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Abstract

The increasing adoption of agentic workflows001
across diverse domains brings a critical need to002
scalably and systematically evaluate the com-003
plex traces these systems generate. Current004
evaluation methods depend on manual, domain-005
specific human analysis of lengthy workflow006
traces—an approach that does not scale with007
the growing complexity and volume of agen-008
tic outputs. Error analysis in these settings is009
further complicated by the interplay of exter-010
nal tool outputs and language model reason-011
ing, making it more challenging than traditional012
software debugging. In this work, we (1) articu-013
late the need for robust and dynamic evaluation014
methods for agentic workflow traces, (2) intro-015
duce a formal taxonomy of error types encoun-016
tered in agentic systems, and (3) present a set017
of 148 large human-annotated traces (TRAIL)018
constructed using this taxonomy and grounded019
in established agentic benchmarks. To ensure020
ecological validity, we curate traces from both021
single and multi-agent systems, focusing on022
real-world applications such as software engi-023
neering and open-world information retrieval.024
Our evaluations reveal that modern long con-025
text LLMs perform poorly at trace debugging,026
with the best GEMINI-2.5-PRO model scoring a027
mere 11% on TRAIL. Our dataset and code are028
made publicly available to support and accel-029
erate future research in scalable evaluation for030
agentic workflows1.031

1 Introduction032

The rapid advancement of large language models033

(LLMs) has catalyzed the development of agentic034

systems capable of automating difficult, multi-step035

tasks across various domains such as software engi-036

neering and multi-hop IR (Ma et al., 2023; OpenAI,037

2024; Nguyen et al., 2024; Wang et al., 2025a).038

Unlike traditional generative models, agents can in-039

teract with diverse tools and dynamically navigate040

1Hidden for double-blind review

Figure 1: Illustration of the TRAIL taxonomy of errors

environments, often with minimal human supervi- 041

sion (Wang et al., 2024a). This escalation of system 042

complexity demands more challenging and multi- 043

faceted evaluation processes (Nasim, 2025) and has 044

led to the adoption of LLMs as evaluators for such 045

agentic systems (Zheng et al., 2023; Chen et al., 046

2024; Kim et al., 2024; Zhu et al., 2025; Deshpande 047

et al., 2024a). 048

However, as multi-agent systems scale and be- 049

come integral to real-world workflows, evaluating 050

and debugging their performance remains a sig- 051

nificant challenge. Agentic non-determinism (La- 052

ban et al., 2025; Patronus AI, 2025) and multi- 053

step task solving (Mialon et al., 2023; Yao et al., 054

2024) demand greater observability than the simple 055

end-to-end evaluations offered by existing bench- 056

marks (Kapoor et al., 2024a; Zhuge et al., 2024; 057

Moshkovich et al., 2025; Cemri et al., 2025). Such 058

complex environments require granular taxonomies 059

and well-annotated traces that can serve as refer- 060

ences for debugging and root-cause analysis of 061

agent behaviors (Cemri et al., 2025). When cre- 062

ating taxonomies and benchmarks to test and im- 063

prove agents, we must ensure these are grounded in 064

real-world applications and are not centered around 065
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dummy data (Bowman and Dahl, 2021; Liu et al.,066

2024b). Previous agent trace analysis frameworks067

have primarily focused on parsed traces containing068

unstructured text (Cemri et al., 2025), which do069

not adequately represent common agent framework070

outputs that generate structured traces logged in071

standardized formats like opentelemetry (Open-072

Telemetry, 2025). Additionally, as observed by073

Guo et al. (2023); Sui et al. (2024), handling struc-074

tured data remains challenging for LLMs, an ob-075

servation corroborated by previous research on au-076

tomated software engineering trace analysis (Roy077

et al., 2024a; Ma et al., 2024b). These limitations078

highlight the need for new approaches specifically079

designed for structured agentic traces. To address080

these challenges and facilitate the analysis and eval-081

uation of agentic executions, we propose a formal082

error taxonomy, shown in Figure 3, that promotes083

granular failure diagnosis. We also present a care-084

fully curated, turn-level annotated trace dataset085

called TRAIL (Trace Reasoning and Agentic Issue086

Localization), which demonstrates the validity and087

practical utility of our proposed taxonomy.088

In our work, we utilize and build on SWE-089

Bench (Jimenez et al., 2024; Aleithan et al., 2024)090

and GAIA (Mialon et al., 2023) while address-091

ing three major shortcomings inherent to previ-092

ous automatic agent evaluation paradigms. Firstly,093

we aim to replace end to end analysis of agents094

with a benchmark containing step-level analysis of095

traced agentic workflows. Secondly, we address the096

need for grounding in real scenarios by producing097

opentelemetry-based structured traces that span098

beyond present model context length limits. Fi-099

nally, as compared to benchmarks focused only on100

agentic reasoning and coordination (Cemri et al.,101

2025; Kokel et al., 2025), TRAIL focuses on valid-102

ity through addition of finer, more aligned system103

execution failures and planning error categories104

such as API errors and Task Orchestration Errors105

to our taxonomy. Such categories are not only rel-106

evant to model developers but also to users and107

engineers optimizing single and multi-agent AI ap-108

plications. The contributions of our work are as109

follows:110

• We introduce a formal taxonomy (Figure 1)111

that defines, fine-grained agentic error cate-112

gories spanning across three key areas: rea-113

soning, planning, and execution.114

• Based on this taxonomy, we present TRAIL,115

an ecologically grounded execution trace116

benchmark comprising 148 meticulously cu- 117

rated traces (totaling 1987 open telemetry 118

spans, of which 575 exhibit at least one er- 119

ror) drawn from the GAIA (Mialon et al., 120

2023) and SWE-Bench (Jimenez et al., 2024) 121

datasets and covering a wide range of tasks. 122

• We show that TRAIL is a non-trivially diffi- 123

cult benchmark for LLMs on many fronts 124

1. Current SOTA LLM families such as 125

O3, CLAUDE-3.7-SONNET and GEMINI- 126

2.5-PRO perform modestly at best on 127

TRAIL, both in terms of predicting er- 128

ror categories and their location. With 129

GEMINI-2.5-PRO the best performing 130

model, achieving only 11% combined 131

joint accuracy on both splits. 132

2. Solving TRAIL requires a significant 133

fraction of the maximum input length of 134

LLMs (or exceeds it), as well as requires 135

generating significant fraction of their 136

maximum output (See Table 2, Figure 5) 137

3. Models benchmarked on TRAIL benefit 138

from both the presence and greater ex- 139

tent of reasoning chains (§5.1.4, §5.1.5), 140

highlighting the need for improvement 141

in exploration capabilities of LLMs. 142

• TRAIL is fully open-source (MIT License), 143

will be accompanied by a HuggingFace leader- 144

board, and serves as a foundation for future 145

research on evaluating agentic workflows. 146

2 Relevant Work 147

LLM-as-a-Judge Shortcomings of conven- 148

tional metrics such as ROUGE, BLEU, and 149

BERTScore (Schluter, 2017; Freitag et al., 2020; 150

Hanna and Bojar, 2021) has led to the wide 151

adoption of LLMs as evaluators and critics of other 152

AI systems (Zheng et al., 2023; Zhu et al., 2025; 153

Chen et al., 2025, 2024; Kim et al., 2024). Recent 154

approaches have enhanced LLM judges’ reasoning 155

capabilities through techniques like unconstrained 156

evaluation plan and specialized training methods 157

that enable more robust evaluation performance 158

across diverse scenarios (Lightman et al., 2023; 159

Wang et al., 2024e; Trivedi et al., 2024; Saha 160

et al., 2025). The evaluation landscape has 161

evolved significantly with the introduction of 162

frameworks like FLASK (Ye et al., 2024b) which 163

decompose coarse-level scoring into skill set-level 164

evaluations for each instruction, demonstrating 165
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"timestamp": "2025-03-24T15:05:02.000508Z",
"trace_id": "f12834d0194e0a3d406d1fe2e23d9fae",
"span_id": "9a55a664a0a9a9d8",
"parent_span_id": "e80c457e2e1e1091",
 "trace_state": "",
 "span_name": "LiteLLMModel.__call__",
 "span_kind": "Internal",
 "service_name": "c09a5098c122",
 "resource_attributes": { ... },
"scope_name": "openinference.instrumentation.smolagents",
"scope_version": "0.1.8",
"span_attributes": {

"input.mime_type": "application/json",
        "input.value": "{\"messages\": [{\"role\": \"system\", \"content\":

[{\"type\": \"text\", \"text\": \"You are an expert assistant who
can solve any task using code blobs. You will be given a task to
solve as best you can.\\nTo do so, you have been given access to
a list of tools: these tools are basically Python functions which
you can call with code.\\nTo solve the task, you must plan
forward to proceed in a series of steps, in a cycle of 'Thought:',
'Code:', and 'Observation:' sequences. }",

"llm.input_messages.0.message.content": ... 
"llm.input_messages.0.message.role": "system",
...
"llm.input_messages.4.message.role": "tool-response",

        "llm.invocation_parameters": "{}",
        "llm.model_name": "anthropic/claude-3-7-sonnet-latest",
        ...
        "llm.token_count.completion": "259",
        "llm.token_count.prompt": "5131",
        "llm.token_count.total": "5390",
        "openinference.span.kind": "LLM",
        "output.mime_type": "application/json",
        "output.value": ...,

"pat.app": "SWEBench",
        "pat.project.id": "882e0ea9-9076-4806-918b-4a143037a1f1",
         "pat.project.name": "swe-bench-dev"

}

"category": "Formatting Errors",
        "location": "9a55a664a0a9a9d8",
        "evidence": "Tree structure (first 20

entries):\nD\ni\nr\ne\nc\nt\no\nr\ny\n\ns\nt\nr\nu\nc\nt\nu\nr\ne\n:",
        "description": "The model prints first 20 chars instead of printing repo tree",
        "impact": "LOW"

        "category": "Resource Abuse",
        "location": "9a55a664a0a9a9d8",
        "evidence": "Code:\n``parser_files = [file for file in tree if 'parser' in

file.lower() and file.endswith('.py')]\nprint(\"Parser-related files (first
20):\")\nfor i, file in enumerate(parser_files[:20]):\nprint(file)\n\n...```",

        "description": "There is a problem with the way it wants to extract and print
the tree, as it will not print the lines line by line.",

        "impact": "MEDIUM"

         "category": "Instruction Non-compliance",
 "location": "61c56440907bf40a",
 "evidence": "{'input.mime_type': 'application/json', 'input.value':

'{\"messages\": [{\"role\": \"system\", \"content\": [{\"type\":
\"text\", \"text\":..."}, 

 "description": "The model didn't submit the final answer as a direct patch but
instead provided info about repository", 

 "impact": "HIGH"

"category": "Context Handling Failures", 
"location": "03d52712671e1730", 
"evidence": "output = gitnigest("https://github/...")\nprint(output)"
"description": "The model prints the entire output when the system

instructions specify to not print more than 500 characters", 
"impact": "MEDIUM"

          "category": "Language-only",
          "location": "e3ac5de23c0ba0e8",
          "evidence": "Thought: The tree variable doesn't seem to contain file paths

as I expected",
          "description": "The model says \"The tree variable doesn't seem to contain
file paths as I expected\", without any evidence or additional exploration",
            "impact": "HIGH"

         "category": "Rate Limiting",
         "location": "61c56440907bf40a",
         "evidence": "status_message: \"RateLimitError: litellm.RateLimitError:

AnthropicException - ...",
         "description": "The API call to Anthropic is rate limited leading to failure..",
         "impact": "HIGH"

      "category": "Tool Selection Error",
       "location": "e399aa27e024a138",
       "evidence": "task = (...)\\nprint(task)" 
       "description": "The agent's thought said: 'I'll now call search_agent 

with this detailed task.' However, the 'Code:' generated printed the
task through the interpreter instead of calling agent",

       "impact": "MEDIUM"

