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Abstract

We analyze a class of stochastic gradient algorithms with momentum on a high-
dimensional random least squares problem. Our framework, inspired by random
matrix theory, provides an exact (deterministic) characterization for the sequence
of loss values produced by these algorithms which is expressed only in terms of
the eigenvalues of the Hessian. This leads to simple expressions for nearly-optimal
hyperparameters, a description of the limiting neighborhood, and average-case
complexity.
As a consequence, we show that (small-batch) stochastic heavy-ball momentum
with a fixed momentum parameter provides no actual performance improvement
over SGD when step sizes are adjusted correctly. For contrast, in the non-strongly
convex setting, it is possible to get a large improvement over SGD using momentum.
By introducing hyperparameters that depend on the number of samples, we propose
a new algorithm SDANA (stochastic dimension adjusted Nesterov acceleration)
which obtains an asymptotically optimal average-case complexity while remaining
linearly convergent in the strongly convex setting without adjusting parameters.

Methods that incorporate momentum and acceleration play an integral role in machine learning where
they are often combined with stochastic gradients. Two of the most popular methods in this category
are the heavy-ball method (HB) [Polyak, 1964] and Nesterov’s accelerated method (NAG) [Nesterov,
2004]. These methods are known to achieve optimal convergence guarantees when employed with
exact gradients (computed on the full training data set), but in practice, these momentum methods are
typically implemented with stochastic gradients. In the influential work Sutskever et al. [2013], the
authors demonstrated empirical advantages of augmenting stochastic gradient descent (SGD) with
the momentum machinery and, as a result, momentum methods are widely used for training deep
neural networks. Yet despite the popularity of these stochastic momentum methods, the theoretical
understanding of these algorithms remains rather limited.

In this paper, we study the dynamics of stochastic momentum methods (with batch size 1 and constant
step size) rooted in heavy-ball momentum and Nesterov’s accelerated gradient algorithms on a least
squares problem. Our approach uses a framework inspired by the phenomenology of random matrix
theory (see Paquette et al. [2021]), which gains explanatory power when the number of samples
(n) and features (d) are large. A key contribution of this work is a simple description of the exact
dynamics for a class of stochastic momentum methods in the high-dimensional limit; we construct a
smooth, deterministic function  (t) such that f(xk) !  (k/n) as n ! 1. This function  solves
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Algorithm 1 Generic stochastic momentum method.
Given: step sizes �1,�2 > 0 and momentum parameter �(k) > 0
Initialize: x0 2 Rd and y0 = 0
for k � 1, Select ik 2 [n] uniformly and update

yk = (1��(k))yk�1 + �1rfik(xk) and xk+1 = xk � �2rfik(xk)� yk (0.2)

a Volterra integral equation:

 (t) = F (t) +

Z
t

0
Ks(t) (s) ds. (0.1)

Figure 1: Concentration of stochastic heavy-
ball (SHB) on a Gaussian random least squares
problem (Sec. 2), d = n, an 80% confidence
interval (shaded region) over 10 runs for each n,
the parameters for SHB (Table 1) are (✓, �) =
(0.1, 0.08). The random least squares problem
becomes non-random in the large limit and all
runs of SHB converge to a deterministic function
 (t) (red) given by our Volterra equation (0.1).

Here F (t) and Ks(t) are explicit, see Theorem 1
for a precise statement. This Volterra equation
(0.1) gives an accurate prediction of the behavior
of stochastic methods, see Figure 1. We then an-
alyze these dynamics providing insight into step
size and momentum parameter selections as well
as providing both upper and lower average-case
complexity (i.e., the complexity of an algorithm
averaged over all possible inputs) for the last iter-
ate.

