooney (youtube)

myles (youtube)

camaspace (youtube)

electronics (youtube)
brain (youtube)
land (deafvideo)

developing a model tailored for these tasks. These
tasks are complementary to existing work on key-
word search for lexical signs, in that it addresses
the need to search for a variety of important content
that tends to be fingerspelled, like named entities.
Fingerspelling search is also more challenging in
that it requires the ability to handle an open vo-
cabulary and arbitrary-length queries. Our results
demonstrate that a model tailored for the task in fact
improves over baseline models based on related
work on signed keyword search, fingerspelling de-
tection, and speech recognition. However, there
is room for improvement between our results to
the maximum possible performance. We make our
data sets and code for training and evaluation pub-
licly available, to encourage additional research in
this area.® One important aspect of our approach is
the use of explicit fingerspelling detection within
the model. An interesting avenue for future work is
to address the case where the training data does not
include segment boundaries for detector training.
Finally, a complete sign language search system
should consider both fingerspelling and lexical sign
search.

References

S. Albanie, G. Varol, L. Momeni, T. Afouras, J. Chung,
N. Fox, and A. Zisserman. 2020. Bsl-1k: Scaling
up co-articulated sign language recognition using
mouthing cues. In ECCV.

N.C. Camgoz, S. Hadfield, O. Koller, H. Ney, and
R. Bowden. 2018. Neural sign language translation.
In CVPR.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and
Y. A. Sheikh. 2019. Openpose: Realtime multi-
person 2d pose estimation using part affinity fields.
TPAMI.

®Will be available upon acceptance.

G. Chen, C. Parada, and T. N. Sainath. 2015. Query-
by-example keyword spotting using long short-term
memory networks. In ICASSP.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li.
2009. ImageNet: A large-scale hierarchical image
database. In CVPR.

G. Farnebiack. 2003. Two-frame motion estimation
based on polynomial expansion. In SCIA.

J. Forster, C. Schmidt, O. Koller, M. Bellgardt,
and H. Ney. 2016. Extensions of the sign lan-
guage recognition and translation corpus RWTH-
PHOENIX-weather. In LREC.

J. Gao, C. Sun, Z. Yang, and R. Nevatia. 2017. Tall:
Temporal activity localization via language query.
In CVPR.

S. Ging, M. Zolfaghari, H. Pirsiavash, and T. Brox.
2020. Coot: Cooperative hierarchical transformer
for video-text representation learning. In NeurlPS.

A. Graves, S. Fernandez, F. Gomez, and J. Schmid-
huber. 2006. Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent
neural networks. In ICML.

F.C. Heilbron, V. Escorcia, B. Ghanem, and J.C.
Niebles. 2015. Activitynet: A large-scale video
benchmark for human activity understanding. In
CVPR.

H. Idrees, A. Zamir, Y.G Jiang, A. Gorban, 1. Laptev,
R. Sukthankar, and M. Shah. 2016. The thumos chal-
lenge on action recognition for videos "in the wild".
Computer Vision and Image Understanding, 155.

H. Joze and O. Koller. 2019. Ms-asl: A large-scale data
set and benchmark for understanding american sign
language. In BMVC.

J. Keane. 2014. Towards an articulatory model of hand-
shape: What fingerspelling tells us about the phonet-
ics and phonology of handshape in American Sign
Language. Ph.D. thesis, University of Chicago.

T. Kim, J. Keane, W. Wang, H. Tang, J. Riggle,
G. Shakhnarovich, D. Brentari, and K. Livescu.
2017. Lexicon-free fingerspelling recognition from
video: Data, models, and signer adaptation. Com-
puter Speech and Language, pages 209-232.

D. P Kingma and J. Ba. 2015. Adam: A method for
stochastic optimization. In /CLR.

K. M Knill, M. JF Gales, S. P Rath, P. C Woodland,
C. Zhang, and S-X Zhang. 2013. Investigation of
multilingual deep neural networks for spoken term
detection. In ASRU.

O. Koller, S. Zargaran, and H. Ney. 2017. Re-sign: Re-
aligned end-to-end sequence modelling with deep re-
current cnn-hmms. In CVPR.