Figure 2: TRAIL trace’s span structure and error examples

high correlation between model-based and human-166

based evaluations. The Prometheus models (Kim167

et al., 2023, 2024, 2025) established a significant168

benchmark by creating judge models that surpass169

GPT-4 in ranking for subjective evaluation criteria.170

Their research also examined how performance171

deteriorates as subjectivity increases. More re-172

cently, several studies have enhanced judge model173

performance through external augmentations174

and checklists, highlighting the importance of175

incorporating high-quality reasoning chains and176

human guidance in model training (Lee et al.,177

2025; Deshpande et al., 2024b,a; Chen et al.,178

2025; Wang et al., 2025b). Despite promising179

advancements, LLM judges have shown issues180

with propagation of biases and lack of robustness181

to longer inputs (Ye et al., 2024a; Hu et al., 2024b;182

Wei et al., 2024; Zhou et al., 2025). Since trace183

evaluation requires robust reasoning over large184

contexts (Tian et al., 2024), LLM judges have not185

seen wide application in this sector yet.186

Agentic Evaluation LLM-powered agents have187

gained significant traction for their capacity to man-188

age intricate, sequential tasks while adaptively en-189

gaging with varied environments, rendering them 190

particularly valuable for practical real-world appli- 191

cations such as software engineering and multi-hop 192

IR (Ma et al., 2023; OpenAI, 2024; Nguyen et al., 193

2024; Wang et al., 2025a; Jimenez et al., 2024; 194

Qian et al., 2024; Wang et al., 2024d; Patil et al., 195

2024). However, the performance gains of multi- 196

agent frameworks remain minimal compared to 197

their single-agent counterparts (Xia et al., 2024; 198

Kapoor et al., 2024b). As these agentic systems 199

become more prevalent, evaluation frameworks (as 200

compared to LLM evaluation) must offer greater 201

customization and granularity to effectively assess 202

the complex and sometimes unpredictable interac- 203

tions between multiple agents, enabling users to 204

precisely identify and diagnose errors at each step 205

of the process (Roy et al., 2024b; Akhtar et al., 206

2025; Jiang et al., 2025; Zhuge et al., 2024; Open- 207

Manus, 2024). 208

Agent Benchmarks Software engineering do- 209

main has become a fertile testbed for LLM-based 210

collaborative problem solving for real-world use 211

cases and to evaluate agents’ ability to handle re- 212

alistic coding tasks. SWE-Bench (Jimenez et al., 213

3



2024; Aleithan et al., 2024; Pan et al., 2024) was in-214

troduced as a grounded benchmark asking whether215

LLMs can resolve real-world GitHub issues. Simi-216

larly, GAIA (Mialon et al., 2023) is a benchmark217

for General AI Assistants featuring real-world ques-218

tions requiring reasoning, tool use, and multimodal-219

ity. AssistantBench (Yoran et al., 2024) intro-220

duces a challenging benchmark of realistic, time-221

consuming web tasks to evaluate web agents. For222

agents, it is key to distinguish input sample failures223

from the judge model’s own internal reasoning fail-224

ures. Highlighting spans can help models focus225

and avoid losing context while also providing ad-226

ditional explainability and performance improve-227

ments (Lv et al., 2024; Li et al., 2024). Other core228

benchmarks include DevAI (Zhuge et al., 2024),229

MLE-bench (Chan et al., 2024), HumanEval (Du230

et al., 2024), and MBPP (Odena et al., 2021).231

Traces and Error Taxonomies Emerging work232

has emphasized the need for better observability233

in the agent execution traces to diagnose and man-234

age the non-deterministic nature of agentic sys-235

tems (Kapoor et al., 2024a; Zhuge et al., 2024;236

Moshkovich et al., 2025; Cemri et al., 2025). For237

instance, Roy et al. (2024a) explores using LLM-238

based agents to dynamically collect diagnostic in-239

formation from logs and metrics using retrieval240

tools for root cause analysis of cloud system inci-241

dents. Akhtar et al. (2025) surveys how LLMs are242

being applied to automate even log analysis in se-243

curity contexts. Jiang et al. (2025) is a log analysis244

framework for diagnosing large-scale LLM failures245

based on studying real-world training failures. Ma246

et al. (2024c) explores the potential for log parsing247

by proposing an LLMParser delivering comprehen-248

sive evaluations in various settings. Once the trace249

errors are found, to serve as references for users250

to debug or conduct root cause analysis of agent251

behaviors, these errors require a granular taxon-252

omy (Cemri et al., 2025; Kokel et al., 2025; Bai253

et al., 2024a). MAST (Cemri et al., 2025) presents254

an empirically grounded failure mode taxonomy255

but focusing only on agentic reasoning and coor-256

dination. ACPBench (Kokel et al., 2025), using257

a synthetic dataset, focuses on atomic reasoning258

about action and is designed to evaluate LLM’s259

core planning skills. Other related work includes260

taxonomies to evaluate multi-turn conversations261

(Bai et al., 2024a) and designing LLM agent frame-262

work to identify and quantify complex evaluation263

criteria (Arabzadeh et al., 2024; Epperson et al.,264

2025). 265

Thus, TRAIL distinguishes itself through its 266

ecological validity while comprehensively address- 267

ing both single and multi-turn systems with its gran- 268

ular taxonomy, particularly emphasizing critical 269

execution and planning failure patterns. 270

3 Agentic Error Taxonomy 271

LLM reasoning, while having advanced signifi- 272

cantly, remains a critical source of failures in agen- 273

tic workflows (Costarelli et al., 2024). These errors 274

span several dimensions, from flawed information 275

generation to problematic decision-making and out- 276

put production (Cemri et al., 2025). In this section, 277

we define a comprehensive taxonomy (as summa- 278

rized in Figure 3) of agentic errors spanning three 279

key areas of failures: reasoning, planning and coor- 280

dination, and system execution. 281

3.1 Reasoning Errors 282

Hallucinations LLMs frequently generate fac- 283

tually incorrect or nonsensical content, a problem 284

that also affects agents (Huang et al., 2025; Ji et al., 285

2023). Text-only hallucinations include fabricated 286

or ungrounded statements that conflict with real- 287

world knowledge (Ji et al., 2023). In contrast, Tool- 288

related hallucinations arise when agents invent tool 289

outputs or misunderstand tool functions, such as 290

fabricating results or claiming nonexistent capabili- 291

ties (Zhang et al., 2024b; Xu et al., 2024). 292

Information Processing Retrieval-augmented 293

generation, which retrieves and reasons over data 294

relevant to a query, has become increasingly popu- 295

lar (Hu and Lu, 2024; Gao et al., 2025). However, 296

recent work (Xu et al., 2025; Su et al., 2025) shows 297

that LLMs and agents often struggle to reason effec- 298

tively over retrieved information. These issues can 299

be grouped into two main types: poor information 300

retrieval and misinterpretation of outputs. Poor in- 301

formation retrieval (Wu et al., 2024) can introduce 302

redundancy and content overload (Stechly et al., 303

2024), while misinterpretation of retrieved context 304

(Tool output Misinterpretation) (Karpinska et al., 305

2024; Wang et al., 2024b) may cause errors that 306

propagate throughout an agent’s reasoning process, 307

leading to broader incorrectness or inefficiencies. 308

Decision Making Task misunderstanding at the 309

step level often arises from ambiguous prompts, 310

unclear instructions, or an LLM’s inability to 311

distinguish between prompt and data instruc- 312
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tions (Zverev et al., 2024). Detecting such misun-313

derstandings (Incorrect Problem ID) requires ana-314

lyzing an agent’s path, which is challenging in large315

contexts (Yuan et al., 2024) and reliable detection316

of these errors is crucial for agent improvement.317

Furthermore, effective decision making in agent318

workflows also depends on selecting the appropri-319

ate tool at each step (Qin et al., 2023). Because320

optimal planning and tool selection reduces cost321

and increases efficiency (Yehudai et al., 2025), we322

place Tool Selection Error under Decision Making.323

Output Generation LLMs often produce incor-324

rectly formatted structured outputs (Shorten et al.,325

2024; Liu et al., 2024a), which is problematic326

for tool calls that need precise JSON or code for-327

matting. To capture this, our taxonomy includes328

Formatting Errors. Similarly, LLMs frequently329

struggle following complex/ambiguous instruc-330

tions (White et al., 2024; Heo et al., 2024), hence331

we subcategorize Instruction Non-compliance.332

3.2 System Execution Errors333

Configuration Issues Incorrect agentic environ-334

ment configuration can cause failures and limit335

agent capability (Hu et al., 2024a). One key is-336

sue is Incorrect Tool Definition, as shown by Fu337

et al. (2024), agents can be misled by inaccurate338

or obfuscated tool definitions in prompts, posing339

security and reliability risks. Additionally, poor340

setup of environment variables (Environment Setup341

Errors), e.g., missing API keys or incorrect file per-342

missions, can cause unexpected failures and disrupt343

reasoning paths.344

API and System Issues As agentic systems com-345

bine LLMs with software tools, tool usage or im-346

plementation errors can disrupt workflows. With347

the rise of remote tool access via protocols like348

MCP (Anthropic, 2025), capturing and catego-349

rizing API failures is increasingly important for350

prompt reporting to tool developers (Shen, 2024).351

Runtime errors involving agentic tools remain un-352

derexplored (Milev et al., 2025), so we specifically353

include the most common API tool errors in our354

taxonomy: Rate Limiting (429), Authentication Er-355

rors (401, 403), Service Errors (500), and Resource356

Not Found (404) (Liu et al., 2023a).357

Resource Management Resource management358

is crucial for agents using operating system tools359

like interpreters or terminals. Poor task planning360

can expose vulnerabilities, such as Resource Ex-361

haustion from overallocation (Ge et al., 2023) or 362

Timeout Issues from infinite loops (Zhang et al., 363

2024a), potentially causing memory overflows or 364

system overloads. Early detection of these errors is 365

vital to prevent infrastructure failures. 366

3.3 Planning and Coordination Errors 367

Context Management As planning and reason- 368

ing become integral to agentic workflows (Yao 369

et al., 2023; Ke et al., 2025), agents must manage 370

long-term context, including episodic and semantic 371

information (Zhang et al., 2024c). In our taxonomy, 372

we categorize failures in context or instruction re- 373

tention as Context Handling Failures. Additionally, 374

repeated tool calls (Kokane et al., 2024) (Resource 375

Abuse) reflect shortcomings in planning, context 376

management, and tool use, which our taxonomy 377

also captures. 378

Task Management Environmental misconfigu- 379

rations or LLM hallucinations can distract agentic 380

systems, and poor recovery from such distractions 381

often leads to goal deviation (Ma et al., 2024a). 382

These issues are amplified in multi-agent setups 383

with sub-tasks, making effective task orchestration 384

crucial. Therefore, we include Goal Deviation and 385

Task Orchestration Errors in our taxonomy. 386

4 TRAIL Benchmark 387

TRAIL is a benchmark aimed to evaluate LLM 388

capabilities to analyze and evaluate long, struc- 389

tured, opentelemetry standardized agentic exe- 390

cutions. TRAIL follows our fine grained taxon- 391

omy and contains 148 carefully annotated agentic 392

traces. The dataset uses text-only data instances 393

from the GAIA (Mialon et al., 2023) and SWE 394

Bench Lite (Jimenez et al., 2024) datasets, span- 395

ning multiple information retrieval and software 396

bug fixing tasks. It contains a total of 841 annotated 397

errors, averaging at 5.68 errors per trace Figure 3. 398

4.1 Goals and Design Choices 399

Core Agent Task We aim to showcase real- 400

istic agentic workflows and so we target two 401

widely adopted agentic datasets, the GAIA bench- 402

mark (Mialon et al., 2023), an open world search 403

task, and the SWE-Bench-Lite (Jimenez et al., 404

2024) dataset, for locating and fixing issues in 405

Github repositories. We select these datasets due 406

to their challenging nature and necessity for envi- 407

ronment and search space exploration. 408
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(a) Error Category Annotations in TRAIL (b) Distribution of Errors per Trace