As we show in this work, both theoretically and
empirically, (small batch size) SGD with heavy-
ball momentum (SHB) for any fixed momentum
parameter does not provide any acceleration over
plain SGD on large-scale least square problems.
We conclude under an identification of the param-
eters that f(xshb

k
) = f(xsgd

k
) for all k up to errors

that vanish as n grows large (upper bounds of this
nature have been observed before: see Kidambi
et al. [2018], Sebbouh et al. [2020], Zhang et al.
[2019]). Thus while SHB may provide a speed-up
over SGD, it is only due to an effective increase
in the learning rate, and this speed-up could be
matched by appropriately adjusting the learning rate of SGD.

The root of SHB’s failure to provide meaningful acceleration is that a fixed momentum parameter is
not aggressive enough when n is large. We propose a new algorithm that uses a dimension-based
modification of Nesterov (see Alg. 1 and Table 1). The resulting algorithm, SDANA, matches the
average-case complexity of SGD when the least-squares problem is strongly convex and obtains an
average-case complexity of 1/k3 in the convex setting.

1 Motivation and related work

We consider the large finite-sum setting

min
x2Rd

⇢
f(x) =

1

n

nX

i=1

fi(x) =
1

2

nX

i=1

(aix� bi)
2 =

1

2
kAx� bk2

�
,

for data matrix A 2 Rn⇥d whose i-th row is denoted by ai 2 Rd⇥1 and target vector b 2 Rn (detailed
in Section 2). We make the convention that the matrix A has max row norm equal to 1. Note we
absorb some n–dependence into A and b by setting 1

n
fi(x) =

1
2 (aix�bi)2. We investigate a generic

class of stochastic momentum algorithms (see Alg. 1 and Table 1). Particularly, we introduce a
sub-class, denoted by SDA(�1, �2,�), of Alg. 1 which has parameters that are appropriately adjusted
for large problems (large number of samples n and large model size d); we refer to the dimension of
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Table 1: Summary of the parameters for a variety of stochastic momentum algorithms that
fit within the framework of Alg. 1, denote the normalized trace by m

def
= n

�1
P

n

i=1 kaik2. The
default parameters are chosen so that its linear rate is no slower, by a factor of 4 than the fastest
possible rate for an algorithm having optimized over all step size choices.

Methods Alg. 1 Parameters Default Parameters
�1 �2 �(k)

Stochastic gradient descent: SGD(�) 0 � 1 � = 1
m

, (Prop. E.4)

Stoch. gradient descent w/
momentum: SHB(�, ✓) � 0 ✓ (see Fig. 2)

Stoch. dimension-adjusted heavy-ball:
SDAHB(�, ✓)
(This paper)

�

n
0

✓

n

� = ✓

m
, ✓ = 2

(Prop. E.3)

Stoch. dimension-adjusted Nesterov’s
accel. method: SDANA(�1, �2, ✓)

(This paper)

�1

n
�2

✓

k + n

�1 = 1
4m , �2 = 1

m
,

✓ = 4 (Cor. D.1)

the problem as n. The class SDA(�1, �2,�) is defined by setting in Alg. 1

�1 =
�1

n
, �2 = �2, and �(k)

def
= 1

n
(log')0( k

n
), (1.1)

where �1, �2 > 0 are step sizes and ' is a smooth function that represents a momentum schedule.
Although we develop some theory for general ', we are principally interested in the two cases:

(SDANA) �(k) = ✓

k+n
$ '(t) = (1 + t)✓ and (SDAHB) �(k) = ✓

n
$ '(t) = e

✓t
. (1.2)

Figure 2: Equivalence of SGD and stochastic Heavy-
Ball., For every �sgd 2 {0.25, 0.50, 0.75}, we select a
pair of parameters (�shb

, ✓
shb) so that �sgd = �

shb

✓shb . We
run SHB 3000 times with varying ✓shb on (2.1) with d =
500, n = 1000, and plot the value of the last iterate after
50 epochs. Small ✓shb matches SGD (orange, theory),
illustrating their equivalence. With n · ✓shb ⇡ 1, a
change is observed, giving a small improvement for
some values of �sgd. Plotted against theory for SDAHB
(red Volterra, see Thm. 1 and App E), which is the same
algorithm as SHB after a change of parameters.

