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ABSTRACT

Influence functions serve as crucial tools for assessing sample influence. By em-
ploying the first-order Taylor extension, sample influence can be estimated without
the need for expensive model retraining. However, applying influence functions
directly to deep models presents challenges, primarily due to the non-convex nature
of the loss function and the large size of model parameters. This difficulty not
only makes computing the inverse of the Hessian matrix costly but also renders
it non-existent in some cases. Various approaches, including matrix decomposi-
tion, have been explored to expedite and approximate the inversion of the Hessian
matrix, with the aim of making influence functions applicable to deep models. In
this paper, we revisit a specific, albeit naive, yet effective approximation method
known as TracIn, and simplify it further, introducing the name Inner Product (IP).
This method substitutes the inverse of the Hessian matrix with an identity matrix.
We offer deeper insights into why this straightforward approximation method is
effective. Furthermore, we extend its applications beyond measuring model utility
to include considerations of fairness and robustness. Finally, we enhance IP through
an ensemble strategy. To validate its effectiveness, we conduct experiments on
synthetic data and extensive evaluations on noisy label detection, sample selection
for large language model fine-tuning, and defense against adversarial attacks.

1 INTRODUCTION

Data-centric learning is a growing research field that focuses on enhancing machine learning model
performance by refining the quality and characteristics of training data (Oala et al., 2023). In contrast
to model-centric approaches, which prioritize improving algorithms or optimization techniques
without altering the dataset, data-centric learning involves adjusting the dataset itself—through
methods like trimming, relabeling, and reweighting—while keeping the learning algorithm fixed.
This approach plays a vital role in areas such as model interpretability, selecting training subsets,
generating synthetic data, detecting noisy labels, improving active learning, and promoting fairness
in machine learning models (Chhabra et al., 2024; Kwon et al., 2023).

Sample influence estimation, as the foundation of data-centric learning, can be generally categorized
into two categories (Hammoudeh & Lowd, 2022). (a) Retraining-based methods assess the sample
influence by retraining the model with and without a specific sample and checking the performance
change, which include the classical leave-one-out influence approach (Cook & Weisberg, 1982) and
Shapley value approaches (Ghorbani & Zou, 2019; Jia et al., 2019; Kwon & Zou, 2022; Jia et al.,
2018). (b) Gradient-based methods estimate influence without expensive overheads of retraining,
known as influence functions. The seminal work in this category is that of (Koh & Liang, 2017),
which utilizes a Taylor-series approximation and LiSSA optimization (Agarwal et al., 2017) to
compute sample influences. However, the limiting assumption is that the model and loss function
are convex. Despite debates on the necessity of convexity (Bae et al., 2022; Grosse et al., 2023;
Basu et al., 2020; Epifano et al., 2023), challenges persist when directly applying gradient-based
methods to large models. The size of model parameters complicates calculations, particularly in
obtaining the inverse of the Hessian matrix. Efforts, including matrix decomposition techniques (Koh
& Liang, 2017; Grosse et al., 2023; Kwon et al., 2023), aim to expedite and approximate Hessian
matrix inversion, therefore enhance the feasibility of influence functions for deep learning models.
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Contributions. In this paper, we focus on the influence function category and revisit a specific
naive yet aggressive approximation method, TracIn (Pruthi et al., 2020). This method substitutes
the inverse of the Hessian matrix with an identity matrix, representing it as a Hessian-free influence
function—the inner product of the gradient of the validation set and a sample to be assessed, which
we refer to as Inner Product (IP). We summarize our major contributions as follows:

• We simplify the checkpoints of TracIn, define it into IP formulation, and delve into the rationale
behind this simple approximation, offering insights into why it performs well in practice.

• Expanding our IP framework, we extend its applicability beyond measuring sample influence on
model utility to encompass considerations of fairness and robustness.

• To enhance the generalization, we propose IP Ensemble, a novel approach leveraging dropout
mechanisms to simulate diverse models. IP Ensemble amalgamates IP scores from these varied
models, thus increasing the method’s generalization capabilities.

• By assessing the sample influence, model performance can be enhanced by trimming detrimental
samples from the training or fine-tuning set, downweighting them, or even relabeling them.
Specifically, we validate the effectiveness of IP through synthetic data experiments and conduct
extensive real-world evaluations using IP Ensemble. These experiments span various applications,
including noisy label correction for vision data, data curation aimed at fine-tuning fairer NLP
models, and defense strategies against adaptive evasion adversaries.

2 RELATED WORK

In this section, we introduce the literature on influence functions, with a focus on the acceleration of
the calculation of the inverse of Hessian matrix, followed by various applications and miscellaneous.

Efficient Influence Estimation. Influence functions serve as crucial tools for estimating the individ-
ual valuation of data without requiring model retraining. However, the computation of the inverse of
the Hessian matrix poses challenges for large-scale data and models. To address this issue, various
approaches have been proposed to simplify or estimate the inverse of the Hessian matrix effectively.
A seminal work is that of (Koh & Liang, 2017), which employs a Taylor-series approximation and
LiSSA optimization (Agarwal et al., 2017) to compute sample influences. Arnoldi (Schioppa et al.,
2022) employs the random projection and simplified Hessian matrix for acceleration. EKFAC (Grosse
et al., 2023) enhances Kronecker-Factored eigendecomposition for a precise Hessian approximation.
More recently, DataInf (Kwon et al., 2023) efficiently computes influence even for large models
by replacing the inverse Hessian computation with a readily computable closed-form expression,
although their framework may suffer from significant theoretical errors. TracInc (Pruthi et al., 2020),
a straightforward yet aggressive approximation, substitutes the inverse of the Hessian matrix with an
identity matrix, essentially considering gradients directly as a measure of influence. Beyond the con-
ventional influence function that gauges sample influence on the validation set, self-influence (Bejan
et al., 2023; Thakkar et al., 2023) computes influence using the training set alone. Moving beyond
using a single model checkpoint, GEX (Kim et al., 2024) leverages a geometric ensemble of multiple
checkpoints to approximate influence functions, alleviating the bilinear constraint and non-linear
losses. Moreover, TDA (Bae et al., 2024) also introduces a checkpoint-based segmentation approach,
combining implicit differentiation and unrolling by using EKFAC (Grosse et al., 2023).

Various Applications of Influence Functions. With the above efficient approximation, influence
functions have diverse applications. One major application is identifying detrimental samples (Ham-
moudeh & Lowd, 2024). The learning performance can be further improved by removing (Chhabra
et al., 2024), relabeling (Kong et al., 2021), or reweighting (Thakkar et al., 2023) the identified
detrimental samples, which has significant implications in various fields such as noisy label detec-
tion (Wang et al., 2020), subset selection (Ting & Brochu, 2018), and the identification of the most
influential samples (Sharchilev et al., 2018; Xia et al., 2024). Other applications encompass few-shot
learning (Park et al., 2021), where influence functions help improve model performance with minimal
data, and recommendation systems (Li et al., 2023; Zhang et al., 2023), enhancing the accuracy and
personalization of recommendations. Influence functions are also valuable in selecting data for active
learning (Liu et al., 2021), fairness machine learning (Li & Liu, 2022; Wang et al., 2022; 2024),
adversarial attack (Cohen et al., 2020), graph machine learning (Chen et al., 2023; Wu et al., 2023),
machine unlearning (Xu et al., 2024; Tarun et al., 2023), out-of-distribution generalization (Ye et al.,
2021), data privacy (Carey et al., 2023), domain adaptation (Zhang et al., 2022), to name a few.
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Miscellaneous. Several studies have examined the fragility of influence functions in explaining
deep learning model predictions. Bae et al. (2022) discovers that while influence estimates may
not perfectly align with leave-one-out retraining, they approximate the proximal Bregman response
function, offering valuable insights for identifying influential or mislabeled examples. Basu et al.
(2020) demonstrates that the effectiveness of influence functions in neural networks varies with
network architecture, depth, width, parameterization, and regularization, underscoring their fragility
in deep learning due to non-convex loss functions. Epifano et al. (2023) suggests that the instability of
current validation procedures, rather than non-convexity or lack of regularization, may be responsible
for their unreliability. Koh et al. (2019) expands influence functions from estimating the effects of
removing one point to large groups of training samples; Lyu et al. (2023) enhance influence estimation
in large-scale models by concentrating on target parameters and addressing computational instability
with a robust inverse-Hessian-vector product approximation; Chen et al. (2020) extend traditional
influence functions to monitor the impact of pre-training data on fine-tuned model predictions,
facilitating the identification of crucial pre-training examples.