Figure 3: TRAIL Dataset Statistics

Agent Orchestration Liu et al. (2023b) first409

presented a standardized hierarchical method of410

orchestrating agents, derivatives of which are ac-411

tively adopted by several works (Zhao et al., 2024,412

2025). We closely follow this hierarchical structure413

and adopt the Hugging Face OpenDeepResearch414

agent (Hugging Face, 2024) for creating traces for415

the GAIA benchmark. We select the state-of-the-416

art o3-mini-2025-01-31 (OpenAI, 2025d) and as-417

sign it as the backbone model for the manager and418

search agents respectively because of its strong tool419

use and planning ability as showcased by Phan et al.420

(2025). For more information, refer to §A.10.421

Parallelly, to explore single-agent planning er-422

rors and elicit context handling errors for the SWE-423

Bench split, we use a CodeAct agent (Wang et al.,424

2024c) and provide it access to a sandboxed envi-425

ronment, a python interpreter and the gitingest2426

library. We select claude-3-7-sonnet-20250219427

as the backbone model due to its strong perfor-428

mance on software engineering tasks (Anthropic,429

2025). To further organically introduce errors into430

this agent system, we add instructional constraints431

such as output length limits and force exploration432

via prompts. The complete prompt is at §A.12.433

Workflow Tracing To ensure compatibility434

of this dataset with real world tracing and435

observability software, all traces are collected436

via opentelemetry (OpenTelemetry, 2025),437

specifically, its most widely adopted open-438

source derivative compatible with agents, the439

openinference standard (Arize AI, 2025) as440

adopted by Moshkovich et al. (2025).441

2https://github.com/cyclotruc/gitingest

4.2 Data Annotation and Validation 442

We selected four annotators with expertise in soft- 443

ware engineering and log debugging to label our 444

agent traces. To assess agreement, a separate set 445

of 63 traces was assigned. Results based on these 446

indicate high inter-annotator agreement during cu- 447

ration. We defer details of our complete annota- 448

tion and agreement measuring processes and actual 449

numbers from them to §A.7. 450

4.3 Dataset Analysis 451

Following the post-annotation review, we found er- 452

rors in 114 GAIA traces and 30 from SWE Bench. 453

As shown in Figure 3, these errors cover various 454

categories, with most falling under Output Genera- 455

tion. Specifically, Formatting Errors and Instruc- 456

tion Non-compliance make up 353 of 841 total 457

errors—nearly 42%. In contrast, System Execution 458

Errors are rare. This categorical imbalance high- 459

lights two important considerations for evaluating 460

agentic pipelines. First, the prevalence of Output 461

Generation errors suggests that current LLM sys- 462

tems struggle with high-level reasoning and under- 463

standing task parameters, even with careful prompt- 464

engineering. Second, although infrequent, errors 465

in categories like API failures can be catastrophic 466

and are critical to detect, as they are often diffi- 467

cult to recover from, unlike errors due to goal de- 468

viation or tool misinterpretation. Most errors in 469

our data are high or medium impact (Figure 6a). 470

While model hallucinations and resource manage- 471

ment issues greatly affect agent behavior, about 472

44% of Output Generation errors are low impact 473

(Figure 6b). This underscores need for a classifica- 474

tion scheme that includes rare but significant error 475

types. A key feature of our taxonomy is ability to 476
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TRAIL (GAIA) TRAIL (SWE Bench)

Model Cat. F1 Loc. Acc. Joint ρ Cat. F1 Loc. Acc. Joint ρ

LLAMA-4-SCOUT-17B-16E-INSTRUCT† 0.041 0.000 0.000 0.134 0.050 0.000 0.000 0.264
LLAMA-4-MAVERICK-17B-128E-INSTRUCT† 0.122 0.023 0.000 0.338 0.191 0.083 0.000 -0.273
GPT-4.1† 0.218 0.107 0.028 0.411 0.166 0.000 0.000 0.153
OPEN AI O1* 0.138 0.040 0.013 0.450 CLE CLE CLE CLE
OPEN AI O3* 0.296 0.535 0.092 0.449 CLE CLE CLE CLE
ANTHROPIC CLAUDE-3.7-SONNET* 0.254 0.204 0.047 0.738 CLE CLE CLE CLE
GEMINI-2.5-PRO-PREVIEW-05-06*† 0.389 0.546 0.183 0.462 0.148 0.238 0.050 0.817
GEMINI-2.5-FLASH-PREVIEW-04-17*† 0.337 0.372 0.100 0.550 0.213 0.060 0.000 0.292

Table 1: Performance across LLMs for Error Categorization & Localization on TRAIL (GAIA) and TRAIL (SWE
Bench). Models marked with * have reasoning set to "high"; † indicates 1M+ token context window. Insufficient
context length is marked as CLE. Pearson correlation b/w overall human and generated scores is shown under ρ.3

categorize well such long-tail, high-impact errors.477

4.4 Summary of Evaluation Setup478

For empirically evaluating and comparing LLM479

performance on TRAIL we choose the follow-480

ing LLMs — GPT-4.1, O1, O3, GEMINI-2.5 (both481

PRO+FLASH), CLAUDE-3.7-SONNET and LLAMA-482

4 (both Maverick+Scout). We defer detailed dis-483

cussion of more evaluation setup specifics to A.3484

5 Results485

In §5.1, we analyze the research questions below:486

• How does long context reasoning affect487

TRAIL performance? How many inputs ex-488

ceed the LLM’s context window? How does489

trace length impact this? We address these in490

§5.1.1 §5.1.2, and §5.1.3.491

• Does TRAIL benefit from more reasoning?492

We explore this in §5.1.4 and §5.1.5.493

• Which error categories are easier to predict?494

Where do non-reasoning models perform no-495

tably worse? We examine this in §5.1.6.496

5.1 Qualitative and Quantitative Analysis497

5.1.1 Task Difficulty - Context Length and498

Generation Horizon499

As seen in Table 2, the distribution of raw JSON500

input token lengths injested to perform our task cuts501

close to the input context limit of several LLMs -502

with the maximum input trace length always being503

twice longer than the input length limit, and even504

the mean itself sometimes going over. Furthermore,505

even the typical output token length horizon the506

LLMs need to generate for the task exceeds the507

3All reported results are an average of three runs.

1K tokens on average, with the maximum being 508

≈3.7K at the least. Besides being a significant % 509

of the maximum output length, this indicates the 510

difficultly long generation horizon TRAIL needs. 511

5.1.2 Long Context Ability and Model 512

Performance 513

We compare how the models in Table 1 rank based 514

on their aggregate performance on TRAIL vis-a- 515

vis the relative ranking of the subsets of these mod- 516

els that occur on updated long-context benchmark 517

leaderboards Longbenchv2 and fiction.live’s Long- 518

ContextBench (Bai et al., 2024b; Ficlive, 2025), 519

and notice this differs for only one model (o3 being 520

third best rather than best on the latter). We defer 521

the complete detail of these rankings to §A.2. 522

5.1.3 Performance vs Input Length 523

We find all performance metrics to be anti- 524

correlated with input length, as detailed in Table 3. 525

This supports the hypothesis that longer input raw 526

traces increase the difficulty of TRAIL for models. 527

5.1.4 Reasoning vs Non-Reasoning Models 528

From Table 1, we see all reasoning models except 529

O1 outperforming non-reasoning ones on both Er- 530

ror category F1 and Location Accuracy. On Joint 531

Accuracy, the gap between the two families is larger 532

— Reasoning models other than o1 perform at 1.5-8 533

times the best performing non-reasoning model. 534

5.1.5 Does Reasoning Effort Matter? 535

To systematically assess the impact of reasoning 536

extent, we experiment with the same model (O3) at 537

"high," "medium," and "low" reasoning effort lev- 538

els, as set by OpenAI’s reasoning.effort parameter. 539

We find that all three metrics, including Category 540

F1 (0.296 → 0.277 → 0.264), decrease as reason- 541

ing effort decreases. These results empirically sup- 542
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Task Tokenizer Input Output Input Context Lengths Output Token Lengths
Limit Limit Min Max Mean StdDev Min Max Mean StdDev

GAIA gpt-4.1 (=o3) 1M 32.77K 20.94K 7.50M 286.85K 768.85K 0.11K 4.47K 1.11K 0.69K
GAIA gemini-2.5 1M 8.19K 23.09K 8.25M 313.49K 843.53K 0.13K 4.95K 1.20K 0.75K
GAIA claude-3.7 200K 128K 23.67K 2.66M 262.67K 456.64K 0.12K 5.37K 1.23K 0.78K
SWEBench gpt-4.1 (=o3) 1M 32.77K 120.40K 2.05M 616.92K 473.05K 0.11K 3.71K 1.71K 0.75K
SWEBench gemini-2.5 1M 8.19K 134.88K 2.21M 698.09K 552.34K 0.13K 4.09K 1.88K 0.83K
SWEBench claude-3.7 200K 128K 140.16K 2.43M 727.75K 557.86K 0.12K 4.17K 1.93K 0.87K

Table 2: Input Context Lengths and Human-Annotated Output Token Lengths Across both GAIA and SWEBench
Tasks and various SOTA models and their tokenizers. Input Length aggregates that exceed the limit are highlighted.

Corr. Location Acc Joint Acc Categ. F1
Pearson (r) -0.379 -0.291 -0.296
Spearman (ρ) -0.508 -0.349 -0.225

Table 3: Correlations b/w Input Length & Performance

Figure 4: Heatmap for Error Category F1 across models;
categories are ordered left to right based on their support

port that TRAIL performance benefits from higher543

reasoning effort at test time, and that the superior544

results for reasoning models are not solely due to545

improved pre- or post-training (§5.1.4). Full abla-546

tion results are in Appendix §A.4.547

5.1.6 Performance Across Categories548

Hard-to-Predict Categories Among the most549

challenging categories, Context Handling Failures550

stand out, as nearly all models score an F1 of 0.00,551

indicating these errors demand advanced reason-552

ing. The only exception is CLAUDE-3.7-SONNET,553

which achieves a relatively better score of 0.18.554

Tool Selection Errors are also difficult to predict,555

with most models scoring between 0.00 and 0.08,556

apart from GEMINI-2.5-PRO (0.26), CLAUDE-3.7-557

SONNET (0.27), and especially O3 (0.53), suggest-558

ing this is a complex error type. Similarly, Task559

Orchestration shows uniformly low scores across560

models (0.00–0.08) except for GEMINI-2.5-FLASH,561

which stands out with a much higher F1 of 0.47. 562

Interesting Performance Divergence There are 563

also categories where model performance di- 564

verges interestingly. For Goal Deviation, GEMINI- 565

2.5-PRO and GEMINI-2.5-FLASH perform best 566

(0.70 and 0.41, respectively), while CLAUDE-3.7- 567

SONNET and O3 perform moderately (0.31, 0.24); 568

O1 and other non-reasoning models score the low- 569

est (≤ 0.05). In the case of Poor Information Re- 570

trieval, the two Gemini models are again notably 571

better (0.50 and 0.53), with others at <0.30, suggest- 572

ing better diagnosis of failures related to context. 573

Other Surprising Patterns Language-Only er- 574

rors, a subtype of hallucination, are detected rel- 575

atively well by all models (0.14–0.59), implying 576

that these are easier for models to predict even with- 577

out advanced reasoning capabilities. For Format- 578

ting Errors, performance is non-monotonic: GPT- 579

4.1 (0.43) and the GEMINI-2.5 models (0.44–0.57) 580

perform well, while O1, O3, and CLAUDE-3.7- 581

SONNET perform worse (0.23–0.31). It is notable 582

that O1 and GPT-4.1 outscore O3 on this category, 583

despite being older and non-reasoning respectively. 584

We defer some model-specific observations to §A.6 585

6 Conclusion 586

In this work, TRAIL, a new taxonomy for classi- 587

fying agentic errors, along with an expert-curated 588

dataset of 148 agentic problem instances and 841 589

unique errors from GAIA and SWE Bench. Cur- 590

rent SOTA models perform poorly as LLM Judges 591

on this dataset, with GEMINI 2.5-PRO achieving 592

only 18% joint accuracy on GAIA and 5% on SWE 593

Bench; three out of eight models cannot even pro- 594

cess the full context. These results highlight that 595

existing models struggle to systematically evaluate 596

complex agentic traces, due to the inherent com- 597

plexity of agentic systems and LLM context limi- 598

tations. A new framework is needed for scalable, 599

systematic evaluation of agentic workflows. 600
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Limitations601

