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Abstract

The timing of phenological events in trees is incredibly im-
portant for understanding a wide range of secondary ef-
fects, such as the susceptibility of orchard yields to envi-
ronmental stressors and the phenological timing of adjacent
ecosystems. Tree phenology is strongly driven by tempera-
ture, and (agro-)ecologists typically use biophysical thermal-
time models to relate changes in temperature to the timing of
observed events. Mechanistic models, however, show large
discrepancies since these dynamics are difficult to capture
in simple equations. With the improved quality and quan-
tity of data on plant phenology, this has popularized the
use of machine learning methods for this purpose. Existing
works, however, are evaluated for different species and spe-
cific regions, making inter-comparisons challenging. We pro-
vide the first benchmark covering different species, cultivars
and climates for evaluating models that predict the timing
of crop phenophases. We have compiled a consistent set of
datasets linking climatic drivers with the timing of flower-
ing in fruit trees. With this benchmark we (i) provide con-
sistent model evaluation on datasets with different character-
istics (e.g. size, cultivar information, observation trends, cli-
mate gradient) thus highlighting model strengths and weak-
nesses, (ii) provide a real multi-faceted use case for evaluat-
ing machine learning methods that focus on different types of
domain shifts, (iii) accelerate ML research in this domain by
facilitating a publicly available, ready-to-use dataset.

Introduction
Tree phenology, the study of seasonal life cycle events such
as flowering, fruiting, and dormancy, is a critical area of
research for understanding plant responses to environmen-
tal changes and optimizing agricultural practices. Decidu-
ous trees face evolutionary pressure to optimize their dor-
mancy release, balancing the benefits of an earlier release
(and thus longer growing season) with the risks of frost
damage (Vitasse et al. 2013). Understanding these dynam-
ics is also of great importance to agriculture, where frost
damage to deciduous fruit trees can cause significant yield
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losses or even failure (Baldocchi and Wong 2008; Luedel-
ing 2012). A single frost event in western Europe in April
2021 was responsible for an estimated yield loss of up to
50% for various fruits (Vautard et al. 2022). The suscep-
tibility of crops to environmental stressors is strongly de-
pendent on their phenology which makes it an important
component of models forecasting yields. Prospects of tem-
perature increase and more frequent occurrence of extreme
weather events makes the understanding of these processes
even more pressing (Luedeling 2012; Lamichhane 2021).
Despite many works estimating the impacts on a chang-
ing climate on fruit tree phenology and its implications on
their productivity (Else and Atkinson 2010; Luedeling et al.
2011), there remains a large uncertainty and disagreement
between predictions (Wang et al. 2020; Fernandez, Whitney,
and Luedeling 2020). While works generally agree tempera-
ture is the main driver of these dynamics, the difficulty arises
from quantifying temperature effects to phenological devel-
opment and adjust these to individual locations, species or
cultivars.

The rising availability of data on phenological events and
climate has sparked an increased interest for using machine
learning methods for these purposes. Temperature effects
on phenological progression are known to be more com-
plex than biophysical mechanistic models can capture and
might thus be more suited for modeling using a data-driven
approach. Works on machine learning for predicting the tim-
ing of phenological events, however, are fragmented in their
case studies and the considered crops and location, high-
lighting the need for a common ground of evaluation for
proper inter-comparison. Existing machine learning bench-
marks on plant phenology focus on sematic segmentation of
imagery or phenophase detection (Weyler et al. 2024; Seyed-
nasrollah et al. 2019), as most machine learning research in
plant phenology revolves around this task (Katal et al. 2022).
The potential for monitoring of plant phenology at differ-
ent scales is widely recognized (Piao et al. 2019), giving
prospects for more data collection in the future. However,
there is a lack of benchmarks for predicting the timing of
phenological events based on climatic drivers.