To avoid confusion between different algo-
rithms, we add superscripts indicating the
algorithm (e.g., we denote �2 = �

sgd, the
step size parameter for SGD). For all these
algorithms, we are interested in:

1. An expression for the (deterministic) dy-
namics of these algorithms when multi-
ple passes on the data set are allowed.
This contrasts with the "streaming" or
"online" setting where at each itera-
tion one generates an independent never-
before-used data point.

2. A formula for choosing the hyperparam-
eters and a discussion of the dependence
of these hyperparameters on number of
features and samples.

3. Upper and lower bounds on the average-
case complexity of the last iterate to a
neighborhood; this neighborhood dis-
appears entirely in the overparameter-
ized regime, while in the underparam-
eterized regime the limiting distance
to optimality concentrates in the high-
dimensional limit.

Why divide by n? A negative result. Throughout the literature, there are examples for which
(small batch size) stochastic momentum methods such as SHB and stochastic Nesterov’s accelerated
method (SNAG) achieve performances equal to (or even worse) than small batch size SGD (see
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e.g., Kidambi et al. [2018], Sebbouh et al. [2020], Zhang et al. [2019] for heavy-ball and Assran
and Rabbat [2020], Liu and Belkin [2020], Zhang et al. [2019] for Nesterov). We also observe
this phenomenon (see (2.4) and App. E.4, Thm 5), and we illustrate this in Fig. 2. The stochastic
heavy-ball method for any fixed step size and momentum parameters (Table 1) has the exact same
dynamics as vanilla SGD, which is to say, by setting the step size parameter in SGD to be �sgd = �

shb

✓shb ,
the two algorithms have the same loss values provided the number of samples is sufficiently large,
i.e., f(xsgd

k
) = f(xshb

k
).

As a consequence of this, the average-case complexity of SHB equals the last iterate complexity
of SGD (This was observed in [Sebbouh et al., 2020] with an upper bound, but our result shows
an exact equivalence between last iterate SGD and SHB). Although App. E.4, Thm 5 (see also
(2.4)) gives an unsatisfactory answer to stochastic heavy-ball with fixed ✓ and small batch-size, our
analysis illuminates a path forward. Particularly, one must choose dimension-dependent parameters
to achieve dynamics which differ from SGD.

Figure 3: Convergence of SDANA. Halting time
of SDANA vs SGD with default parameters
on the Gaussian random least squares problem
(2.1) with varying d and n = 1024. When
the ratio r = d/n ! 1 (in which case
max{�min(ATA),�min(AAT )} ! 0, SDANA
requires significantly fewer iterations to reach a
loss of 10�5. As the ratio r moves away from 1,
the performance of SDANA matches SGD.

Why divide by n? A positive result. Adapt-
ing SHB for dimension, we arrive at stochas-
tic dimension adjusted heavy ball (SDAHB).
While formally equivalent to SHB, we include
the dimension parameters to emphasize that any
improvement in its performance for large n re-
quires it. Nonetheless, the speed-up for heavy
ball is modest (see Fig. 2).

On the other hand, we show that a dimen-
sion adapted version of Nesterov acceleration,
SDANA, has a large improvement in the non-
strongly convex case. Moreover, with a simple
parameter choice (see the default parameters in
Table 1), it will perform linearly in the strongly
convex case, and competitively with learning-
rate-tuned SGD (or SHB), while performing
orders-of-magnitude faster (k�3 as compared to
SGD k

�1) for the non-strongly convex setting
(see Fig. 3 and Table 3). We believe this gives
SDANA promise as an algorithm outside of the
least squares context, in situations in which loss
landscapes can range between alternately curved
and very flat, frequently observed in neural net-
work settings (see Ghorbani et al. [2019], Li et al. [2018], Sagun et al. [2016]).

