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Abstract

Transformers have proved effectiveness in un-001
derstanding and deciphering the intricate con-002
text of languages. This success is achieved by003
those models that lack explicit modeling of syn-004
tactic structures, which were hypothesised by005
decades of computational linguistic research to006
be necessary for logical text understanding. In007
this work, we present a comprehensive analysis008
of syntactic and semantic context integration009
by proposing Compressed Phrase Embedding010
and adopting quantum-like methods for text011
classification. We first introduce Compressed012
Phrase Embedding (ComPhE) by integrating013
syntactic parsing and semantic contextual in-014
formation. We test those with two types of015
quantum-like approaches, 1) quantum-like in-016
put processing (DisCoWord) and 2) quantum-017
like attention (QSA), and discuss the contribu-018
tion of compressed phrase syntactic and seman-019
tic integration towards the model performance020
on different text classification benchmarks.021

1 Introduction022

Transformer has dramatically enhanced the per-023

formance of tasks in NLP, but they only focus024

on capturing the contextual semantics of the lan-025

guage, even though the syntactic structure of the026

sentences are also an essential aspect of a lan-027

guage. Previous studies (Clark et al., 2019; Htut028

et al., 2019; Mareček and Rosa, 2019; Rogers029

et al., 2020; Sharma et al., 2022; Zheng and Liu,030

2023; Ma et al., 2023) have shown that pretrained031

transformer-based models like BERT can implic-032

itly capture partial syntactic information. How-033

ever, this substantial information is a by-product of034

learning language semantics via self-supervised035

learning, not by explicitly trying to understand036

the syntactic structure. Several recent studies (Hu037

et al., 2020; Du et al., 2023; Zhu et al., 2022b;038

Li et al., 2022; Zhang and Li, 2022) try to make039

use of Graph-based Neural Networks (GNNs) to040

inject such syntactic information into Transformer041

explicitly. However, GNN research can lead to 042

higher time and space complexity. Few works in 043

machine translation apply the simple token group- 044

ing (Bharadwaj and Shevade, 2022) and attention 045

masks (Hou et al., 2022), and there is still room for 046

improvement. Hence, how to incorporate the syn- 047

tactic and semantic aspects effectively into trans- 048

formers is also unsettled. Recently, gradient-based 049

training of quantum circuits has been successfully 050

adopted to generate joint distributions over multi- 051

ple aspects and variables (Delgado and Hamilton, 052

2022; Zhu et al., 2022a). 053

This paper presents a comprehensive analysis 054

of syntactic and semantic context integration by 055

proposing Compressed Phrase Embedding and 056

adopting quantum-like methods for text classifica- 057

tion. At first, we introduce Compressed Phrase Em- 058

bedding (ComPhE) by integrating syntactic parsing 059

and semantic contextual information. To integrate 060

the syntactic and semantic aspects of inputs into 061

transformers effectively, we then apply and test two 062

types of quantum-like approaches: quantum-like in- 063

put processing and quantum-like attention. Firstly, 064

for the quantum-like input processing, we adopt 065

the concept from DisCoCat, which is a computing 066

framework for compositional sentence meaning 067

(Clark et al., 2008; O’Riordan et al., 2020; Lorenz 068

et al., 2023; Kartsaklis et al., 2021). We introduce 069

a new quantum-based representation called Dis- 070

CoWord to help ComPhE better gather semantic 071

contextual information from the syntactic aspect. 072

Secondly, for the quantum-like attention, inspired 073

by the available quantum modelling of transformer 074

structure (Di Sipio et al., 2022; Cherrat et al., 2022; 075

Shi et al., 2023), we propose a Quantum Self- 076

Attention (QSA), which uses the measurements of 077

the quantum qubits to compute the attention scores. 078

The main contributions are as follows: We inves- 079

tigate the benefit of quantum-like approaches for 080

syntactic and semantic integration by proposing the 081

ComPhE, and adopting quantum-like components 082
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on several text classification benchmarks. Note083