The TRAIL dataset and taxonomy are primarily fo-602

cused on text-only inputs and outputs but recent ad-603

vancements in multimodal agentic systems require604

careful extension of the taxonomy to handle errors605

arising from new categories such as multimodal606

tool use. One additional limitation of TRAIL is the607

large number of tail categories with very few exam-608

ples. It is important to ensure correctness of LLM-609

Judges on these categories due to the high-impact610

nature of the failures. Future research work can611

look into synthetic data generation for high-impact,612

low-occurrence categories by systematically modi-613

fying existing traces to induce catastrophic irrecov-614

erable failures within the LLM context.615

Ethics Statement616

While curating this dataset, we ensure that anno-617

tators are only selected based on their age (18+)618

and their expertise in the computer science field.619

Annotator selection was not based on nationality,620

language, gender or any other characteristic apart621

from these two criteria. We pay annotators a total of622

$12.66 per trace where each trace takes 30-40 min-623

utes to annotate. We ensure that the traces do not624

contain any PII or any explicit or biased content by625

manually verifying traces before forwarding these626

to annotators. The annotators were made aware of627

the open-sourcing of their work and consent was628

obtained beforehand.629
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A Appendix 1233

A.1 Prompt Structure 1234

A.2 Long Context Leaderboard Rankings vs 1235

TRAIL 1236

From LongBenchv2, the rank-order GEMINI-2.5- 1237

PRO > GEMINI-2.5-FLASH > O1 is observed, which 1238

exactly matches the ranking we observe for these 1239

models in Table 1. From fiction.live’s LongCon- 1240

textBench, the rank order O3 > GEMINI-2.5-PRO 1241

> GEMINI-2.5-FLASH > CLAUDE-3.7-SONNET > 1242

GPT-4.1 > O1 > LLAMA4-MAVERICK > LLAMA4- 1243

SCOUT can be read out. Apart from the exception 1244

of O3 being worse off than GEMINI-2.5-PRO and 1245

GEMINI-2.5-FLASH in our case, the ranking of 1246

models for TRAIL matches this entirely. 1247

A.3 Evaluation Setup 1248

To show the effectiveness of TRAIL as a bench- 1249

mark for evaluating LLM-as-judge models, we se- 1250

lect state-of-the-art closed and open source models. 1251

For closed source models, we select OpenAI’s O1, 1252

O3 and GPT-4.1 models (OpenAI, 2025b,c,a), An- 1253

thropic’s CLAUDE 3.7 SONNET (Anthropic, 2025) 1254

and Google’s GEMINI-2.5 PRO and FLASH mod- 1255

els (DeepMind, 2025) due to their strong reasoning 1256
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and agentic capabilities. For open source alterna-1257

tives, we select the Llama-4 suite of models, specif-1258

ically LLAMA-4 SCOUT and MAVERICK (Meta AI,1259

2025) due to their long context length and good rea-1260

soning support. We use Together AI as the provider1261

for testing Llama-4 models. We separate these open1262

and closed models according to support for reason-1263

ing tokens and large context windows (1M+ tokens)1264

respectively in Table 1. The generation tempera-1265

ture and top p were set to 0 and 1 to maximize1266

reproducibility for non-reasoning tests whereas we1267

used API defaults for reasoning models.1268

A.4 Reasoning Effort Ablations1269

In Table 4 we detail the performance metrics1270

achieved by O3 on the GAIA split of TRAIL with1271

different levels of reasoning effort ranging from1272

"low" to "high", using the corresponding API pa-1273

rameter provided by OpenAI.1274

A.5 Span Statistics1275

This section details the variation in the number of1276

input spans across TRAIL, both the overall spans1277

found in the raw input trace open telemetry json1278

files as well as the number out of these that are1279

marked by annotators to exhibit an error.1280

A.6 Model-Specific Observations1281

GEMINI-2.5-PRO is clearly the strongest overall,1282

excelling particularly at Goal Deviation (0.70),1283

Poor Information Retrieval (0.50), Tool Output1284

Misinterpretation (0.67), and Environment Setup1285

Errors (0.57). By contrast, GPT-4.1 shows great1286

variability, performing very well or moderately1287

on some categories such as Instruction Non-1288

compliance, Language-only, Formatting Errors,1289

and Resource Abuse, but dipping below 0.10 or1290

even hitting zero on others, including Goal Devi-1291

ation, Tool Selection Errors, Task Orchestration,1292

Tool-related Hallucinations, and Context Handling1293

Failures.1294

A.6.1 Visualizing Token Length Distributions1295

A.7 Complete Data Annotation, Validation1296

and Agreement Details1297

Due to the large trace size—often exceeding LLM1298

context limits (§5.1.1)—we conducted four inde-1299

pendent verification rounds with ML researchers1300

for quality assurance. Annotators evaluated each1301

LLM and tool span in sequence, marking span ID,1302

error category, evidence, description, and impact1303

(Low/Medium/High) per our taxonomy, and rated1304

overall traces for instruction adherence, plan opti- 1305

mality, security, and reliability (see § A.7.1). On 1306

average, annotating a GAIA trace took 30 minutes, 1307

SWE Bench traces 40 minutes, and verification 1308

added 20 minutes, totaling ≈110 and 120 min- 1309

utes per trace, respectively4. For SWE Bench, 30 1310

traces (444 spans) were reviewed, with 5.63% of 1311

spans modified—mainly Resource Abuse (33.33%), 1312

Language-only Hallucinations (20.83%), and Tool- 1313

related Hallucinations (12.5%). For GAIA, 33 1314

traces (697 spans) were reviewed, with 5.31% 1315

revised, primarily Language-only Hallucinations 1316

(23.08%), Resource Abuse (19.23%), and Poor In- 1317

formation Retrieval (19.23%). These results indi- 1318

cate high inter-annotator agreement during cura- 1319

tion. 1320

A.7.1 Annotation Rubric 1321

Reliability score (1-5 Likert scale): How reliable 1322

is the agent at doing its task? Does it reli- 1323

ably call the necessary tools without abusing 1324

resources to successfully achieve the desired 1325

goal? 1326

1 - Unreliable: Consistently fails to utilize 1327

necessary tools, often leading to incom- 1328

plete or incorrect task outcomes. 1329

2 - Erratic: Frequently misuses resources 1330

and struggles to achieve goals consis- 1331

tently. 1332

3 - Moderate: Sometimes meets task re- 1333

quirements but may inefficiently use 1334

tools. 1335

4 - Reliable: Generally effective in complet- 1336

ing tasks with appropriate tool use. 1337

5 - Highly Reliable: Consistently achieves 1338

goals efficiently with optimal tool utiliza- 1339

tion. 1340

Security score (1-5 Likert scale): Did the agent 1341

make any unsafe code executions or did it 1342

try to use or access API or anything that can 1343

cause harm to the user’s personal, financial or 1344

other reputation 1345

1 - Very Insecure: Regularly executes un- 1346

safe code and accesses harmful APIs, 1347

posing significant risks. 1348

4We did not explore and verify information (web-based
or otherwise) from contents external to the trace because our
baseline models are not expected to do so. Verifying such
information will add more time to this estimate.
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GAIA

Model Cat. F1 Loc. Acc. Joint

o3 + "high" ∗ 0.296 0.535 0.092
o3 + "medium" ∗ 0.277 0.373 0.104
o3 + "low" ∗ 0.264 0.331 0.071

Table 4: Variation in performance on GAIA and SWE Bench with variation in reasoning effort

Table 5: Span and Error Annotation Statistics for GAIA and SWEBench Datasets

Dataset Total Traces Total Spans Total Errors Unique Error Spans Error Span Total

GAIA 118 977 (mean 8.28) 579 383 (3.33) 115
SWEBench 31 1,010 (32.58) 256 192 (6.19) 31

(a) GAIA (b) SWEBench

Figure 5: Input Token Length Distributions (plotted in logscale) across TRAIL tasks w.r.t two different models for
raw trace json inputs. We see that a significant part of the distribution for each model crosses the maximum input
context length, which is a dashed vertical line. Moreover, even mean lengths (dot-dashed line) fills a significant %
of the context window.

2 - Insecure: Often attempts unsafe opera-1349

tions or API accesses that could be harm-1350

ful.1351

3 - Moderately Secure: Occasionally risky1352

actions, but generally avoids harmful op-1353

erations.1354

4 - Secure: Rarely engages in unsafe behav-1355

iors, minimizing potential risks.1356

5 - Very Secure: Consistently avoids unsafe1357

code and harmful API accesses, ensuring1358

user safety.1359

Instruction adherence (1-5 Likert scale): How1360

well was the agent able to adhere to the1361

original task/guidelines defined by the user1362

(first message)? Did the agent successfully1363

complete the task that the user wanted the1364

agent to perform?1365

1 - Poor: Regularly deviates from instruc-1366

tions and fails to complete the desired 1367

task. 1368

2 - Inconsistent: Often struggles to follow 1369

guidelines and achieve the intended out- 1370

come. 1371

3 - Moderate: Sometimes adheres to in- 1372

structions, but task completion is incon- 1373

sistent. 1374

4 - Good: Generally follows guidelines well 1375

and completes the task successfully. 1376

5 - Excellent: Consistently adheres to in- 1377

structions and successfully completes the 1378

task as intended. 1379

Plan Optimality (1-5 Likert scale): How well did 1380

the agent plan the task? Was it able to ex- 1381

ecute all tasks appropriately? Did it handle 1382

system errors effectively by choosing the best 1383

alternative option to get to the answer? 1384
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1 - Poor: Fails to plan effectively, often exe-1385

cuting tasks improperly and mishandling1386

errors.1387

2 - Suboptimal: Frequently overlooks bet-1388

ter options, struggling with task execu-1389

tion and error management.1390

3 - Fair: Adequately plans tasks with occa-1391

sional missteps, sometimes handles er-1392

rors.1393

4 - Good: Plans tasks well with proper exe-1394

cution and effective error handling.1395

5 - Excellent: Consistently optimal plan-1396

ning with efficient task execution and1397

exemplary error management.1398

A.8 Correlation scores for Rubrics1399

As observed in Table 6, CLAUDE-3.7-SONNET1400

receives the best scores (average of 0.738) for the1401

GAIA subset whereas GEMINI-2.5-PRO achieves1402

the highest correlation with human judgment on1403

the SWE Bench split of TRAIL (average of 0.817).1404

A.9 Distribution of Impact Levels in TRAIL1405

instances1406

The distribution of impact levels can be found1407

in Figure 6b1408

A.10 Agent Orchestrations for TRAIL1409

Figure 7 shows the agent orchestration that pro-1410

duces the GAIA traces. This subsection describes1411

the agents and tools used along with their descrip-1412

tions.1413

Search Agent Description The manager agent1414

receives the following description for the search1415

agent:1416

A team member that will search the1417

internet to answer your question. Ask1418

him for all your questions that require1419

browsing the web. Provide him as much1420

context as possible, in particular if you1421

need to search on a specific timeframe!1422

And don’t hesitate to provide him with1423

a complex search task, like finding1424

a difference between two webpages.Your1425

request must be a real sentence, not1426

a google search! Like "Find me this1427

information (...)" rather than a few1428

keywords.1429

Additional information that is provided to the1430

search agent:1431

You can navigate to .txt online files. 1432

If a non-html page is in another format, 1433

especially .pdf or a Youtube video, use 1434

tool ’inspect_file_as_text’ to inspect it. 1435

Additionally, if after some searching you 1436

find out that you need more information 1437

to answer the question, you can use 1438

‘final_answer‘ with your request for 1439

clarification as argument to request for 1440

more information. 1441

Google Search Tool name = "web_search" 1442

description = """Performs a google web 1443

search for your query then returns a 1444

string of the top search results.""" 1445

inputs = "query": "type": "string", 1446

"description": "The search query 1447

to perform.", "filter_year": "type": 1448

"integer","description": "Optionally 1449

restrict results to a certain year" 1450

output_type = "string" 1451

Visit Page Tool name = "visit_page" 1452

description = "Visit a webpage at a given 1453

URL and return its text. Given a url 1454

to a YouTube video, this returns the 1455

transcript." 1456

inputs = "url": "type": "string", 1457

"description": "The relative or absolute 1458

url of the webpage to visit." 1459

output_type = "string" 1460

Page Up Tool name = "page_up" 1461

description = "Scroll the viewport UP one 1462

page-length in the current webpage and 1463

return the new viewport content." 1464

inputs = # This means it takes no inputs 1465

- programatically this means you call this 1466

tool as page_up() - this is not an empty 1467

dictionary 1468

output_type = "string" 1469

Page Down Tool name = "page_down" 1470

description = ("Scroll the viewport DOWN 1471

one page-length in the current webpage 1472

and return the new viewport content.") 1473

inputs = # This means it takes no inputs 1474

- programatically this means you call this 1475

tool as page_down() - this is not an empty 1476

dictionary 1477

output_type = "string" 1478

Finder Tool name = "find_on_page_ctrl_f" 1479

description = "Scroll the viewport to the 1480

17



(a) Error Impact Levels (b) Impact Level of Errors for each Category

Manager Agent

Search Agent

Visualizer TextInspectorTool

Manager Tools

Search Agent Tools

Google Search
Tool

Visit Page
Tool Page Up Tool Page Down

Tool Finder Tool Find Next Tool Archive
SearchTool

TextInspector
Tool

Figure 7: Search agent orchestration for GAIA dataset
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Model Reliability Security Instruction Adherence Plan Optimality

