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ABSTRACT

Molecular representation learning is a fundamental challenge in AI-driven drug
discovery, with traditional unimodal approaches relying solely on chemical struc-
tures often failing to capture the biological context necessary for accurate toxicity
and activity predictions. To address this, we propose a multimodal representa-
tion learning framework that integrates molecular data with biological modalities,
including morphological features from Cell Painting assays and transcriptomic
profiles from the LINCS L1000 dataset. Unlike traditional approaches that re-
quire complete triplets (molecule, morphological, genomic), our model only re-
quires paired data—(molecule-morphological) and (molecule-genomic)—making
it more practical and scalable. Our approach leverages contrastive learning to
align molecular representations with biological data, even in the absence of fully
paired datasets. We evaluate our framework on the ChEMBL20 dataset using
linear probing across 1,320 tasks, demonstrating improvements in predictive per-
formance. By incorporating diverse biological modalities, our approach enables
more robust and biologically informed molecular representations, enhancing the
predictive power of AI models in drug discovery.

1 INTRODUCTION

Molecular representation learning is a cornerstone of AI-driven drug discovery, enabling models to
capture the underlying chemical properties of compounds for downstream tasks such as toxicity, and
activity prediction (Harnik & Milo, 2024). Traditional approaches rely on handcrafted descriptors
(e.g., physicochemical properties) or molecular fingerprints, which often fail to generalize beyond
known chemical spaces (Moein et al., 2023). Deep learning-based representations, particularly those
derived from graph neural networks (GNNs) and transformer models (e.g., SMILES-based BERT
variants), have emerged as powerful alternatives, learning meaningful embeddings directly from raw
molecular structures (Li & Jiang, 2021; Liu et al., 2023; Sypetkowski et al., 2024).

Unimodal molecular representations focus solely on chemical structures, either as molecular graphs
or linear notations like SMILES (Wang et al., 2019; Li & Fourches, 2020). While these representa-
tions effectively capture structural features, they often struggle to encode biological context, which
is crucial for tasks like drug toxicity and efficacy prediction (Seal et al., 2023). This limitation arises
because molecular properties are not determined by chemical structure alone; they also depend on
biological interactions within cellular environments. As a result, unimodal representations may not
fully exploit the complexity of drug action in living systems (Masood et al., 2024).

To address the shortcomings of unimodal approaches, multimodal representation learning inte-
grates additional sources of information, such as biological and phenotypic data (Seal et al., 2023;
Nguyen et al., 2023). These include transcriptomic responses from the LINCS dataset (Subramanian
et al., 2017), morphological features from high-content imaging (e.g., Cell Painting assays) (Chan-
drasekaran et al., 2023), and proteomic or metabolomic data. By incorporating these diverse data
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Figure 1: Multi-Modal Representation Learning Framework to integrate molecular, morphological,
and genomic modalities. Contrastive pretraining is performed on paired data (molecule-morphology
and molecule-genomics). The pretrained molecular encoder is then used for downstream molecular
property prediction.

modalities, multimodal approaches capture richer and more biologically relevant representations,
improving generalization and robustness in molecular property prediction tasks (Vaidya et al., 2025)
.

Pretraining molecular representations with biological modalities is essential for several reasons.
First, biological assays provide functional insights into how compounds interact with cellular sys-
tems, which are often not directly inferable from chemical structures alone (Seal et al., 2022). Sec-
ond, integrating phenotypic data from Cell Painting and gene expression signatures from LINCS
helps bridge the gap between molecular structure and biological response, leading to improved pre-
dictive performance in toxicity and efficacy modeling (Liu et al., 2024). Third, contrastive learning
strategies applied across different modalities enable the model to learn invariant features, enhancing
its ability to generalize across datasets and molecular scaffolds (Girdhar et al., 2023).

A key challenge in multimodal molecular representation learning is the lack of fully paired datasets,
where each molecule has corresponding data from multiple biological assays (e.g., molecule-
cell painting-genomics) (Vaidya et al., 2025). However, partial pairings exist, such as molecule-
genomics and molecule-cell painting. Contrastive learning provides an effective way to align these
different modalities by leveraging their shared relationships without requiring fully paired data
(Girdhar et al., 2023). By contrasting positive pairs (e.g., molecular representations and their corre-
sponding biological profiles) against negative pairs, the model learns to capture meaningful cross-
modal associations. This allows the integration of heterogeneous data sources while maintaining a
coherent and biologically informed molecular representation.

