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Abstract

Transformers have proved effectiveness in un-
derstanding and deciphering the intricate con-
text of languages. This success is achieved by
those models that lack explicit modeling of syn-
tactic structures, which were hypothesised by
decades of computational linguistic research to
be necessary for logical text understanding. In
this work, we present a comprehensive analysis
of syntactic and semantic context integration
by proposing Compressed Phrase Embedding
and adopting quantum-like methods for text
classification. We first introduce Compressed
Phrase Embedding (ComPhE) by integrating
syntactic parsing and semantic contextual in-
formation. We test those with two types of
quantum-like approaches, 1) quantum-like in-
put processing (DisCoWord) and 2) quantum-
like attention (QSA), and discuss the contribu-
tion of compressed phrase syntactic and seman-
tic integration towards the model performance
on different text classification benchmarks.

1 Introduction

Transformer has dramatically enhanced the per-
formance of tasks in NLP, but they only focus
on capturing the contextual semantics of the lan-
guage, even though the syntactic structure of the
sentences are also an essential aspect of a lan-
guage. Previous studies (Clark et al., 2019; Htut
et al.,, 2019; Marecek and Rosa, 2019; Rogers
et al., 2020; Sharma et al., 2022; Zheng and Liu,
2023; Ma et al., 2023) have shown that pretrained
transformer-based models like BERT can implic-
itly capture partial syntactic information. How-
ever, this substantial information is a by-product of
learning language semantics via self-supervised
learning, not by explicitly trying to understand
the syntactic structure. Several recent studies (Hu
et al., 2020; Du et al., 2023; Zhu et al., 2022b;
Li et al., 2022; Zhang and Li, 2022) try to make
use of Graph-based Neural Networks (GNNs) to
inject such syntactic information into Transformer

explicitly. However, GNN research can lead to
higher time and space complexity. Few works in
machine translation apply the simple token group-
ing (Bharadwaj and Shevade, 2022) and attention
masks (Hou et al., 2022), and there is still room for
improvement. Hence, how to incorporate the syn-
tactic and semantic aspects effectively into trans-
formers is also unsettled. Recently, gradient-based
training of quantum circuits has been successfully
adopted to generate joint distributions over multi-
ple aspects and variables (Delgado and Hamilton,
2022; Zhu et al., 2022a).

This paper presents a comprehensive analysis
of syntactic and semantic context integration by
proposing Compressed Phrase Embedding and
adopting quantum-like methods for text classifica-
tion. At first, we introduce Compressed Phrase Em-
bedding (ComPhE) by integrating syntactic parsing
and semantic contextual information. To integrate
the syntactic and semantic aspects of inputs into
transformers effectively, we then apply and test two
types of quantum-like approaches: quantum-like in-
put processing and quantum-like attention. Firstly,
for the quantum-like input processing, we adopt
the concept from DisCoCat, which is a computing
framework for compositional sentence meaning
(Clark et al., 2008; O’Riordan et al., 2020; Lorenz
et al., 2023; Kartsaklis et al., 2021). We introduce
a new quantum-based representation called Dis-
CoWord to help ComPhE better gather semantic
contextual information from the syntactic aspect.
Secondly, for the quantum-like attention, inspired
by the available quantum modelling of transformer
structure (Di Sipio et al., 2022; Cherrat et al., 2022;
Shi et al., 2023), we propose a Quantum Self-
Attention (QSA), which uses the measurements of
the quantum qubits to compute the attention scores.
The main contributions are as follows: We inves-
tigate the benefit of quantum-like approaches for
syntactic and semantic integration by proposing the
ComPhE, and adopting quantum-like components



on several text classification benchmarks. Note
that we introduce all new components, DisCoWord
and QSA, to efficiently apply to text classifications,
inspired by the existing quantum-like models.

2 Method!

We propose Compressed Phrase Embedding (Com-
PhE), which merges the token embeddings within
each phrase after splitting the input sentences into
phrases using constituency parsing. This approach
aims at syntactic and semantic integration, i.e.,
gathering semantic contextual information accord-
ing to syntactic parsing. Then, we apply ComPhE
with two quantisation approaches: Firstly, we aug-
ment the vanilla token embeddings by adding Dis-
CoWord, another word embedding that uses quan-
tisation to combine both syntactic and semantic
context information. Secondly, we adopt quantisa-
tion to improve the efficiency of the self-attention
module. Specifically, we use quantisation in the at-
tention score calculation to encode 2" dimensional
@/ K vectors into n qubits quantum states and use
quantum states to model the semantics. We adopt
the joint learning ability of quantum circuits since
those have been adopted to generate joint distribu-
tions over multiple aspects and variables.