Related work. Recent works have established convergence guarantees for SHB in both strongly
convex and non-strongly convex setting [Flammarion and Bach, 2015, Gadat et al., 2016, Orvieto
et al., 2019, Sebbouh et al., 2020, Yan et al., 2018]; the latter references having established almost
sure convergence results. Specializing to the setting of minimizing quadratics, the iterates of SHB
converge linearly (but not in L

2) under an exactness assumption [Loizou and Richtárik, 2017] while
under some additional assumptions on the noise of the stochastic gradients, [Can et al., 2019, Kidambi
et al., 2018] show linear convergence to a neighborhood of the solution.

Convergence results for stochastic Nesterov’s accelerated method (SNAG), under both strongly
convex and non-strongly setting, have also been established. The works [Assran and Rabbat, 2020,
Aybat et al., 2018, Can et al., 2019, Kulunchakov and Mairal, 2019] showed that SNAG converged
at the optimal accelerated rate to a neighborhood of the optimum. Under stronger assumptions,
convergence to the optimum at an accelerated rate is guaranteed. Examples include the strong growth
condition [Vaswani et al., 2019] and additive noise on the stochastic gradients [Laborde and Oberman,
2019].

The lack of general convergence guarantees showing acceleration for existing momentum schemes,
such as heavy-ball and NAG, in the stochastic setting, has led many authors to design alternative
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acceleration schemes [Allen-Zhu, 2017, Ghadimi and Lan, 2012, 2013a, Kidambi et al., 2018,
Kulunchakov and Mairal, 2019, Liu and Belkin, 2020].

2 Random least squares problem

To formalize the analysis of a high–dimensional, typical least squares problem, we define the random
least squares problem:

argmin
x2Rd

n
f(x) =

1

n

nX

i=1

fi(x)
def
=

1

2

nX

i=1

(aix� bi)
2
o
, with b

def
= Aex+ ⌘. (2.1)

The data matrix A is random and we shall introduce assumptions on A as they are needed, but we
suggest as a central example the Gaussian random least squares where each entry of A is sampled
independently from a standard normal distribution with variance 1

d
. We always make the assumption

that each row ai 2 Rd⇥1 is centered and is normalized so that maxi {E [kaik2]} = 1.

As for the target b = Aex + ⌘, we assume it comes from a generative model corrupted by noise,
where ex is signal and ⌘ is noise.
Assumption 1 (Initialization, signal, and noise). The initial vector x0 2 Rd is chosen so that x0 � ex
is independent of the matrix A. The noise ⌘ is centered and has i.i.d. entries, independent of A. The
signal and noise are normalized so that

E kx0 � exk22 = R
d

n
and E [k⌘k22] = eR.

Note that deterministic x0 � ex satisfies this assumption. The vectors x0 � ex and ⌘ arise as a result
of preserving a constant signal-to-noise ratio in the generative model. Such generative models with
this scaling have been used in numerous works [Gerbelot et al., 2020, Hastie et al., 2019, Mei and
Montanari, 2019].

For the data matrix A we introduce the Hessian matrix fH = ATA and its symmetrization H =
AAT . Let �1 � . . . � �n be the eigenvalues of the matrix H . Up to appending zeros, this is the
same ordered sequence of eigenvalues as those of the Hessian. Define the empirical spectral measure
(ESM) of H , µH by the formula

Z
g(�)µH(d�)

def
=

1

n

nX

i=1

g(�i) for any continuous function g : R ! R. (2.2)

This gives the interpretation for the empirical spectral measure as the distribution of an eigenvalue of
H chosen uniformly at random.

Diffusion approximation. Our analysis will use a diffusion approximation to analyze the
SDA(�1, �2,�) class of stochastic momentum methods (see (1.1)) on the random least squares
setup (2.1). We call the approximation homogenized SGD:

dXt

def
= ��2 dZt�

�1

'(t)

Z
t

0
'(s) dZt, where dZt

def
= rf(Xt) dt+

q
2
n
f(Xt)r2(f) dBt, (2.3)

and with initial conditions given by X0 = x0. The process (Bt : t � 0) is a d–dimensional standard
Brownian motion. Here time is scaled in such a way that t = 1 represents one pass over the dataset
or n calls to the stochastic oracle. Similar SDEs have appeared frequently in the theory around SGD,
see e.g., Li et al. [2017, 2019], Mandt et al. [2016].

