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Abstract
Significant progress has been achieved on the
improvement and downstream usages of the
Contrastive Language-Image Pre-training (CLIP)
vision-language model, while less attention is
paid to the interpretation of CLIP. We propose
a Gradient-based visual Explanation method for
CLIP (Grad-ECLIP), which interprets the match-
ing result of CLIP for specific input image-text
pair. By decomposing the architecture of the en-
coder and discovering the relationship between
the matching similarity and intermediate spatial
features, Grad-ECLIP produces effective heat
maps that show the influence of image regions
or words on the CLIP results. Different from
the previous Transformer interpretation meth-
ods that focus on the utilization of self-attention
maps, which are typically extremely sparse in
CLIP, we produce high-quality visual explana-
tions by applying channel and spatial weights
on token features. Qualitative and quantitative
evaluations verify the superiority of Grad-ECLIP
compared with the state-of-the-art methods. A
series of analysis are conducted based on our vi-
sual explanation results, from which we explore
the working mechanism of image-text matching,
and the strengths and limitations in attribution
identification of CLIP. Codes are available here:
https://github.com/Cyang-Zhao/Grad-Eclip.

1. Introduction
Recently, by learning the representations for matching
caption text and its corresponding image, the Contrastive
Language-Image Pre-training (CLIP) model (Radford et al.,
2021) has introduced a simple and effective dual-encoder
pre-training paradigm for the interaction between natural
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CLIP similarity: 0.36

Figure 1: A visual explanation of CLIP for the image with the text
“A dog is playing with frisbee” using (a) raw attention in the last
layer; (b) Rollout; (c) GAME; (d) MaskCLIP; (e) CLIPSurgery; (f)
M2IB; (g) RISE; (h) Grad-CAM; and (i) Our method Grad-ECLIP.

language processing and computer vision. CLIP signifi-
cantly improves the performance on various downstream
tasks, such as classification (Changpinyo et al., 2021; Cha
et al., 2022), retrieval (Luo et al., 2022) and segmentation
(Wang et al., 2022; Xu et al., 2022), with zero-shot and fine-
tuning methodologies. Inspired from CLIP, multi-modal
pre-training has been further developed by exploring differ-
ent perspectives, including unifying vision-language under-
standing and generation (Yu et al., 2022; Li et al., 2022a),
prompt design (Zhou et al., 2022b; Chen et al., 2022), and
region-aware enhancement (Li et al., 2020; Wang et al.,
2023; Zhong et al., 2022). Although researchers devote
many efforts into improving multi-modal pre-training or
exploring the usages in downstream tasks, less attention has
been focused on the interpretation or explanation of CLIP.

Previous visual explanation works have considered inter-
preting the transformer architecture used by CLIP. Attention
Rollout (Abnar & Zuidema, 2020) generates explanations
by aggregating attention maps computed along the forward
pass of the model. Relevance-based methods (Chefer et al.,
2021b;a) apply Layer-wise Relevance Propagation (LRP)
(Bach et al., 2015) and also rely on the attention mech-
anism in the model architecture. Since Rollout and many
LRP variants are class-agnostic, Transformer interpretability
(Chefer et al., 2021b) and Generic Attention-Model Explain-
ability (GAME) (Chefer et al., 2021a) build class-specific
relevance-based explanations using the self-attention or co-
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attention. However, simply treating CLIP as a vision trans-
former (ViT) and generating visual explanations based on
self-attention sometimes leads to confusing results because
of the sparse attention map (see Fig. 1a-c).

ECLIP (Li et al., 2022b) and CLIPSurgery (Li et al., 2023)
(see Fig. 1e) explore explanations for CLIP by computing
an image-text similarity map, and solve the counter-intuitive
problem that background patch features have higher similar-
ity with the text feature than the foreground. However, to
obtain reasonable similarity maps, new additional projection
layers or structure changes of the original CLIP are required.
Although the parameters of CLIP encoders are frozen, learn-
ing more black-box parameters with extra data or modifying
original model architecture makes the explanation less in-
terpretable. MaskCLIP (Zhou et al., 2022a) also provides
a technique to calculate class-specific image-text similarity
map. By passing the value features of the last attention
layer through later linear layers as image patch features,
the similarity map is able to localize the concept in the text
(see Fig. 1d), but has noisy backgrounds and confusingly
highlights points on the locations unrelated to the explained
target. The disadvantage of these similarity-map methods
is that they are only forward processing, and the attended
features are not necessarily used in the final prediction.

To better focus on the discriminative features used in the
prediction, gradient-based methods with class-activation
maps (CAM) (Zeiler & Fergus, 2014), such as Grad-CAM
(Selvaraju et al., 2017), Layer-CAM (Jiang et al., 2021) and
FullGrad (Srinivas & Fleuret, 2019), consider the gradient
of the prediction with respect to features from a CNN layer
as weights, and locates the class-specific discriminative re-
gions by weighted aggregation of the features maps. Fig. 1h
shows the visualization when adapting Grad-CAM on CLIP,
where the cosine similarity of image-text pair is adopted
as the prediction and the gradients are calculated w.r.t. the
patch tokens from the ViT layers. Since there are no gradi-
ents w.r.t. the patch tokens in final layer because they are not
involved in the calculation of the matching score, feature
outputs from the penultimate layer of ViT are adopted. How-
ever, the results of Grad-CAM are do not well explain CLIP
and suffer from the same problem of highlighting unrelated
points as MaskCLIP, which suggests that the layer features
of ViT are not suitable for CAM methods.

In this paper, we explore a more effective way to inter-
pret CLIP, by analyzing how CLIP obtains the final feature
embedding, and deriving the relationship between the em-
bedding and intermediate features. Based on the CAM prin-
ciple, we propose a novel gradient-based visual explanation
method for CLIP (Grad-ECLIP), which generates the im-
portance heat map by aggregating the intermediate features
with result-related channel and spatial importance weights.
Our proposed method uses the gradients of the image-text

matching score w.r.t. the attention layer as the importance
for feature channels. For the spatial importance, because the
softmax attention typically yields sparse attention maps, we
propose a loosened attention map for computing the spatial
importance, which can better reflect the importance of more
regions, as compared to directly using the strict softmax
attention. Then our Grad-ECLIP explanation map is cal-
culated with the values in the attention layer as the feature
map, weighted by the channel and spatial importances. Note
that Grad-ECLIP is result-specific and is suitable for both
the image and text encoders, i.e., the visual explanation on
image is text-specific and the word attention degrees in a
sentence is image-specific. The evaluations in experiments
show the superiority of our proposed Grad-ECLIP compared
with other explanation methods. Finally, using Grad-ECLIP,
we further conduct a visualization-based analysis on CLIP,
and reveal working mechanisms and advantages/limitations
of the CLIP model. We hope our proposed method can
be helpful for researchers to explore more properties of
vision-language models.

In summary, the contributions of this paper are:

1. We propose Grad-ECLIP, a gradient-based visual ex-
planation approach for CLIP to produce high-quality
result-specific heat maps for explaining the matching
of image-text pairs.

2. We demonstrate the superiority of the proposed Grad-
ECLIP with comprehensive evaluations comparing
with the state-of-the-art explanation methods for Trans-
formers and CLIP.

3. By using Grad-ECLIP, we explore the properties of
CLIP, and reveal the model’s ability of concept de-
composition and addibility, as well as strengths and
weaknesses in attribution identification.