2.1 Compressed Phrase Embedding

We propose Compressed Phrase Embedding (Com-
PhE) that utilises constituency parsing to gather
semantic contextual information from the syntactic
aspect. Based on the constituent tree of the in-
puts, we design two phrasing methods for splitting
the words into phrases. The first is Top-to-Bottom
(T2B), which generates phrases whose tag range is
all Penn Treebank II Constituent Tags. The second
is Bottom-to-Top (B2T), which only generates NP,
PP, and VP phrases. In detail, T2B goes through the
tree except for leaf nodes in a level order traversal
from the second to the bottom layer and checks the
subtree starting from each no-leaf node. If there is
no non-root node with the same tag as the subtree’s
root, the subtree is determined as a phrase. B2T
goes through the tree except for leaf nodes in a
level order traversal starting from the bottom to the
second layer, splitting all of the minimal NP and
PP. All of the other words will be seen as the VP
phrases. In addition, both methods merge the con-
secutive single words as a new phrase. We compare

'The Overview of Model and Test Architecture can be
found in Appendix A.1

the two phrasing methods to demonstrate which
syntactic aspects are more critical to gathering se-
mantic contextual information. After splitting, we
apply stemming and stopword removal in phrases.
Then we tokenise the words in phrases. Finally, we
obtain ComPhE by summing the token embeddings
phrase-wise.

2.2 DisCoWord Representation

We introduce a new quantum-based representation
called DisCoWord to help ComPhE better gather
semantic contextual information from the syntac-
tic aspect. DisCoWord can represent the seman-
tic meanings of a word according to its contex-
tual grammar structure, i.e., the pregroup grammar
(Lambek, 1999) of the word in a context. This
approach is inspired by DisCoCat (Lorenz et al.,
2023), a distributional compositional categorical
model which uses pregroup grammar to compute
the meaning of words in a quantum way and can
learn the grammar-based contextual representations
for words. Based on DisCoCat, we use pretrained
word embeddings to initialise the parameters of
the quantum circuit representing the word, which
make the representations hold both the syntactic
and semantic information based on their contex-
tual grammar structure and pretrained word embed-
dings. See more details in Appendix A.2.

2.3 Quantum Self-Attention

We propose Quantum Self-Attention (QSA), which
uses the measurements of the quantum qubits to
compute the attention scores, instead of using dot-
product between () and K in a head. In more
detail, we design a quantum circuit containing n
input qubits and m output qubits to help with that.
First, we use a quantum feature map to transform
each /K vector belonging to a head to a quantum
state of the n qubits. After that, we apply param-
eterised quantum gates on the n input qubits and
the m output qubits, of which the parameters will
be trained in the training process. In the end, we
use measurement values of the m output qubits for
each /K vector to compute the attention score.

3 Experiment Setup

We articulate how to evaluate our ComPhE with
DisCoWord and QSA on text classification.

3.1 Datasets

We use four widely used text classification bench-
mark datasets, including Movie Reviews (MR)



Statistics MR Twitter SST-2 OffensEval
Split 7108/3554  8000/2000 6920/1821 11916/1324
Doc. 10.78/4.96  5.32/3.21  9.91/5.01 8.57/6.14
Emb. 9.94/26.71 7.20/21.70 9.87/26.82  7.84/19.64
Dropped 172 913 128 573

Table 1: The summary statistics of datasets. The split
represents the Train/Test split. Doc. and Emb. represent
document and embedding length, with average/standard
deviation values. We dropped the documents which
failed to be transformed into diagrams or with the word
having lengthy states ( longer than 256 ).

(Pang and Lee, 2005), OffensEval (Zampieri et al.,
2019), SST-2 (Socher et al., 2013) and Twitter 2
in our experiments. These datasets are binary clas-
sified, and their text lengths are short enough for
running quantum computing on classical comput-
ers with the quantum simulation software. All the
datasets are preprocessed by lowering case, stem-
ming, removing punctuation and removing stop-
words. The statistics of the four datasets and the
DisCoWord embeddings for each dataset are pre-
sented in Table 1.