D. Li, C. Rodriguez-Opazo, X. Yu, and H. Li. 2020.
Word-level deep sign language recognition from
video: A new large-scale dataset and methods com-
parison. In WACV.

J. Mamou, B. Ramabhadran, and O. Siohan. 2007. Vo-
cabulary independent spoken term detection. In SI-
GIR.

A. Martinez, R. Wilbur, Robin Shay, and A. Kak. 2002.
Purdue rvl-slll asl database for automatic recogni-
tion of american sign language. pages 167—172.

L. Momeni, T. Afouras, T. Stafylakis, S. Albanie, and
A. Zisserman. 2020. Seeing wake words: Audio-
visual keyword spotting. In BMVC.

C. Padden and D.C. Gunsauls. 2003. How the alphabet
came to be used in a sign language. Sign Language
Studies, 4(1):10-33.

T. Pfister, J. Charles, and A. Zisserman. 2013. Large-
scale learning of sign language by watching tv (us-
ing co-occurrences). In BMVC.

K. Ranjay, H. Kenji, F. Ren, F-F.Li, and J.C. Niebles.
2017. Dense-captioning events in videos. ICCV.

M. Saraclar and R. Sproat. 2004. Lattice-based search
for spoken utterance retrieval. In NAACL.

F. Schroff, D. Kalenichenko, and J. Philbin. 2015.
Facenet: A unified embedding for face recognition
and clustering. In CVPR.

B. Shi, D. Brentari, G. Shakhnarovich, and K. Livescu.
2021. Fingerspelling detection in american sign lan-
guage. In CVPR.

B. Shi, A. Martinez Del Rio, J. Keane, D. Brentari,
G. Shakhnarovich, and K. Livescu. 2019. Finger-
spelling recognition in the wild with iterative visual
attention. In ICCV.

B. Shi, A. Martinez Del Rio, J. Keane, J. Michaux,
D. Brentari, G. Shakhnarovich, and K. Livescu.
2018. American Sign Language fingerspelling
recognition in the wild. In SLT.

K. Simonyan and A. Zisserman. 2015a. Very deep con-
volutional networks for large-scale image recogni-
tion. In /ICLR.

K. Simonyan and A. Zisserman. 2015b. Very deep con-
volutional networks for large-scale image recogni-
tion. In ICLR.

N. Tamer and M. Saraglar. 2020a. Cross-lingual key-
word search for sign language. In LREC 2020.

N. Tamer and M. Saraclar. 2020b. Keyword search for
sign language. In ICASSP.

A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin.
2017. Attention is all you need. In NeurIPS.

H. Xu, A. Das, and K. Saenko. 2017. R-c3d: Region
convolutional 3d network for temporal activity de-
tection. In ICCV.

H. Xu, K. He, B. A. Plummer, L. Sigal, S. Sclaroff, and
K. Saenko. 2019. Multilevel language and vision
integration for text-to-clip retrieval. In AAAL

K. Yin and J. Read. 2020. Better sign language transla-
tion with STMC-transformer. In COLING.

Kayo Yin, Amit Moryossef, Julie Hochgesang, Yoav
Goldberg, and Malihe Alikhani. 2021. Including
signed languages in natural language processing. In
ACL.

B. Zhang, H. Hu, and F. Sha. 2018. Cross-modal and
hierarchical modeling of video and text. In ECCV.

H. Zhang, A. Sun, W. Jing, and T. Zhou. 2020. Span-
based localizing network for natural language video
localization. In ACL.

10

A Appendix
A.1 Fingerspelling alphabet

Figure 5: The ASL fingerspelling alphabet,
from (Keane, 2014)
?‘2 Fésbw=abndde
a c d e f g h i j k 1 m
of z’\
® ? w»rdeoddlidw ¢
n o p q r s t u v w X vy z
A.2 Data

Figure 6 shows the distribution of fingerspelling
length in the two datasets. Figure 7 shows im-
age examples from the following three categories:
Youtube, deafvideo, misc.

Table 6: Numbers of 300-frame video clips in
ChicagoFSWild and ChicagoFSWild+.