3 METHODS

In this section, we introduce the preliminaries of the influence function, with a focus on the Hessian-
free approximation, then elaborate on our extension and upgrade.

Revisit and Simplify. Given a training set T={zi=(xi, yi)}ni=1 and a classifier with empirical risk
minimization by a convex loss function ℓ, the optimal parameters of the classifier can be obtained by
θ̂ = argminθ∈Θ

1
n

∑n
i=1 ℓ(zi; θ). To measure the influence of an individual data sample, we can train

the model with and without the specific sample and see the performance change. However, the retrain-
based approach is expensive for large-scale data and models. To avoid model retraining, influence
functions estimate the effect of changing an infinitesimal weight of samples on a validation set
V={zj=(xj , yj)}n

′

j=1, based on an impact function f evaluating the quantity of interest. Considering
the sample impact on model utility, i.e., the loss on the validation set, by removing this sample from
the original training set, the sample influence can be estimated as follows (Koh & Liang, 2017):

Iutil(−zi) =
∑

zj∈V
∇θ̂ℓ(zj ; θ̂)

⊤H−1

θ̂
∇θ̂ℓ(zi; θ̂), (1)

where Hθ̂=
∑n

i=1 ∇2
θ̂
ℓ(zi; θ̂) is the Hessian matrix of the convex ℓ loss function.

Influence functions encounter a challenge in direct application to deep models, primarily due to
the non-convex nature of the loss function and the considerable size of model parameters. This
obstacle not only renders the calculation of the inverse of the Hessian matrix costly but also leads
to its non-existence. Various attempts, including matrix decomposition methods (Koh & Liang,
2017; Grosse et al., 2023; Kwon et al., 2023), have been undertaken to expedite and approximate the
inversion of the Hessian matrix, aiming to render influence functions viable for deep models. In this
paper, we revisit a particular naive yet aggressive approximation method TracIn (Pruthi et al., 2020)
by substituting the inverse of the Hessian matrix with an identity matrix, outlined as follows:

Iutil
IP (−zi) = ∇vutil∇θ̂ℓ(zi; θ̂), and ∇vutil =

∑
zj∈V

∇θ̂ℓ(zj ; θ̂)
⊤. (2)

α
∇vutilH

−1
θ̂ ∇vutil

II IV

I

III

Figure 1: Illustration of
∇vutilH−1

θ̂
and ∇vutil.

The above equation is the inner product of ∇vutil and the sample gradient
∇θ̂ℓ(zi; θ̂); therefore, we call this method Inner Product (IP). Note that
TracIn incorporates multiple checkpoints to record model parameters
throughout the optimization process, whereas IP only takes into account
the final or converged model. We believe that sample influence should
be assessed using a fixed model; simply summing sample influences at
different stages fails to capture the dynamics of model optimization. The
converged model can significantly diverge from its earlier stages, making
the sample influences derived from initial checkpoints less accurate.

In the following, we link the IP to influence functions and provide our
insights of IP on why such a naive approximation works well in practice.
Let ∇vutil=

∑
zj∈V ∇θ̂ℓ(zj ; θ̂)

⊤, then influence functions in Eqs. (1) and (2) can be reformulated

as ∇vutilH−1

θ̂
∇θ̂ℓ(zi; θ̂) and ∇vutil∇θ̂ℓ(zi; θ̂). We illustrate the directions of ∇vutilH−1

θ̂
and ∇vutil
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in Figure 1, with the influence scores roughly representing the angle between the sample gradient
and ∇vutilH−1

θ̂
or ∇vutil. Remarkably, although influence scores by Eqs. (1) and (2) may differ,

they exhibit order-consistency in several scenarios. For instance, if two samples zi and zi′ have
gradients in Region II or IV, then Iutil(−zi) ≷ Iutil(−zi′) implies Iutil

IP (−zi) ≷ Iutil
IP (−zi′). However,

this order-consistency does not hold in Regions I and III. Fortunately, samples in these regions are
jointly recognized by Iutil and Iutil

IP as either beneficial or detrimental, resulting in minimal practical
differences. A complete analysis can be found in Appendix A.

In general, IP emerges as a straightforward, efficient, and remarkably effective alternative to influence
functions. In non-convex scenarios, approximations of the inverse Hessian matrix may introduce
significant errors, rendering ∇vutilH−1

θ̂
ineffective, even incorrect. We substantiate this observation

empirically in Section 4. Conversely, while ∇vutil in IP may not precisely align with the optimal
direction for enhancing model performance, it remains a reliable indicator for distinguishing between
detrimental and beneficial samples, even for non-convex models. Intuitively, if a sample gradient
aligns with the gradient from the validation set, it suggests that incorporating this sample contributes
to enhancing the model’s utility. Similarly, the negative impact of a single sample on prediction can
also be mitigated by considering its gradient.

Extension. Beyond measuring the sample influence on model utility, we extend IP to assess the
sample influence on fairness and robustness by modifying the impact function f .

Specifically, we can instantiate the impact function f by group fairness (Dwork et al., 2012), such
as demographic parity (DP) to measure influence on fairness (Li & Liu, 2022). Consider a binary
sensitive attribute defined as g ∈ {0, 1} and let ŷ denote the predicted class probabilities. The fairness
metric DP is defined as: fDP-fair(θ̂, V )=

∣∣EV [ŷ|g=1]−EV [ŷ|g=0]
∣∣. Within the above IP framework,

we can calculate the training sample influence on fairness as follows:

IDP-fair
IP (−zi) = ∇vfair∇θ̂ℓ(zi; θ̂), and ∇vfair = ∇θ̂f

DP-fair(θ̂, V )⊤
θ̂
. (3)

Similarly, we can also measure the sample influence on adversarial robustness within the IP framework.
To achieve this, we follow Chhabra et al. (2024) and consider a white-box adversary (Megyeri et al.,
2019) specific to linear models, which can be easily extended to other models and settings. To craft
an adversarial sample, we take each sample zj = (xj , yj) in the validation set V and only perturb

x′
j = xj − γ

θ̂⊤xj+b

θ̂⊤θ̂
θ̂ and keep yj unchanged, where θ̂ ∈ Rd are the linear model coefficients, b ∈ R

is the intercept, and γ > 1 controls the amount of perturbation added. In this manner, we can obtain
an adversarial validation set V ′ which consists of z′j = (x′

j , yj) for each sample zj of V . Now, we
can compute adversarial robustness influence for each training sample as follows:

I robust
IP (−zi) = ∇vrobust∇θ̂ℓ(zi; θ̂), and ∇vrobust =

∑
z′
j∈V ′

∇θ̂ℓ(z
′
j ; θ̂)

⊤. (4)

Enhancement. The simplicity of IP offers opportunities to enhance the generalization of influence
functions. In convex cases, the model parameter θ̂ is both optimal and unique. However, in non-convex
scenarios, the presence of local minima introduces instability and non-uniqueness into the solution.
Typically, ensemble strategies are employed to bolster model generalization (Dietterich, 2000;
Lakshminarayanan et al., 2017). Yet, while employing different models can enhance performance, it
also escalates the costs associated with model training and complicates the calculation of influence
functions. This arises from the variability in model parameters, necessitating multiple computations
of the inverse of each individual Hessian matrix. The introduction of Hessian-free IP circumvents this
issue, eliminating the need for costly calculations of Hessian matrices and their inverses. Drawing
inspiration from dropout mechanisms, diverse models can be swiftly generated without necessitating
model retraining. By computing sample gradients from various models, we propose IP Ensemble that
amalgamates IP scores from distinct models. Experiments detailed in Section 5 illustrate the superior
performance of the inner product ensemble over other influence function-based methods.