2. Related Work
Contrastive language-image pre-training. Many multi-
modal works have been developed and focus on the inter-
action of computer vision and natural language processing,
such as text-image retrieval (Wang et al., 2019b), image cap-
tioning (Xu et al., 2015), visual question answering (Antol
et al., 2015), and visual grounding (Plummer et al., 2015).
Contrastive language-image pre-training (CLIP) performs
contrastive learning on very large-scale web-curated image-
text pairs. It shows promising pre-trained representations
with superior zero-shot transfer ability on diverse datasets
and impressive fine-tuning performance on various down-
stream tasks. Subsequent works extend and improve CLIP
from different aspects: Zhou et al. (2022b); Chen et al.
(2022) improve the aspects of prompt design and optimiza-
tion; Yu et al. (2022); Li et al. (2022a) unifies the vision-
language understanding and generation by adding text de-
coders with image-text cross-attention during pre-training;
Li et al. (2020); Wang et al. (2023); Zhong et al. (2022)
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builds an alignment between region feature or position in-
formation with fine-grained object descriptions. Although
significant results have been achieved with CLIP and its
development, less effort and exploration is focused on its in-
terpretability through visual explanations. In this paper, we
propose a novel visual explanation method, which generates
high-quality heat maps that reveal the important regions or
words used for CLIP’s scoring of an image-text pair.

Explainability in computer vision. Since visualizing the
importance of input features is a straightforward approach
to interpret a model, many works visualize the internal rep-
resentations of CNNs or Transformers with heat maps. Most
explanation methods can be categorized as: CAM methods,
perturbation methods, Shapley-value methods, or attribution
propagation (relevance-based) methods.

CAM methods, such as CAM (Zeiler & Fergus, 2014), Grad-
CAM (Selvaraju et al., 2017), and Grad-CAM++ (Chat-
topadhay et al., 2018), generate the explanation heat map
from a selected feature layer by linearly aggregating the
activation maps with weights that indicates each feature’s
importance. Grad-CAM computes the weights with global
average pooling on the gradients of the model’s prediction
w.r.t. the feature layer. Gradient-free CAMs (Ramaswamy
et al., 2020; Wang et al., 2020b;a) generate weights from
the prediction score changes when perturbing features.

Perturbation-based methods (Ribeiro et al., 2016; Petsiuk
et al., 2018; Fong & Vedaldi, 2017; Lundberg & Lee, 2017;
Wagner et al., 2019; Lee et al., 2021; Petsiuk et al., 2021)
perturb the input and observe the changes in output scores to
determine the importance of input regions. Such black-box
methods are intuitive and highly generalizable, but compu-
tationally intensive. The quality of these methods are often
greatly influenced by the type or resolution of the pertur-
bations used. While having solid theoretical justification,
Shapley-value methods (Lundberg & Lee, 2017) also suffer
from large computational complexity.

The attribution propagation methods recursively decompose
the network output into the contribution of early layers,
based on the Deep Taylor Decomposition (DTD) (Mon-
tavon et al., 2017). LRP (Bach et al., 2015) and its variants
(Lundberg & Lee, 2017; Nam et al., 2020; Shrikumar et al.,
2017) propagate relevance from the prediction to the input
image based on DTD and generate class-agnostic explana-
tions, while Contrastive-LRP (Gu et al., 2019) and SG-LRP
(Iwana et al., 2019) generate class-specific explanations.
Some works (Qiang et al., 2022; Xie et al., 2022; Yu &
Xiang, 2023) are proposed to interpret Transformers. Abnar
& Zuidema (2020) proposed an Attention flow and Rollout
method, which is based on all attention maps in the forward
process of model. Since Rollout is class-agnostic, Trans-
former interpretability (Chefer et al., 2021b) and GAME
(Chefer et al., 2021a) build class-specific relevance-based

method for explaining transformer with the internal atten-
tion mechanism. However, we found that the explanation
methods relying on attention maps in Transformer cannot
generate satisfactory results with CLIP, possibly because
the sparse attention patterns on the softmax map. The re-
cent M2IB (Wang et al., 2024) applies information bot-
tleneck principle to CLIP, which develop an optimization
objective to find the compressed representations for both
image features and text features. However, a series of hyper-
parameters are adopted during the optimization, which lim-
its the generalization in practical application.

The similarity based methods (Li et al., 2022b; 2023; Zhou
et al., 2022a), which use the cosine similarity map between
the image local features and the text features as the expla-
nation map, have the disadvantage that they are only based
on the forward (bottom-up) process and thus the attended
features are not necessarily used in the final prediction. In
contrast, we propose Grad-ECLIP as an effective approach
to interpret CLIP, which highlight features that have largest
influence on the prediction as measured by the gradient,
which is a top-down process.

3. Method
Our method serves as a gradient-based visual explanation
for interpreting the CLIP matching performed on image-text
pairs. We start with a brief introduction of CLIP. Then, by
decomposing the layers of the transformer and exploring
the relationship between the final output and intermediate
features, we give the formulation of our gradient-based
visual explanation for CLIP (Grad-ECLIP).

3.1. Preliminary on CLIP
CLIP learns both visual and language representations from
large-scale raw web-curated image-text pairs. It consists of
an image encoder I (·) and a text encoder T (·), which are
jointly trained to respectively extract image and text feature
embedding in a unified representation space. Given image-
text pair (I, T ), the matching score between their extracted
image feature fI ∈ RD and text feature fT ∈ RD is:

S(fI , fT ) = cos(fI , fT ) =
fIf

T
T

∥fI∥∥fT ∥ . (1)

Contrastive learning is used on the matching scores, regard-
ing ground-truth image-text pairs as positive samples and
other mismatched pairs as negatives. Here we focus on the
CLIP model where both encoders are transformers. Our
method is derived based from the transformer architecture,
and thus is suitable for interpreting both image and text en-
coders. In the followed section we present our Grad-ECLIP
from the image viewpoint, where the visualization is gener-
ated on the input image I and shows important regions re-
lated to producing the matching score ST (fI) ≜ S(fI , fT ),
with the given specific text prompt T . The application of
Grad-ECLIP from the text viewpoint, where the visualiza-

3



Gradient-based Visual Explanation for Transformer-based CLIP

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
(1)

�
𝑖𝑖
 
𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐

(0) 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐
(0)

Attention Layer

𝑆𝑆 𝑓𝑓𝐼𝐼 , 𝑓𝑓𝑇𝑇

raw attention

⨀

𝜕𝜕𝑆𝑆

𝜕𝜕𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐
(0)⨀

gradient

𝑤𝑤𝑖𝑖 ∈ ℝ𝐻𝐻×𝑊𝑊 𝑤𝑤𝑐𝑐 ∈ ℝ𝐶𝐶

𝑣𝑣𝑖𝑖 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶

…

Input text: 
“brown bottles 

in a row”

⨁

loosen

⨀

Grad-ECLIP

forward pass with linear projection

𝑓𝑓𝐼𝐼

𝑓𝑓𝑇𝑇

simple forward

Grad-ECLIP processing

CLIP

Visual Explanation for 
Image Encoder

Input image: 
𝑠𝑠𝑜𝑜𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘iT

𝐶𝐶

𝑥𝑥𝑒𝑒𝑒𝑒𝑐𝑐
(1)

… 𝑣𝑣𝑖𝑖 ∈ ℝ𝑀𝑀×𝐶𝐶 ⨀ 𝑠𝑠𝑜𝑜𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑞𝑞𝑒𝑒𝑒𝑒𝑐𝑐𝑘𝑘iT

𝐶𝐶
�

𝑖𝑖
 

𝑜𝑜𝑒𝑒𝑒𝑒𝑐𝑐
(0) 𝑥𝑥𝑒𝑒𝑒𝑒𝑐𝑐

(0)
⨁

𝑤𝑤𝑖𝑖 ∈ ℝ𝑀𝑀 𝑤𝑤𝑐𝑐 ∈ ℝ𝐶𝐶⨀ ⨀
loosen gradient Grad-ECLIP

Visual Explanation for 
Text Encoder

Figure 2: Illustration of our method. Image-text pair specific visual explanation is generated by weighting and aggregating the values as
feature map in attention layer with spatial importance wi and channel importance wc. Gradients are propagated to the attention layer
output to produce wc, and the loosened attention map is applied as wi.

tion is generated for the text prompt T given the input image
I , can be obtained analogously by considering the [eos] to-
ken (end of sentence token) from the text encoder, which is
analogous to the [cls] token in the image encoder.

