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Abstract

Recent clinical research has developed novel
protocols that enable children to participate in
bilingual language assessment remotely with
parents to assist in this process. However, since
parents are not trained clinicians, they often
perform interference behaviors—actions that
could compromise the validity of the assess-
ment (e.g., providing hints). In this paper,
we study whether language models can help
automate the detection and categorization of
parental interference behaviors during bilingual
English-Mandarin child language assessment.
Such a system would reduce the burden on clin-
icians, who must otherwise rely on transcribing
video recordings and checking them manually
for signs of interference. We release a new,
expert-annotated dataset for this task, and eval-
uate multiple state-of-the-art large language
models. While these models achieve non-trivial
accuracy, they currently lag far behind human
annotators. We find that understanding Man-
darin and code-mixed text are key challenges
these models need to overcome. We hope that
our new dataset inspires modeling advances
that could improve the practice of bilingual
child language assessment.

1 Introduction

Receptive and expressive language assessment is
a standardized clinical procedure to evaluate chil-
dren’s communication abilities, detect signs of po-
tential language delays and disorders, and facili-
tate early clinical interventions in a timely manner
(Wang et al., 2020; Gorman et al., 2015). However,
the current practice of language assessment in bilin-
gual children is hindered by a lack of bilingual clin-
icians and bilingual assessment tools (Sheng et al.,
2021; Wang et al., 2024; Pratt et al., 2022). This
scarcity necessitates the involvement of parents,
who typically speak the languages that bilingual
children are exposed to at home, and can serve as
key informants for clinicians during the assessment
process (Klatte et al., 2020).

Prior research on using parents as “e-helpers” for
telehealth in the context of bilingual assessments
has drawn more attention from multidisciplinary
researchers (Edwards-Gaither et al., 2023). Typi-
cally, parents are allowed to assist their children in
interacting with the graphic user interface (GUI) of
the assessment tool (Fissel et al., 2015). Prior work
(Du et al., 2020) reported that during in-person
language assessments, bilingual Mandarin-English-
speaking parents often engage in verbal and physi-
cal behaviors (e.g., dyadic conversations, gestural
prompting), which are considered interference be-
haviors. For example, providing hints or directly
suggesting answers can hinder their children’s as-
sessment performance and compromise the validity
of the assessment results. To ensure the integrity
and fairness of the assessment, clinicians are tasked
with manually annotating and evaluating parents’
behaviors to determine whether they constitute in-
terference. This clinical annotation process is not
only time-consuming to complete but also challeng-
ing to reach reliable agreements between clinicians
without extensive training (Yao et al., 2023).

In this paper, we investigate the potential of large
language models (LLMs) to support clinicians by
automatically annotating parents’ behaviors dur-
ing assessments, relying on LLM’s abilities to
learn new tasks via zero-shot or few-shot learning
(Brown et al., 2020). Such an LLM system would
reduce the workload of clinicians to manually iden-
tify parental interference, and could even be used to
discourage interference in real time during assess-
ments. We first collect and release a comprehen-
sive dataset comprising conversational transcripts
and behavior descriptions from recordings of two
groups of parent-child dyads (in-person and virtual)
undergoing bilingual English-Mandarin language
assessments. This dataset, which is utilized by clin-
ical experts for post-assessment analysis, serves
as the benchmark for our model development and
evaluation in classifying parental behaviors as ei-



ther supportive (i.e., acceptable) or interfering (i.e.,
detrimental). Our dataset comprises data from 59
patients and containing 1,472 total parent behav-
iors annotated with one of eight fine-grained labels.
This dataset will facilitate future research that could
enable more efficient administration of bilingual
langauge assessments.

Finally, we benchmark two state-of-the-art
LLMs—Llama 3 and GPT-4—on our dataset, us-
ing both zero-shot and few-shot prompting. While
GPT-4, the stronger model, performs decently well
on our task, there is still considerable room for im-
provement compared with human expert accuracy.
We observe that examples involving Mandarin ut-
terances by parents are particularly challenging
for these models, suggesting that improved mul-
tilingual modeling could make LLMs more use-
ful for this setting. Overall, our work both sheds
light on weaknesses of state-of-the-art LLMs and
introduces a challenging, ecologically valid, mul-
tilingual benchmark that we hope inspires future
modeling improvements.

2 Related Work

2.1 Clinical NLP Research on Bilingual
Language Assessment in Telehealth

Prior NLP research has examined the automation of
various educational and clinical tasks, such as auto-
mated scoring and analysis of pediatric language as-
sessment (Wang et al., 2020; Gorman et al., 2015),
behavioral testing for clinical outcome prediction
(Van Aken et al., 2021), novel test item generation
in clinical assessments (Laverghetta Jr and Licato,
2023), and narrative tasks (Prud’hommeaux and
Roark, 2015; Chen et al., 2023). However, prior
work related to utilizing NLP approaches to ana-
lyze clinical encounters in the context of telehealth
using a bilingual dataset has been very limited. In
clinical language assessment, gathering and analyz-
ing data for clinician-led language assessment task
can be challenging to obtain and time-consuming to
analyze. Therefore, investigating how to use NLP
approaches to classify and annotate these behav-
iors brings significant contributions to improving
efficiency in clinical workflow and increasing the
quality of bilingual assessment.