4 CORRECTNESS VERIFICATION ON SYNTHETIC DATA

Here we verify the correctness of our Inner Product (IP) as an influence score surrogate on two
synthetic datasets with convex/non-convex models. First, we use Logistic Regression on a linear
dataset to demonstrate the effectiveness of IP in a convex optimization scenario. Second, we use a
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Figure 2: Illustrating our IP on two synthetic datasets and convex/non-convex models. A-C illustrate
a 2D linearly separable synthetic dataset with a subset of detrimental samples bearing incorrect labels,
trained using a Logistic Regression model, and D-F demonstrate the similar analysis on a non-linear
synthetic half-moon dataset using a Multilayer Perceptron neural network. Specifically, A and D
depict training sets with two classes, where detrimental samples are marked with × and regular
samples with ◦. B and E show test sets. C and F present influence scores and IP scores by Eqs. (1)
and (2), respectively. In the linear case, there is a clear correlation between influence scores and inner
product scores, the detrimental samples have both negative influence scores and IP scores. However,
in the non-linear case, the influence scores of detrimental samples appear intermixed; fortunately, the
detrimental samples are effectively isolated from inliers via IP.

Linear
∇vutilH

−1
θ̂

∇vutil
Non-Linear

∇vutilH
−1
θ̂

∇vutil

Detr. Grad. Detr. Reg. by ∇vutilH
−1
θ̂ Detr. Reg. by ∇vutil

Figure 3: Directions of gradients of the valida-
tion set and detrimental samples in Figure 2. In
the linear case, α is 0.66◦, and we draw a larger
angle for better visualization. For the non-linear
case, we use the dimension reduction (Bingham &
Mannila, 2001) for visualization, and α is 94.36◦.

Multi-Layer Perceptron on a half-moon dataset
to validate the performance of IP in a non-convex
optimization scenario.1 In Figure 2, A and B il-
lustrate the training and test sets of a linearly sep-
arable dataset, consisting of 150 and 100 samples,
respectively. Notably, the training set contains
10 manually generated noisy samples with incor-
rect labels. Similarly, D-F illustrate a non-linear
separable half-moons dataset, consisting of 200
training samples including 20 noisy samples with
incorrect labels, and 100 test samples. C and
F display the influence score and inner product
score for each training sample, calculated accord-
ing to Eqs. (1) and (2), respectively. We also
verify the correctness of IP on model fairness
and robustness in Appendix C.1.

In the linear case depicted in Figure 2C, the inner product score serves as a reliable surrogate to
distinguish detrimental samples from beneficial ones. It exhibits an almost perfect correlation and
order-consistency with the influence score. Specifically, detrimental samples yield negative scores for
both inner product and influence, while other samples typically show positive or nearly zero values.
Figure 3 illustrates the relationship between directions among ∇vutil, ∇vutilH−1

θ̂
, and the gradients

1The detailed characteristics of datasets and models used in this paper can be found in Appendix B.
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Table 1: Accuracy results of influence function-based methods on the CIFAR10N, CIFAR-100N and
Animal-10N datasets with 5% identified detrimental samples removed

Methods / Datasets CIFAR-10N-a CIFAR-10N-r CIFAR-10N-w CIFAR-100N Animal-10N Avg.

Cross Entropy 91.62 90.25 85.66 56.41 80.54 80.90

LiSSA (Koh & Liang, 2017) 92.13 ± 0.29 90.98 ± 0.16 85.97 ± 0.47 59.24 ± 0.39 81.93 ± 0.14 82.05
TracIn (Pruthi et al., 2020) 90.48 ± 0.12 88.09 ± 0.24 85.18 ± 1.05 56.47 ± 1.87 80.12 ± 0.57 80.07
EKFAC (Grosse et al., 2023) 91.76 ± 0.23 90.47 ± 0.10 83.25 ± 0.38 59.91 ± 0.90 80.89 ± 0.54 81.26
DataInf (Kwon et al., 2023) 91.88 ± 0.39 90.79 ± 0.21 86.22 ± 0.13 58.40 ± 0.22 81.60 ± 0.23 81.78
Self-TracIn (Thakkar et al., 2023) 92.03 ± 0.09 90.43 ± 0.24 86.00 ± 0.18 61.99 ± 0.29 81.82 ± 0.34 82.45
Self-LiSSA (Bejan et al., 2023) 91.91 ± 0.17 90.66 ± 0.35 85.73 ± 0.41 61.56 ± 0.56 81.23 ± 0.24 82.22
TDA (Bae et al., 2024) 91.95 ± 0.19 89.87 ± 0.32 84.02 ± 0.41 58.91 ± 0.48 80.57 ± 0.25 81.06
GEX (Kim et al., 2024) 91.81 ± 0.27 90.68 ± 0.39 85.64 ± 0.20 58.47 ± 0.48 80.78 ± 0.58 81.49

IP (Ours) 92.42 ± 0.17 90.82 ± 0.08 86.31 ± 0.35 60.59 ± 0.20 81.19 ± 0.22 82.27
IP Ensemble (Ours) 92.26 ± 0.19 91.28 ± 0.29 86.50 ± 0.35 62.25 ± 0.54 82.35 ± 0.55 82.93

of detrimental samples. It is worth noting that the angle between ∇vutilH−1

θ̂
and ∇vutil is only 0.66◦,

indicating that the identity matrix is a simple and effective surrogate of H−1

θ̂
in the linear case.

However, the limitations of influence scores become apparent in the context of non-convex models, as
illustrated in Figure 2F. Here, the influence scores of detrimental samples are intermingled with those
of normal ones, where ∇vutilH−1

θ̂
is not the optimal direction due to the inaccuracies in approximating

the Hessian matrix. Fortunately, the IP score effectively isolates detrimental samples from inliers.
Even for this non-linear dataset, ∇vutil remains a useful indicator for discerning detrimental samples
from beneficial ones, as all detrimental samples exhibit obtuse angles with ∇vutil.

5 NOISY LABEL CORRECTION FOR VISION DATASETS

In this section, we demonstrate the effectiveness of our IP Ensemble in identifying detrimental
samples on noisy vision datasets. Specifically, we choose three benchmark datasets CIFAR-10N (Wei
et al., 2022), CIFAR-100N (Wei et al., 2022), and Animal-10N datasets (Shu et al., 2023) in the noisy
label learning area. CIFAR-10N encompasses three distinct noise settings: aggregate, random, and
worst, denoted as “-a,” “-r,” and “-w,” respectively. “a” means that labels are derived via majority
voting among three annotators, with ties being resolved randomly, “r” adopts the label provided by
the first annotator, while “w” selects the label from the least reliable annotator.