For this purpose, we introduce BloomBench: a bench-
mark for machine learning models predicting the timing of
phenological events of fruit trees. BloomBench is composed
of a list of curated datasets with different characteristics and



provides a way forward for inter-comparing machine learn-
ing methods on their strengths and weaknesses in various
settings. Datasets differ in terms of size, spatial coverage, di-
versity in climate, species included, species subgroup/culti-
var information, observation uncertainty and presence of ob-
servation trends, thus presenting a multi-faceted challenge.
A set of commonly used ML methods for regression with
time series features has been evaluated, forming a base-
line for newly introduced models. All code to reproduce
the benchmark and results in this paper can be found at
https://github.com/WUR-AI/BloomBench.

The first reports of explaining the variation in pheno-
logical events based on temperature were made by (Reau-
mur 1735), introducing the concept of thermal time mod-
els. These models weight temperature levels and accumulate
them until some threshold until the considered phenophase
is complete. What followed was a long history of mechanis-
tic phenology models that use the same general concept but
apply different temperature weightings. The field is still ac-
tive and (Chuine et al. 2025) provide an extensive overview
of this period. In this section we report machine learning
methods applied to this problem with a focus on fruit trees.

A popular region for phenology research is Japan, since
the cultural significance of cherry tree flowering has en-
abled data collection in a wide variety of climates and a
long time-span (Aono and Kazui 2008). (Masago and Lian
2022) evaluate different machine learning methods in their
ability to predict cherry tree (Prunus ×yedoensis) flower-
ing dates, with gradient boosted decision trees providing
the closest estimates. (Oses et al. 2020) do a comparison of
methods, but evaluate them using a case study on olive trees
in Italy. (Nappa et al. 2024) use bayesian neural networks
to provide uncertainty estimates while predicting phenolog-
ical stages of olive trees. For a single location data avail-
ability is usually limited, thus hindering the use of machine
learning models in these settings. (Saxena et al. 2023a) show
that multi-task learning over multiple species can help over-
come this when applying a recurrent neural network for bud-
break prediction in grapevines and later also apply this to
cold-hardiness (Saxena et al. 2023b). (Nagai, Morimoto, and
Saitoh 2020) investigate this same issue but for cherry trees
(Prunus ×yedoensis) in Japan and propose a solution using
self-organizing maps. (van Bree, Marcos, and Athanasiadis
2025) constrain a neural network based on mechanistic mod-
els for cherry tree flowering and compare their dynamics
and generalization capacity. (Shin et al. 2025) instead use
a Bayesian state space model to predict different stages of
flowering of cherry trees (Prunus itosakura) from 1924 to
2024 in Japan.

Several datasets exist for the development and validation
of models related to plant phenology, although with differ-
ent setups in mind. PhenoBench (Weyler et al. 2024) pro-
vides detailed pixel-wise annotations of crops and weeds
for segmenting high-resolution images of agricultural fields.
Similarly, VegAnn (Madec et al. 2023) provide annotated
images for segmentation of agricultural fields but without a
fixed camera perspective, resulting in a less controlled and
more challenging benchmark. The PhenoCam (Seyednasrol-
lah et al. 2019) network also connects computer vision and

phenology by providing a collection of cameras monitoring
vegetation globally. (Mori, Doi, and Iizumi 2023) use a bio-
physical phenology model to provide a global estimate of
the timing of phenological events of various annual crop
species. For this application, however, the choice of phe-
nology model and parameterization introduces large uncer-
tainty to these estimates (Fernandez, Whitney, and Luedel-
ing 2020). Moreover, for annual crops the change in de-
veloped cultivars needs to be taken into account (Rezaei
et al. 2018). To our knowledge, the annual cherry tree flow-
ering competition hosted by the George Mason University
(GMU) department of statistics (Auerbach, Kepplinger, and
Wolkovich 2022) for predicting the upcoming season’s flow-
ering dates is the nearest equivalent to a benchmark for sta-
tistical methods for phenology modeling. We extend upon a
subset of this data, that was originally collected by the me-
teorological agencies in Japan, Switzerland and South Ko-
rea, and integrate more data sources, tree species, and spatial
coverage.