3.2 DisCoWord Training

For DisCoWord training, we use BobcatParser?, the
state-of-the-art statistical Combinatory Categorial
Grammar (CCGQG) parser (Clark, 2021). We choose
the same ansatz (Hadfield et al., 2019) for each
grammar type (Lambek, 2008) used in (Lorenz
et al., 2023) with 1 qubit for resource saving. Then
we use the Simultaneous Perturbation Stochastic
Approximation (SPSA) (Spall, 1998) algorithm and
CrossEntropy loss for optimisation. The SPSA
algorithm is an efficient gradient approximation
method only using the value of the object func-
tion, i.e., applying the random perturbation on the
parameters and calculating the approximated gra-
dient. Thus, it can deal with quantum simulation
optimization, which is challenging to calculate gra-
dients directly and usually has noise. The hyper-
parameters of the SPSA algorithm are referred to
as the one from (Spall, 1998). As for pretrained
word embeddings, we use glove-wiki-gigaword-
50, glove-twitter-25, fasttext-wiki-news-subwords-
300, and fasttext-twitter-100 (Camacho-Collados
et al.) to initialise the parameters of the quantum
circuit representing the word and choose the best
DisCoWord according to the test accuracy. See
more details in Appendix B.2.

2A built-in dataset in NLTK (Bird et al., 2009) library.
3we use the BobcatParser implemented in lambeq (Kart-
saklis et al.) library.

3.3 Quantum Self-Attention Design

For the quantum circuit we used in the self-
attention module, the number of input qubits n
is determined by the number of attention heads,
the dimension of () /K vectors, and the future map.
In our experiments, we use AmplitudeEmbedding
feature map (Jaeger, 2007; Mottonen et al., 2005)
to encode the 2" dimensional )/ K vector to the
quantum state of the n input qubits. To save hard-
ware resources, the number of output qubits m is
set to 1, i.e., the last input qubit is set as the output
qubit. In that case, each Q)/K vector will be trans-
formed into a measurement value. We then apply
the block including a Ry (0) gate, a Ry () gate
and a C NOT gate on every two qubits from top to
bottom, where 6 is the randomly initialised train-
able parameter. Finally, we apply the Pauli — Z
gate (DiVincenzo, 1998) as the measurement oper-
ator on the output qubit. The details of the quantum
circuit can be found in Appendix B.3.

3.4 Method Verification

We verify our method in the text classification task
on the four aforementioned datasets. We use Self-
Attentive Encoder (SAE) constituency parser pro-
posed by (Kitaev and Klein, 2018) for ComPhE.
We use AdamW (Loshchilov and Hutter) optimiser
and CrossEntropy loss in training. We use early
stopping to get the test accuracy as the evaluation
metric. We have three variations for testing: Com-
PhE (Vanilla), which applies ComPhE on Vanilla
Transformer. ComPhE (DisCoWord), which ap-
plies ComPhE on Vanilla Transformer with Dis-
CoWord augmented input. ComPhE (QSA), which
applies ComPhE on the QSA augmented Trans-
former with Vanilla Transformer input.

4 Results

4.1 Performance Evaluation

We compare the performance of baselines and our
ComPhE with variations on four text classifica-
tion datasets. From Table 2, we can see that our
ComPhE variations are better than all baselines,
which proves the ability to improve text classifica-
tion. More specifically, using ComPhE (Vanilla)
is better than the Vanilla Transformer and most
baselines, demonstrating the effectiveness of in-
tegrating semantic context information from the
syntactic aspect. ComPhE (DisCoWord) does not
improve the accuracy except on the Tweet dataset.