CIFAR-10N CIFAR-100N Animal-10N
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Figure 4: Speed improvement factors of
IP over other baseline methods.

For competitive methods, we choose the following in-
fluence function-based methods. TracIn (Pruthi et al.,
2020) replaces the Hessian matrix with the identity ma-
trix and considers checkpoints during the training pro-
cess; LiSSA (Koh & Liang, 2017) and EKFAC (Grosse
et al., 2023) employ implicit Hessian-vector products and
Kronecker-Factored curvature to efficiently approximate
the inverse of the Hessian matrix; DataInf (Kwon et al.,
2023) swaps the order of the matrix multiple for obtain-
ing a closed-form expression; Self-TracIn (Thakkar et al.,
2023) and Self-LiSSA (Bejan et al., 2023) are the self-
expression versions of TracIn and LiSSA, where ∇vutil is
replaced with ∇θ̂ℓ(zi; θ̂) and only the last checkpoint, i.e.,
the converged model parameters, is used in Self-TracIn.
GEX (Kim et al., 2024) utilizes ensemble methods based
on checkpoints from extra stochastic gradient descent on the converged model. TDA (Bae et al.,
2024) focuses checkpoints during the training process, ensembles the influence via EKFAC (Grosse
et al., 2023). Our IP Ensemble method constitutes an ensemble version of IP with U(0, 0.01) dropout
applied on model parameters and an ensemble size of 5.

To reduce randomness, we train a ResNet-34 network (He et al., 2016) once on each dataset to
establish a baseline model. Subsequently, based on the same model, we employ the aforementioned
influence function-based methods to identify 5% of detrimental samples. Following this, we conduct
five retraining iterations of the ResNet-34 network, each time removing the identified detrimental
samples from the training set. We report the average accuracy and standard deviation of the above
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Figure 5: Accuracy and fair score of different influence function-based methods on fine-tuning RTE,
COLA, and QNLI datasets. The X-axis denotes accuracy, and the Y-axis for fair score is inverted. The
brown crossing denotes the performance of using all the samples for fine-tuning the RoBERTa model
as the baseline model. Building upon this, we plot a horizontal and a vertical line in each figure and
divide the space by fairness and utility results into four regions. The green area in the top right corner
signifies a model that is both fairer and more accurate compared to the baseline model.

influence function-based methods across these five retrainings in Table 1. In general, these influence
function-based methods are effective in identifying detrimental samples. Upon retraining the ResNet-
34 model without these identified samples, nearly every result obtained by these methods outperforms
the vanilla ResNet-34 trained on the entire dataset, except for EKFAC on CIFAR-10N-w. Notably,
our IP Ensemble consistently outperforms other baseline methods across various noise conditions
and datasets. Particularly noteworthy is the performance of our IP Ensemble in the most challenging
scenario, CIFAR-100N, achieving the highest recorded accuracy of 62.25% on the test set, surpassing
the vanilla cross-entropy accuracy of 56.41%. Moreover, TDA and TracIn only achieve moderate
performance because they introduce multiple checkpoints throughout the training process. These
approaches might dilute the effectiveness of identifying truly detrimental samples for the converged
model, as the influence of each checkpoint may vary. Additionally, compared to IP, IP Ensemble
delivers further performance gains, highlighting the benefits of the ensemble strategy for enhancing
model generalization. Moreover, the average accuracy of the IP Ensemble on the test set reaches its
peak at 82.93%, surpassing both the vanilla cross-entropy performance of 80.90% and the second-best
accuracy of Self-TracIn at 82.45%. More experimental results and analysis on different percentages
of removed samples, parameter analysis on different dropout rates, ensemble sizes, and base model
architectures can be found in Appendix C.2- C.4, respectively.

In addition, we also present the running times of these influence function-based methods. Despite
some baselines having linear time complexity, there is significant divergence in their real execution
times. Given that our IP exhibits exceptional speed and similar execution times, we consider them as
the baseline and compute the speed improvement factors over other baseline methods, as depicted
in Figure 4. For ensemble methods including TracIN, TDA, GEX, and our IP Ensemble, parallel
computation can be applied to accelerate the running time if enough resources are allowed; if
calculated serially, the time grows linearly with the ensemble size. We do not report their running
time in Figure 4. With the exception of Self-TracIn, our IP runs over 100 times faster than LiSSA,
EKFAC, DataInf, and Self-LiSSA. Notably, on Animal-10N, IP is over 800 times faster than EKFAC.
It is worth noting that Self-TracIn and Self-LiSSA are slower than their standard versions due to
the fixed ∇vutil when calculating the influence of each sample. The simplicity and efficiency of IP
make it a promising tool for analyzing sample influence on deep models. The time complexities and
execution time of these methods can be found in Appendix C.5.

6 DATA CURATION TOWARDS FINE-TUNING OF FAIRER NLP MODELS

In this section, we further demonstrate the efficacy of our IP method in gauging the impact of
individual samples on fairness within the realm of curating suitable data samples for fine-tuning
language models. Beyond mere utility, fairness has emerged as an indispensable attribute for machine
learning models to mitigate inadvertent discrimination.
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Figure 6: Performance variations across various influence function-based methods over 10 distinct
attacks on Bank, CelebA, and JigsawToxicity. The dashed gray line presents the pre-attack perfor-
mance, while the brown line denotes the average accuracy of post-attack over 10 runs.

In this experiment, we employ three datasets—RTE, COLA, and QLIN—from the GLUE reposi-
tory (Wang et al., 2018) to fine-tune the widely-used language model RoBERTa (Liu et al., 2019). Our
focus is on group fairness, necessitating that machine learning models treat samples within various
predefined subgroups comparably. To assess fairness, we adopt the methodology outlined in (Qian
et al., 2022), which involves perturbing the demographic information within each sample and scruti-
nizing whether the model yields identical predictions for the original sample x and its corresponding
perturbed counterpart x̃. This evaluation metric "fair score" is defined as |C(x)− C(x̃)| over all the
samples in the test set, normalized by the size of the test set, where C(·) is the model predictor. Note
that the fair score is a negative metric, so smaller values are preferable. Utility and fairness serve as
distinct perspectives for evaluating the performance of a model. Thus, in our fine-tuning experiments,
we consider both utility and fairness. Employing the same influence function-based methods and
our IP Ensemble as in the previous section, we conduct a comparative analysis. For each method,
we calculate the influence on both utility and fairness within the fine-tuning set. We then identify
and remove the 5% most detrimental samples in terms of utility and fairness before fine-tuning the
RoBERTa model to optimize performance across both accuracy and fairness metrics.

The results of this experiment are presented in Figure 5, where the Y-axis for fairness is inverted.
The brown crossing denotes the performance of using all the samples for model fine-tuning as the
base model. Building upon this, we plot a horizontal and a vertical line in each figure and divide
the space by fairness and utility results into four regions. The green area in the top right corner
signifies a model that is both fairer and more accurate compared to the baseline model. Results
within this green region can be considered Pareto improvements, enhancing both utility and fairness
simultaneously. It is evident most results are located in the green area, indicating the existence
of detrimental samples, and not all the samples are helpful to the model performance. This also
implies that influence function methods are effective to identifying the detrimental samples, even
for non-convex deep models. However, it is important to note that some competitive methods yield
a trade-off or even Pareto deterioration. For instance, LiSSA demonstrates a better fair score but
worse accuracy compared to the base model on RTE; conversely, it exhibits better accuracy but worse
fairness on QLIN. EKFAC shows similar performance on COLA and QLIN. Self-LiSSA demonstrates
Pareto deterioration on COLA. We hypothesize that the approximation of the inverse of the Hessian
matrix may suffer from large errors, leading to heavily divergent influence estimations from the true
values. Our IP Ensemble consistently achieves Pareto improvements across all three datasets, often
yielding the best results compared to other influence function-based methods.