By leveraging multimodal data and contrastive learning, we aim to develop robust molecular rep-
resentations that are more predictive of real-world drug behavior, ultimately facilitating better-
informed decisions in drug discovery pipelines.

2 MATERIAL AND METHOD

2.1 PROBLEM DEFINITION

The core task is to predict activity profiles of novel molecules across a set of known protein targets
T = T1, ..., Tm. Given a dataset D = (xi,yi)

N
i=1 where yi ∈ {0, 1}m represents activity profiles

across m proteins, we aim to learn a function f : X → [0, 1]T mapping molecules to activity
profiles.

A key challenge in molecular property prediction is the limited generalization to novel molecules
(Performance(Dtest) ≪ Performance(Dtrain)). This generalization gap arises as train and test distri-
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butions differ significantly in chemical space, structurally similar compounds can exhibit drastically
different activity profiles, and molecular structure alone is often insufficient to capture complex
activity relationships.

To address these challenges, we leverage auxiliary data through a pretraining dataset Daux =

{(xaux
i ,agene

i,γ ,amorph
i )}Mi=1. Here, gene expression data is denoted as agene

i,γ = {agene
i,γ ∈

R978}γ∈Ccell line×Texposure×Dlevel , where γ = (c, t, d) represents a specific combination of cell line, time
point, and dose level. Measurements may be missing for many such condition combinations. Mor-
phological features, denoted as amorph ∈ R3479, capture cellular phenotypic changes but are not
associated with specific dose-time conditions. Unlike traditional approaches that require com-
plete triplets (molecule, morphological, genomic), our model only requires paired data—(molecule-
morphological) and (molecule-genomic)—making it more practical and scalable. This is formalized
through the constraints xaux = xgene ∪ xmorph where xgene ∩ xmorph may be empty.

Our framework follows a multi-stage training approach:

Pre-training on auxiliary data: ϕ∗ = argmin
ϕ

αLgene(x
aux,agene) + βLmorph(x

aux,amorph)

Supervised training on acitivity data: h∗ = argmin
h

Lsupervised(x,y)

Prediction: f(x) = σ(h∗(ϕ∗(x)))

where Lgene and Lmorph are contrastive losses, Lsupervised is binary cross-entropy loss, ϕ∗ : X →
Rd represents the molecular encoder that maps input molecules to a learned representation space,
h∗ : Rd → Rm is the prediction head that maps these representations to activity logits, and σ is the
element-wise sigmoid function.

ϕ∗ = ϕ∗
mol, ϕ

∗
gene, ϕ

∗
morph where ϕ∗

mol, ϕ
∗
gene, and ϕ∗

morph represent the optimized parameters of
fmol, fgene, and fmorph respectively

2.2 MULTIMODAL ENCODER ARCHITECTURE

Following the InfoNCE framework, we employ three encoders to process molecular graphs, mor-
phological features, and gene expression data, producing modality-specific representations:

umol
i = fmol(x

aux
i ) (1)

umorph
i = fmorph(a

morph
i ) (2)

ugene
i,γ = fgene([a

gene
i,γ ; eci ; e

t
i; e

d
i ]) (3)

Here, gene expression data agene
i,γ is augmented with condition embeddings eci , e

t
i, e

d
i ∈ R32 for

cell line, time point, and dose. The encoded representations umol
i ,umorph

i ,ugene
i ∈ R128 reside

in a shared multimodal space. During training, encoders are jointly optimized to learn molecular
representations that integrate structural, morphological, and transcriptional features.