Benchmark
Task
BloomBench contains a collection of datasets for supervised
learning of tree phenology, linking climate reanalysis mod-
els to large collections of phenological observations. A col-
lection of datasets has been defined and the benchmark is
set up to easily integrate more data sources. Each dataset is
a set of N tuples {(Xn,Yn)}N , where Xn is a set of fea-
tures and Yn a corresponding set of targets (i.e. phenolog-
ical observations). Each tuple corresponds to one observed
tree in one season and is uniquely characterized by the fol-
lowing tuple (whose elements are contained in Xn): (Data
Source ID, Year, Location ID, Species ID, Subgroup ID).
Each element of Yn is a date corresponding to an observed
phenological event defined by the widely used BBCH scale
(Meier et al. 1997). A complete overview of a data sample
and its included features/attributes is shown in Table 1.

Target Although multiple phenological events can be pro-
vided in Yn, we decided to initially focus the benchmark on
predicting a single event, namely the onset of flowering, due
to its data presence in the available data sources and great
importance to agriculture. It is important to note that obser-
vations can refer to different stages within the event of flow-
ering, and the target for each dataset can be found in Table
2. Other observations have not been omitted, as we would
like to highlight the availability of this data and encourage
research in this direction. The BloomBench has been set up
as a regression task in which the date of flowering needs
to be predicted for all samples in the contained datasets, as
evaluated by the resulting mean absolute error. Models are
evaluated per dataset, as they have different characteristics in
terms of size, included species, information about cultivars,
spatial extent, presence of trends, and variation in climate.

Features Standard climatic input variables associated with
phenological timing are provided, namely daily mean tem-
perature levels and total day length. These are provided from
some start (SOS) to end (EOS) of season in the respective



Table 1: Overview of what is included in a single sample in the dataset. A sample consists of a dict containing different
attributes. The table lists the keys (in the “Key” column) together with description and properties of the corresponding value.
Some attributes (e.g. climate variables) are grouped in a dict, whose structure is presented as well. “In Index” indicates
whether an attribute is contained in the 5-tuple that uniquely identifies a data sample.

Attribute Key In Index Type
Data Source src Y string
Season Year year Y int
Location ID loc id Y int
Species ID species id Y int
Subgroup ID subgroup id Y int
Latitude (WGS84) lat N float
Longitude (WGS84) lon N float
Season Start Date season start N datetime
Season End Date season end N datetime
Climate Variables features N dict
↪→ variable variable name ndarray[float32]

Observations observations N dict
↪→ observation observation code datetime

Observations As Index observations index N dict
↪→ observation observation code int

year, where EOS is included in the series. These dates can
be configured as species-specific properties through a crop
calendar but have all been set to October 1st (SOS) and
a season length of 365 days (thus making EOS dependent
on leap years). Meteorological data was obtained from the
ERA5 climate reanalysis.

Evaluation To test the generalization capabilities of the
models they are evaluated on a held-out dataset in unob-
served years. More specifically, the first 75% of years in the
complete time span of the dataset are considered training
data and the remaining years are used for evaluation. Since
predictions should be made for the future, the phenological
trends (that are clearly present in the dataset) should be cap-
tured correctly.

Data Processing Pipeline
BloomBench is a framework for connecting sources of phe-
nological observations, transforming them to a common
format and subsequently pairing them with climatic vari-
ables. Phenophase observations were obtained from two
data sources, namely the Pan Europen Phenology Project
(PEP725) (Templ et al. 2018) and a dataset on cherry
tree flowering compiled by the George Mason University
(GMU) Department of Statistics (Auerbach, Kepplinger, and
Wolkovich 2022). Data obtained from PEP725 (Templ et al.
2018) was sanitized, as we found location names includ-
ing commas prevented csv files from being used directly.
Outliers were removed by only considering the 1-99 per-
centile range of observations. Data obtained from the GMU
dataset were paired with tree species information reported
by their original data sources (i.e. the respective meteo-
rological agency). All tree species are associated with a
fixed time window that covers a single season. The homog-
enized phenophase observations were subsequently paired
with ERA5 climate reanalysis data spanning this season

(daily mean 2m temperature levels and daylength).