7 DEFENSE AGAINST ADAPTIVE EVASION ADVERSARIES

In this section, we demonstrate how the influence-based approach can effectively fortify defenses
against an adaptive adversary (Tramer et al., 2020; Biggio et al., 2013) that performs evasion attacks
on the learning model. In this scenario, the attacker randomly selects a subset of test samples to
launch the evasion attack. We defend by proactively trimming the training set by a predetermined
amount, although we lack specific knowledge about which samples are adversarial during inference.

8
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Table 2: Defense performance of various influence function-based methods under the relabeling and
reweighting strategies on Bank, CelebA, and JigsawToxicity datasets

Defense Strategy Relabeling Reweighting

Bank CelebA JigsawToxicity Avg Bank CelebA JigsawToxicity Avg

Pre 80.31 85.26 73.58 79.72 80.31 85.26 73.58 79.72

Post 70.79 ± 3.71 75.33 ± 3.04 66.18 ± 3.52 70.77 70.79 ± 3.71 75.33 ± 3.04 66.18 ± 3.52 70.77

LiSSA (Koh & Liang, 2017) 86.07 ± 0.39 68.68 ± 1.39 73.30 ± 2.96 76.02 78.69 ± 3.56 73.23 ± 3.70 70.13 ± 1.00 74.02
EKFAC (Grosse et al., 2023) 87.38 ± 0.89 77.36 ± 1.94 70.04 ± 0.96 78.26 83.50 ± 5.90 75.11 ± 1.73 70.05 ± 0.76 76.22
DataInf (Kwon et al., 2023) 87.46 ± 2.44 77.36 ± 1.85 70.39 ± 0.84 78.40 85.99 ± 2.49 74.74 ± 1.68 70.82 ± 0.35 77.18
Self-TracIn (Thakkar et al., 2023) 86.12 ± 1.10 75.58 ± 2.97 68.31 ± 2.73 76.67 85.22 ± 1.72 73.12 ± 3.71 71.37 ± 1.81 76.57
Self-LiSSA (Bejan et al., 2023) 78.97 ± 3.40 75.55 ± 2.99 69.18 ± 1.76 74.57 85.16 ± 1.74 73.17 ± 3.72 71.41 ± 1.86 76.58

IP (Ours) 87.45 ± 0.27 77.28 ± 1.87 70.43 ± 0.87 78.38 86.17 ± 2.04 75.10 ± 1.71 70.82 ± 0.36 77.36
IP Ensemble (Ours) 87.45 ± 0.32 77.30 ± 1.89 70.51 ± 1.00 78.42 86.44 ± 2.58 75.10 ± 1.73 70.67 ± 0.27 77.40

In this experiment, we utilize a Logistic Regression model with three datasets: Bank (Moro et al.,
2014), CelebA (Liu et al., 2018), and JigsawToxicity (Noever, 2018). Following the protocol in
Section 3, we consider a white-box adversary (Megyeri et al., 2019) to craft adversarial samples. For
each sample (xj , yj) in the validation set V , we perturb it by changing the feature x′

j = xj−γ
θ̂⊤xj+b

θ̂⊤θ̂
θ̂

and keeping yj unchanged. The attacker perturbs between 5% and 25% of the test set samples at
random. By quantifying the impact of samples on model robustness, we trim 5% detrimental samples
in the training set through influence functions. The boxplot depicted in Figure 6 demonstrates the
performance variations across various influence function-based methods over 10 distinct attacks.
Since the Logistic Regression model is convex, TDA simplifies to EKFAC, and TracIn and GEX
simplify to IP; therefore, we will omit their duplicate results in this figure and the following table.
In general, influence function-based methods are highly effective against adaptive evasion attackers,
showcasing superior resilience particularly post-attack, notably evident in scenarios involving Bank
and JigsawToxicity. Among these influence function-based methods, our IP Ensemble demonstrates
competitive efficacy with the best or the second best on these three datasets.

In addition to the trimming strategy, we continue to explore relabeling and reweighting strategies
to tackle detrimental samples. The relabeling strategy (Kong et al., 2021) changes the identified
detrimental samples from their original classes into another class, since the datasets we used here
are binary classes, we directly flip their labels. The reweighting strategy (Thakkar et al., 2023) takes
the influence score of each sample as the exponential weight with a softmax normalization, and
then trains a model with weighted samples. We report the defense performance of various influence
function-based methods and our IP Ensemble under the relabeling and reweighting strategies in
Table 2. Under the relabeling strategy, DataInf achieves the best results on Bank and CelebA with
87.46% and 77.36% accuracy, respectively. However, LiSSA is not stable as other methods on CelebA
with only 68.68%, which is even worse than the performance of post attack. Our IP ensemble method
continues to achieve competitive performance, with accuracy scores of 87.45%, 77.30%, and 70.51%
on three datasets with the second-best performance among all influence functions-based methods.
For the reweighting strategy, the influence function-based methods are still effective on Bank and
JigsawToxicity, which outperform the post-attack by a large margin, but achieve similar performance
with post attack on CelebA. Notably, when considering the average accuracy of both the relabeling
and reweighting strategies, our IP Ensemble method performs the best.

8 CONCLUSION

In this paper, we revisited, extended, and enhanced the TracIn method into the Inner Product (IP)
formulation. By proving the exhibition of order-consistency in several scenarios between IP and
influence function, we demonstrated substituting the inverse of the Hessian matrix with an identity
matrix offers a practical and computationally efficient solution to estimating sample influence. Based
on that, we extended our IP to measure the sample influence on fairness and robustness. Continually,
we enhanced the generalization of IP by introducing an ensemble strategy. We verified the correctness
of IP on synthetic datasets and extensive evaluations on noisy label detection, data curation for fair
NLP model fine-tuning, and defense against adaptive adversarial attacks. Overall, our IP Ensemble
highlighted the potential of simple, yet powerful, approximations in influence estimation.
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APPENDIX

A RATIONALITY OF INNER PRODUCT

In Figure 1, we visualize the direction of ∇vutilH−1

θ̂
and ∇vutil, with the influence scores roughly

representing the angle between the sample gradient and ∇vutilH−1

θ̂
or ∇vutil, where H−1

θ̂
induces a

rotation of α between these two directions. For a complete analysis, we further split Region II and IV
into Sub-Regions as shown in Figure 7 assuming α < 45◦. Given gradients of two samples zi and
zi′ , we analyze all possible scenarios as follows.

• (I, I). For a case where both zi and zi′ have gradients in Region I, Iutil(−zi) ≷ Iutil(−zi′) implies
Iutil

IP (−zi′) ≷ Iutil
IP (−zi), which is the opposite of order-consistency. While these samples are

jointly recognized by Iutil and Iutil
IP as detrimental, there is little practical difference.

• (I, II). For a case where zi has gradients in Region I and zi′ has gradients in Region II, the
order-consistency partially holds, depending on which Sub-Region the gradients of zi′ is in. For
Sub-Region IIb and IIc, we have Iutil(−zi) > Iutil(−zi′) and Iutil

IP (−zi) > Iutil
IP (−zi′), and the

order-consistency holds. For Sub-Region IIa, however, Iutil(−zi) ≷ Iutil(−zi′) and Iutil
IP (−zi) >

Iutil
IP (−zi′), thus the order-consistency partially holds. While samples in Sub-Region IIa are

jointly recognized by Iutil and Iutil
IP as detrimental, there is little practical difference.