The advantage of the homogenized SGD diffusion is that we are able to give an explicit representation
of the expected loss values on a least squares problem, even at finite n.
Theorem 1 (Volterra dynamics at finite n). Let EH [·] be the conditional expectation where H is
held fixed. There are non-negative functions F (t) and Ks(t) for s, t � 0 depending on the spectrum
of H so that for all t � 0

EH [f(Xt)] = F (t) +

Z
t

0
Ks(t)EH [f(Xs)] ds, for all t � 0. (2.4)
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Table 2: Summary of the convolution kernel for the Volterra equations (2.4) for all algorithms
considered. The convolution kernel (below) for SDANA is an approximation to the true kernel. The
forcing terms G(�)(t) for SGD and SDAHB are similar to the kernel whereas the forcing term for
SDANA is defined only by solving a 3rd-order ODE.

Methods Kernel, K(�)
s (t)

SGD(�) �
2
�
2
e
�2��(t�s) —

SDAHB(�, ✓)
(This paper)

2�2
�
2

!
e
�(t�s)✓(1� cos((t� s)

p
!)) ! = 4�� � ✓

2

SDANA(�1, �2, ✓)
(This paper)

�

!
e
���2(t�s)

⇣
1� cos((t� s)

p
�! + #)

⌘ tan(#) = (!�2�1)
p
4�1�!

(!�2�1)2�2�2
1

! = 4�1 � �
2
2�

The forcing function F and kernel K are given by

F (t) =
1

n

nX

i=1

(R�i + eR)G(�i)(t) and Ks(t) =
1

n

nX

i=1

K
(�i)
s

(t).

The functions G(�) and K
(�) are solutions of an initial value problem with a 3-rd order ODE which

depend on the hyperparameters (�1, �2,�) (Note, there is a 1-to-1 relationship with ', see (1.1)).

We refer to the supplemental materials for the explicit third–order ODE (see Theorem 4 for full
details). The expression in (2.4) is a Volterra integral equation, which can be analyzed explicitly,
and has a relatively simple theory, especially in the case that the kernel is of convolution type (i.e.
Ks(t) = I(t � s) for some function I); see Table 2 for kernels. We also note that in the case of
SGD(�) (' is unused), the functions G and K become particularly simple

G
(�)(t) = e

�2��t and K
(�)
s

(t) = �
2
�
2
e
�2��(t�s)

.

Comparing homogenized SGD to the SDA class. When A is a random matrix, we can compare
the diffusion (2.3) to SDA (1.1) when n and d are large. The argument is based on the results of
Paquette et al. [2021], and we do it only in the case of SGD:
Theorem 2 (Concentration of SGD). Suppose that A is a left-orthogonally invariant random matrix,
meaning that for any orthogonal matrix O 2 Rn⇥n

,OA
law
= A. Suppose further that the noise vector

⌘ is independent of A and that it satisfies

E [k⌘kp1] = O(n✏�p/2) for any ✏, p > 0.

Fix � < 2n(trH)�1, the convergence threshold of SGD(�). There is an absolute constant " > 0 and
a constant c(T,�+

H
) so that with p = min{d, n},

Pr( sup
0tT

|EH [f(Xt)]� f(x[nt])| > c(T,�+
H
)p�" | �+

H
)  p

�"
.

We expect that this theorem can be generalized, to include the entire SDA class. We also expect that
the orthogonal invariance assumption can be relaxed somewhat (for example to include classes of
non–Gaussian isotropic features matrices), but not entirely: the left singular vectors need to have some
degree of isotropy for the result to hold. The numerical results show very good general agreement
with theory and demonstrate the validity of the approximation: see Figures 1, 2, and 5 as well as
Figure 6 on real data. Nonetheless, it is of great theoretical interest to establish the theorem in greater
generality. We show a heuristic derivation in App. B.