Datasets
Based on the available data a collection of datasets were
defined. A complete list of compiled datasets included in
BloomBench can be found in Table 2. Datasets differ in
terms of size, spatial coverage, diversity in climate, species
included, provided information about possible species sub-
groups/cultivars, observation uncertainty and presence of
observation trends. Since some datasets are spatially quite
dense in their observations it allowed us to estimate the in-
herent uncertainty of the observations by considering the
variability of observed events in close proximity. That is,
the variation that cannot be explained by the coarse gridded
climate reanalysis data. Table 2 lists, for sufficiently dense
datasets, the average standard deviation of observed events
(in days) in some year within some (0.5°×0.5°) cell, consid-
ering the cell contained multiple observations.

Baseline models
Various machine learning models have been implemented
and evaluated to form a baseline for newly introduced mod-
els. We put a focus on basic popular ML methods for re-
gression with time series features and include some trivial
models as well. All models were fit for five random seeds
controlling the model initialization and fitting procedure.
Resulting mean absolute error (MAE) with corresponding
stardard deviations are reported in Table 3. Despite setting a
solid, informative benchmark, we expect there to be ample
room for improvement. We reflect on this in Section .

Baseline models include: Mean (i.e. simply take the mean
of the observed dates, where means are aggregated per
species), Trend - fit a linear trend on the mean observed
dates per year, Random Forest (RF), Gradient Boosting De-
cision Tree (GBDT), AdaBoost, Convolutional Neural Net-
work (CNN), Gated Recurrent Unit Network (GRU) and a



Table 2: This table summarizes all datasets currently included in BloomBench. The dataset name (“Key”) is generally composed
of the original source of data and the tree species common name. The “Observed Events” column lists the codes of the observed
phenophases, with the dataset-specific target event underlined. Observed events include BBCH 60 (beginning of flowering),
65 (full flowering), 69 (end of flowering), 86 (first ripe fruits), 87 (fruits ripe for picking). Data obtained through the GMU
repository did not adhere the the BBCH scale. We have labeled them as “gmu x”, where 0 refers to peak flowering, 1 to 25% of
buds flowering, 2 to first flowering. “Size” refers to the total number of unique observations of the target variable included in
the dataset, so other observed events are not considered. “SD” quantifies the uncertainty in the made observations by providing
standard deviation estimates (as described in Section ). *Prunus ×yedoensis, Prunus sargentii, Prunus campanulata, ** Likely
Prunus ×yedoensis

# Key Species Observed Events Size SD
1 PEP725 Apple Malus ×domestica BBCH 60, 69, 87 17791 2.99
2 PEP725 Pear Pyrus communis BBCH 60, 65, 69, 87 6914 3.14
3 PEP725 Peach Prunus persica BBCH 60 5332 4.07
4 PEP725 Almond Prunus amygdalis BBCH 60, 65, 69, 87 187 -
5 PEP725 Hazel Corylus avellana BBCH 60, 86 29361 7.91
6 PEP725 Apricot Prunus armeniaca BBCH 60, 87 283 -
7 PEP725 Plum Prunus domestica BBCH 60, 65, 69, 87 11563 4.11
8 PEP725 Blackthorn Prunus spinosa BBCH 60 26045 4.64
9 PEP725 Cherry Prunus avium BBCH 60, 65, 69, 87 17799 3.17

10 GMU Cherry JPN Multiple* gmu 0 3033 -
11 GMU Cherry CHE Prunus avium gmu 1 2581 -
12 GMU Cherry KOR Unknown** gmu 2 974 -

121863

Table 3: Mean absolute error (MAE) and standard deviation
(SD) for all baseline models on all benchmark datasets (over
five uniformly random selected seeds between 0 and 100).
Lowest MAE scores are marked in a bold font.