• (I, III). For a case where zi has gradients in Region I and zi′ has gradients in Region III,
Iutil(−zi) > Iutil(−zi′) and Iutil

IP (−zi) > Iutil
IP (−zi′), therefore the order-consistency holds.

• (II, IV). For a case where zi has gradients in Region II and zi′ has gradients in Region IV, the
order-consistency partially holds.

• (II, II). For a case where both zi and zi′ have gradients in Region II, Iutil(−zi) ≷ Iutil(−zi′)
implies Iutil

IP (−zi) ≷ Iutil
IP (−zi′), the order-consistency holds.

Based on the symmetry in samples (zi and zi′) and regions (I and III, II and IV), we can get all
order-consistencies in Table 3. The bold parts are discussed above, and the rest parts are from the
symmetry. In all scenarios where order-consistency does not hold, samples are jointly recognized by
both Iutil and Iutil

IP as either beneficial or detrimental, resulting in minimal practical difference.

Table 3: Order-consistency in different scenarios

Gradient of zi Gradient of zi′ Order-Consistency

Region I Region I Not Hold
Region I Region II, IV Partially Hold
Region I Region III Hold
Region II Region I, III, IV Partially Hold
Region II Region II Hold
Region III Region III Not Hold
Region III Region II, IV Partially Hold
Region III Region I Hold
Region IV Region I, II, III Partially Hold
Region IV Region IV Hold

α
∇vutilH

−1
θ̂ ∇vutil

αα

II IV

I

III

IIa

IIb

IIc IVc

IVb

IVa

Figure 7: Visualization of the di-
rections ∇vutilH−1

θ̂
and ∇vutil.

B DETAILED INFORMATION ON DATASETS AND MODEL TRAINING

We describe dataset details, model training, and other information used in the main paper, below.

B.1 DATASETS

We cover our generated synthetic datasets in Section 4, vision datasets in Section 5, text datasets in
Section 6, and datasets for robustness in Section 7.

B.1.1 SYNTHETIC DATASETS

We generate two synthetic datasets to validate the correctness of our IP method in measuring the
convex and non-convex models’ utility, fairness, and robustness. Specifically, we generate a linear
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dataset using the scikit-learn (Pedregosa et al., 2011) library’s make_blobs function, which consists
of 150 training samples and 100 test samples. The second dataset is the non-linear half moons dataset
so that we can train a Multi-Layer Perception network with two hidden layers with ReLU activations.
The training set has 250 samples and the test set has 100 samples, and the dataset is generated using
the scikit-learn library’s make_moons function. Here we manually flip the labels of 20 samples (10
from each class) to add noise to the data.

B.1.2 VISION DATASETS

Both the CIFAR-10N and CIFAR-100N datasets (Oliver et al., 2018) consist of the same input images
that make up the CIFAR-10 (10 classes) and CIFAR-100 (100 classes) datasets (Krizhevsky et al.,
2009), respectively. Each input is a 32x32 RGB image with a dimension of (3,32,32). However,
for CIFAR-10N and CIFAR-100N, the labels are noisy, as they contain real-world human annotation
errors collected using 3 annotators on Amazon Mechanical Turk. As these datasets are based on
human-annotated noise, they model noisy real-world datasets more realistically, compared to synthetic
data alternatives. The training set for both datasets contains 50,000 image-label pairs, and the test set
contains 10,000 image-label pairs that are free from noise. For CIFAR-10N we utilize three noise
settings for experiments in the paper– (1) Worst is the dataset version with the highest noise rate
(40.21%) as the worst possible annotation label for the image is chosen, (2) Aggregate is the least
noisy dataset (9.03%) as labels are chosen via majority voting amongst the annotations, and (3)
Random has intermediate noise (17.23%) and consists of picking one of the annotators’ labels. We
use the first annotator for the random labels. For CIFAR-100N there is only a single noisy setting due
to the large number of labeling classes, and the overall noise rate is 40.20%.

B.1.3 NLP DATASETS

For the three GLUE datasets—RTE, CoLA, and QNLI(Wang et al., 2018), we perturbe the validation
set as follows. The Recognizing Textual Entailment (RTE) dataset consists of sentence pairs labeled as
entailment or not entailment. It is derived from a series of annual textual entailment challenges. The
dataset includes 2,490 training examples and 277 validation examples. Since the test set does not have
labels, we split the validation set into two parts, with one half used as the validation set for computing
influence, and the other half used as the test set. Subsequently, we generated perturbed datasets for
both the validation set and the test set using a seq2seq model (Qian et al., 2022). The Corpus of
Linguistic Acceptability (CoLA) dataset consists of sentences labeled as grammatically acceptable
or unacceptable. This dataset is derived from publications in linguistics and includes 8,551 training
examples and 1,043 validation examples. As with RTE, the test set for CoLA does not have labels, so
we split the validation set into two parts, using one half as the validation set for computing influence,
and the other half as the test set. Perturbed datasets were generated using a seq2seq model (Qian
et al., 2022) for both the validation set and the test set. The Question Natural Language Inference
(QNLI) dataset is a large-scale corpus for question answering, consisting of question-sentence pairs
from the Stanford Question Answering dataset. The task is to determine whether the context sentence
contains the answer to the question. It includes 104,743 training examples and 5,463 validation
examples. Similar to the other datasets, the test set does not have labels, so we split the validation set
into two parts, using one half as the validation set for computing influence, and the other half as the
test set. Perturbed datasets were also generated using a seq2seq model (Qian et al., 2022) for both the
validation set and the test set. These datasets represent diverse natural language understanding tasks,
and using them helps evaluate the fairness and utility of the fine-tuned RoBERTa model.

B.1.4 DATASETS FOR DEFENCING ATTACKS

We utilize three datasets: Bank, CelebA, and JigsawToxicity, to evaluate the defense against adaptive
evasion adversaries. The Bank dataset (Moro et al., 2014) consists of features extracted from direct
marketing campaigns of a Portuguese banking institution. The goal is to predict whether a client will
subscribe to a term deposit. The dataset includes 18,292 training examples, 6,098 validation examples,
and 6,098 test examples. The feature dimension of the dataset is 51. Both the validation and test
sets have labels. The CelebA dataset (Liu et al., 2018) is a large-scale face attributes dataset with
more than 200,000 celebrity images, each annotated with 40 binary attributes. For this experiment,
we focus on a subset of these images. The dataset is split into 62,497 training examples, 20,833
validation examples, and 20,833 test examples. The feature dimension of the dataset is 39. Both
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the validation and test sets have labels. The JigsawToxicity dataset (Noever, 2018) contains a large
number of comments from Wikipedia labeled for toxicity. The goal is to predict the toxicity level of a
given comment. The dataset includes 18,000 training examples, 6,000 validation examples, and 6,000
test examples. The feature dimension of the dataset is 385. These datasets cover a range of tasks
from marketing prediction and face attribute recognition to toxicity detection, providing a robust
evaluation of the model’s defense mechanisms against adaptive adversaries.

B.2 MODELS AND METHODS

We now describe the models and the methods used in our experiments throughout the main paper.
First, we describe the ResNet-34 (He et al., 2016) architecture used as the base model for the noisy
vision datasets, then the RoBERTa (Liu et al., 2019) NLP transformer model. We also describe
implementation details and parameter values for the label correction baselines used in Sections 7 and
the influence-based baselines used throughout the paper.

B.2.1 MLP

In our experiments as described in Section 4, we utilized a three-layer Multi-Layer Perceptron
(MLP) classifier. This MLP is structured with three fully connected layers, each followed by a
ReLU activation function. Specifically, the input layer maps the input features to 32 neurons, the
hidden layer maintains this dimensionality, and the output layer is a single neuron producing the
final prediction. The final layer’s output is passed through a sigmoid activation function to yield a
probability score.