that we introduce all new components, DisCoWord084

and QSA, to efficiently apply to text classifications,085

inspired by the existing quantum-like models.086

2 Method1087

We propose Compressed Phrase Embedding (Com-088

PhE), which merges the token embeddings within089

each phrase after splitting the input sentences into090

phrases using constituency parsing. This approach091

aims at syntactic and semantic integration, i.e.,092

gathering semantic contextual information accord-093

ing to syntactic parsing. Then, we apply ComPhE094

with two quantisation approaches: Firstly, we aug-095

ment the vanilla token embeddings by adding Dis-096

CoWord, another word embedding that uses quan-097

tisation to combine both syntactic and semantic098

context information. Secondly, we adopt quantisa-099

tion to improve the efficiency of the self-attention100

module. Specifically, we use quantisation in the at-101

tention score calculation to encode 2n dimensional102

Q/K vectors into n qubits quantum states and use103

quantum states to model the semantics. We adopt104

the joint learning ability of quantum circuits since105

those have been adopted to generate joint distribu-106

tions over multiple aspects and variables.107

2.1 Compressed Phrase Embedding108

We propose Compressed Phrase Embedding (Com-109

PhE) that utilises constituency parsing to gather110

semantic contextual information from the syntactic111

aspect. Based on the constituent tree of the in-112

puts, we design two phrasing methods for splitting113

the words into phrases. The first is Top-to-Bottom114

(T2B), which generates phrases whose tag range is115

all Penn Treebank II Constituent Tags. The second116

is Bottom-to-Top (B2T), which only generates NP,117

PP, and VP phrases. In detail, T2B goes through the118

tree except for leaf nodes in a level order traversal119

from the second to the bottom layer and checks the120

subtree starting from each no-leaf node. If there is121

no non-root node with the same tag as the subtree’s122

root, the subtree is determined as a phrase. B2T123

goes through the tree except for leaf nodes in a124

level order traversal starting from the bottom to the125

second layer, splitting all of the minimal NP and126

PP. All of the other words will be seen as the VP127

phrases. In addition, both methods merge the con-128

secutive single words as a new phrase. We compare129

1The Overview of Model and Test Architecture can be
found in Appendix A.1

the two phrasing methods to demonstrate which 130

syntactic aspects are more critical to gathering se- 131

mantic contextual information. After splitting, we 132

apply stemming and stopword removal in phrases. 133

Then we tokenise the words in phrases. Finally, we 134

obtain ComPhE by summing the token embeddings 135

phrase-wise. 136

2.2 DisCoWord Representation 137

We introduce a new quantum-based representation 138

called DisCoWord to help ComPhE better gather 139

semantic contextual information from the syntac- 140

tic aspect. DisCoWord can represent the seman- 141

tic meanings of a word according to its contex- 142

tual grammar structure, i.e., the pregroup grammar 143

(Lambek, 1999) of the word in a context. This 144

approach is inspired by DisCoCat (Lorenz et al., 145

2023), a distributional compositional categorical 146

model which uses pregroup grammar to compute 147

the meaning of words in a quantum way and can 148

learn the grammar-based contextual representations 149

for words. Based on DisCoCat, we use pretrained 150

word embeddings to initialise the parameters of 151

the quantum circuit representing the word, which 152

make the representations hold both the syntactic 153

and semantic information based on their contex- 154

tual grammar structure and pretrained word embed- 155

dings. See more details in Appendix A.2. 156

2.3 Quantum Self-Attention 157

We propose Quantum Self-Attention (QSA), which 158

uses the measurements of the quantum qubits to 159

compute the attention scores, instead of using dot- 160

product between Q and K in a head. In more 161

detail, we design a quantum circuit containing n 162

input qubits and m output qubits to help with that. 163

First, we use a quantum feature map to transform 164

each Q/K vector belonging to a head to a quantum 165

state of the n qubits. After that, we apply param- 166

eterised quantum gates on the n input qubits and 167

the m output qubits, of which the parameters will 168

be trained in the training process. In the end, we 169

use measurement values of the m output qubits for 170

each Q/K vector to compute the attention score. 171

3 Experiment Setup 172

We articulate how to evaluate our ComPhE with 173

DisCoWord and QSA on text classification. 174

3.1 Datasets 175

We use four widely used text classification bench- 176

mark datasets, including Movie Reviews (MR) 177
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Statistics MR Twitter SST-2 OffensEval
Split 7108/3554 8000/2000 6920/1821 11916/1324
Doc. 10.78/4.96 5.32/3.21 9.91/5.01 8.57/6.14
Emb. 9.94/26.71 7.20/21.70 9.87/26.82 7.84/19.64
Dropped 172 913 128 573

Table 1: The summary statistics of datasets. The split
represents the Train/Test split. Doc. and Emb. represent
document and embedding length, with average/standard
deviation values. We dropped the documents which
failed to be transformed into diagrams or with the word
having lengthy states ( longer than 256 ).