MAE±SD (Test)
# Mean Trend RF GBDT
1 7.64 ± 0.00 7.14 ± 0.00 6.03 ± 0.04 5.93 ± 0.08

2 8.83 ± 0.00 10.11 ± 0.00 7.65 ± 0.11 6.59 ± 0.04

3 24.62 ± 0.00 19.25 ± 0.00 10.90 ± 0.29 10.25 ± 0.25

4 10.69 ± 0.00 11.35 ± 0.00 10.19 ± 0.09 11.00 ± 0.04

5 19.38 ± 0.00 20.08 ± 0.00 14.38 ± 0.06 14.95 ± 0.08

6 15.83 ± 0.00 45.62 ± 0.00 12.59 ± 0.62 12.62 ± 0.05

7 11.02 ± 0.00 8.04 ± 0.00 7.85 ± 0.07 7.73 ± 0.04

8 10.13 ± 0.00 11.98 ± 0.00 7.36 ± 0.08 6.95 ± 0.02

9 8.24 ± 0.00 7.18 ± 0.00 5.42 ± 0.05 4.38 ± 0.03

10 13.40 ± 0.00 12.18 ± 0.00 4.51 ± 0.04 4.29 ± 0.00

11 12.07 ± 0.00 10.31 ± 0.00 7.71 ± 0.06 7.21 ± 0.00

12 9.13 ± 0.00 4.32 ± 0.00 7.21 ± 0.06 6.89 ± 0.00

# AdaBoost CNN GRU LSTM
1 5.19 ± 0.10 4.74 ± 0.51 4.30 ± 0.39 4.42 ± 0.22

2 7.76 ± 0.12 6.04 ± 1.08 5.99 ± 0.15 6.50 ± 0.86

3 12.18 ± 0.71 9.70 ± 0.42 9.25 ± 2.35 11.60 ± 1.47

4 9.91 ± 0.28 9.35 ± 0.06 13.84 ± 2.47 14.64 ± 1.97

5 14.44 ± 0.15 12.39 ± 0.25 12.11 ± 0.41 12.42 ± 0.45

6 12.31 ± 0.28 45.68 ± 67.8 11.28 ± 1.58 12.75 ± 2.54

7 7.94 ± 0.18 7.29 ± 0.46 6.23 ± 0.24 6.55 ± 0.18

8 7.25 ± 0.09 6.46 ± 0.29 7.00 ± 0.55 7.09 ± 0.58

9 5.38 ± 0.18 4.58 ± 0.43 4.14 ± 0.18 4.37 ± 0.45

10 3.95 ± 0.04 4.01 ± 0.41 3.16 ± 0.52 3.80 ± 0.47

11 7.77 ± 0.08 7.39 ± 0.41 6.37 ± 0.24 6.25 ± 0.32

12 6.79 ± 0.17 8.83 ± 1.46 6.55 ± 0.76 5.99 ± 0.70

Long Short-Term Memory Network (LSTM). All models
were fit on a species-level and do not take into account any
differences between species subgroups/cultivars.

Hyperparameters for the RF, GBDT and AdaBoost mod-
els were randomly sampled and evaluated using 5-fold cross
validation on the training set. Due to restrictions in compu-
tation we did not perform a hyperparameter optimization for
the CNN, GRU and LSTM models and used early stopping
to prevent overfitting. That is, over a 1000 training epochs,
every 10 epochs the model was evaluated on a held out sub-
set of the training data (split by years). If no significant in-
crease (over 10−3) in the validation loss was observed dur-
ing 5 consecutive evaluations, the training procedure was
terminated. Gradients were optimized using the Adam op-
timizer using a learning rate of 10−3 that decayed to around
10−4 over the full procedure.

Experiments were executed on a Lenovo p16 laptop (In-
tel Core i9-12950HX, 2300Mhz, 32GB RAM, RTX A5500
GPU) running Windows 11 Enterprise. Obtaining all results
took around 4 days. All code used to obtain the publicly
available datasets and run the experiments is available on
GitHub.

Discussion
Model Generalization From looking at the MAE reported
in Table 3, it is clear that the GRU shows the lowest gener-
alization error in the majority of datasets. It is also clear,
however, that all deep learning models show much larger
variation between runs using different seeds for optimiza-
tion and weight initialization and that the tree-based meth-
ods are more consistent. Even on datasets with a low num-
ber of samples (#4 Almond, #6 Apricot, with 187 and 283



samples, respectively) the models seem to do well. However,
upon further inspection, the variation between runs is very
large and on average the predictions are only ∼3 days off
from the target mean. The CNN, unlike other deep learning
models, clearly did not fit well on dataset #6. We suspect
this difference between the CNN and other deep learning
models originated from the modeling setup, where the recur-
rent models provided daily flowering probabilities based on
which a binary cross-entropy loss was computed, whereas
the CNN directly used a regression (MSE) loss.