B.2.2 RESNET-34

The ResNet-34 model in Section 5 was proposed in (He et al., 2016) and is a 34-layer convolutional
neural network pretrained on the ImageNet-1K dataset at resolution 224 × 224. The pretrained model
block is fine-tuned on the CIFAR-10N/CIFAR-100N training set experiments with default parameters–
minibatch size (128), optimizer (SGD), initial learning rate (0.1), momentum (0.9), weight decay
(0.0005), and number of epochs (100), for all experiments.

B.2.3 ROBERTA

We use the Roberta-base model from Huggingface2 in Section 6. The learning rate is 0.00001 and the
batch sizes of RTE, CoLA, and QNLI are 64, 16, and 32. The model is fine-tuned over 10 epochs.
The loss function used is a negative log-likelihood as the datasets are all for binary classification.

B.2.4 LOGISTIC REGRESSION

The Logistic Regression model in Section 7 is implemented using the sklearn library. The model
uses L2 regularization with and a maximum iteration limit of 2,048 (Chhabra et al., 2024).

B.2.5 INFLUENCE-BASED BASELINES

In our experiments, we utilize the following influence function-based methods as baselines:
TracIn (Pruthi et al., 2020) replaces the Hessian matrix with the identity matrix; LiSSA (Koh & Liang,
2017) and EKFAC (Grosse et al., 2023) use implicit Hessian-vector products and Kronecker-Factored
curvature to efficiently approximate the inverse of the Hessian matrix; DataInf (Kwon et al., 2023)
swaps the order of matrix multiplication to obtain a closed-form expression; Self-TracIn (Thakkar
et al., 2023) and Self-LiSSA (Bejan et al., 2023) are self-expression versions of TracIn and LiSSA,
where ∇vutil is replaced with ∇θ̂ℓ(zi; θ̂). GEX (Kim et al., 2024) utilizes ensemble methods based
on checkpoints from extra stochastic gradient descent on the converged model. TDA (Bae et al.,
2024) focuses checkpoints during the training process, ensembles the influence via EKFAC (Grosse
et al., 2023). Our IP closely resembles TracIn and GEX, with the added application of dropout with
U(0, 0.01) on the model parameters. TracIn, GEX, IP, and IP Ensemble are all Hessian-free and they

2https://huggingface.co/docs/transformers/model_doc/roberta
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are ensemble versions, except for IP. Here, we present their calculations to highlight the differences
between them as follows:

Iutil
IP (−zi, θ̂) =

∑
zj∈V

∇θ̂ℓ(zj ; θ̂)
⊤∇θ̂ℓ(zi; θ̂),

Iutil
TracIn(−zi,ΘTracIn) =

1

T

∑
θ̂t∈ΘTracIn

Iutil
IP (−zi, θ̂t),

Iutil
GEX(−zi,ΘGEX) =

1

T

∑
θ̂t∈ΘGEX

Iutil
IP (−zi, θ̂t),

Iutil
IP Ensemble(−zi,ΘIP Ensemble) =

1

T

∑
θ̂t∈ΘIP Ensemble

Iutil
IP (−zi, θ̂t),

(5)

where θ̂ in IP is the converged model parameters; ΘTracIn denotes the set of model parameters from
the saved checkpoints during model training; ΘGEX is obtained by training the converged model
for several extra iterations; IP Ensemble gets ΘIP Ensemble by applying dropout mechanisms on the
model; T is the ensemble size. The advantages of IP Ensemble are that it does not require recording
checkpoints compared to TracIn, and it does not need extra model training processes compared to
GEX. We argue that the early checkpoints might not be helpful to analyze the sample influence and
the extra iterations on the converged model make little effects.
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Figure 8: Illustrating our inner product approach on measuring fairness and robustness. A and
D illustrate the same 2D linearly separable synthetic dataset in Figure 2 trained using a Logistic
Regression model for binary classification, where the solid and dashed point boundaries denote the
majority and minority subgroups. B and E represent the validation set. C and F show the estimated
influence on fairness and robustness by the traditional influence function and our IP method.

C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

C.1 IP FOR MEASURING FAIRNESS AND ROBUSTNESS

Similar to Figure 2, we conduct the experiments based on Eqs. (3) and (4) to demonstrate the
effectiveness of our IP in measuring the sample influence on fairness and robustness. Figure 8 shows
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the relationship between IP and the traditional influence function, indicating IP is a good surrogate of
the traditional influence function in measuring fairness and robustness as well.

C.2 PERFORMANCE OF IP ENSEMBLE WITH DIFFERENT RATES OF REMOVED SAMPLES

In our paper, we explore different rates of removed samples on CIFAR-10N-a. Table 4 shows the
performance of IP Ensemble with different rates of removed samples. Except for not removing, there
is no significant difference in the remaining results.

Table 4: Performance of IP Ensemble with different rates of removed samples on CIFAR-10N-a

Method Ensemble Size Remove Rate ACC

Cross Entropy 5 0 91.62
IP Ensemble (Ours) 5 0.025 92.29 ± 0.16

IP Ensemble (Ours) 5 0.050 92.26 ± 0.19

IP Ensemble (Ours) 5 0.075 92.50 ± 0.13

IP Ensemble (Ours) 5 0.100 92.37 ± 0.15

C.3 PARAMETER ANALYSIS ON DROPOUT RATE AND ENSEMBLE SIZE

Table 5 shows the performance of different dropout rates and ensemble sizes of IP Ensemble. As can
be observed, our IP Ensemble is not sensitive to dropout rate, and its performance increases with a
large ensemble size, demonstrating the effectiveness of the ensemble strategy. It is also worth noting
that although our IP Ensemble runs fast, it might take a longer time to calculate the sample gradient.

Table 5: Performance of different dropout rate and ensemble size of IP Ensemble on CIFAR-10N-a,
CIFAR-10N-r, CIFAR-10N-w, and CIFAR-100N

Ensemble Size Dropout Rate CIFAR-10N-a CIFAR-10N-r CIFAR-10N-w CIFAR-100N

5 0.01 92.26 ± 0.19 91.28 ± 0.29 86.50 ± 0.35 62.25 ± 0.54

5 0.1 92.26 ± 0.19 91.28 ± 0.29 86.50 ± 0.35 62.25 ± 0.54

5 0.5 92.26 ± 0.19 91.28 ± 0.29 86.50 ± 0.35 62.25 ± 0.54

1 0.01 92.42 ± 0.17 90.82 ± 0.08 86.31 ± 0.35 60.59 ± 0.20

5 0.01 92.26 ± 0.19 91.28 ± 0.29 86.50 ± 0.35 62.25 ± 0.54

10 0.01 92.58 ± 0.04 91.32 ± 0.29 86.89 ± 0.37 61.82 ± 0.61

15 0.01 92.27 ± 0.09 91.27 ± 0.28 86.47 ± 0.41 61.59 ± 0.34

20 0.01 92.41 ± 0.15 91.33 ± 0.26 86.65 ± 0.16 62.25 ± 0.11

C.4 PERFORMANCE ON VIT AND MLP-MIXER

To verify the effectiveness of our IP ensemble across different network architectures, we conducte
experiments using ViT (Dosovitskiy, 2020) and MLP-Mixer (Tolstikhin et al., 2021) on various vision
datasets in Table 6. We use a batch size of 512 for all experiments in this section. The models are
trained on CIFAR-10N and CIFAR-100N datasets for 100 epochs, and on Animal-10N for 400 epochs.
The learning rate was set to 1× 10−4 for ViT and 1× 10−3 for MLP-Mixer.