(Pang and Lee, 2005), OffensEval (Zampieri et al.,178

2019), SST-2 (Socher et al., 2013) and Twitter 2179

in our experiments. These datasets are binary clas-180

sified, and their text lengths are short enough for181

running quantum computing on classical comput-182

ers with the quantum simulation software. All the183

datasets are preprocessed by lowering case, stem-184

ming, removing punctuation and removing stop-185

words. The statistics of the four datasets and the186

DisCoWord embeddings for each dataset are pre-187

sented in Table 1.188

3.2 DisCoWord Training189

For DisCoWord training, we use BobcatParser3, the190

state-of-the-art statistical Combinatory Categorial191

Grammar (CCG) parser (Clark, 2021). We choose192

the same ansatz (Hadfield et al., 2019) for each193

grammar type (Lambek, 2008) used in (Lorenz194

et al., 2023) with 1 qubit for resource saving. Then195

we use the Simultaneous Perturbation Stochastic196

Approximation (SPSA) (Spall, 1998) algorithm and197

CrossEntropy loss for optimisation. The SPSA198

algorithm is an efficient gradient approximation199

method only using the value of the object func-200

tion, i.e., applying the random perturbation on the201

parameters and calculating the approximated gra-202

dient. Thus, it can deal with quantum simulation203

optimization, which is challenging to calculate gra-204

dients directly and usually has noise. The hyper-205

parameters of the SPSA algorithm are referred to206

as the one from (Spall, 1998). As for pretrained207

word embeddings, we use glove-wiki-gigaword-208

50, glove-twitter-25, fasttext-wiki-news-subwords-209

300, and fasttext-twitter-100 (Camacho-Collados210

et al.) to initialise the parameters of the quantum211

circuit representing the word and choose the best212

DisCoWord according to the test accuracy. See213

more details in Appendix B.2.214

2A built-in dataset in NLTK (Bird et al., 2009) library.
3we use the BobcatParser implemented in lambeq (Kart-

saklis et al.) library.

3.3 Quantum Self-Attention Design 215

For the quantum circuit we used in the self- 216

attention module, the number of input qubits n 217

is determined by the number of attention heads, 218

the dimension of Q/K vectors, and the future map. 219

In our experiments, we use AmplitudeEmbedding 220

feature map (Jaeger, 2007; Möttönen et al., 2005) 221

to encode the 2n dimensional Q/K vector to the 222

quantum state of the n input qubits. To save hard- 223

ware resources, the number of output qubits m is 224

set to 1, i.e., the last input qubit is set as the output 225

qubit. In that case, each Q/K vector will be trans- 226

formed into a measurement value. We then apply 227

the block including a RX(θ) gate, a RY (θ) gate 228

and a CNOT gate on every two qubits from top to 229

bottom, where θ is the randomly initialised train- 230

able parameter. Finally, we apply the Pauli − Z 231

gate (DiVincenzo, 1998) as the measurement oper- 232

ator on the output qubit. The details of the quantum 233

circuit can be found in Appendix B.3. 234

3.4 Method Verification 235

We verify our method in the text classification task 236

on the four aforementioned datasets. We use Self- 237

Attentive Encoder (SAE) constituency parser pro- 238

posed by (Kitaev and Klein, 2018) for ComPhE. 239

We use AdamW (Loshchilov and Hutter) optimiser 240

and CrossEntropy loss in training. We use early 241

stopping to get the test accuracy as the evaluation 242

metric. We have three variations for testing: Com- 243

PhE (Vanilla), which applies ComPhE on Vanilla 244

Transformer. ComPhE (DisCoWord), which ap- 245

plies ComPhE on Vanilla Transformer with Dis- 246

CoWord augmented input. ComPhE (QSA), which 247

applies ComPhE on the QSA augmented Trans- 248

former with Vanilla Transformer input. 249

4 Results 250

4.1 Performance Evaluation 251

We compare the performance of baselines and our 252

ComPhE with variations on four text classifica- 253

tion datasets. From Table 2, we can see that our 254

ComPhE variations are better than all baselines, 255

which proves the ability to improve text classifica- 256

tion. More specifically, using ComPhE (Vanilla) 257

is better than the Vanilla Transformer and most 258

baselines, demonstrating the effectiveness of in- 259

tegrating semantic context information from the 260

syntactic aspect. ComPhE (DisCoWord) does not 261

improve the accuracy except on the Tweet dataset. 262
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Methods MR Tweet SST-2 OffensEval
TFIDF+LR 75.5 68.4 80.1 77.6
CNN-Rand 70.9 99.1 75.3 72.7
CNN-Pretrained 72.0 93.7 74.9 70.0
LSTM-Rand 66.4 92.5 67.8 62.5
LSTM-Pretrained 71.5 87.0 69.6 64.4
Vanilla Transformer 74.8 99.8 73.2 76.9
ComPhE (Vanilla) 75.1 99.8 80.1 78.0
ComPhE (DisCoWord) 74.1 99.9 78.5 77.9
ComPhE (QSA) 75.9 99.9 80.8 73.7