3.2. Grad-ECLIP
Following convention, we denote x(n) as the input of layer
L(n) and output of layer L(n+1), where n ∈ [0...N ] is the
index in a Transformer that consists of N layers. x(N) is the
input of the network, x(1) is the input of the last layer and
x(0) = I(x(N)) is the output of the network. The image
feature is fI = LP(x(0)[cls]), where LP denotes linear
projections, and [cls] represents the operation to get the
feature vector on the class token. Thus, except for the class
token, all the final layer features of the other tokens (image
patch tokens) are not used during contrastive learning of
CLIP. Therefore, to interpret the ST (fI) w.r.t. image feature
map, we explore the relationship between the last layer class
token feature x(0)

cls and the intermediate spatial feature maps.

As shown in the illustration of Fig. 2, looking closely into
the last layer of the network, the image embedding from
visual encoder can be formulated as:

fI = LP(x
(0)
cls) = LP(A(x(1)) + x(1))[cls] (2)

= LP(o
(0)
cls) + LP(x

(1)
cls) (3)

= LP
(∑

i

softmax(
qclsk

T
i√

C
)vi

)
+ LP(x

(1)
cls), (4)

where the output of attention layer on class token is

o
(0)
cls = A(x(1))[cls] =

∑
i

softmax(
qclsk

T
i√

C
)vi, (5)

and A represents the attention layer in the Transformer,
qcls is the query embedding for the class token, while ki
and vi represent the key and value embeddings at spatial
location i, with C as their channel dimension. The softmax
operation inside the attention layer measures the weight of
the value on each location. Multi-heads are usually used
in the attention layer to group the channel of {q, k, v} into
several heads, and (5) is operated inside each head with
the softmax calculated over subsets of the channels. Then
the final attention layer output is obtained by concatenating
the results of each head together. In practice, we formulate
the ocls with one attention head in the forward pass and
operate the softmax over all channels as (5). We discuss the
influence multi-heads to visual explanation in the Appendix.

Then, with only considering the last layer, the relationship
between the matching score and the spatial feature map can
be approximately formed as:

ST (fI) ≈ ST (wcocls) ≈ ST (wc

∑
i

wivi), (6)

where wc and wi are the linear weights on channel and
spatial dimensions. Thus, the target-specific heat map is

Hi = ReLU(
∑
c

wcwivi), (7)

which is produced by summarizing the feature maps with
weight wc and wi that capture the importance of the c-th
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channel and i-th location, respectively,

wc =
∂ST (fI)
∂ocls

, wi = Φ(qclsk
T
i ), (8)

where Φ is a normalization function discussed next.

The channel importance wc: The previous gradient-based
works (Ribeiro et al., 2016; Selvaraju et al., 2017; Chat-
topadhay et al., 2018) have shown that the partial derivative
w.r.t. the intermediate feature can reflect the influence of
feature elements on the final output. Thus, based on (6),
we set the weight of channels according to the gradient of
the explanation target, which is the similarity of the image-
text pair, with respect to the output class token feature of
attention layer, as in (8).

The spatial importance wi: Eq. 5 shows the softmax at-
tention represents the importance of the values at each lo-
cation. However, from the visualization, we discover that
the softmax self attention function is extremely sparse. Im-
portant information may be encoded in different locations,
but the softmax only selects the largest activation, which is
not appropriate as a spatial weight. Thus, when calculating
the spatial weight, we replace the softmax with a looser
similarity function , which is the inner product between qcls
and ki, normalized by Φ to [0, 1]. In the experiments, we
compare using the loosened wi and without wi to show the
effect of spatial weights, qualitatively and quantitatively.

Grad-ECLIP generates visual explanation for the CLIP en-
coder by (7) with weights in (8) using the last layer values
v as the feature map. Finally, based on (4), the explana-
tion can be aggregated over all the layers by recursively
processing each layer. In the experiments, we use the last
layer to explain the image encoder, and the last eight layers
for interpreting the text encoder. The ablation study for the
influence of different number of layers involved in image
and text explanation is shown in Appendix.

4. Experiments
In this section we conduct experiments on Grad-ECLIP to:
1) evaluate its visual explanation qualitatively and quanti-
tatively, and compare with the current SOTA methods; 2)
evaluate the processing time; 3) gain insight about CLIP by
analyzing the visual explanations.

We conducted the experiments with the ViT-B/16 architec-
ture. We considered two versions of our approach: the
full version of Grad-ECLIP using wi defined in (8), and
a version without wi (denoted as “w/o wi”) that replaces
the proposed spatial weights with wi = 1. We compared
with representative baseline methods from the four cate-
gories: 1) attention map-based Rollout (Abnar & Zuidema,
2020), which takes into account all the attention maps com-
puted along the forward pass, and raw attention in the last
visual encoder layer, both of which are not result-specific
explanation; 2) classical gradient-based method Grad-CAM

(Selvaraju et al., 2017), which takes the image-text similar-
ity as target and calculate the gradients w.r.t. the ViT layer
output; 3) relevance-based GAME (Chefer et al., 2021a),
which integrates the relevancies and gradients propagated
through the network; 4) cosine-based MaskCLIP (Zhou
et al., 2022a) and CLIPSurgery (Li et al., 2023), which
generates a similarity value on each location by the cosine
between text feature and processed values as local image
features. 5) M2IB (Wang et al., 2024), which applies an in-
formation bottleneck principle to generate explanation maps
for CLIP. Each baseline is built with different properties and
assumptions over the architecture. We also show visualiza-
tion comparisons with the typical black-box perturbation
method RISE (Petsiuk et al., 2018), but did not conduct
quantitative comparisons with black-box perturbation and
Shapley methods, due to their computational complexity
and inherent differences with our proposed approach.

4.1. Qualitative evaluation
Comparison of visual explanations. We compare the vi-
sualizations of raw attention, Rollout, Grad-CAM, GAME,
MaskCLIP, CLIPSurgery, M2IB, RISE and our Grad-ECLIP
(w/ or w/o wi in Eq. 7) in Fig. 3 with the images from Ima-
geNet (Russakovsky et al., 2015) and MS COCO (Lin et al.,
2014). Except raw attention and Rollout, which are defined
to be text-agnostic, the others are all text-specific, so we
test the same image with two different text inputs on MS
COCO. Our Grad-ECLIP demonstrates a strong ability of
generating clear and distinct text-specific heat maps, and
gives reasonable explanation of verbs for interpreting CLIP.
For example, the highlights for “holding” focus around the
person’s hands (the 5th row of Fig. 3k), while “standing”
highlights the person’s legs (the 6th row of Fig. 3k). We
also notice that the sticks in the background are highlighted,
which is probably because the sticks are regarded as “stand-
ing” on snow.

Compared with the full Grad-ECLIP, the variant w/o wi

contains more noise near object boundaries and on the
background (Fig. 3j), but are otherwise consistent with full
Grad-ECLIP. The result of using wi = softmax (Fig. 3i)
is equivalent to raw attention (Fig. 3a). In contrast to our
methods, Grad-CAM and MaskCLIP can produce highlights
on the explained object, but both also generate significant
noise. CLIPSurgery tends to put high and coarse atten-
tion on the text target region, but also contains background
noises. M2IB and MaskCLIP fails when the texts are verbs,
while RISE performs the worst at interpreting CLIP. The
results of GAME and Rollout, which are both based on self-
attentions of the model, generate confusing heat maps due
to the sparse attention between tokens in some layers.