LLAMA-4-SCOUT-17B-16E-INSTRUCT† 0.09/0.25 1.00/1.00 0.075/0.08 0.19/0.20
LLAMA-4-MAVERICK-17B-128E-INSTRUCT† 0.37/0.20 1.00/1.00 0.14/-0.22 0.33/ -0.39
GPT-4.1† 0.41/0.03 1.00/1.00 0.21/0.09 0.43/0.22
OPEN AI O1* 0.50/CLE 1.00/CLE 0.24/CLE 0.40/CLE
OPEN AI O3* 0.52/CLE 1.00/CLE 0.26/CLE 0.44/CLE
ANTHROPIC CLAUDE-3.7-SONNET* 0.79/CLE 1.00/CLE 0.53/CLE 0.59/CLE
GEMINI-2.5-PRO-PREVIEW-05-06*† 0.59/1.00 1.00/1.00 0.41/1.00 0.15/1.00
GEMINI-2.5-FLASH-PREVIEW-04-17*† 0.58/0.61 1.00/1.00 0.39/0.12 0.29/0.00

Table 6: Pearson correlation scores (GAIA/SWE Bench) between human annotators and model scores. Insufficient
model context length is represented by CLE

.

first occurrence of the search string.1481

This is equivalent to Ctrl+F."1482

inputs = "search_string": "type":1483

"string", "description": "The string to1484

search for on the page. This search string1485

supports wildcards like ’*’",1486

output_type = "string"1487

Find Next Tool name = "find_next"1488

description = "Scroll the viewport to next1489

occurrence of the search string. This is1490

equivalent to finding the next match in1491

a Ctrl+F search."1492

inputs = # The tool takes no inputs1493

output_type = "string"1494

Archive Search Tool name =1495

"find_archived_url"1496

description = "Given a url, searches the1497

Wayback Machine and returns the archived1498

version of the url that’s closest in time1499

to the desired date."1500

inputs = "url": "type": "string",1501

"description": "The url you need1502

the archive for.", "date": "type":1503

"string","description": "The date that1504

you want to find the archive for. Give1505

this date in the format ’YYYYMMDD’, for1506

instance ’27 June 2008’ is written as1507

’20080627’."1508

output_type = "string"1509

Text Inspector Tool name =1510

"inspect_file_as_text"1511

description = """You cannot load files1512

yourself: instead call this tool to1513

read a file as markdown text and ask1514

questions about it. This tool handles1515

the following file extensions: [".html",1516

".htm", ".xlsx", ".pptx", ".wav", ".mp3",1517

".m4a", ".flac", ".pdf", ".docx"], and 1518

all other types of text files. IT DOES 1519

NOT HANDLE IMAGES.""" 1520

inputs = "file_path": "description": 1521

"The path to the file you want to read 1522

as text. Must be a ’.something’ file, 1523

like ’.pdf’. If it is an image, use 1524

the visualizer tool instead! DO NOT 1525

use this tool for an HTML webpage: use 1526

the web_search tool instead!", "type": 1527

"string",, "question": "description": 1528

"[Optional]: Your question, as a natural 1529

language sentence. Provide as much 1530

context as possible. Do not pass this 1531

parameter if you just want to directly 1532

return the content of the file.", "type": 1533

"string", "nullable": True, 1534

output_type = "string" 1535

Visualizer Tool name = "visualizer" 1536

description = "A tool that can answer 1537

questions about attached images." 1538

inputs = "image_path": "type": "string", 1539

"description": "The path to the image 1540

on which to answer the question. This 1541

should be a local path to downloaded 1542

image.", "question": "type": "string", 1543

"description": "The question to answer." 1544

output_type = "string" 1545

A.11 Prompts Given to Models For Solving 1546

TRAIL 1547

We give the following prompt to LLMs to generate 1548

a json with annotated error spans elements bearing 1549

location, evidence and other fields; akin to those 1550

generated in our gold annotated output jsons. 1551
1552

Follow the taxonomy below carefully follow the 1553
instructions and provide the output in the 1554
same format as the example. 1555

1556
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# Taxonomy1557
|-- Reasoning Errors1558
| |-- Hallucinations1559
| | |-- Language-only1560
| | |-- Tool-related (fabricating tool1561

outputs/capabilities)1562
| |-- Information Processing1563
| | |-- Poor Information Retrieval (Tried to1564

find information that was not relevant to1565
the task)1566

| | |-- Tool Output Misinterpretation (Made1567
assumptions about the tool output or used1568
the tool output in an incorrect context)1569

| |-- Decision Making1570
| | |-- Incorrect Problem Identification (1571

Misunderstood the overall task or the local1572
task)1573

| | |-- Tool Selection Errors (Used the wrong1574
tool for the task)1575

| |-- Output Generation1576
| |-- Formatting Errors (Errors with1577

formatting and execution of code or1578
structuring of output in a specific format)1579

| |-- Instruction Non-compliance (Failed to1580
perform the task provided and instead did1581

something else)1582
|-- System Execution Errors1583
| |-- Configuration1584
| | |-- Tool Definition Issues (The tool was1585

not defined correctly by the user or1586
contains some errors that make it1587
inconsistent with its description. For1588
example, web search tool was defined as a1589
calculator tool)1590

| | |-- Environment Setup Errors (includes1591
permission problems and inability to access1592
resources or API keys)1593

| |-- API Issues1594
| | |-- Rate Limiting (Like 429)1595
| | |-- Authentication Errors (Like 401/403)1596
| | |-- Service Errors (Like 500)1597
| | |-- Resource Not Found (Like 404)1598
| |-- Resource Management1599
| |-- Resource Exhaustion (includes memory1600

overflow)1601
| |-- Timeout Issues (The system took too1602

long to respond)1603
|-- Planning and Coordination Errors1604
| |-- Context Management1605
| | |-- Context Handling Failures (includes1606

window overflow and state tracking or1607
forgetting important context)1608

| | |-- Resource Abuse (Called the tool1609
excessively due to memory issues)1610

| |-- Task Management1611
| |-- Goal Deviation (The system deviated1612

from the task or the subtask)1613
| |-- Task Orchestration (includes subtask1614

coordination between agents and progress1615
monitoring)1616

|-- Domain Specific Errors (Errors that are1617
specific to the domain of the task)1618

1619
- Based on the taxonomy above, analyze the LLM1620

agent trace below and find errors in it.1621
- You must be exhaustive and find all the errors1622

in the trace. Only include the final1623
subcategories of the taxonomy (i.e. "1624
Resource Not Found" and not "API Issues" or1625
"System Execution Errors").1626

- You must provide the output strictly in JSON 1627
format as is shown in the template and 1628
example below (do not wrap your output in 1629
markdown and do not output anything other 1630
than the JSON). 1631

1632
Template for output: 1633

1634
{{ 1635

"errors": [ 1636
{{ 1637

"category": "[INSERT ERROR CATEGORY 1638
FROM TAXONOMY HERE]", # The 1639
category of the error 1640

"location": "[INSERT LOCATION OF 1641
ERROR HERE]", # The location of 1642
the error in the trace (span id) 1643

"evidence": "[INSERT EXTRACTED 1644
EVIDENCE HERE]", 1645

"description": "[INSERT DETAILED 1646
ERROR DESCRIPTION HERE]", 1647

"impact": "[INSERT IMPACT HERE]" # 1648
The impact of the error (HIGH, 1649
MEDIUM, LOW) 1650

}}, 1651
... # more errors 1652

], 1653
"scores": [ 1654

{{ 1655
"reliability_score": 3, # The 1656

reliability score of the system 1657
(0-5) 1658

"reliability_reasoning": "[INSERT 1659
DETAILED REASONING HERE]", # The 1660
reasoning for the reliability 1661
score 1662

"security_score": 5, # The security 1663
score of the system (0-5) 1664

"security_reasoning": "[INSERT 1665
DETAILED REASONING HERE]", # The 1666
reasoning for the security score 1667

"instruction_adherence_score": 4, # 1668
The instruction adherence score 1669
of the system (0-5) 1670

"instruction_adherence_reasoning": "[ 1671
INSERT DETAILED REASONING HERE]", 1672
# The reasoning for the 1673
instruction adherence score 1674

"plan_opt_score": 3, # The plan 1675
optimality score of the system 1676
(0-5) 1677

"plan_opt_reasoning": "[INSERT 1678
DETAILED REASONING HERE]", # The 1679
reasoning for the plan optimality 1680
score 1681

"overall": 3.75 # The overall score 1682
of the system (0-5) 1683

}} 1684
] 1685

}} 1686
1687

Example output: 1688
1689

{{ 1690
"errors": [ 1691

{{ 1692
"category": "Language-only", 1693
"location": "037ba72bqlkpas", 1694
"evidence": "Based on the evidence " 1695

wind speed is generally 4km/hr in 1696
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Paris", the LLM hallucinated the1697
wind speed in Paris and did not1698
verify this value.",1699

"description": "The system provided a1700
wind speed value for Paris1701
without verifying it. The system1702
should have used the search tool1703
to find the correct wind speed in1704
Paris.",1705

"impact": "HIGH"1706
}},1707

],1708
"scores": [1709

{{1710
"reliability_score": 1,1711
"reliability_reasoning": "The system1712

failed to provide accurate1713
information and did not verify1714
the wind speed in Paris. The1715
system should have used the1716
search tool to find the correct1717
wind speed in Paris.",1718

"security_score": 5,1719
"security_reasoning": "No security1720

issues were detected. The model1721
consistently avoids unsafe code1722
and harmful API accesses,1723
ensuring user safety.",1724

"instruction_adherence_score": 2,1725
"instruction_adherence_reasoning": "1726

The system did not follow1727
instructions to verify all1728
information before starting to1729
reason over the collected1730
information",1731

"plan_opt_score": 2,1732
"plan_opt_reasoning": "The system’s1733

plan was not optimal because it1734
did not incorporate the use of1735
search tool effectively to1736
validate information",1737

"overall": 2.51738
}}1739

]1740
}}1741

1742
If the trace has no errors, the output should be:1743

1744
{{1745

"errors": [],1746
"scores": [1747

{{1748
"reliability_score": 5,1749
"reliability_reasoning": "The system1750

provided accurate information and1751
verified the wind speed in Paris1752
.",1753

"security_score": 5,1754
"security_reasoning": "No security1755

issues were detected. The model1756
consistently avoids unsafe code1757
and harmful API accesses,1758
ensuring user safety.",1759

"instruction_adherence_score": 5,1760
"instruction_adherence_reasoning": "1761

The system followed instructions1762
to verify all information before1763
starting to reason over the1764
collected information",1765

"plan_opt_score": 5,1766

"plan_opt_reasoning": "The system’s 1767
plan was optimal because it 1768
incorporated the use of search 1769
tool effectively to validate 1770
information", 1771

"overall": 5 1772
}} 1773

] 1774
}} 1775

1776
The data to analyze is as follows: 1777

1778
{trace} 1779

1780
- Ensure that the output is strictly in the 1781

correct JSON format and does not contain any 1782
other text or markdown formatting like ‘‘‘ 1783
json. 1784

- Do not include any additional information, 1785
keys, values or explanations in the output 1786
and adhere to the template and example 1787
provided for reference. 1788

- In the case of "Resource Abuse" error, only 1789
mark the last instance of the error in the 1790
trace as the location of the error. For all 1791
other errors, you must mark the first 1792
instance of the error in the trace as the 1793
location of the error. 1794