Methods MR Tweet SST-2 OffensEval
TFIDF+LR 75.5 684 80.1 77.6
CNN-Rand 70.9  99.1 75.3 72.7
CNN-Pretrained 720 93.7 74.9 70.0
LSTM-Rand 66.4 925 67.8 62.5
LSTM-Pretrained 71.5 87.0 69.6 64.4
Vanilla Transformer 74.8  99.8 73.2 76.9
ComPhE (Vanilla) 75.1  99.8 80.1 78.0
ComPhE (DisCoWord) | 74.1  99.9 78.5 77.9
ComPhE (QSA) 759 999 80.8 73.7

Table 2: Overall performance comparison with the base-
lines and the ComPhE variations. The ComPhE varia-
tions are better than the baselines overall; TFIDF+LR
and CNN-Rand are competitive. Note we mainly fo-
cus on comparing with Vanilla Transformer and other
classical methods to demonstrate the effectiveness of
our approach. We mainly focus on Transformer variants
because our proposed methods can be added to other
Transformer-based models.

We believe the reason is that the quality of Dis-
CoWord is not good because we use as few qubits
as possible and split the training process due to the
limited hardware resources. ComPhE (QSA) gets
the best performance, 75.9 in MR, 99.9 in Tweet
and 80.8 in SST-2. We draw the following infer-
ences from the results. a) Evolution to quantum
states can replace dot-product self-attention. b) Of-
fensEval aims to identify offensive documents from
English tweets, which may place a higher demand
on text comprehension. Therefore, the simple quan-
tum circuit used in the experiment does not convert
the classical vectors of this dataset into quantum
states well. As for the Tweet dataset, whose aver-
age document length is the shortest, it may be too
easy to learn by the model, resulting in the close
performances from the three ComPhE variations.

4.2 Compressed Phrasing Analysis

To better understand the impact of the phrasing
methods after constituency parsing, we apply our
ComPhE with T2B and B2T phrasing methods,
respectively. Table 3 shows that both B2T and
T2B methods outperform Vanilla Transformer on
the four datasets, and are very close while B2T
is slightly better. However, when using T2B to
get ComPhE, the average token length of the input
is 17.6% to 31.4% less than when using B2T 4.
Therefore, we believe using the T2B method will
be more advantageous in processing long text.

“The details of input token length statistics can be found
in Appendix B.4

Method MR Tweet SST-2 OffensEval
w/o-phrasing 74.8  99.8 73.2 76.9
ComPhE (B2T) | 75.1 99.8 80.1 77.5
ComPhE (T2B) | 74.8  99.8 79.5 78.0

Table 3: Performance comparison between ComPhE test
results using different phrasing methods. w/o-phrasing
represents the Vanilla Transformer.

4.3 Positional Encoding Analysis

We also test the impact of positional embedding
for ComPhE input handling. As can be seen in
Table 4, Rel. PE is better on the OffensEval dataset,
while Abs. PE (sum) is better on MR and SST-2
datasets. We believe that this discrepancy is caused
by differences in the datasets. Offenseval’s data
is derived from Twitter, so its text is less rigorous
than that of MR and SST-2. Therefore, the rela-
tive positional embedding, added at the attention
layer and can supply phrase position information,
indicates that phrase position information is more
important than token position information in the
Twitter text. As for the absolute positional embed-
ding, which is added to the token embeddings and
influences the gathering process and the quality
of the ComPhE, is better than relative positional
embedding on the MR and SST-2 datasets. Since
the Tweet is the dataset with the shortest average
document length, positional embedding may be
useless. Therefore, these positional embeddings’
performances are close on the Tweet dataset.

PE MR Tweet SST-2 OffensEval
w/o-PE 727 99.9 77.9 78.2
Abs. PE (sum) | 75.1  99.8 80.1 78.0
Abs. PE (cat) | 72.2  99.9 76.8 77.3
Rel. PE 744 99.8 78.7 78.9

Table 4: The positional embedding analysis results. All
the experiments use ComPhE (Vanilla).

5 Conclusion

We propose Compressed Phrase Embedding, which
integrates syntactic parsing and semantic contex-
tual information, and apply it with DisCoWord and
QSA on four text classification tasks. Our Com-
PhE, which gathers semantic contextual informa-
tion using syntactic parsing, can help understand
the text. Both DisCoWord and QSA can enhance
the performance of ComPhE. Hence, we hope that
ComPhE with quantum-like approaches will be a
good reference for integrating syntactic and seman-
tic information and introducing quantum machine
learning in text classification tasks.