2.2 LLMs for Real-World Domains

Large language models (LLMs) like GPT-4 (Ope-
nAl, 2023) and LLaMA (Touvron et al., 2023a,b)
have shown impressive task-solving performance
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Figure 1: MERLS 1.0 web interface English test item:
“The monkey is hugged by the penguin.”

off-the-shelf, such as question answering and logi-
cal reasoning (Wei et al., 2021; Sanh et al., 2021;
Chung et al., 2022). Relevant to this work, in-
context learning (ICL) (Brown et al., 2020; Zhang
et al., 2022; Rubin et al., 2022; Li et al., 2023) is
a common prompting strategy to teach LLMs to
solve a particular task. ICL enables models to learn
from few-shot examples provided in the input con-
text. Many recent work have also explored LLMs’
capabilities in real-world scenarios, which gener-
ally require significant domain expertise, such as
children education (Chen et al., 2023) and medi-
cal domains (Xu et al., 2024; M. Bran et al., 2024,
Jablonka et al., 2024).

3 Dataset

We collaborated with bilingual Mandarin-English
speaking SLP practitioners and researchers to ob-
tain two comprehensive text-based datasets derived
from the Mandarin-English Receptive Language
Screener (MERLS). MERLS is a web-based recep-
tive sentence comprehension assessment designed
for Mandarin-English-speaking children between 4
and 8 years old (Sheng et al., 2021; Du et al., 2020).
The assessment consists of 44 Mandarin test items
and 36 English test items. During assessment, the
MERLS web interface (see Figure 1) plays Man-
darin and English audio instructions for bilingual
children to select pictures that match the instruc-
tions. Children do not require parental assistance
to complete tasks except for technical support.

3.1 Data Collection

Our dataset comprises two distinct studies using
MERLS. The In-Person dataset (MERLS 1.0) was
collected in-person with video recording, while
the Virtual dataset (MERLS 2.0) was collected re-
motely during the COVID-19 pandemic via Zoom.
Each dataset includes 16 pairs of parents and chil-
dren, resulting in a total of 32 parent-child pairs



that are matched in parent education and children’s
age within 6 months differences. An additional 27
parent-child dyads were collected virtually, for a
total of 43 parent-child dyads in the Virtual dataset.

3.2 Annotation Process

For each test item collected in each parent-child
video recording, a clinical annotation team identi-
fied, transcribed, and categorized all child and par-
ent behaviors performed while the child answered
that item. The transcription of each behavior de-
scribes both verbal and non-verbal actions. Fol-
lowing guidelines by(Du et al., 2020), each parent
behavior was first categorized into one of two pri-
mary classes: “interference” and “support.” Each
primary class was further subdivided into four sub-
classes to capture more detailed behavior types,
as listed in Table 4 in Appendix A.1. Namely,
sub-categories for “interference” are: “repeat ques-
tions”, “answer questions”, “analyze items”, and
“judging of correctness”; sub-categories for “sup-
port” include “encouragement”, “analyze items”,

“broadcasting”, “miscellaneous”.

Overall, this dataset is therefore an eight-way
classification task, which tests nuanced understand-
ing of parental participation during the assessments.
Each input consists of the text of the current test
item, a description of the child’s actions (if any),
and the description of the parent’s behavior. More
details are provided in Appendix A.2

To validate the annotations, interobserver agree-
ment (IOA) was calculated between the two clin-
ical experts using member checking (Birt et al.,
2016). I0A is 97% (In-person dataset) (Du et al.,
2020) and 86.1% (Virtual dataset). We derive hu-
man accuracy numbers in Table 1 from these IOA
numbers.

3.3 Dataset Statistics

Table 4 presents overall statistics for the In-person
and Virtual datasets. The two datasets have differ-
ent label distributions: the Virtual dataset contains
fewer interference behaviors and more technical
support behaviors. It may be due to the (1) the
system redesign of the MERLS website prior to
the collection of the Virtual dataset (e.g., adding
an instructional video about prohibited interference
behaviors), or (2) the use of Zoom for Virtual data
collection which added additional technical behav-
iors in parent-child dyads in the Virtual dataset.

4 Behavior Classification with LLMs

We aim to investigate whether LLMs can reliably
classify parental behaviors during child language
assessments, in comparison with clinical experts’
performance. We focus on the zero-shot (ZS)
and few-shot (FS) In-Context Learning prompting
strategies for LLMs throughout our experiment.