3 Main results

In this section, and in light of the Thm. 1, we outline how to use this Volterra equation (2.4) to produce
average-case analysis, nearly optimal hyperparameters, and exact expressions for the neighborhood
and convergence thresholds. For additional details, see Supplementary Materials.
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Table 3: Asymptotic average-case convergence guarantees for EH [f(Xt)] �
eR dim(ker(H))
2n(1�kIk) (last

iterate) under default parameters (see Table 1) for the isotropic features model. The norm of the
kernel is controlled by two values: the normalized trace of the matrix m =

P
n

i=1 kaik2/n and the
mass of the spectral measure (empirical or limiting) at 0 which we denote by p = dim(ker(H))/n.
Average-case complexity is strictly better than the worst-case complexity, in some cases by a factor
� vs. �2. As in Paquette et al. [2021], the worst-case rates in non-strongly convex setting have
dimension dependent constants due to the distance to the optimum kx? � x0k2 ⇡ d which appears
in the bounds. SDANA obtains an accelerated average-case rate in the non-strongly convex case
over SGD while matching the average-case rate of SGD in strongly convex regime. These rates are
achieved without changing hyperparameters in SDANA. For worst-case rates, see [Bottou et al., 2018,
Theorem 4.6] [Ghadimi and Lan, 2013b, Theorem 2.1]; �+ can be replaced by the max-`2-row-norm.

Kernel, kIk Strongly convex Non-strongly
convex

SGD(�) Worst exp(��t�� + �
2

2 (�+)2t) (R+ eR · d) · 1
t

SGD(�) Avg
�

2m

(Eq. (C.4))
exp(��t��)

(Lem. C.4)
Rt

�3/2 + eRt
�1/2

(Eq. (C.6))

SDAHB(�, ✓)
�

2✓m

(Eq. (E.11))

exp(�t
��

�
✓

2���+✓2 )
(Prop. E.3)

Rt
�3/2 + eRt

�1/2

(Eq. (E.13))

SDANA(�1, �2, ✓)
�1

2�2
(1� p) + �2

2 m

(Eq. (D.25))
exp(�t

3�1�2�
�

2�2
2�

�+4�1
)

(Cor. D.1)
Rt

�3 + eRt
�1

(Prop. D.3)

3.1 Convolution Volterra convergence analysis: convergence threshold and neighborhood

For all algorithms considered (SDANA, SDAHB, SHB, SGD), the Volterra equation in Theorem 1
can be expressed in a simpler form, that is, as a convolution–type Volterra equation

EH [f(Xt)] = F (t) +

Z
t

0
I(t� s)EH [f(Xs)] ds for all t � 0. (3.1)

The forcing function F and the convolution kernel I are non-negative functions that depend on the
spectrum of H and SDA parameters (see Table 2 for the kernels of various algorithms). In the case
of SDANA, the kernel is in fact not a convolution Volterra equation, but it can be approximated by
one so that it matches the non–convolution equation as t ! 1.

First, the forcing function F will in all cases be bounded, and in fact it will converge as t ! 1 to a
deterministic value,

F (t) �!
t!1

eRµH({0})
2

=
eR dim(ker(H))

2n
. (3.2)

Here µH is the empirical spectral measure (2.2) which exists for even non-random matrices. It
follows that the solution of (3.1) remains bounded if the norm kIk =

R1
0 I(t) dt is less than 1.

Theorem 3 (Convergence threshold and limiting loss). If the norm kIk < 1, the algorithm is
convergent in that

EH [f(Xt)] �!
t!1

eR dim(ker(H))

2n(1� kIk) (limiting loss).

Figure 4: The Marchenko-Pastur law(r).
Varying r = d/n.

This theorem gives a convergence threshold for all algo-
rithms in Table 1 based only on the norm of the kernel
of the Volterra equation, which is easily computable (see
Table 3).