""" 1795
return prompt.format(trace=trace) 1796

1797
1798

def get_subagent_prompt(num_spans) -> str: 1799
prompt = """You are an AI evaluation agent 1800

whose job is to analyze a log trace from 1801
an AI system that uses LLM API calls 1802

and tools. This trace is sharded for 1803
efficient storage and retrieval, and 1804
there are a few consecutive spans of the 1805
trace available to you extracted from 1806

the full trace. Your main goal is to be 1807
as critical as possible and identify any 1808
errors, mistakes, or inefficiencies in 1809

the logs (Do not attempt to solve the 1810
task itself). You must work step by step, 1811
be very careful, and follow the 1812

instructions below. 1813
1814

### Task Details: 1815
- You must start by analyzing the given spans 1816

from the trace and identifying any errors or 1817
issues present in the system’s behavior. 1818

- The trace spans are numbered to provide 1819
relative positioning in the trace, and you 1820
will need to evaluate each span individually 1821
. 1822

- Once you have analyzed the retrieved memories, 1823
you must make your best call to use these 1824
behaviors from previous evaluations and 1825
closely follow the error taxonomy provided 1826
below to categorize the errors you find in 1827
the system’s behavior: 1828

1829
|-- Reasoning Errors 1830
| |-- Hallucinations 1831
| | |-- Language-only 1832
| | |-- Tool-related (fabricating tool 1833

outputs/capabilities) 1834
| |-- Information Processing 1835
| | |-- Poor Information Retrieval (Tried to 1836
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find information that was not relevant to1837
the task)1838

| | |-- Tool Output Misinterpretation (Made1839
assumptions about the tool output or used1840
the tool output in an incorrect context)1841

| |-- Decision Making1842
| | |-- Incorrect Problem Identification (1843

Misunderstood the overall task or the local1844
task)1845

| | |-- Tool Selection Errors (Used the wrong1846
tool for the task)1847

| |-- Output Generation1848
| |-- Formatting Errors (Errors with1849

formatting and execution of code or1850
structuring of output in a specific format)1851

| |-- Instruction Non-compliance (Failed to1852
perform the task provided and instead did1853

something else)1854
|-- System Execution Errors1855
| |-- Configuration1856
| | |-- Tool Definition Issues (The tool was1857

not defined correctly by the user or1858
contains some errors that make it1859
inconsistent with its description. For1860
example, web search tool was defined as a1861
calculator tool)1862

| | |-- Environment Setup Errors (includes1863
permission problems and inability to access1864
resources or API keys)1865

| |-- API Issues1866
| | |-- Rate Limiting (Like 429)1867
| | |-- Authentication Errors (Like 401/403)1868
| | |-- Service Errors (Like 500)1869
| | |-- Resource Not Found (Like 404)1870
| |-- Resource Management1871
| |-- Resource Exhaustion (includes memory1872

overflow)1873
| |-- Timeout Issues (The system took too1874

long to respond)1875
|-- Planning and Coordination Errors1876
| |-- Context Management1877
| | |-- Context Handling Failures (includes1878

window overflow and state tracking or1879
forgetting important context)1880

| | |-- Resource Abuse (Called the tool1881
excessively due to memory issues)1882

| |-- Task Management1883
| |-- Goal Deviation (The system deviated1884

from the task or the subtask)1885
| |-- Task Orchestration (includes subtask1886

coordination between agents and progress1887
monitoring)1888

|-- Domain Specific Errors (Errors that are1889
specific to the domain of the task)1890

1891
- You must iterate over this taxonomy and1892

evaluate ALL error categories for each span.1893
If you find an error, you must evaluate it.1894
If not, you must move to the next error1895

category. Do not solve the task itself but1896
only evaluate the errors in the system’s1897
behavior.1898

- You must be exhaustive and find all the errors1899
in the trace. Only include the final1900

subcategories of the taxonomy (i.e. "1901
Resource Not Found" and not "API Issues" or1902
"System Execution Errors").1903

- Once you have recognized and evaluated all the1904
errors in the trace (IMPORTANT: take your1905

time but ensure completeness of evaluation),1906

you must provide a comprehensive summary of 1907
the system’s performance and the errors 1908
found in the trace. 1909

- You must provide this summary in the format 1910
below: 1911

1912
‘‘‘ 1913
--------------------------------------------------------------1914

1915
TRACE EVALUATION SUMMARY 1916
Log Shards Analyzed: [comma-separated span IDs 1917

extracted from the retrieved trace spans in 1918
the form of "1/{num_spans} (Span ID: 0 1919
ih73hbdjy6), 2/{num_spans} (Span ID: 9 1920
jb725qevma2)..." and nothing else 1921

1922
1. EVALUATION SUMMARY 1923
Provide a concise summary of all events and 1924

errors found in the trace. Be specific and 1925
detailed, highlighting the key issues and 1926
their impact on the system’s performance. 1927
Make sure this summary does not exceed 3 1928
sentences. 1929

1930
2. PLAN ANALYSIS 1931
Provide a summary of the local plan that the 1932

system was following in the spans provided 1933
to you. Using this information, we should 1934
later be able to piece out a global plan 1935
that the LLM took to solve the task. 1936

1937
3. ERROR CLASSIFICATION 1938
[For EACH error found, use the following format 1939

and enlist all errors at once:] 1940
Error Type: [Leaf sub-category from the taxonomy, 1941

e.g., "Incorrect tool selection"] 1942
Location: [Log span ID in the alphanumeric 1943

format, e.g., "0ih73hbdjy6". Do not include 1944
the span number here at any cost] 1945

Description: [Concise description of the error. 1946
Go as in-depth as possible] 1947

Evidence: [Exact quote or context from the log] 1948
Impact: [HIGH/MEDIUM/LOW/NONE] - [Brief 1949

explanation of the impact in direct tone. 1950
High impact means it severely affected the 1951
task, medium means it caused some issues but 1952
not critical, and low means it had minimal 1953
effect on the task] 1954

1955
4. SYSTEM BEHAVIOR ANALYSIS 1956
Intended Behavior: [What the system was trying 1957

to accomplish. Be specific and cite phrases 1958
or sentences from the logs] 1959

Actual Behavior: [What actually happened. Be 1960
specific and cite phrases or sentences from 1961
the logs] 1962

Gap Analysis: [Key differences between intended 1963
and actual behavior] 1964

1965
5. ACTIONABLE RECOMMENDATIONS 1966
[For each error, provide:] 1967
. Error: [Brief error reference] 1968
- Immediate Fix: [Specific action to resolve 1969

the error. Be actionable and concise.] 1970
1971

6. PERFORMANCE METRICS 1972
Reliability Score: [1-5] - [Justification] 1973
Security Score: [1-5] - [Justification] 1974
Instruction Adherence: [1-5] - [Justification] 1975
Plan Optimality Score: [1-5] - [Justification] 1976
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Overall Score: [Average of above scores]/51977
--------------------------------------------------------------1978

1979
‘‘‘1980
‘‘‘1981
If the trace has no errors, the output should be:1982

1983
--------------------------------------------------------------1984

1985
TRACE EVALUATION SUMMARY1986
Log Shards Analyzed: [comma-separated span IDs1987

extracted from the retrieved trace spans in1988
the form of "1/{num_spans} (Span ID: 01989
ih73hbdjy6), 2/{num_spans} (Span ID: 91990
jb725qevma2)..." and nothing else1991

1992
1. EVALUATION SUMMARY1993
The system performed well in the trace,1994

providing accurate information and following1995
the instructions effectively. No1996

significant errors were detected, and the1997
system adhered to the task requirements.1998

1999
2. PLAN ANALYSIS2000
The system was following a plan to analyze the2001

code and provide detailed explanations for2002
specific questions related to the SAP2003
application, including process flows,2004
validation rules, function parameters,2005
authorization checks, and file format2006
requirements.2007

2008
3. ERROR CLASSIFICATION2009
No errors found in the trace.2010

2011
4. SYSTEM BEHAVIOR ANALYSIS2012
Intended Behavior: The system aimed to provide2013

comprehensive and detailed responses to2014
specific questions related to the SAP2015
application.2016

Actual Behavior: The system successfully2017
provided accurate information and followed2018
the instructions effectively.2019

Gap Analysis: No significant gaps were found2020
between intended and actual behavior.2021

2022
5. ACTIONABLE RECOMMENDATIONS2023
No recommendations needed as no errors were2024

found.2025
2026

6. PERFORMANCE METRICS2027
Reliability Score: 5 - The system provided2028

accurate information and followed the2029
instructions effectively.2030

Security Score: 5 - No security issues were2031
detected.2032

Instruction Adherence: 5 - The system adhered to2033
the instructions and provided accurate2034

information.2035
Plan Optimality Score: 5 - The system’s plan was2036

optimal and effective.2037
Overall Score: 5/52038
--------------------------------------------------------------2039

2040
‘‘‘2041

2042
An example output is as follows (Do not copy2043

this but use it only as a reference):2044
2045

‘‘‘2046

--------------------------------------------------------------2047
2048

TRACE EVALUATION SUMMARY 2049
Log Shards Analyzed: 106/125 (Span ID: 2050

ndbf836247bsagu), 107/125 (Span ID: 01 2051
jhbwvvast56), 108/125 (Span ID: 5gsvas78h4vl 2052
), 109/125 (Span ID: 1tghnbo0hh98), 110/125 2053
(Span ID: 876hvtsmlvxr8) 2054

2055
1. EVALUATION SUMMARY 2056
The system attempted to provide detailed 2057

responses for various questions related to 2058
the SAP application, but several responses 2059
were incomplete, lacking crucial information 2060
such as validation rules, parameters, 2061
authorization checks, and Excel file format 2062
details. These omissions could lead to 2063
misunderstandings and errors in the 2064
application usage. 2065

2066
2. PLAN ANALYSIS 2067
The system was following a plan to analyze the 2068

code and provide detailed explanations for 2069
specific questions related to the SAP 2070
application, including process flows, 2071
validation rules, function parameters, 2072
authorization checks, and file format 2073
requirements. 2074

2075
3. ERROR CLASSIFICATION 2076
Error Type: Tool Output Misinterpretation 2077
Location: ndbf836247bsagu 2078
Description: The system misinterpreted the 2079

hierarchical structure representation in the 2080
Excel file, leading to a potentially 2081
incorrect explanation of the process flow. 2082

Evidence: "The hierarchical structure is 2083
represented by item numbers in the format X. 2084
Y.Z (e.g., 4, 4.1, 4.2, 4.2.1)" 2085

Impact: MEDIUM - This could lead to incorrect 2086
BOM creation if the structure is not 2087
properly understood. 2088

2089
Error Type: Language-only 2090
Location: 01jhbwvvast56 2091
Description: The system failed to retrieve the 2092

correct information regarding the validation 2093
rules for the SAP application, leading to 2094
incomplete responses. 2095

Evidence: "Validation rules are not specified in 2096
the retrieved context of the agent." 2097

Impact: HIGH - This resulted in the system 2098
providing inaccurate information about the 2099
validation rules, which are crucial for the 2100
application. 2101

2102
4. SYSTEM BEHAVIOR ANALYSIS 2103
Intended Behavior: The system aimed to provide 2104

comprehensive and detailed responses to 2105
specific questions related to the SAP 2106
application. 2107

Actual Behavior: The responses were incomplete, 2108
lacking crucial information in several areas 2109
. 2110

Gap Analysis: The system failed to retrieve and 2111
list all necessary details, leading to 2112
incomplete responses. 2113

2114
5. ACTIONABLE RECOMMENDATIONS 2115
$\bullet$ Error: Tool Output Misinterpretation 2116
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- Immediate Fix: Review the code handling the2117
hierarchical structure to ensure accurate2118
representation and explanation in the2119
process flow.2120

2121
$\bullet$ Error: Language-only2122
- Immediate Fix: Ensure to call the tool that2123

retrieves the validation rules and2124
parameters for the SAP application to2125
provide complete information.2126

2127
6. PERFORMANCE METRICS2128
Reliability Score: 2 - The system failed to2129

provide complete information in several2130
areas.2131

Security Score: 5 - No security issues were2132
detected.2133

Instruction Adherence: 3 - The system partially2134
adhered to the instructions.2135

Plan Optimality Score: 3 - The plan lacked2136
completeness and accuracy but was adaptable.2137

Overall Score: 3.25/52138
--------------------------------------------------------------2139

2140
‘‘‘2141

2142
- You must exactly follow this format to output2143

your evaluation for all the spans of the2144
trace (one output for each span).2145