Table 2: Overall performance comparison with the base-
lines and the ComPhE variations. The ComPhE varia-
tions are better than the baselines overall; TFIDF+LR
and CNN-Rand are competitive. Note we mainly fo-
cus on comparing with Vanilla Transformer and other
classical methods to demonstrate the effectiveness of
our approach. We mainly focus on Transformer variants
because our proposed methods can be added to other
Transformer-based models.

We believe the reason is that the quality of Dis-263

CoWord is not good because we use as few qubits264

as possible and split the training process due to the265

limited hardware resources. ComPhE (QSA) gets266

the best performance, 75.9 in MR, 99.9 in Tweet267

and 80.8 in SST-2. We draw the following infer-268

ences from the results. a) Evolution to quantum269

states can replace dot-product self-attention. b) Of-270

fensEval aims to identify offensive documents from271

English tweets, which may place a higher demand272

on text comprehension. Therefore, the simple quan-273

tum circuit used in the experiment does not convert274

the classical vectors of this dataset into quantum275

states well. As for the Tweet dataset, whose aver-276

age document length is the shortest, it may be too277

easy to learn by the model, resulting in the close278

performances from the three ComPhE variations.279

4.2 Compressed Phrasing Analysis280

To better understand the impact of the phrasing281

methods after constituency parsing, we apply our282

ComPhE with T2B and B2T phrasing methods,283

respectively. Table 3 shows that both B2T and284

T2B methods outperform Vanilla Transformer on285

the four datasets, and are very close while B2T286

is slightly better. However, when using T2B to287

get ComPhE, the average token length of the input288

is 17.6% to 31.4% less than when using B2T 4.289

Therefore, we believe using the T2B method will290

be more advantageous in processing long text.291

4The details of input token length statistics can be found
in Appendix B.4

Method MR Tweet SST-2 OffensEval
w/o-phrasing 74.8 99.8 73.2 76.9
ComPhE (B2T) 75.1 99.8 80.1 77.5
ComPhE (T2B) 74.8 99.8 79.5 78.0

Table 3: Performance comparison between ComPhE test
results using different phrasing methods. w/o-phrasing
represents the Vanilla Transformer.

4.3 Positional Encoding Analysis 292

We also test the impact of positional embedding 293

for ComPhE input handling. As can be seen in 294

Table 4, Rel. PE is better on the OffensEval dataset, 295

while Abs. PE (sum) is better on MR and SST-2 296

datasets. We believe that this discrepancy is caused 297

by differences in the datasets. Offenseval’s data 298

is derived from Twitter, so its text is less rigorous 299

than that of MR and SST-2. Therefore, the rela- 300

tive positional embedding, added at the attention 301

layer and can supply phrase position information, 302

indicates that phrase position information is more 303

important than token position information in the 304

Twitter text. As for the absolute positional embed- 305

ding, which is added to the token embeddings and 306

influences the gathering process and the quality 307

of the ComPhE, is better than relative positional 308

embedding on the MR and SST-2 datasets. Since 309

the Tweet is the dataset with the shortest average 310

document length, positional embedding may be 311

useless. Therefore, these positional embeddings’ 312

performances are close on the Tweet dataset. 313

PE MR Tweet SST-2 OffensEval
w/o-PE 72.7 99.9 77.9 78.2
Abs. PE (sum) 75.1 99.8 80.1 78.0
Abs. PE (cat) 72.2 99.9 76.8 77.3
Rel. PE 74.4 99.8 78.7 78.9

Table 4: The positional embedding analysis results. All
the experiments use ComPhE (Vanilla).