2.3 PRETRAINING CONTRASTIVE LOSS

The total loss consists of two contrastive terms: one for molecule-morphology alignment and another
for molecule-gene expression alignment. It is formulated as:

Ltotal =
1

|B|

B∑
i=1

(
− log

exp(s(umol
i ,umorph

i )/τ)∑N
j=1 exp(s(u

mol
i ,umorph

j )/τ)

+
1

|
L
|
∑
γ∈

L
− log

exp(s(umol
i ,ugene

i,γ )/τ)∑B
j=1 exp(s(u

mol
i ,ugene

j,γ )/τ)

)
(4)
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where s(a,b) = aTb
|a||b| denotes cosine similarity, τ is the temperature parameter, |B| is the batch

size, and
L

is the set of available gene expression conditions (c, t, d) for each molecule.

The first term aligns molecular and morphological representations, where (i, i) are positive pairs
(same molecule) and (i, j) are negative pairs (different molecules). The second term similarly aligns
molecular and gene expression representations across conditions γ ∈

L
. The loss maximizes simi-

larity for positive pairs and minimizes it for negative pairs, with τ controlling the sharpness of the
contrastive loss.

2.4 DOWNSTREAM LINEAR PROBING

To evaluate the quality of learned molecular representations, we employ linear probing, which mea-
sures how well a linear classifier can predict molecular properties using frozen pretrained represen-
tations. After pretraining, we fix the molecular encoder ϕ∗ and train a single linear layer on top,
defined as:

hlinear(x;W,b) = σ(Wfmol(x)) + b) (5)

where W ∈ Rm×d and b ∈ Rm are the learnable parameters mapping from the representation space
Rd to activity logits across m proteins, and σ is the element-wise sigmoid function. The parameters
of this linear layer are optimized by minimizing the binary cross-entropy loss on the activity dataset:

Lsupervised(W,b) = − 1

N

N∑
i=1

[yiT log(hlinear(fmol(xi))) + (1− yi)T log(1− hlinear(fmol(xi)))]

(6)

Strong performance with linear probing indicates that the pretrained encoder has learned to organize
molecular representations in a linearly separable way with respect to biological activities.

2.5 PRETRAINING DATASET

Cellular-phenomic dataset The cellular-phenomic dataset is derived from the JUMP-Cell Paint-
ing (JUMP-CP) Consortium, comprising approximately 700K morphological profiles generated
from ∼120K compounds tested in U2OS cells across 12 distinct data generating centers (Chan-
drasekaran et al., 2023). This dataset represents one of the largest publicly available cell imag-
ing repositories, utilizing the Cell Painting assay—an unbiased and scalable approach employ-
ing multiplexed fluorescent dyes to visualize cellular structures and organelles. The raw data is
accessible through the Cell Painting Gallery on the Registry of Open Data on AWS (https:
//registry.opendata.aws/cellpainting-gallery/) as part of the subset cpg0016-
jump.

Each compound’s morphological profile is obtained from high-content fluorescence microscopy im-
ages processed through CellProfiler software for quantitative feature extraction. The dataset em-
ploys well-level profiles, which undergo feature normalization and selection using the preprocess-
ing pipeline provided by (Nguyen et al., 2023). After preprocessing, each morphological profile
contains 3,479 features capturing diverse aspects of cellular morphology. This comprehensive, stan-
dardized dataset facilitates the development of transferable molecular representations by providing
a rich source of biological information about compound effects at the cellular level.

Genomic dataset The genomic dataset is derived from the Library of Integrated Network-Based
Cellular Signatures (LINCS) L1000 dataset, which encompasses 1.3 million transcriptional signa-
tures derived from approximately 30,000 small molecules and 9,000 genetic perturbations across
227 cell lines. This dataset captures gene expression changes in response to small-molecule treat-
ments, measuring the expression of 978 landmark genes, providing a rich representation of cellu-
lar responses to chemical perturbations. The raw data is accessible through the CLUE platform
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(https://clue.io/), which serves as a comprehensive resource for analyzing and interpreting
these molecular signatures.

To ensure data quality and consistency, we implemented a systematic filtering approach. First, we
selected cell lines that had been tested with at least 1,000 unique compounds, resulting in 24 cell
lines from the original 227. From these selected cell lines, we captured a total of 540,000 expression
profiles. The dose levels were filtered to a biologically relevant range between 0.001 µM and 100
µM, and binned into 6 distinct levels to standardize the dose responses. For temporal dynamics, we
focused on two key time points - 6 hours and 24 hours post-treatment - which capture both early and
late transcriptional responses. We managed to get SMILES for 28,000 compounds.