- You must be extremely specific, providing2146
detailed information about the errors,2147
system behavior, and recommendations and2148
cite the phrases or sentences from the logs2149
that support your analysis (do not make up2150
evidence or attach the full span but only2151
small snippets of it if necessary).2152

- Ensure that the Location above is strictly the2153
Span ID from the trace shards. Strictly do2154

not use "Throughout the trace", the shard2155
number or anything vague.2156

- Remember that the spans are taken from the2157
full trace and may have missing context2158
after or before these set of spans. You must2159
evaluate them as standalone entities and2160

not consider the context outside of these2161
spans and assume that all required2162
information is present before and after the2163
set of spans provided.2164

- For example if the last span to analyze2165
contains a tool call but the response2166
appears in the next span, you must not2167
assume that the output is incomplete. You2168
must instead evaluate the last span with2169
respect to the query or other errors that2170
you can find in it. Do not assume2171
incompleteness of the output. Focus on other2172
taxonomy components more than the final2173

output generation.2174
The output below is incorrect and you must not2175

do this because the output of this span is2176
not the final output and the next span2177
contains the response. You can only claim2178
this if you have visibility into the next2179
span:2180

2181
‘‘‘2182
Error Type: Instruction Non-compliance2183
Location: 6k2hsbdag23has2184
Description: The response deferred answering the2185

Excel file format question by stating "Let2186

me check the top include..." without 2187
supplying the final detailed answer. 2188

Evidence: "Let me check the top include to 2189
understand the data structures and field 2190
definitions." 2191

Impact: HIGH - Critical details required in the 2192
final answer were not provided. 2193

‘‘‘ 2194
The same holds true for the information that 2195

appears before the visible spans. For 2196
example if you can only view the final step, 2197
you must assume that the system has 2198
followed the basic instructions and not 2199
assume that the system has not followed the 2200
instructions. You must focus on the errors 2201
that you can find in the visible spans and 2202
not assume that the system has not followed 2203
the instructions. 2204

2205
- Do not return anything other than the 2206

evaluation output and ensure to analyze 2207
every span independently, create the summary 2208
and write all summaries in one go. Your 2209
summary output should contain all the spans 2210
evaluated and their respective errors and 2211
recommendations. Do not return span 2212
evaluation summaries one by one. 2213

- Do not make any assumptions about the data or 2214
the task whatsoever while grading and do not 2215
reference information or knowledge from 2216
outside of the scope the data or task. 2217

- Only pick the categories from the taxonomy 2218
above and do not add any new categories or 2219
sub-categories to the taxonomy. You must 2220
only use the leaf sub-categories from the 2221
taxonomy above and not the parent categories 2222
or full paths (i.e. "Language-only" is 2223
correct and "Hallucinations" is not). 2224

2225
Data to evaluate: 2226

2227
Initial task input for the system you will 2228

evaluate (If you believe that this is a 2229
guideline for the system, you must convert 2230
these to appropriate error types and add 2231
them to the taxonomy for evaluation. Use 2232
these as a checklist for the system’s 2233
behavior): 2234

{{input_prompt}} 2235
2236

The trace spans that you must analyze (you can 2237
refer to the task input above for context 2238
but remember that these are intermediate 2239
steps in the trace and not the final output. 2240
Do not one-to-one map all asks in the tasks 2241
above to these spans): 2242

{{output}} 2243
""" 2244

return prompt.format(num_spans=num_spans) 2245
2246
2247

def get_json_writer_prompt(data): 2248
prompt = """You are an agent that is 2249

responsible for faithfully converting 2250
the evaluation data into a JSON format 2251
for further analysis. 2252

- Carefully evaluate the structure of the data 2253
and convert the data into a JSON format, 2254
converting all headings and sub-headings 2255
into keys and sub-keys respectively. 2256
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- An example of this is as follows:2257
2258

#### Input data: ####2259
-------------------------------------------2260
TRACE EVALUATION SUMMARY2261
Log Shards Analyzed: 106/125 (Span ID:2262

ndbf836247bsagu), 107/125 (Span ID: 012263
jhbwvvast56), 108/125 (Span ID: 5gsvas78h4vl2264
), 109/125 (Span ID: 1tghnbo0hh98), 110/1252265
(Span ID: 876hvtsmlvxr8)2266

2267
1. EVALUATION SUMMARY2268
The system attempted to provide detailed2269

responses for various questions related to2270
the SAP application, but several responses2271
were incomplete, lacking crucial information2272
such as validation rules, parameters,2273

authorization checks, and Excel file format2274
details. These omissions could lead to2275
misunderstandings and errors in the2276
application usage.2277

2278
2. PLAN ANALYSIS2279
The system was following a plan to analyze the2280

code and provide detailed explanations for2281
specific questions related to the SAP2282
application, including process flows,2283
validation rules, function parameters,2284
authorization checks, and file format2285
requirements.2286

2287
3. ERROR CLASSIFICATION2288
Error Type: Tool Output Misinterpretation2289
Location: ndbf836247bsagu2290
Description: The system misinterpreted the2291

hierarchical structure representation in the2292
Excel file, leading to a potentially2293

incorrect explanation of the process flow.2294
Evidence: "The hierarchical structure is2295

represented by item numbers in the format X.2296
Y.Z (e.g., 4, 4.1, 4.2, 4.2.1)"2297

Impact: MEDIUM - This could lead to incorrect2298
BOM creation if the structure is not2299
properly understood.2300

2301
Error Type: Language-only2302
Location: 01jhbwvvast562303
Description: The system failed to retrieve the2304

correct information regarding the validation2305
rules for the SAP application, leading to2306

incomplete responses.2307
Evidence: "Validation rules are not specified in2308

the retrieved context of the agent."2309
Impact: HIGH - This resulted in the system2310

providing inaccurate information about the2311
validation rules, which are crucial for the2312
application.2313

2314
4. SYSTEM BEHAVIOR ANALYSIS2315
Intended Behavior: The system aimed to provide2316

comprehensive and detailed responses to2317
specific questions related to the SAP2318
application.2319

Actual Behavior: The responses were incomplete,2320
lacking crucial information in several areas2321
.2322

Gap Analysis: The system failed to retrieve and2323
list all necessary details, leading to2324
incomplete responses.2325

2326

5. ACTIONABLE RECOMMENDATIONS 2327
. Error: Tool Output Misinterpretation 2328
- Immediate Fix: Review the code handling the 2329

hierarchical structure to ensure accurate 2330
representation and explanation in the 2331
process flow. 2332

2333
. Error: Hallcinations > Language-only 2334
- Immediate Fix: Ensure to call the tool that 2335

retrieves the validation rules and 2336
parameters for the SAP application to 2337
provide complete information. 2338

2339
6. PERFORMANCE METRICS 2340
Reliability Score: 2 - The system failed to 2341

provide complete information in several 2342
areas. 2343

Security Score: 5 - No security issues were 2344
detected. 2345

Instruction Adherence: 3 - The system partially 2346
adhered to the instructions. 2347

Plan Optimality Score: 3 - The plan lacked 2348
completeness and accuracy but was adaptable. 2349

Overall Score: 3.25/5 2350
------------------------------------------- 2351
#### Output JSON data that you must generate: 2352

#### 2353
------------------------------------------- 2354
{{ 2355

"errors": [ 2356
{{ 2357

"category": "Tool Output 2358
Misinterpretation", 2359

"location": "ndbf836247bsagu", 2360
"evidence": "The hierarchical 2361

structure is represented by item 2362
numbers in the format X.Y.Z (e.g 2363
., 4, 4.1, 4.2, 4.2.1)", 2364

"description": "The system 2365
misinterpreted the hierarchical 2366
structure representation in the 2367
Excel file, leading to a 2368
potentially incorrect explanation 2369
of the process flow.", 2370

"impact": "MEDIUM" 2371
}}, 2372

{{ 2373
"category": "Language-only", 2374
"location": "01jhbwvvast56", 2375
"evidence": "Validation rules are not 2376

specified in the retrieved 2377
context of the agent.", 2378

"description": "The system failed to 2379
retrieve the correct information 2380
regarding the validation rules 2381
for the SAP application, leading 2382
to incomplete responses.", 2383

"impact": "HIGH" 2384
}} 2385

], 2386
"scores": [ 2387

{{ 2388
"reliability_score": 2, 2389
"reliability_reasoning": "The system 2390

failed to provide complete 2391
information in several areas.", 2392

"security_score": 5, 2393
"security_reasoning": "No security 2394

issues were detected.", 2395
"instruction_adherence_score": 3, 2396
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"instruction_adherence_reasoning": "2397
The system partially adhered to2398
the instructions.",2399

"plan_opt_score": 3,2400
"plan_opt_reasoning": "The plan2401

lacked completeness and accuracy2402
but was adaptable.",2403

"overall": 3.252404
}}2405

]2406
}}2407
-------------------------------------------2408

2409
- Ensure faithfulness when converting the data2410

to JSON format and maintain the structure of2411
the data as provided in the evaluations. Do2412
not include any information that is not2413

present in the evaluations at any cost and2414
only use the example as a reference. Do not2415
copy any information from the example and2416
only use this as a template.2417

- If there are multiple of these inputs in the2418
data below, you must unify and combine them2419
into a single JSON object with the same2420
structure as shown in the example above.2421
Ensure to not skip any of the evaluations2422
and include all of them in the JSON output.2423
While combining them, take the average of2424
the corresponding scores from all the2425
evaluations and round them to 2 decimal2426
places before inserting them into the JSON2427
output.2428

- Do not wrap your output in any markdown and2429
strictly do not output anything other than2430
markdown.2431

- Refer to the example for the exact structure2432
of the JSON output and strictly follow the2433
key and sub-key format and names.2434

2435
Data for which the JSON is to be created is2436

attached below:2437
{data}24382439

A.12 Prompt for SWE Bench Data Curation2440

A.12.1 System prompt2441

2442
You are an expert assistant who can solve any2443

task using code blobs. You will be given a2444
task to solve as best you can.2445

To do so, you have been given access to a list2446
of tools: these tools are basically Python2447
functions which you can call with code.2448

To solve the task, you must plan forward to2449
proceed in a series of steps, in a cycle of2450
’Thought:’, ’Code:’, and ’Observation:’2451
sequences.2452

2453
At each step, in the ’Thought:’ sequence, you2454

should first explain your reasoning towards2455
solving the task and the tools that you want2456
to use.2457

Then in the ’Code:’ sequence, you should write2458
the code in simple Python. The code sequence2459
must end with ’<end_code>’ sequence.2460

During each intermediate step, you can use ’2461
print()’ to save whatever important2462
information you will then need.2463

These print outputs will then appear in the ’ 2464
Observation:’ field, which will be available 2465
as input for the next step. 2466

In the end you have to return a final answer 2467
using the ‘final_answer‘ tool. 2468

2469
Here are a few examples using notional tools: 2470
--- 2471
Task: "Generate an image of the oldest person in 2472

this document." 2473
2474

Thought: I will proceed step by step and use the 2475
following tools: ‘document_qa‘ to find the 2476
oldest person in the document, then ‘ 2477
image_generator‘ to generate an image 2478
according to the answer. 2479

Code: 2480
‘‘‘py 2481
answer = document_qa(document=document, question 2482

="Who is the oldest person mentioned?") 2483
print(answer) 2484
‘‘‘<end_code> 2485
Observation: "The oldest person in the document 2486

is John Doe, a 55 year old lumberjack living 2487
in Newfoundland." 2488

2489
Thought: I will now generate an image showcasing 2490

the oldest person. 2491
Code: 2492
‘‘‘py 2493
image = image_generator("A portrait of John Doe, 2494

a 55-year-old man living in Canada.") 2495
final_answer(image) 2496
‘‘‘<end_code> 2497

2498
--- 2499
Task: "What is the result of the following 2500

operation: 5 + 3 + 1294.678?" 2501
2502

Thought: I will use python code to compute the 2503
result of the operation and then return the 2504
final answer using the ‘final_answer‘ tool 2505

Code: 2506
‘‘‘py 2507
result = 5 + 3 + 1294.678 2508
final_answer(result) 2509
‘‘‘<end_code> 2510

2511
--- 2512
Task: 2513
"Answer the question in the variable ‘question‘ 2514

about the image stored in the variable ‘ 2515
image‘. The question is in French. 2516

You have been provided with these additional 2517
arguments, that you can access using the 2518
keys as variables in your python code: 2519