Explanations on image/sentence pairs. The explanation
map from Grad-ECLIP can also be generated from text en-
coder viewpoint. Using the gradient of matching score and
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tench
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holding

standing

(k) Grad-ECLIP 
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(i) Grad-ECLIP
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w/o 𝑤𝑤𝑖𝑖  (𝑤𝑤𝑖𝑖 = 1)(f) CLIPSurgery (g) M2IB (h) RISE

Figure 3: Comparison of heat maps from: (a) raw attention map in the last ViT; (b) Rollout (Abnar & Zuidema, 2020); (c) Grad-CAM
(Selvaraju et al., 2017); (d) GAME (Chefer et al., 2021a); (e) MaskCLIP (Zhou et al., 2022a); (f) CLIPSurgery (Li et al., 2023); (g) M2IB
(Wang et al., 2024); (h) RISE (Petsiuk et al., 2018); (i) variants of our proposed Grad-ECLIP using softmax attention as wi, or (j) using
wi = 1 (w/o wi); (k) our proposed Grad-ECLIP. Visual explanations are provided for the matching score between the image and the
specific text prompts, which can be nouns (e.g.car, dog) or verbs (e.g.holding, standing). From the visualization comparison, Grad-ECLIP
shows the superior explanation ability on different types of text prompts.

(a) raw attention (b) Rollout (c) GAME (d) Grad-ECLIP (Ours)

“two cats sitting on top of  a pair of shoes.”

Image-text pair

“a car with some surfboards in a field.”

“a bird that is on a tree limb.”

Figure 4: Explanation for image-text pairs from MS COCO using: by (a) raw attention, Transformer interpretation methods (b) Rollout,
(c) GAME, and our method (d) Grad-ECLIP. The importances of words are visualized by the degree of green color.

Table 1: Faithfulness evaluation of image explanation on the ImageNet validation
dataset: AUC for Deletion and Insertion curves, based on Top-1 (@1) or Top-5
(@5) classification accuracy. Either the ground-truth or the prediction are used as
the text input into CLIP. The second best is shown with underline.

Deletion↓ Insertion↑
Ground-truth Prediction Ground-truth Prediction

Method @1 @5 @1 @5 @1 @5 @1 @5
raw attention 0.3831 0.6239 - - 0.2492 0.4195 - -
Rollout 0.4082 0.6556 - - 0.2803 0.4665 - -
Grad-CAM 0.3417 0.5628 0.3518 0.5817 0.2682 0.4454 0.2526 0.4206
GAME 0.3356 0.5734 0.3497 0.5938 0.3611 0.5636 0.3425 0.5384
MaskCLIP 0.2848 0.4885 0.2886 0.4957 0.3335 0.5351 0.3275 0.5267
CLIPSurgery 0.3115 0.5235 0.3217 0.5412 0.3832 0.6021 0.3727 0.5719
M2IB 0.3630 0.5953 0.3633 0.5951 0.3351 0.5411 0.3347 0.5410
Ours w/o wi 0.2535 0.4379 0.2634 0.4568 0.3715 0.5831 0.3528 0.5556
Ours 0.2464 0.4272 0.2543 0.4420 0.3838 0.5993 0.3672 0.5749

Table 2: Evaluation of text explanation faithful-
ness on MS COCO image-text retrieval (Karpa-
thy’s split) validation dataset: AUC for Deletion
and Insertion curves with reporting image re-
trieval (IR) and text retrieval (TR) performance.

Deletion↓ Insertion↑
Method IR TR IR TR
raw attention 0.2843 0.4917 0.0065 0.0328
Rollout 0.1221 0.2389 0.1052 0.2070
GAME 0.1083 0.2084 0.1146 0.2301
M2IB 0.2139 0.4256 0.0063 0.0375
Ours w/o wi 0.1116 0.2113 0.1123 0.2361
Ours 0.0996 0.1770 0.1292 0.2536
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Figure 5: Classification accuracy at Top-1 vs. (a) Deletion steps
and (b) Insertion steps, on the ImageNet validation dataset with
explanation heat maps from our Grad-ECLIP (solid) and other
methods (dash).

Table 3: Evaluation of localization ability using the Point Game
(PG and PG-energy) and Segmentation test (Pixel Acc., AP and
MaskIoU) on the ImageNet-S validation dataset.

Method PG PG-energy Pixel Acc. AP maskIoU
raw attention 0.1219 0.1321 0.0278 0.2877 0.0013
Rollout 0.1375 0.2835 0.2524 0.3345 0.011
Grad-CAM 0.1845 0.3154 0.5457 0.4050 0.1251
GAME 0.4706 0.4438 0.4765 0.4072 0.089
MaskCLIP 0.4041 0.1408 0.718 0.4557 0.2481
CLIPSurgery 0.5759 0.3983 0.7546 0.4608 0.3471
M2IB 0.264 0.3557 0.6194 0.4003 0.1474
Ours w/o wi 0.8356 0.4409 0.7365 0.5163 0.3314
Ours 0.8899 0.5997 0.7056 0.5662 0.2869

the feature embeddings of word tokens, Grad-ECLIP can
show the importance of each word in the given sentence
when matching with an image. Fig. 4 shows example ex-
planations for image-text pairs from MS COCO. Although
Rollout and GAME can highlight important words in the
sentence, Grad-ECLIP is the only one showing good corre-
spondence between image attention regions and important
words. From the explanation of the sentence, we can identify
which words are more important for CLIP when matching
with the specific image, and conversely the text-specific
important regions on the image are shown with image expla-
nation. This word importance visualization of the input text
can be helpful when designing text prompts for image-text
dual-encoders in practical applications.

4.2. Quantitative evaluation
We next perform quantitative evaluations of Grad-ECLIP
comparing with baselines in this section. The explanation
faithfulness is evaluated by the Deletion and Insertion met-
rics (Samek et al., 2016; Chattopadhay et al., 2018; Wang
et al., 2020b;a; Petsiuk et al., 2021), which is also called per-
turbation tests (Chefer et al., 2021b;a). Moreover, we eval-
uate localization ability, when considering each visualiza-
tion as a soft-segmentation of the image, using PointGame
(Zhang et al., 2018; Zhao & Chan, 2022) and segmentation
tests (Chefer et al., 2021b).

Deletion and Insertion. A faithful explanation method
should produce heat maps highlighting the important con-
tent in the image that has greatest impact on the model
prediction. Deletion (negative perturbation) replaces input
image pixels by random values step-by-step with the im-
portant pixels removed first based on the ordering of the
heat map values, while recording the drop in prediction
performance. Insertion adds image pixels to an empty im-
age step-by-step based on the heat map importance, and
records the performance increase. We consider each step as
0.5% of number of image pixels, and record results for 100
steps. The model performance is measured using top-1 or
top-5 zero-shot classification accuracy on the validation set
of ImageNet (Russakovsky et al., 2015) (ILSVRC) 2012,
consisting of 50K images from 1000 classes.