The filtered dataset is preprocessed to align transcriptomic profiles with their corresponding chem-
ical structures, enabling the learning of joint representations between molecular structure and gene
expression responses. This comprehensive dataset provides a robust foundation for understanding
structure-activity relationships at the transcriptional level.

2.6 DOWNSTREAM DATASET

ChEMBL20 dataset The ChEMBL20 dataset serves as a benchmark for evaluating the predictive
performance of our learned molecular representations. It is a manually curated database of bioactive
molecules with drug-like properties, along with their associated biological assay data (Mayr et al.,
2018). ChEMBL20 comprises 450,000 molecules and 1,310 tasks, covering various targets with a
focus on toxicity prediction and activity classification.

Dataset Molecules Type Features

JUMP CP 116,000 Cellular Phenotyping Morphological (3,479-dim)
LINCS L1000 28,000 Gene Expression Transcriptional (978-dim)
ChEMBL20 450,000 Multi-task Binary Activities (1,310 tasks)

Table 1: Overview of datasets. JUMP CP provides high-dimensional morphological features from
cellular microscopy images, while LINCS L1000 captures transcriptional responses across multi-
ple experimental conditions (cell lines, dose level, exposure time). ChEMBL20 contains diverse
downstream tasks including ADME, toxicity, physicochemical properties, binding affinities, and
functional assays.

3 RESULTS

The quality of learned molecular representations was evaluated through their ability to predict down-
stream tasks using linear probing. Specifically, we measured the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPR) across 1,320
tasks from the ChEMBL20 dataset, without fine-tuning. To assess the utility of these representations
in low-data settings, evaluations were conducted on varying fractions of ChEMBL20. Results are
presented in bar plots, comparing models trained from scratch with those pretrained using additional
biological modalities.

Pretraining on molecular data alongside Cell Painting morphological features significantly improved
predictive performance, particularly in low-data settings, yielding a 6% gain. This underscores the
advantage of integrating phenotypic data from high-content imaging assays, which capture cellular
responses to chemical perturbations. However, this gain gradually diminished as the scale of down-
stream data for linear probing increased. Further improvement was observed when gene expression
data from the LINCS L1000 dataset was included in pretraining. The benefits became more pro-
nounced at 50% and 100% of the ChEMBL20 dataset, yielding additional gains of 2% and 1.24%,
respectively, over the two-modality pretraining setup. The mean AUROC for this model reached
0.724, demonstrating that transcriptomic profiles provide additional biological context, enhancing
molecular activity prediction. By combining structural, morphological, and gene expression data,
the multimodal approach produced a more comprehensive molecular representation.
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Figure 2: Comparison of mean AUROC, and AUPR scores across 1,320 tasks from the ChEMBL20
dataset. The performance is evaluated using linear probing on varying fractions of the ChEMBL20
downstream dataset. Pretrained models consistently outperform models trained from scratch. The
results highlight the importance of integrating biological modalities during pretraining for improved
molecular property prediction.

In contrast, models trained from scratch, without pretraining on biological modalities, performed
worse, especially in low-data settings. This highlights the importance of leveraging diverse data
sources to capture the complex relationships between molecular structure and biological activity.

Overall, our findings demonstrate that pretraining molecular representations with biological modal-
ities, such as Cell Painting and gene expression data, significantly enhances predictive performance.
Integrating diverse biological data enables the model to capture richer biological context, leading to
more accurate molecular activity predictions. These results underscore the potential of multimodal
representation learning to advance AI-driven drug discovery.

MEANINGFULNESS STATEMENT

A meaningful representation of life in the context of AI-driven drug discovery captures the relation-
ships between molecular structures and their biological effects within living systems. Traditional
unimodal models overlook these complex interactions, limiting their predictive power. Our work
bridges this gap by integrating molecular and biological data through contrastive learning, aligning
representations even without fully paired datasets. This multimodal approach enhances AI-driven
toxicity and efficacy predictions, leading to more biologically informed molecular representations.
By improving drug discovery pipelines, it enables better decision-making and reduces the risk of
failure in later stages.
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