Our IP Ensemble consistently demonstrates superior performance compared to the vanilla models
and other baseline methods on different base models. Specifically, when trained on ViT, IP Ensemble
achieves an average accuracy of 70.06%, outperforming the vanilla ViT’s average accuracy of 68.87%.
This improvement is observed across all datasets, with notable gains on CIFAR-100N (51.01% versus
48.53%) and Animal-10N (77.20% versus 76.20%). Additionally, compared to baseline methods, our
IP Ensemble achieves the best performance with ViT or MLP-Mixer based models, indicating the
effectiveness of our methods on different base models.
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Table 6: Accuracy results of influence function-based methods with ViT and MLP-mixer as based
models on CIFAR10N-a, CIFAR-100N, and Animal-10N with 5% detrimental samples removed.

Methods / Datasets CIFAR-10N-a CIFAR-100N Animal-10N Avg.

ViT 81.87 48.53 76.20 68.87

LiSSA (Koh & Liang, 2017) 81.83 ± 0.19 48.47 ± 0.24 76.90 ± 0.35 69.07
TracIn (Pruthi et al., 2020) 81.59 ± 0.21 48.18 ± 0.28 76.21 ± 0.58 68.66
EKFAC (Grosse et al., 2023) 80.79 ± 0.56 48.90 ± 0.30 76.85 ± 0.30 68.85
DataInf (Kwon et al., 2023) 81.68 ± 0.21 49.00 ± 0.22 76.70 ± 0.27 69.13
Self-TracIn (Thakkar et al., 2023) 81.88 ± 0.12 49.25 ± 0.21 76.95 ± 0.25 69.36
Self-LiSSA (Bejan et al., 2023) 82.89 ± 0.12 49.30 ± 0.18 76.80 ± 0.28 69.66
TDA (Bae et al., 2024) 81.89 ± 0.28 49.05 ± 0.54 76.44 ± 0.32 69.12
GEX (Kim et al., 2024) 82.99 ± 0.24 49.78 ± 0.20 76.88 ± 0.29 69.88

IP (Ours) 81.93 ± 0.22 49.12 ± 0.20 76.80 ± 0.22 69.28
IP Ensemble (Ours) 81.96 ± 0.13 51.01 ± 0.17 77.20 ± 0.24 70.06

MLP-Mixer 74.42 35.63 72.69 60.91

LiSSA (Koh & Liang, 2017) 75.35 ± 0.47 36.50 ± 0.21 72.89 ± 0.28 61.58
TracIn (Pruthi et al., 2020) 74.43 ± 0.28 35.21 ± 0.35 72.71 ± 0.43 60.78
EKFAC (Grosse et al., 2023) 75.49 ± 0.28 36.34 ± 0.24 73.12 ± 0.19 61.65
DataInf (Kwon et al., 2023) 75.10 ± 0.45 35.78 ± 0.29 73.17 ± 0.21 61.35
Self-TracIn (Thakkar et al., 2023) 75.88 ± 0.21 36.72 ± 0.19 73.81 ± 0.54 62.14
Self-LiSSA (Bejan et al., 2023) 75.41 ± 0.38 36.05 ± 0.27 72.56 ± 0.34 61.34
TDA (Bae et al., 2024) 74.89 ± 0.31 36.84 ± 0.38 71.88 ± 0.43 61.20
GEX (Kim et al., 2024) 75.57 ± 0.27 36.85 ± 0.25 73.89 ± 0.43 62.10

IP (Ours) 75.04 ± 0.23 36.15 ± 0.18 73.47 ± 0.20 61.55
IP Ensemble (Ours) 75.77 ± 0.19 37.12 ± 0.18 73.80 ± 0.11 62.23

C.5 TIME COMPLEXITY AND EXECUTION TIME OF VARIOUS INFLUENCE FUNCTION-BASED
METHODS ON VISION DATASETS

Table 7 shows the time complexity of various influence function-based methods. Except for the vanilla
calculation, all other methods have linear time complexity in terms of the sample size. However, they
have large divergence in real execution time.

We omit the specific timing details for the sample gradient, which are readily available during the
base model’s training phase. Besides, utilizing vmap in Pytorch, we can efficiently compute gradients
in parallel. For example, in Section 5, it only takes 61 seconds and 4 seconds to calculate ∇vutil and
∇θ̂ℓ(zi; θ̂) on CIFAR-10N dataset, respectively.

Table 7: Computational complexity of influence-function-based methods (n is #training samples and
p is #model parameters, k is #checkpoints or #ensemble size with k=1 here. "-" denotes no runs.)

Method Type Time Complexity CIFAR-10N CIFAR-100N Animal-10N

Exact by Eq. (1) Hessian-based O(np3) - - -
LiSSA (Koh & Liang, 2017) Hessian-based O(np) 7.67 34.59 7.46
TracIn (Pruthi et al., 2020) Hessian-free O(npk) 0.03 0.28 0.03
EKFAC (Grosse et al., 2023) Hessian-based O(np2) 22.54 192.58 23.89
DataInf (Kwon et al., 2023) Hessian-based O(np) 11.50 45.29 10.89
Self-TracIn (Thakkar et al., 2023) Self-influence O(npk) 0.15 1.41 0.15
Self-LiSSA (Bejan et al., 2023) Self-influence O(np) 14.57 54.39 14.40
GEX (Kim et al., 2024) Hessian-free O(npk) 0.03 0.28 0.03
TDA (Bae et al., 2024) Hessian-based O(np2k) 23.98 193.79 24.77
IP Ensemble (Ours) Hessian-free O(npk) 0.03 0.28 0.03

D BROADER IMPACT AND LIMITATIONS

Our work aims to address issues that currently hinder the applicability of influence estimation
in deep learning models. By enabling influence estimation for deep models, practitioners can
assess whether training samples are beneficial or detrimental to performance. As we demonstrate
through extensive experiments across multiple problem settings, our proposed outlier gradient
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analysis approach outperforms existing baselines and can augment model performance by trimming
detrimental samples. As a result, our work paves the way for significant positive societal impact,
especially with the increased adoption of larger and deeper neural networks such as LLMs.

However, despite our research demonstrating superior performance and potential benefits, there are
several limitations to consider. First, our method assumes a level of model and data homogeneity that
might not hold in highly heterogeneous datasets or more complex model architectures. Furthermore,
there is the consideration of robustness and fairness across different domains and types of data; our
current evaluations, while extensive, may not cover all possible scenarios or edge cases, potentially
limiting the generalizability of our findings. Finally, ethical considerations around data trimming and
sample selection must be carefully managed to avoid unintended biases or negative impacts on model
performance for underrepresented groups. As influence estimation becomes more integrated into
model training and evaluation pipelines, ongoing research and monitoring will be essential to ensure
that these techniques are applied responsibly and equitably.

Due to the extensive computational demands of our experiments (see details in Appendix E), which
require multiple retraining cycles to evaluate model stability and robustness, it becomes impractical
for us to conduct comparative experiments on very large datasets, e.g., ImageNet. The limited
computational resources at our disposal make it challenging to perform such large-scale retraining
efforts, especially given the significant training time and GPU requirements. As a result, we focus our
evaluation on middle-size yet representative benchmarks that allow for more feasible experimentation
while maintaining the rigor of our comparative analyses.

E CODE AND REPRODUCIBILITY

We provide our code, instructions, and implementation in an open-source repository:
https://anonymous.4open.science/r/IP_ensemble-3E48/README.md. The experiments were con-
ducted on a Linux (Ubuntu 20.04.6 LTS) server using NVIDIA GeForce RTX 4090 GPUs with 24GB
VRAM running CUDA version 12.3 and driver version 545.23.08.
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