The insertion/deletion curves for top-1 accuracy are pre-
sented in Fig. 5, and the corresponding area under the curve
(AUC) with top-1 and top-5 accuracy are presented in Tab. 1.
Steeper drop of performance with deletion steps corresponds
to a lower deletion AUC, while quicker increase of perfor-
mance with insert steps outputs a higher insertion AUC. Our
method obtains the fastest performance drop for Deletion
and largest performance increase for Insertion compared
with most related works, showing that regions highlighted in
our heat maps better represent explanations of CLIP. CLIP-
Surgery has comparable results on the Insertion metric to
ours, while performs poorly when evaluated with Deletion.
The reason is that the CLIPSurgery shows similar and high
heat map values on the explained target region, so the dele-
tion operation fails to delete the most important pixels on
the image at the beginning steps, which causes the deletion
curve to decrease gradually, producing the high deletion
value. Since CLIPSurgery can successfully locate the expla-
nation target with high values on the map, it performs well
in the Insertion test. Our method’s variant without using the
loosened attention (w/o wi) has slightly worse performance,
but is still better than other baselines. As with Chefer et al.
(2021b;a), we also use both the ground-truth class and the
predicted class as the text prompt to generate heat maps, and
our method is consistent with them, showing gains when
using ground-truth text prompts.

We further evaluate the faithfulness of our text explana-
tions using the text version of Deletion and Insertion metric,
where words are deleted or inserted based on the order of
importance in the text heat map. Using images and cap-
tion annotations in MS COCO Karpathy’s split, we record
the image-text retrieval performance changing with total 5
steps, with one word deleted/inserted at a time. The results
in Tab. 2 show that Grad-ECLIP has the highest faithful-
ness, i.e., the best deletion and insertion test performance,
compared with the other Transformer explanation methods.
This demonstrates that Grad-ECLIP also has the excellent
ability for image-specific text explanation.
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Table 4: Comparison of the averaged processing time per image for generating the explanation map.

Method raw attention Rollout Grad-CAM GAME MaskCLIP CLIPSurgery M2IB RISE Grad-ECLIP(Ours)
time (s/img) 0.0117 0.0298 0.0114 0.0228 0.0117 2.9423 0.5781 6.2376 0.0165

Point Game and Segmentation Test. We next evaluate the
localization ability of the visual explanations. We adopt the
ImageNet-Segmentation (ImageNet-S) (Gao et al., 2022)
validation set, which provides segmentation annotations on
12,419 images of 919 categories from ImageNet. Point
Game (PG) is a commonly used metric to evaluate the lo-
calization correctness of visual explanation. PG counts a
hit score if the location with the largest value in the text-
specific heat map lies within the object region, which can
be defined by the class segmentation mask. Then the PG
accuracy is measured by averaging all samples. Since PG
only considers the maximum point, but not the spread of
the heat map, we also conduct the energy-PG (Wang et al.,
2020b), which calculate the proportion of heat map energy
within the ground-truth mask versus the whole map. Similar
to the evaluation by Chefer et al. (2021b;a), regarding the
heat maps as soft-segmentation results, we adopt pixel ac-
curacy (Pixel Acc.), average precision (AP), and averaged
mask intersection over union (maskIoU).

The evaluation results for localization are shown in Tab. 3.
Both versions of Grad-ECLIP significantly outperform other
explanation methods, especially on PG, which demonstrates
that Grad-ECLIP can well show the attention of CLIP on the
object with the correct category as the text prompt. Compar-
ing Grad-ECLIP with and without wi, Grad-ECLIP without
wi obtains relatively higher performance on pixel accuracy
and maskIoU, since heat maps that contain more high-value
pixels within the ground-truth mask have advantage on these
two metrics. In Fig. 3(j,k), using wi reduces the values on
the mask while removing the surrounding noise. Due to a
similar reason, CLIPSurgery obtains higher pixel accuracy
and maskIoU, since it tends to put high heat map values on
all the pixels of object region, and gets higher score when
aggregating the heatmaps inside the object mask in these
two evaluations. However, its lower PG, PG-energy and
AP demonstrate that there are more high values generated
outside of the object boundary. Better segmentation does
not necessarily result in faithful explanations, in terms of
both insertion and deletion metrics, as indicated in Table 1.

4.3. Processing time comparison

In Tab. 4, we show the average processing time per image,
which counts the total duration from inputting the image
and text into CLIP to obtaining the explanation map. Since
the gradient can be easily and quickly obtained through the
autograd function of Pytorch, both our method and Grad-
CAM take similar processing time as raw attention and
MaskCLIP, which obtain the map from the forward calcu-
lation and require other minor operations. Note that for
gradient-based methods, the backpropagation does not need

white brown toy white toy brown toy

horseyoung young horse

(a)

(b)

(c) stand skis stand on skis

feed sheep feed sheep(d) stand on sheep

feed

stand

feed skis

white white horse 

Figure 6: Visual explanation heat maps generated for single words
and word phrases using Grad-ECLIP on CLIP. The dashed box
contains examples where the text does not match the image.

to go all the way to the input layer, but stops at an interme-
diate upper layer, and thus the extra computation required is
not much. RISE needs the longest processing time, which
is the common drawback of perturbation-based methods.

4.4. Analysis of CLIP based on Grad-ECLIP

Useful explanation methods can be used to identify failure
modes, establish appropriate users’ confidence and give in-
sight to developers to improve models. Therefore, in this
section, we use the text-specific visual explanation maps
generated by Grad-ECLIP and give examples of exploring
the mechanism in text and image matching, and analyze
the strengths and weaknesses of CLIP. We hope that our
explanation tool can help researchers discover more interest-
ing properties of language-image pre-training models, and
inspire further development of these models.

Concept decomposition and addibility in image-text
matching. Examining the visualizations shown in Fig. 3h,
CLIP can well recognize the single concepts (nouns) and
has good attention about actions (verbs). An interesting
question is how does it process the combination of words,
e.g.adjective and noun, verb and noun? To examine the
working function of phrase matching, we conducted experi-
ments comparing the explanation heat maps for single words
and combined phrases using Grad-ECLIP.

The results are shown in Fig. 6. Considering adjective-noun
combinations in (a), the highlights are put on all three toys
when matching with “toy”, and CLIP can successfully high-
light the correct toy when the color adjective is included in
the text. In the case of “young horse” in (b), the other horses
are still highlighted, while the highlights on the young one is
strengthened by adding the attribute “young”. The examples
of verb-noun cases in (c) and (d) also show similar addibility
pattern on the heat maps: (c) with the verb “stand”, the re-
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sphere cylinder cube

red yellow blue

metal matte plastic

small cubebig small

left right

left red thing

shape

material

color

size

position

(a)

(b)

(c)

(d)
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Figure 7: Visual explanations on image matching with different
kinds of attributions: (a) shape; (b) material; (c) color; (d) size;
(e) position. For visualization, the ground-truth corresponding to
the text prompt are outlined with white boxes, except for cases
involving relative adjectives, e.g.“big”, “small”, “left”, “right”.
The text explanation maps are also shown for “small cube” and
“left red thing” combinations.

gion of person’s leg is highlighted along with the“skis”; (d)
with the verb “feed”, the people’s hands are also highlighted
together with sheep. We also show some non-existent con-
cepts or strange word combinations in the dashed box of
Fig. 6, e.g., “white horse” in (b), “feed skis” in (c), “stand
on sheep” in (d). In these cases, the visualization shows
that CLIP will mainly focus on the reasonable part of the
concept, such as “horse”, “skis” and “sheep”. For the non-
existent “white” concept in image (b), the visual explanation
does not highlight anything.

Therefore, we infer that when processing the matching of
image and phrases, the model has the ability of decomposi-
tion and addibility of different concepts. This can help the
model to generalize to different scenarios and could be the
source of the strong zero-shot ability of CLIP.

Diagnostics on attribution identification. In Fig. 6(a), we
see that CLIP has an ability to distinguish color attributes,
and mark out the corresponding regions on image. To ex-
plore further, we conduct an experiment to test CLIP’s abil-
ity to identify different types of object attributes. We adopt
an example image from CLEVR (Johnson et al., 2017), a
diagnostic dataset for visual reasoning, and visualize im-
age/text matching with various attributes: shape (sphere,
cylinder, cube), material (metal, matte, plastic), color (red,
yellow, blue), size (big, small), position (left, right).