5 Conclusion 314

We propose Compressed Phrase Embedding, which 315

integrates syntactic parsing and semantic contex- 316

tual information, and apply it with DisCoWord and 317

QSA on four text classification tasks. Our Com- 318

PhE, which gathers semantic contextual informa- 319

tion using syntactic parsing, can help understand 320

the text. Both DisCoWord and QSA can enhance 321

the performance of ComPhE. Hence, we hope that 322

ComPhE with quantum-like approaches will be a 323

good reference for integrating syntactic and seman- 324

tic information and introducing quantum machine 325

learning in text classification tasks. 326

4



Limitations327

The limitation of our work comes from the hard-328

ware resources for running quantisation parts.329

Since we use the quantum simulation software in-330

stead of the quantum computer, the memory usage331

increases exponentially, i.e., the space complexity332

is O(2n) where n is the number of qubits. There-333

fore, we can only use as few qubits as possible in334

DisCoWord training and QSA, which limits the335

performance and parameter searching. In addition,336

we do not analyse the impact of different syntactic337

parsing methods, which is left to future work.338
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A Methodology Details 532

A.1 Architecture Overview 533

Our architecture overview is shown in Figure 1. 534

A.2 DisCoWord Supplementary 535

Specifically, we follow DisCoCat to transform sen- 536

tences into parameterised quantum circuits accord- 537

ing to their string diagrams produced by the combi- 538

natory categorial grammar (CCG) parser, as shown 539

in Figure 2 and Figure 3. In this case, the word is 540
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Figure 1: The overview of model architecture

represented by the quantum state of the qubits of541

its pregroup grammar, named word state. However,542

DisCoCat randomly initialises the quantum circuit543

parameters, which means the word states are not the544

semantics of these words. They can only represent545

the ‘meaning’ in the specific sentence classification546

task and can not be used in other NLP tasks. We547

use pretrained word embeddings to initialise these548

parameters so that the word states can hold both the549

syntactic and semantic information based on their550

contextual grammar structure and pretrained word551

embeddings. After training, we evaluate the word552

states. Note that the evaluated word states are com-553

plex vectors. To use them in later task classification554

experiments, we concatenate the real parts and im-555

age parts as word embeddings, named DisCoWord556

representation.557

B Experiments Details558

B.1 Computational Resource Utilization559

We use four A100 GPUs in our work. It takes 20-560

50 GPU hours to train DisCoWord representation.561

For training our Transformer variants, it takes 5-90562

GPU hours to train the Transformer (QSA) and 1-563

10 GPU hours for other variants. The reason that564

training Transformer (QSA) takes more time is due565

to the use of PennyLane (Bergholm et al., 2018)566

for quantum simulation.567

(a) String diagram before bending noun.

(b) String diagram after bending noun.

Figure 2: String diagrams of the sentence, where n,
n.r, n.l, s are the grammar types (Lambek, 2008) of
words, the types under a word form its pregroup gram-
mar (Lambek, 1999).

B.2 DisCoWord Training Details 568

Due to the hardware resource limitation, we split 569

each dataset into subsets and train the DisCoCat 570

with them separately. In addition, there are three 571

processings on the word state: a) If it is longer than 572

256 dimensions, we drop the word state evaluations 573

to save memory. If it is less than 256 dimensions, 574

we convert the states into 256 dimensions and then 575

conduct a zero-padding. b) If the specific pregroup 576

grammar appears in the testing set but not in the 577

training set, we take the mean of a word’s states to 578

deal with the case. For example, the word ‘like’ has 579

three pregroup grammars representing its adjective, 580
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Figure 3: Quantum circuit of the sentence. The quantum
state of the qubits belonging to a word represents its
word state.

noun, and conjunction meaning respectively, but581

the conjunctive ‘like’ only appears in the testing582

set. We take the mean of the word states of the583

adjective ‘like’ and the nominal ‘like’ as the state584

of the conjunctive ‘like’. c) Since the evaluated585

states are complex vectors, we concatenate the real-586

valued and image components for the Transformer.587

Figure 4: The quantum circuit example.

B.3 Quantum Self-Attention Design588

An example of the quantum circuit for QSA is589

shown in Figure 4. In the Figure, x is the Q/K590

vector of a head, and U(x) represents the Ampli-591

tudeEmbedding feature map. θ1, θ2...θ10 are the592

trainable parameters. In this circuit, the number of593

input qubits n is 6, which implies that the dimen-594

sionality 2n of Q/K vector of a head is 64.595

Method MR Tweet SST-2 Offenseval
w/o-phrasing 21.35 15.27 19.6 23.57
ComPhE (B2T) 9.1 6.72 8.43 10.26
ComPhE (T2B) 6.43 5.54 6.06 7.04

Table 5: The statistics of input token length using differ-
ent phrasing methods.

B.4 Statistics of Phrasing Methods596

As aforementioned, phrasing methods will reduce597

the input token length. Here we list the statistics598

of the input token length using different phrasing599

methods in Table 5.600
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