3.2 Average case analysis

Limiting spectral measures. Average-case complexity
looks at the typical behavior of an algorithm when some
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Figure 5: Concentration of SDANA. 80% confidence interval on 10 runs with default parameters on
Gaussian random least squares problem (2.1), d/n = r, with noise eR = 0.01 and signal R = 1. The
convolution-type Volterra equation (red, (3.1)) predicts the performance of SDANA and it reflects
the oscillatory trajectories typically seen in momentum methods due to overshooting. Because the
convolution Volterra is only an approximation to the kernel, there is always an initial mismatch
between actual runs of SDANA and the Volterra solution. As t ! 1, the convolution-type Volterra
equation better approximates SDANA. For more details on numerical simulations see App. F.

of its inputs are chosen at random. To formulate an average case analysis that is representative of
what is seen in a large scale optimization problem, we will take a limit of the empirical spectral
measure as n and d are taken to infinity. So, we suppose that the following holds:

Assumption 2 (Spectral limit). Let A be an n⇥ d matrix drawn from a family of random matrices
such that the number of features, d, tends to infinity proportionally to the size of the data set, n, so
that d

n
! r 2 (0,1); and suppose these random matrices satisfy the following.

1. The eigenvalue distribution of H = AAT converges to a deterministic limit µ with compact
support. Formally, the empirical spectral measure (ESM) converges weakly to µ, in that for all
bounded continuous g : R ! R

1

n

nX

i=1

g(�i)
Pr����!

n!1

Z 1

0
g(�)µ(d�). (3.3)

2. The largest eigenvalue �+
H

of H converges to the largest element �+ in the support of µ, i.e.
�
+
H

Pr����!
n!1

�
+
.

This assumption is typical in random matrix theory. An important example is the isotropic features
model, which is a random n⇥ d matrix A whose every entry is sampled from a common, mean 0,
variance 1

d
distribution with fourth moment O(d�2), such as a Gaussian N(0, 1

d
). In this case, the

ESM µH of H = AAT converges to the Marchenko-Pastur law (see Figure 3.1):

dµMP(�)
def
= �0(�)max{1� r, 0}+

r

p
(�� ��)(�+ � �)

2⇡�
1[��,�+] ,

where �
� def

= (1�
q

1
r
)2 and �

+ def
= (1 +

q
1
r
)2 .

(3.4)

More generally, the convergence of the spectral measure of matrices drawn from a consistent ensemble
is well studied in random matrix theory, and for many random matrix ensembles the limiting spectral
measure is known. In the machine learning literature, it has been shown that the spectrum of the
Hessians of neural networks share characteristics with the limiting spectral distributions found in
classical random matrix theory [Behrooz et al., 2019, Dauphin et al., 2014, Granziol et al., 2020, Liao
et al., 2020, Martin and Mahoney, 2018, Papyan, 2018, Pennington and B., 2017, Sagun et al., 2016].

Complexity analysis. The forcing function and the convolution kernel both converge under As-
sumption 2, and the result is that

lim
n!1

EH [f(Xt)] =  (t) where  (t) = Fµ(t) +

Z 1

0
Iµ(t� s) (s) ds for all t � 0.
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The forcing function and interaction kernel are given as integrals against the limit measure (such as
(3.4) in the case of isotropic features) and

Fµ(t)
def
=

Z 1

0
(R�+ eR)G(�)(t)µ(d�) and Iµ(t)

def
=

Z 1

0
K

(�)(t)µ(d�).

The kernel norm still determines the convergence properties of the Volterra equation. In particular,
to have convergence of the algorithm, we need that kIµk < 1 and just like in the finite-n case (see
Lemma C.1)

 (t) �!
t!1

 (1)
def
=

eRµ({0})
2(1� kIµk)

.

To discuss average-case rates, we use the function  (t). We consider separately the regimes when the
problem is strongly convex and not. Having taken the limit, we say the problem is strongly convex if
the intersection of the support of µ with (0,1) is closed. Intuitively, this says there is a gap between
0 and the next smallest eigenvalue �� of the hessian (strictly speaking it allows a vanishing fraction
of the eigenvalues to approach 0).