Fig. 7 shows the visual explanation heat maps generated
with each image-attribution pair. We have the following
findings: 1) for shape and material, the heat maps can show
partial correct attention with some obvious objects, such as
the metal sphere for “sphere” and the highlighted cylinder
and cube for “matte”. However, there are also false positive
and false negative errors in (a) and (b). Thus, CLIP possess
a certain but limited knowledge about object shapes and
materials. 2) For the color attribute in row (c), the results
further verify that the model can have good ability to dis-
tinguish different colors. 3) As for comparative attributes,
size (big or small) in (d) and position (left or right) in (e),
the visual explanations also show that CLIP produces some
erroneous results. Comparing the heat map of “small cube”
and “cube” in (a), “left red thing” and “red” in (c), there are
little difference between them, which demonstrates that the
word “cube” and “red” take the major role in the matching.
This is also confirmed by the text heat maps in the figure.

Overall, from the above analysis, we can infer that CLIP has
advantages with common perceptual attributes like color,
but cannot well handle physical attributes like shape and
material, and is weak at grounding objects with comparative
attributes, like size and position relationships. Related to the
addibility of concepts in the previous section, it is reasonable
to expect that attributes that have concrete visual appearance,
such as color, will contribute more to the matching score,
compared with the abstract comparative attributes.

5. Conclusion
In this paper, we propose Grad-ECLIP, a novel white-box
gradient-based visual explanation method for CLIP, the dual-
encoder pre-trained model for image-text matching. Grad-
ECLIP can be applied on both the image and text encoder to
produce heat maps, which indicate the importance of image
regions or words for the image-text matching score. Qualita-
tive and quantitative evaluations demonstrate the advantages
of our method compared with existing explanation methods
designed for transformers or CLIP. We also adopt Grad-
ECLIP to analyze the properties of CLIP model, where we
discover its ability of concept decomposition and addibility,
and advantages/limitations on different attribute identifica-
tion. By introducing these analyses as examples, we hope
the proposed interpretation method can be used to help with
both development and understanding of language-image
models. In future work, we will also explore more usages
of the visual explanation for improving the contrastive pre-
training model and scheme. We will also consider how to
associate individual words from the sentence to regions in
the image, and vice versa.

9



Gradient-based Visual Explanation for Transformer-based CLIP

Acknowledgements
This work was supported by Strategic Research Grants from
City University of Hong Kong (Project. Nos. 7005840
and 7005995) and Hetao Shenzhen-Hong Kong Science and
Technology Innovation Cooperation Zone (HZQB-KCZYZ-
2021045).

Impact Statement
This paper presents work whose goal is to advance the field
of explainable AI. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.

References
Abnar, S. and Zuidema, W. Quantifying attention flow in

transformers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
4190–4197, 2020.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Zitnick, C. L., and Parikh, D. Vqa: Visual question
answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Boecking, B., Usuyama, N., Bannur, S., Castro, D. C.,
Schwaighofer, A., Hyland, S., Wetscherek, M., Naumann,
T., Nori, A., Alvarez-Valle, J., et al. Making the most of
text semantics to improve biomedical vision–language
processing. In European conference on computer vision,
pp. 1–21. Springer, 2022.

Cha, J., Lee, K., Park, S., and Chun, S. Domain gener-
alization by mutual-information regularization with pre-
trained models. In European Conference on Computer
Vision, pp. 440–457. Springer, 2022.

Changpinyo, S., Sharma, P., Ding, N., and Soricut, R. Con-
ceptual 12m: Pushing web-scale image-text pre-training
to recognize long-tail visual concepts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3558–3568, 2021.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubra-
manian, V. N. Grad-cam++: Generalized gradient-based
visual explanations for deep convolutional networks. In
2018 IEEE winter conference on applications of computer
vision (WACV), pp. 839–847. IEEE, 2018.

Chefer, H., Gur, S., and Wolf, L. Generic attention-model
explainability for interpreting bi-modal and encoder-
decoder transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 397–
406, 2021a.

Chefer, H., Gur, S., and Wolf, L. Transformer interpretabil-
ity beyond attention visualization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 782–791, 2021b.

Chen, G., Yao, W., Song, X., Li, X., Rao, Y., and Zhang,
K. Prompt learning with optimal transport for vision-
language models. arXiv preprint arXiv:2210.01253,
2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Fong, R. C. and Vedaldi, A. Interpretable explanations of
black boxes by meaningful perturbation. In Proceedings
of the IEEE international conference on computer vision,
pp. 3429–3437, 2017.

Gao, S., Li, Z.-Y., Yang, M.-H., Cheng, M.-M., Han, J., and
Torr, P. Large-scale unsupervised semantic segmentation.
2022.

Gu, J., Yang, Y., and Tresp, V. Understanding individual
decisions of cnns via contrastive backpropagation. In
Computer Vision–ACCV 2018: 14th Asian Conference
on Computer Vision, Perth, Australia, December 2–6,
2018, Revised Selected Papers, Part III 14, pp. 119–134.
Springer, 2019.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 8340–8349, 2021a.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song,
D. Natural adversarial examples. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 15262–15271, 2021b.

Iwana, B. K., Kuroki, R., and Uchida, S. Explaining con-
volutional neural networks using softmax gradient layer-
wise relevance propagation. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision Workshop (IC-
CVW), pp. 4176–4185. IEEE, 2019.

10



Gradient-based Visual Explanation for Transformer-based CLIP

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., and
Wei, Y. Layercam: Exploring hierarchical class activa-
tion maps for localization. IEEE Transactions on Image
Processing, 30:5875–5888, 2021.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei,
L., Lawrence Zitnick, C., and Girshick, R. Clevr: A
diagnostic dataset for compositional language and ele-
mentary visual reasoning. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Lee, J., Yi, J., Shin, C., and Yoon, S. Bbam: Bounding
box attribution map for weakly supervised semantic and
instance segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 2643–2652, 2021.

Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., and
Hoi, S. C. H. Align before fuse: Vision and language
representation learning with momentum distillation. Ad-
vances in neural information processing systems, 34:
9694–9705, 2021.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In International Confer-
ence on Machine Learning, pp. 12888–12900. PMLR,
2022a.

Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang,
L., Hu, H., Dong, L., Wei, F., et al. Oscar: Object-
semantics aligned pre-training for vision-language tasks.
In ECCV, pp. 121–137. Springer, 2020.

Li, Y., Wang, H., Duan, Y., Xu, H., and Li, X. Exploring
visual interpretability for contrastive language-image pre-
training. arXiv preprint arXiv:2209.07046, 2022b.

Li, Y., Wang, H., Duan, Y., and Li, X. Clip surgery for bet-
ter explainability with enhancement in open-vocabulary
tasks. arXiv preprint arXiv:2304.05653, 2023.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., and
Li, T. Clip4clip: An empirical study of clip for end to
end video clip retrieval and captioning. Neurocomputing,
508:293–304, 2022.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and
Müller, K.-R. Explaining nonlinear classification deci-
sions with deep taylor decomposition. Pattern recogni-
tion, 65:211–222, 2017.

Nam, W.-J., Gur, S., Choi, J., Wolf, L., and Lee, S.-W. Rela-
tive attributing propagation: Interpreting the comparative
contributions of individual units in deep neural networks.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 34, pp. 2501–2508, 2020.

Petsiuk, V., Das, A., and Saenko, K. Rise: Randomized in-
put sampling for explanation of black-box models. arXiv
preprint arXiv:1806.07421, 2018.