Dataset Train Dev Test
ChicagoFSWild 3,539 691 673
ChicagoFSWild+ 13,011 867 885

A.3 Implementation Details

Pre-processing The raw images in ChicagoF-
SWild and ChicagoFSWild+ datasets contain di-
verse visual scenes which can involve multiple per-
sons. We adapt the heuristic approach used in (Shi
et al., 2019) to select the target signer. Specifically,
we use an off-the-shelf face detector to detect all
the faces in the image. We extend each face bound-
ing boxes by 1.5 times size of the bounding box
in 4 directions and select the largest one with high-
est average magnitude of optical flow (Farnebick,
2003). We further use the bounding box averaged
in the whole sequence to crop the ROI area, which
roughly denotes the signing region of a signer.
Each image is resize to 160 x 160 before feeding
into the model.

Model implementation The backbone convolu-
tional layers are taken from VGG-19 (Simonyan
and Zisserman, 2015b). We pre-train the convolu-
tional layers with a fingerspelling recognition task
using the video-text pairs from the corresponding
dataset. In pre-training, the VGG-19 layers are
first pre-trained on ImageNet (Deng et al., 2009)
and the image features further go through a 1-
layer Bi-LSTM with 512 hidden units per direc-
tion. The model is trained with CTC loss (Graves

11

Figure 6: Distribution of fingerspelling length in
ChicagoFSWild and ChicagoFSWild+

60 A
mmm ChicagoFSWild

X i+
501 m ChicagoFSWwild

Frequency (%)
w »
o o

N
o

=
o

m_

o

Q N o) S
DERCAEPCUSFCIEP
N N N\
Number of characters
50
r BN ChicagoFSWild
W ChicagoFSWild+
40
9
=301
v
[=
[
3
520-
w
104
ol _
S ¢ &
< Q, \b(\b \Q’Q‘ \,\/0

Number of frames

et al., 2006). The output unit include English al-
phabet plus the few special symbols: <space>, ’,
&, ., @ as well as the blank symbol for CTC.
The model is trained with SGD with batch size
1 at the initial learning rate of 0.01. The model
is trained for 30 epochs and the learning rate is
decayed to 0.001 after 20 epochs. The recog-
nizer achieved 52.5%/64.4% lettter accuracy on
ChicagoFSWild/ChicagoFSWild+ test sets. The
VGG-19 convolutional layers are frozen in FSS-
Net training.

In FSS-Net, the visual features output from
convolutional layers are passed through a 1-
layer Bi-LSTM with 256 hidden units per direc-
tion to capture temporal information. To gen-
erate proposals, we first transform the feature
sequence via a 1D-CNN of following architec-
ture: conv layer (512 output dimension, kernel
width 8), max pooling (kernel width 8, stride
4), conv layer (256 output dimension, kernel
width 3) and conv layer (256 output dimension,
kernel width 3). The scale of anchors fixed
from the range: {1,2,3,4,5,6,7,8,9,10,12, 14,
16,18, 20,24, 32,40,60, 75}, chosen according
to the typical fingerspelling lengths in the two

Figure 7: Example image frames from different sources in ChicagoFSWild and ChicagoFSWild+

youtube % A mmﬁ T

deafvideo ‘ ﬂ : by

misc

aaﬁWEmam,

datasets. The positve/negative threshold of the an-
chors are 0.6/0.3 respectively. The d7,17/d1s are
1.0/0.8. The FS-encoder and text encoder are 3-
layer/1-layer BiLSTM with 256 hidden units re-
spectively. The margin m, number of negative
samples in N, and N,, are tuned to be 0.45, 5
and 5. The model is trained for 25 epochs with
Adam (Kingma and Ba, 2015) at initial learning
rate of 0.001 and batch size of 32. The learning rate
is halved if the mean average precision on dev set
does not improve for 3 epochs. A4 in equation 4
is 0.1. At test time, we generate M/ = 50 proposals
after NMS with IoU threshold of 0.7. 5 is tuned to
be 1.