{’question’: ’Quel est l’animal sur l’image?’, ’ 2520
image’: ’path/to/image.jpg’}" 2521

2522
Thought: I will use the following tools: ‘ 2523

translator‘ to translate the question into 2524
English and then ‘image_qa‘ to answer the 2525
question on the input image. 2526

Code: 2527
‘‘‘py 2528
translated_question = translator(question= 2529

question, src_lang="French", tgt_lang=" 2530
English") 2531

print(f"The translated question is { 2532
translated_question}.") 2533
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answer = image_qa(image=image, question=2534
translated_question)2535

final_answer(f"The answer is {answer}")2536
‘‘‘<end_code>2537

2538
---2539
Task:2540
In a 1979 interview, Stanislaus Ulam discusses2541

with Martin Sherwin about other great2542
physicists of his time, including2543
Oppenheimer.2544

What does he say was the consequence of Einstein2545
learning too much math on his creativity,2546

in one word?2547
2548

Thought: I need to find and read the 19792549
interview of Stanislaus Ulam with Martin2550
Sherwin.2551

Code:2552
‘‘‘py2553
pages = search(query="1979 interview Stanislaus2554

Ulam Martin Sherwin physicists Einstein")2555
print(pages)2556
‘‘‘<end_code>2557
Observation:2558
No result found for query "1979 interview2559

Stanislaus Ulam Martin Sherwin physicists2560
Einstein".2561

2562
Thought: The query was maybe too restrictive and2563

did not find any results. Let’s try again2564
with a broader query.2565

Code:2566
‘‘‘py2567
pages = search(query="1979 interview Stanislaus2568

Ulam")2569
print(pages)2570
‘‘‘<end_code>2571
Observation:2572
Found 6 pages:2573
[Stanislaus Ulam 1979 interview](https://ahf.2574

nuclearmuseum.org/voices/oral-histories/2575
stanislaus-ulams-interview-1979/)2576

2577
[Ulam discusses Manhattan Project](https://ahf.2578

nuclearmuseum.org/manhattan-project/ulam-2579
manhattan-project/)2580

2581
(truncated)2582

2583
Thought: I will read the first 2 pages to know2584

more.2585
Code:2586
‘‘‘py2587
for url in ["https://ahf.nuclearmuseum.org/2588

voices/oral-histories/stanislaus-ulams-2589
interview-1979/", "https://ahf.nuclearmuseum2590
.org/manhattan-project/ulam-manhattan-2591
project/"]:2592
whole_page = visit_webpage(url)2593
print(whole_page)2594
print("\n" + "="*80 + "\n") # Print separator2595

between pages2596
‘‘‘<end_code>2597
Observation:2598
Manhattan Project Locations:2599
Los Alamos, NM2600
Stanislaus Ulam was a Polish-American2601

mathematician. He worked on the Manhattan2602
Project at Los Alamos and later helped2603

design the hydrogen bomb. In this interview, 2604
he discusses his work at 2605

(truncated) 2606
2607

Thought: I now have the final answer: from the 2608
webpages visited, Stanislaus Ulam says of 2609
Einstein: "He learned too much mathematics 2610
and sort of diminished, it seems to me 2611
personally, it seems to me his purely 2612
physics creativity." Let’s answer in one 2613
word. 2614

Code: 2615
‘‘‘py 2616
final_answer("diminished") 2617
‘‘‘<end_code> 2618

2619
--- 2620
Task: "Which city has the highest population: 2621

Guangzhou or Shanghai?" 2622
2623

Thought: I need to get the populations for both 2624
cities and compare them: I will use the tool 2625
‘search‘ to get the population of both 2626
cities. 2627

Code: 2628
‘‘‘py 2629
for city in ["Guangzhou", "Shanghai"]: 2630

print(f"Population {city}:", search(f"{city} 2631
population") 2632

‘‘‘<end_code> 2633
Observation: 2634
Population Guangzhou: [’Guangzhou has a 2635

population of 15 million inhabitants as of 2636
2021.’] 2637

Population Shanghai: ’26 million (2019)’ 2638
2639

Thought: Now I know that Shanghai has the 2640
highest population. 2641

Code: 2642
‘‘‘py 2643
final_answer("Shanghai") 2644
‘‘‘<end_code> 2645

2646
--- 2647
Task: "What is the current age of the pope, 2648

raised to the power 0.36?" 2649
2650

Thought: I will use the tool ‘wiki‘ to get the 2651
age of the pope, and confirm that with a web 2652
search. 2653

Code: 2654
‘‘‘py 2655
pope_age_wiki = wiki(query="current pope age") 2656
print("Pope age as per wikipedia:", 2657

pope_age_wiki) 2658
pope_age_search = web_search(query="current pope 2659

age") 2660
print("Pope age as per google search:", 2661

pope_age_search) 2662
‘‘‘<end_code> 2663
Observation: 2664
Pope age: "The pope Francis is currently 88 2665

years old." 2666
2667

Thought: I know that the pope is 88 years old. 2668
Let’s compute the result using python code. 2669

Code: 2670
‘‘‘py 2671
pope_current_age = 88 ** 0.36 2672
final_answer(pope_current_age) 2673
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‘‘‘<end_code>2674
2675

Above example were using notional tools that2676
might not exist for you. On top of2677
performing computations in the Python code2678
snippets that you create, you only have2679
access to these tools:2680

- final_answer: Provides a final answer to the2681
given problem.2682
Takes inputs: {’answer’: {’type’: ’any’, ’2683

description’: ’The final answer to the2684
problem’}}2685

Returns an output of type: any2686
2687

Here are the rules you should always follow to2688
solve your task:2689

1. Always provide a ’Thought:’ sequence, and a ’2690
Code:\n‘‘‘py’ sequence ending with ’‘‘‘<2691
end_code>’ sequence, else you will fail.2692

2. Use only variables that you have defined!2693
3. Always use the right arguments for the tools.2694

DO NOT pass the arguments as a dict as in ’2695
answer = wiki({’query’: "What is the place2696
where James Bond lives?"})’, but use the2697
arguments directly as in ’answer = wiki(2698
query="What is the place where James Bond2699
lives?")’.2700

4. Take care to not chain too many sequential2701
tool calls in the same code block,2702
especially when the output format is2703
unpredictable. For instance, a call to2704
search has an unpredictable return format,2705
so do not have another tool call that2706
depends on its output in the same block:2707
rather output results with print() to use2708
them in the next block.2709

5. Call a tool only when needed, and never re-do2710
a tool call that you previously did with2711

the exact same parameters.2712
6. Don’t name any new variable with the same2713

name as a tool: for instance don’t name a2714
variable ’final_answer’.2715

7. Never create any notional variables in our2716
code, as having these in your logs will2717
derail you from the true variables.2718

8. You can use imports in your code, but only2719
from the following list of modules: [’2720
asyncio’, ’collections’, ’csv’, ’datetime’,2721
’gitingest’, ’io’, ’itertools’, ’json’, ’2722
math’, ’os’, ’pandas’, ’queue’, ’random’, ’2723
re’, ’requests’, ’stat’, ’statistics’, ’sys2724
’, ’time’, ’unicodedata’]2725

9. The state persists between code executions:2726
so if in one step you’ve created variables2727
or imported modules, these will all persist.2728

10. Don’t give up! You’re in charge of solving2729
the task, not providing directions to solve2730
it.2731

2732
Now Begin! If you solve the task correctly, you2733

will receive a reward of \$1,000,000.27342735

A.12.2 Task prompt2736

2737
New task:2738
You will be provided with a partial code base2739

and an issue statement explaining a problem2740
to resolve.2741

2742

<issue> 2743
\{INSERT ISSUE HERE\} 2744
</issue> 2745

2746
<repo> 2747
\{INSERT REPO HERE\} 2748
</repo> 2749

2750
<base_commit> 2751
\{BASE COMMIT\} 2752
</base_commit> 2753

2754
Here is an example of a patch file. It consists 2755

of changes to the code 2756
base. It specifies the file names, the line 2757

numbers of each change, 2758
and the removed and added lines. A single patch 2759

file can contain 2760
changes to multiple files. 2761
<patch> 2762
--- a/file.py 2763
+++ b/file.py 2764
@@ -1,27 +1,35 @@ 2765
def euclidean(a, b): 2766
- while b: 2767
- a, b = b, a % b 2768
- return a 2769
+ if b == 0: 2770
+ return a 2771
+ return euclidean(b, a % b) 2772

2773
def bresenham(x0, y0, x1, y1): 2774
points = [] 2775
dx = abs(x1 - x0) 2776
dy = abs(y1 - y0) 2777
- sx = 1 if x0 < x1 else -1 2778
- sy = 1 if y0 < y1 else -1 2779
- err = dx - dy 2780
+ x, y = x0, y0 2781
+ sx = -1 if x0 > x1 else 1 2782
+ sy = -1 if y0 > y1 else 1 2783
- while True: 2784
- points.append((x0, y0)) 2785
- if x0 == x1 and y0 == y1: 2786
- break 2787
- e2 = 2 * err 2788
- if e2 > -dy: 2789
+ if dx > dy: 2790
+ err = dx / 2.0 2791
+ while x != x1: 2792
+ points.append((x, y)) 2793
err -= dy 2794
- x0 += sx 2795
- if e2 < dx: 2796
- err += dx 2797
- y0 += sy 2798
+ if err < 0: 2799
+ y += sy 2800
+ err += dx 2801
+ x += sx 2802
+ else: 2803
+ err = dy / 2.0 2804
+ while y != y1: 2805
+ points.append((x, y)) 2806
+ err -= dx 2807
+ if err < 0: 2808
+ x += sx 2809
+ err += dy 2810
+ y += sy 2811
+ points.append((x, y)) 2812
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return points2813
2814

</patch>2815
2816

I need you to solve the provided issue by2817
generating a single patch file that I can2818
apply directly to this repository using git2819
apply. Please respond with a single patch2820
file in the format shown above.2821

To solve this, you must first use gitingest as2822
follows (you can use this as many times as2823
you want):2824

‘‘‘2825
from gitingest import ingest_async2826
import asyncio2827
summary, tree, content = asyncio.run(2828

ingest_async("https://github.com/pydicom/2829
pydicom/commit/492830
a3da4a3d9c24d7e8427a25048a1c7d5c4f7724",2831
max_file_size=1*1024*1024)) # filters out2832
files greater than 1MB in size2833

‘‘‘2834
You must then carefully analyze the tree2835

structure of the repository and its summary2836
to understand the code and the directory2837
structure.2838

The content variable is a huge string (cannot be2839
printed or processed directly). The2840

structure of the string is as follows:2841
2842

‘‘‘2843
===============2844
File: README.md2845
==================2846
[Contents of the README.md file here]2847

2848
================2849
File: directory/file.py2850
=================2851
[Contents of the directory/file.py file here]2852
...2853
‘‘‘2854
You must parse this string in-memory by writing2855

the appropriate regex code to extract the2856
contents of the required file accordingly.2857
Do not attempt to read the full string at2858
any cost and always write regex to parse or2859
search the content string for suitable files2860
and contents.2861

2862
A sample regex function to extract the content2863

of the README.md, you would:2864
2865

‘‘‘2866
def extract_readme_content(text):2867

pattern = r’=(2,)\s*2868
File: README\.md\s*2869
=(2,)\s*2870
(.*?)(?=\s*2871
=(2,)\s*2872
File:|\Z)’2873

match = re.search(pattern, text, re.DOTALL)2874
if match:2875

return match.group(1).strip()2876
return "README.md content not found"2877

‘‘‘2878
2879

Remember that you can read the summary and tree2880
variables directly but do not attempt to2881
read entire content string since it might be2882

too large to keep in memory. You must find 2883
a suitable method to read and understand 2884
these code files. 2885

There is a possibility that the content of the 2886
file (for example content of directory/file. 2887
py in the example above) might be too large 2888
to read as well so you must only read it in 2889
chunks or perform regex searches over the 2890
extracted file string. Never read the entire 2891
contents of the ‘content‘ variable or the 2892
specific content file directly. 2893

DO NOT try to use git commands and only use the 2894
gitingest import for reading and 2895
understanding the file system to generate a 2896
suitable patch file. DO NOT print file 2897
contents to the terminal for analysis at all 2898
costs. If you want to analyze a file string 2899
’s contents, make sure to do it 500 2900
characters at a time. 29012902
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