Petsiuk, V., Jain, R., Manjunatha, V., Morariu, V. I., Mehra,
A., Ordonez, V., and Saenko, K. Black-box explanation of
object detectors via saliency maps. In CVPR, pp. 11443–
11452, 2021.

Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C.,
Hockenmaier, J., and Lazebnik, S. Flickr30k entities:
Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pp. 2641–
2649, 2015.

Qiang, Y., Pan, D., Li, C., Li, X., Jang, R., and Zhu, D.
Attcat: Explaining transformers via attentive class activa-
tion tokens. Advances in neural information processing
systems, 35:5052–5064, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ramaswamy, H. G. et al. Ablation-cam: Visual explanations
for deep convolutional network via gradient-free localiza-
tion. In proceedings of the IEEE/CVF winter conference
on applications of computer vision, pp. 983–991, 2020.

Ribeiro, M. T., Singh, S., and Guestrin, C. ” why should
i trust you?” explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1135–1144, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., and
Müller, K.-R. Evaluating the visualization of what a deep
neural network has learned. IEEE Trans. Neural Netw
Learn Syst, 28(11):2660–2673, 2016.

11



Gradient-based Visual Explanation for Transformer-based CLIP

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
In Proceedings of the IEEE international conference on
computer vision, pp. 618–626, 2017.

Sharma, P., Ding, N., Goodman, S., and Soricut, R. Con-
ceptual captions: A cleaned, hypernymed, image alt-text
dataset for automatic image captioning. In Proceedings
of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 2556–
2565, 2018.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In International conference on machine learning,
pp. 3145–3153. PMLR, 2017.

Srinivas, S. and Fleuret, F. Full-gradient representation
for neural network visualization. In Advances in Neu-
ral Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Wagner, J., Kohler, J. M., Gindele, T., Hetzel, L., Wiede-
mer, J. T., and Behnke, S. Interpretable and fine-grained
visual explanations for convolutional neural networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9097–9107, 2019.

Wang, H., Ge, S., Lipton, Z., and Xing, E. P. Learning
robust global representations by penalizing local predic-
tive power. Advances in Neural Information Processing
Systems, 32, 2019a.

Wang, H., Naidu, R., Michael, J., and Kundu, S. S. Ss-cam:
Smoothed score-cam for sharper visual feature localiza-
tion. arXiv preprint arXiv:2006.14255, 2020a.

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding,
S., Mardziel, P., and Hu, X. Score-cam: Score-weighted
visual explanations for convolutional neural networks. In
CVPR Workshops, pp. 24–25, 2020b.

Wang, J., Zhou, P., Shou, M. Z., and Yan, S. Position-
guided text prompt for vision-language pre-training. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 23242–23251, 2023.

Wang, Y., Rudner, T. G., and Wilson, A. G. Visual ex-
planations of image-text representations via multi-modal
information bottleneck attribution. Advances in Neural
Information Processing Systems, 36, 2024.

Wang, Z., Liu, X., Li, H., Sheng, L., Yan, J., Wang, X., and
Shao, J. Camp: Cross-modal adaptive message passing
for text-image retrieval. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 5764–
5773, 2019b.

Wang, Z., Lu, Y., Li, Q., Tao, X., Guo, Y., Gong, M., and
Liu, T. Cris: Clip-driven referring image segmentation.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11686–11695, 2022.

Xie, W., Li, X.-H., Cao, C. C., and Zhang, N. L. Vit-cx:
Causal explanation of vision transformers. arXiv preprint
arXiv:2211.03064, 2022.

Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J.,
and Wang, X. Groupvit: Semantic segmentation emerges
from text supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 18134–18144, 2022.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International conference on machine learning,
pp. 2048–2057. PMLR, 2015.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
M., and Wu, Y. Coca: Contrastive captioners are image-
text foundation models. arXiv preprint arXiv:2205.01917,
2022.

Yu, L. and Xiang, W. X-pruner: explainable pruning for
vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 24355–24363, 2023.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13, pp. 818–
833. Springer, 2014.

Zhang, J., Bargal, S. A., Lin, Z., Brandt, J., Shen, X., and
Sclaroff, S. Top-down neural attention by excitation
backprop. IJCV, 126(10):1084–1102, 2018.

Zhao, C. and Chan, A. B. Odam: Gradient-based instance-
specific visual explanation for object detection. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

Zhong, Y., Yang, J., Zhang, P., Li, C., Codella, N., Li, L. H.,
Zhou, L., Dai, X., Yuan, L., Li, Y., et al. Regionclip:
Region-based language-image pretraining. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16793–16803, 2022.

Zhou, C., Loy, C. C., and Dai, B. Extract free dense labels
from clip. In European Conference on Computer Vision,
pp. 696–712. Springer, 2022a.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. Learning to
prompt for vision-language models. International Jour-
nal of Computer Vision, 130(9):2337–2348, 2022b.

12



Gradient-based Visual Explanation for Transformer-based CLIP

A. Deletion and Insertion with image visual explanation on MS COCO
The results of Deletion and Insertion with image-specific text explanation on MS COCO Karpathy’s split validation set are
reported in Tab. 2. In this section, we also conduct the Deletion and Insertion experiments with caption-specific image
explanations, which record the image and text retrieval performance changing when deleting and inserting pixels of the
input image with 100 steps. From the results shown in Tab. 5, it can be seen that Grad-ECLIP surpasses the other methods
on most metrics, which further demonstrates that our method produce high-quality visual explanation on both the text and
image encoder, for the specific image and text pair, regardless if the text is the class categories as in ImageNet or long
captions as in MS COCO.

Table 5: Evaluation of image explanation faithfulness on MS COCO image-text retrieval (Karpathy’s split) validation dataset: AUC for
Deletion and Insertion curves with reporting image retrieval (IR) and text retrieval (TR) performance.

Method Deletion↓ Insertion↑
IR TR IR TR

Method @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
raw attention 0.1708 0.3554 0.4558 0.1923 0.3720 0.4654 0.1247 0.2552 0.3292 0.1544 0.2969 0.3477
Rollout 0.1948 0.3946 0.4977 0.2268 0.4238 0.5240 0.1294 0.2932 0.3423 0.1753 0.3503 0.3841
Grad-CAM 0.1717 0.3502 0.4462 0.2161 0.4008 0.4927 0.1027 0.2216 0.2903 0.1152 0.2327 0.2947
GAME 0.1706 0.3552 0.4560 0.1982 0.3800 0.4736 0.1537 0.3083 0.3885 0.2097 0.3735 0.4186
MaskCLIP 0.1321 0.2841 0.3722 0.1516 0.2949 0.3755 0.1423 0.2953 0.3785 0.1891 0.3514 0.4056
Ours w/o wi 0.1390 0.2940 0.3805 0.1827 0.3386 0.4200 0.1403 0.2895 0.3729 0.1735 0.3279 0.3894
Ours 0.1246 0.2670 0.3480 0.1550 0.2933 0.3701 0.1576 0.3203 0.4065 0.2056 0.3761 0.4321

B. The influence of the number of layers used to compute the visual explanation
As introduced in Section 3.2, the explanation can be aggregated over all the layers in the Transformer by recursively
processing each layer with Eq. 7. In this section, we conduct experiments to study the influence of using different number of
layers to generate heat maps for image and text.

With different layer number N , the visualizations for images with specific texts are shown in Fig. 8, and the corresponding
caption explanations are shown in Fig. 9. N = 1 means the visualization is generated only with the final Transformer layer,
while N = 12 means all the layers are involved. The image explanations become worse when increasing the number of
layers involved, since the features in lower layer may introduce more noise to the heat map. Therefore, it is the best to
just use the last layer in the calculation of image visual explanation, where this conclusion is consistent with the classical
gradient-based CAM methods.