Implementation of Attn-KWS The model as-
signs score to video clip I;.7 and word w as equa-
tion 9, where e!*” is the visual feature sequence of
I,.7 and e is the text feature of w, W and b are
learnable parameters. The model is trained with
cross-entropy loss.

t ef)-e;” 2

v xT T+ <l +0
s(evez) = A ezl

_ exp(s(el,e))
1) = = exp(s ctret) ©)
sc(Iyp,el) = WZ Jel, +b)

A4

In addition to mAP and mF1, we also report
ranking-based metrics: Precision@N and Re-
call@N (N=1, 10). For top-N retrieved X, we com-
pute the percentage of correct X among N retrieved
X as precision@N and the percentage of correct X
among all correct X as recall@N, where X is text
for FWS and video for FVS. Note the maximum
value of R@1 and P@10 can be less than 1 as there
are clips with multiple fingerspelling sequences and
clips with fewer than 10 fingerspelling sequences.
The performance of different models measured by
all the above metrics is shown in table 7.

Full results

12

A.5 Examples of fingerspelling localization

Figure 8 shows examples fingerspelling localiza-
tion produced by different methods.

Figure 8: Examples of fingerspelling localization pro-
duced by different methods. Upper: Ground-truth, Bot-
tom: Attention weight curve and proposals generated
by our model.

[
O

°

5 ASL ABCD

°

[

: J |

'6 SPAM BULK

o

[

: J I JIL
5 ASLIED JASLL
o

v

am /.

A.6 Precision-recall curve in FVS

Figure 9 shows the precision-recall curves of the
most common words in ChicagoFSWild+ test set.
Overall the performance of our model on frequent
words is higher than average.

A.7 Qualitative examples of pose estimation

Figure 10 shows typical failure cases of pose esti-
mation on ChicagoFSWild test set. The estimated
hand pose is of low quality due to the motion blur
and hand occlusion.

Table 7: FWS/FVS performance on the ChicagoFSWild and ChicagoFSWild+ test sets. Below each metric: (
maximum). The minimum value of each metric is 0.

FWS (Video = Text) FVS (Text = Video)
ChicagoFSWild
Method mAP mFl PQl PQl10 R@l R@I0 mAP mFl PQl PQl10 RQ@l RQIO

o @O @O e 75 @O O D @D (17 (86) (1)

Whole-clip .175 .154 116 .043 092 293 .142 119 .106 .039 .070 .251
Attn-KWS 204 181 158 .059 .108 358 246 229 238 .061 179 4l1
Recognizer 318 315 .352 .072 284 465 331 305 323 .071 220 474
Ext-detector .383 385 .334 .085 268 529 332 312 296 .079 205 510

FSS-Net 434 439 384 093 300 591 394 370 370 .091 255 .580
ChicagoFSWild+
Method mAP mFl PQ@l PQ10 R@l R@I10 mAP mFl PQl PQl0 RQl RQIO

- @O @O e 70 D D (D (D) (18 (84 (1)

Whole-clip 466 457 416 .100 326 .626 .548 526 546 .101 421 711
Attn-KWS 545 530 485 112 392 727 573 547 541 111 408 748
Recognizer 465 462 470 .094 390 .620 .398 405 394 .090 292 .617
Ext-detector .633 .641 .589 .118 491 769 593 577 568 114 419 786
FSS-Net 674 677 .637 123 530 796 .638 .631 .596 .123 442 .825

Figure 9: FVS precision-recall curve of common words in ChicagoFSWild+ test set. Inside (): mAP

SO (0.60) CARB (0.90) OK (0.73)
1.0 1.01 1.0
0.8 0.8 0.8
s s s
a 0.6 @ 0.6 a 0.6
9] 9] [9]
9 9 g
a 0.4 a 0.4 a 0.4
0.2 0.2 0.2
0.0 0.0, ' 0.0,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall Recall
ASL (0.84) OR (0.56) AUDISM (0.96)
1.0 1.0 l.O'T
0.8 0.8 0.8
s s s
0e w06 706
o o O
|9 g g
a 0.4 a 0.4 a 0.4
0.2 0.2 0.2
0.0 t 0.0, 0.0,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall Recall
SIMCOM (0.69) SEPSIS (0.90) LEXICALIZED (0.49)
1.0 1.0 1.0
0.8 0.8 0.8
s s s
& 0.6 @ 0.6 . 0.6
3))
0.4 a 0.4 T 0.4
0.2 0.2 0.2
0'%.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0 o'%.O 0.2 0.4 0.6 0.8 1.0
Recall Recall Recall

Figure 10: Estimated signer pose using Openpose on ChicagoFSWild test set