Model Improvement It is likely that some reconfigura-
tion of the training procedure can result in a closer fit. We
suspect, however, that the most promising avenue for model
improvement is to account for the differences in local and
cultivar effects. The current baseline models operate on a
species level and account for no such distinction. Most no-
tably Japan where indeed multiple species are present in the
dataset with unique flowering characteristics. It should also
be noted however, that Japan has a wide variety of climates
which also cause differences in timing. In the other single-
species datasets this difference could be explained by culti-
vars, where some data is labeled to correspond to early or
late blooming cultivars. Although not strictly following this
benchmark, the inclusion of additional input features is an-
other interesting direction of research. Temperature is con-
sidered the main driver of plant phenology, but other effects
might not be accounted for (Fu et al. 2015; Laube et al. 2014;
Jochner et al. 2013).

Benchmark Improvement Due to the data sources that
are used, different parts of the globe are not well represented
in BloomBench. In its current state, the dataset contains ob-
servations made in Western and Central Europe, as well as
Japan and South Korea. More data sources should be inte-
grated to improve the global representation of the dataset
(e.g. the USA National Phenology Network and Chinese
Phenology Observation Network), and increase the diversity
of included climates. Yearly updates of the benchmark can
include observations of the latest season and thus provide
new validation data. In this work we focus only fruit trees
to emphasize the relevance to both ecology as agriculture.
However, many more plant species are being observed and
the code base allows for easy extension. No lead time is in-
cluded in the current task formulation. In operational use,
the included models could be paired with weather forecasts
to provide predictions in the future.

Conclusion
Accurate modeling of the timing of phenological events
has many implications for both ecology and agriculture,
ranging from understanding ecosystem response to climate
change to predicting yield and optimizing crop manage-
ment. Machine learning research applied to this problem has
thus far been focused on separate case studies and is diffi-
cult to inter-compare. This work introduces BloomBench, a
benchmark dataset for fruit tree phenology prediction using
machine learning. The benchmark facilitates standardized
model evaluation for datasets compiled from various obser-
vation networks containing multiple species in a diverse set

of climates. BloomBench can reduce fragmentation and ac-
celerate research in the domain. Moreover, it provides a real
use-case for evaluating machine learning methods in their
ability to generalize in various domain shifts, and provide
reliable estimates given a change in climate.
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à Paris pendant l’année 1735, comparées avec celles qui ont
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Rezaei, E. E.; Siebert, S.; Hüging, H.; and Ewert, F. 2018.
Climate change effect on wheat phenology depends on cul-
tivar change. Scientific reports, 8(1): 4891.
Saxena, A.; Pesantez-Cabrera, P.; Ballapragada, R.; Keller,
M.; and Fern, A. 2023a. Multi-Task Learning for Budbreak
Prediction. arXiv preprint arXiv:2301.01815.
Saxena, A.; Pesantez-Cabrera, P.; Ballapragada, R.; Lam,
K.-H.; Keller, M.; and Fern, A. 2023b. Grape cold hardi-
ness prediction via multi-task learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
15717–15723.
Seyednasrollah, B.; Young, A. M.; Hufkens, K.; Milliman,
T.; Friedl, M. A.; Frolking, S.; and Richardson, A. D. 2019.
Tracking vegetation phenology across diverse biomes using
Version 2.0 of the PhenoCam Dataset. Scientific data, 6(1):
222.
Shin, N.; Fujiwara, H.; Sugiyama, S.; Morimoto, H.; and
Saitoh, T. M. 2025. Estimation of true dates of various flow-
ering stages at a centennial scale by applying a Bayesian
statistical state space model. PloS one, 20(2): e0317708.

Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.;
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