As for the text explanation, there is no obvious difference of the visualization quality, since the highlights are basically
focusing on “dog”, “car” and “traffic lights” with some minor variations. Therefore, we perform the Deletion and Insertion
experiments as in Sec. 4.2 on text explanation map with different number of layers N . The results are shown in the following
Table 6. The explanation faithfulness has the trend that it first increases with more layers used and then goes down with the
lower-layer features involved (N > 8). Therefore, we aggregate the last eight layers maps for interpreting the text encoder
in our experiments.

Table 6: The text explanation faithfulness vs. the involved layer numbers. Evaluating on MS COCO image-text retrieval (Karpathy’s split)
validation dataset: AUC for Deletion and Insertion curves with reporting image retrieval (IR) and text retrieval (TR) performance.

Deletion↓ Insertion↑
N IR TR IR TR
1 0.1118 0.2087 0.1059 0.2196
2 0.1021 0.1826 0.1186 0.2351
4 0.0995 0.1786 0.1242 0.2428
6 0.0989 0.1761 0.1273 0.2490
8 0.0996 0.1770 0.1292 0.2536
10 0.1008 0.1843 0.1288 0.2472
12 0.1095 0.2087 0.1219 0.2364
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Figure 8: The image visual explanations generated with different N layers.
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Figure 9: The text visual explanations generated with different N layers.
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C. The influence of multi attention heads on visual explanation
As mentioned in Section 3.2 (5), CLIP performs the forward pass with a single head in the attention layer instead of
the original multi-head attention layer when producing the Grad-ECLIP visual explanation. In Fig. 10, we show the
visualization of explanation maps when using multi-head attention layers, compared with passing forward through a single
head. Comparing Fig. 10 (a) and (b), it can be seen that some surrounding context information is also highlighted with the
explained object. To further investigate, we further produce the heat maps for each attention head, using the q ∈ RD/12,
k ∈ RD/12, v ∈ RD/12, and attention output ocls ∈ RD/12, where D is channel number before going into multi heads,
and visualize them in Fig. 10 (c) for the target “dog”, and (d) for the “car”. The visual explanation in each head highlights
different regions, in addition to the target object. We can infer that the channels assigned to each heads can preserve different
information, and the softmax inside each head helps the model to encode more context information. In contrast, with the
single head setting, the softmax is performed over all channels, which selects out the most important information, and our
explanation method can show the model’s attention on the specific explained target, as shown in Fig. 10 (b).

dog car dog car

(a) heat maps with multi-head attention layer  (b) heat maps with single-head attention layer  

(c) heat maps for “dog” generated with each head in multi-head attention layer  

(d) heat maps for “car” generated with each head in multi-head attention layer  

Figure 10: The visual explanation maps when using (a) multi-head attention layer; (b) single-head attention layer; (c) each head in
multi-head attention layer for text “dog”; (d) each head in multi-head attention layer for text “car”

15



Gradient-based Visual Explanation for Transformer-based CLIP

D. More visualization examples on diverse datasets of different domain
We show the visualization comparison of different methods on the samples from different image domains, including the
original ImageNet and ImageNet in different domains: rendition (ImageNet-R (Hendrycks et al., 2021a)), pencil sketch
(ImageNet-Sketch (Wang et al., 2019a)), natural adversarial example (ImageNet-A (Hendrycks et al., 2021b)), web images
with captions (Conceptual Captions (CC) (Sharma et al., 2018)), and chest x-ray with text (MSCXR (Boecking et al., 2022))
in Fig. 11. For the image-caption pairs from the web-collected CC and chest X-ray data MSCXR, we generate explanations
for both image and text encoder, and compare with the other methods that also provide text encoder explanations, including
the raw attention, Rollout, GAME, M2IB.

Our Grad-ECLIP explanations provide interesting insights into how CLIP handles different image domains. In Fig. 11,
given a normal banana image and text “banana” Grad-ECLIP reveals that the yellow color is dominant to CLIP. However,
when given a pencil sketch without color (ImageNet-Sketch), Grad-ECLIP reveals that CLIP looks at the curvature of the
banana. For the color sketch of the banana (ImageNet-R), Grad-ECLIP shows that the color of the banana is mainly used,
and not the black curved lines. Thus, from these examples, we may infer that CLIP prefers using the yellow color over the
curved shape for matching with the “banana” text.

Grad-ECLIP also provides interesting insights on how the original CLIP fails on novel domains. The last two rows of
Fig. 11 show the explanations for chest x-ray images and text for the OpenAI CLIP model and a fine-tuned CLIP model (on
MSCXR). The Grad-ECLIP explanation shows that the original CLIP uses the whole lobe to match with the words “defined”
and “lobe”. In contrast, the fine-tuned CLIP locates the actual anomaly and matches it with the text “defined opacities
largely”. The reason is that the finetuned model is trained to the specific domain that matches the X-ray and the illness
location descriptions, while the original OpenAI CLIP model is more general and apparently “lobe” is the key word and the
main object in the image-text pair.
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(i) Grad-ECLIP 
(Ours)(c) Grad-CAM (d) GAME (e) MaskCLIP(a) raw attention (b) Rollout (f) CLIPSurgery (g) M2IB (h) RISE
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(i) Grad-ECLIP 
(Ours)(c) Grad-CAM (d) GAME (e) MaskCLIP(a) raw attention (b) Rollout (f) CLIPSurgery (g) M2IB (h) RISE

Figure 11: The visual explanation comparison of different methods on samples from different image domains.

E. Adapt Grad-ECLIP to other VLMs
Since our method is designed based on CLIP encoders, which are Transformer-based, our method can be easily adopted to
generate visual explanations for the models that are also Transformer-based. Here we extend Grad-ECLIP to ViT-based
classifier (Dosovitskiy et al., 2020) and BLIP (Li et al., 2022a) to show the generalized applicability of our method in
Fig. 12. When matching the same image-text pair, different models put attention on different regions, shown by the visual
explanations. For example, BLIP notes the fins, while CLIP notes the fish body to match the image to “tench”. When
matching with the sentence “a dog is playing with a frisbee”, BLIP puts attention on the dog on the image, while CLIP
shows more attention on the frisbee.

Other VLMs like CoCa (Yu et al., 2022) and ALBEF (Li et al., 2021) add additional attention layers after the encoder, and
thus our current method is not directly applicable since our method assumes that the last layer attention output has linear
relationship with the final feature embedding. Our future work will investigate adapting our method to these modified ViT
frameworks, e.g., to handle the attention pooling after the last layer in CoCa, or using cross attention to fuse image and text
in ALBEF. Nonetheless, our ability to explain CLIP and other VLMs with similar architecture is significant considering that
CLIP is by far the most widely used VLM.
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Figure 12: Adapt Grad-ECLIP to ViT-based classifier and BLIP .
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F. More visual explanations by Grad-ECLIP
Here we present more visualization of explanation results by Grad-ECLIP on CLIP. Figure 13 shows some examples with
images in ImageNet val dataset with the category as the text prompt. Then, Fig. 14 visualizes the explanation maps for
image-text pair with samples of MS COCO Karpathy’s split validation set. The image explanation is text-specific, while the
text explanation is image-specific.

goldfish tiger shark hen

Banded geckoAfghan hound

Irish wolfhound

lampshade

limousine

loudspeaker

Military uniform missile

mortar nail

pay-phone pinwheel

power drill

recreational vehicle remote control vacuum water bottle

Figure 13: More visual explanation examples in ImageNet validation set.
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Figure 14: More visual explanation examples for image-text pair in MS COCO Karpathy’s split validation set.
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