Limitations

The limitation of our work comes from the hard-
ware resources for running quantisation parts.
Since we use the quantum simulation software in-
stead of the quantum computer, the memory usage
increases exponentially, i.e., the space complexity
is O(2™) where n is the number of qubits. There-
fore, we can only use as few qubits as possible in
DisCoWord training and QSA, which limits the
performance and parameter searching. In addition,
we do not analyse the impact of different syntactic
parsing methods, which is left to future work.
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A Methodology Details

A.1 Architecture Overview

Our architecture overview is shown in Figure 1.

A.2 DisCoWord Supplementary

Specifically, we follow DisCoCat to transform sen-
tences into parameterised quantum circuits accord-
ing to their string diagrams produced by the combi-
natory categorial grammar (CCG) parser, as shown
in Figure 2 and Figure 3. In this case, the word is
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Figure 1: The overview of model architecture

represented by the quantum state of the qubits of
its pregroup grammar, named word state. However,
DisCoCat randomly initialises the quantum circuit
parameters, which means the word states are not the
semantics of these words. They can only represent
the ‘meaning’ in the specific sentence classification
task and can not be used in other NLP tasks. We
use pretrained word embeddings to initialise these
parameters so that the word states can hold both the
syntactic and semantic information based on their
contextual grammar structure and pretrained word
embeddings. After training, we evaluate the word
states. Note that the evaluated word states are com-
plex vectors. To use them in later task classification
experiments, we concatenate the real parts and im-
age parts as word embeddings, named DisCoWord
representation.

B Experiments Details

B.1 Computational Resource Utilization

We use four A100 GPUs in our work. It takes 20-
50 GPU hours to train DisCoWord representation.
For training our Transformer variants, it takes 5-90
GPU hours to train the Transformer (QSA) and 1-
10 GPU hours for other variants. The reason that
training Transformer (QSA) takes more time is due
to the use of PennyLane (Bergholm et al., 2018)
for quantum simulation.

/eats / the

nrfs n.IU nl

(a) String diagram before bending noun.

/eats \ / the \/ green \
n.r sn.lU n.IU n.l

(b) String diagram after bending noun.

/ :Ie \ /green \/ anpple \

n/ n.l

Figure 2: String diagrams of the sentence, where n,
n.r, n.l, s are the grammar types (Lambek, 2008) of
words, the types under a word form its pregroup gram-
mar (Lambek, 1999).

B.2 DisCoWord Training Details

Due to the hardware resource limitation, we split
each dataset into subsets and train the DisCoCat
with them separately. In addition, there are three
processings on the word state: a) If it is longer than
256 dimensions, we drop the word state evaluations
to save memory. If it is less than 256 dimensions,
we convert the states into 256 dimensions and then
conduct a zero-padding. b) If the specific pregroup
grammar appears in the testing set but not in the
training set, we take the mean of a word’s states to
deal with the case. For example, the word ‘like’ has
three pregroup grammars representing its adjective,
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Figure 3: Quantum circuit of the sentence. The quantum
state of the qubits belonging to a word represents its
word state.

noun, and conjunction meaning respectively, but
the conjunctive ‘like’ only appears in the testing
set. We take the mean of the word states of the
adjective ‘like’ and the nominal ‘like’ as the state
of the conjunctive ‘like’. ¢) Since the evaluated
states are complex vectors, we concatenate the real-
valued and image components for the Transformer.

Block

Amplitude Embedding

Input qubits —

Output qubit «=

Figure 4: The quantum circuit example.

B.3 Quantum Self-Attention Design

An example of the quantum circuit for QSA is
shown in Figure 4. In the Figure, x is the Q/K
vector of a head, and U(z) represents the Ampli-
tudeEmbedding feature map. 61, 6...01¢ are the
trainable parameters. In this circuit, the number of
input qubits n is 6, which implies that the dimen-
sionality 2" of Q/K vector of a head is 64.

Method MR Tweet SST-2 Offenseval
w/o-phrasing 2135 1527 196 23.57
ComPhE (B2T) | 9.1 6.72 8.43 10.26
ComPhE (T2B) | 6.43 5.54 6.06 7.04

Table 5: The statistics of input token length using differ-
ent phrasing methods.

B.4 Statistics of Phrasing Methods

As aforementioned, phrasing methods will reduce
the input token length. Here we list the statistics
of the input token length using different phrasing
methods in Table 5.