Figure 6: SDANA & SGD vs Theory on MNIST.
MNIST (60000⇥ 28⇥ 28 images) [LeCun et al.,
2010] is reshaped into 10 matrices of dimen-
sion 1000 ⇥ 4704, representing 1000 samples of
groups of 6 digits (preconditioned to have cen-
tered rows of norm-1). First digit of each 6 is
chosen to be the target b. Algorithms were run
10 times with default parameters (without tuning)
to solve (2.1). 80%–confidence interval is dis-
played. Volterra (SDANA) is generated with eigen-
values from the first MNIST data matrix (top pane,
�
� = 0.041). Volterra predicts the convergent be-

havior of SDANA in this non-idealized setting.
SDANA outperforms equivalent SGD/SDAHB.
See also Appendix F.

In the non-strongly convex case the average-case
complexity is relatively simple to compute. The
rate of convergence of  (t)� (1) ! 0 is only
determined by the rate of of convergence of the
forcing function Fµ(t) � Fµ(1). This decays
like t

�� where � in turn is controlled by the
exponent ↵ at which µ((0, "]) ⇣ ✏

↵ as " ! 0
(see Lemma C.2). Particular if there are more
small eigenvalues, the rate is slowed. In Table 3,
the rates are reported for ↵ = 1

2 . This is the
typical behavior for random matrix distributions
with a “hard-edge,” such as Marchenko–Pastur
with aspect ratio r = 1.

In the strongly convex case, �� > 0, the kernel
Iµ plays a larger role, in that it may slow down
the convergence rate. In particular, if it exists,
we define the Malthusian exponent �⇤ as the
solution of

Z 1

0
e
�
⇤
tIµ(t) = 1.

The rate of convergence of  to 0 (at exponen-
tial scale) will then be the slower of Fµ(t) and
e
��

⇤
t (see Lemma C.3). In the case of SGD

on Marchenko–Pastur, the exact value of �⇤
is worked out in exact form in Paquette et al.
[2021]. By bounding these Malthusian expo-
nents, we produce the rate guarantees in Table
3 (see Cor. D.1 and Prop. E.3 for the bounds
in the Appendix). The default parameters are
chosen so that its linear rate is no slower, by a
factor of 4 than the fastest possible rate for an
algorithm having optimized over all step size
choices. This is achieved by lower bounding
the Malthusian exponent at the default param-
eters and upper bounding the optimal rate by
minimizing Fµ(t)� Fµ(1) over all convergent parameters.

Conclusions from the analysis of homogenized SGD. The SHB algorithm is a special instance
of SDAHB with parameter choices n✓shb = ✓

sdahb and n�
shb = �

sdahb
. By evaluating the kernels
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for SDAHB in the large n limit, it is easily seen that the homogenized SGD equations for Xshb
t

and
Xsgd

t
satisfy

|EH [f(Xshb
t

)]� EH [f(Xsgd
t

)]| �!
n!1

0, (3.5)

see (Thm. 5). On the other hand SDAHB with default parameters is always strictly faster (for
sufficiently large ✓) than tuned SGD, but its linear rate is never more than a factor of 2 faster than
SGD (Prop. E.5). It also does not substantially improve over SGD in non-strongly convex case.
In contrast, the dimension adjusted Nesterov acceleration (SDANA) greatly (and provably, using
homogenized SGD) improves over SGD in non-strongly convex case (see Prop. D.3), while remaining
linear (and nearly as fast as SGD) in the convex case (Cor. D.1). Furthermore, the predictions of
homogenized SGD are born out even on real data (Fig. 6), which is a non-idealized setting that does
not verify the assumptions we imposed for the theoretical analysis.

Future directions. We would like to explore the applicability of homogenized SGD to other
datasets and other convex losses as well as generalizing the theoretical setting under which homoge-
nized SGD applies (see the discussion below Thm. 2). Moreover, we would like to test and extend
SDANA to non-convex problems and extend homogenized SGD to non-convex settings.
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