Prompts. Our zero-shot prompt provides instruc-
tions, explains the input format, and defines each
of the eight labels. From the test example itself,
the model is shown (1) the text of the current ques-
tion, (2) a description of the child’s behavior (if
any), and (3) the description of the parent’s behav-
ior. The few-shot prompt is similar but includes
one demonstration under each label definition. The
demonstrations were written by a clinical expert,
to be separate from all dataset examples. The full
prompts are in Appendix A.S5.

Models. We experiment with two LLMs: the
open-weight model Llama-3-8B-Instruct and the
closed-source model GPT-4. While Llama-3 is a
primarily English model, its pre-training dataset
does include data from 30 other languages'. GPT-4
has also been shown to perform well on Chinese
language understanding benchmarks (Xu et al.,
2023; Zhu et al., 2024).

Evaluation metrics. We compute two metrics:
Behavior-level Accuracy (BEHAVACC) measures
the fraction of behaviors that are predicted cor-
rectly, while Item-level Accuracy (ITEMACC) mea-
sures the fraction of all test items containing at least
one behavior for which all behaviors done during
that item were predicted correctly.

5 Experimental Results

5.1 Main Results

Table 1 shows the overall accuracies of all models
on our dataset. GPT-4 greatly outperforms Llama3
in all data subsets, with the best GPT-4 variant
achieving 61.2 BEHAVACC on the In-person dataset
and 49.3 BEHAVACC on the Virtual dataset. This
is still far below the human expert accuracy of 98.5
and 93.0, respectively, indicating significant room
for improvement. Appendix A.3 shows results on
the subset of 16 Virtual dataset who were paired to
match the In-person dataset; we see similar trends
as on the full Virtual dataset.

"https://ai.meta.com/blog/meta-1lama-3/


https://ai.meta.com/blog/meta-llama-3/

In-Person Virtual
Question Language English Mandarin All English Mandarin All
Llama3 ZS 48.1 (38.9) 43.3(28.0) 44.6(31.4) 293(26.7) 31.3(24.3) 30.4(25.3)
Llama3 FS 449 (33.6) 39.3(27.6) 40.8(29.5) 22.1(20.3) 23.6(19.8) 23.0(20.0)
GPT-4 ZS 65.2(61.1) 60.0 (49.2) 61.4(52.9) 453(369) 51.6(453) 489 (41.6)
GPT-4 FS 65.8 (60.2) 54.5(40.8) 57.6(46.8) 48.5(43.3) 52.5(46.5) 50.8(45.1)
Human Experts - - 98.5 - - 93.0

Table 1: Main results. Each cell shows BEHAVACC with ITEMACC in parentheses. ZS = zero-shot, FS = few-shot.

In-Person Virtual
Parent Language English Mandarin Mixed English Mandarin Mixed
# Examples 233 167 178 226 389 111
Llama3 ZS 39.5 42.5 53.4 44.2 21.1 35.1
Llama3 FS 34.8 40.1 494 327 14.7 324
GPT-4 ZS 64.8 55.1 62.9 56.6 43.2 532
GPT-4 FS 57.1 52.1 63.5 60.2 45.5 50.5

Table 2: BEHAVACC results broken down by the language in the transcript of the parent’s behavior (either English,
Mandarin, or a mix of both languages). ZS = zero-shot, FS = few-shot.

Across all models and language subsets, the Vir-
tual dataset is much harder to classify than the
In-person dataset. This is likely due to the fact that
the In-person dataset was collected with a more
comprehensive view of the parent-child interaction
with the screen, whereas the Virtual dataset was
collected via Zoom with limited camera view for
capturing detailed parent-child interaction. These
environmental factors influenced human annota-
tion during initial text transcription. We also ob-
serve that the zero-shot setting leads to better per-
formance with GPT-4 on In-person dataset whereas
the few-shot setting performs best across all models
on Virtual dataset. This could also be contributed
to the different behaviors in In-person and Virtual
datasets that the experts-annotated demonstrations
are more alike to the ones in the Virtual dataset.

5.2 Effects of Parent Language

We now examine whether the language that de-
scribes the parent’s behavior impacts the LLM’s
accuracy. This description could be either English-
only, Mandarin-only, or a mix. In our dataset, all
descriptions of non-verbal actions are in English;
on the other hand, many parent speech acts are in
Mandarin. A mix of languages can occur when the
parent code-switches, or when the parent’s Man-
darin speech act is accompanied by an English
description of a non-verbal action.

Table 2 shows model accuracies broken down by
the language describing the parent behavior. All
models generally perform worst on the Mandarin-

only items, with the exception of Llama3 on the In-
person dataset. Moreover, the higher difficulty of
the Virtual dataset relative to the In-person dataset
is explained primarily by the increase in difficulty
of behaviors that involve Mandarin. Averaging
across models, the English Virtual dataset is only
0.6 BEHAVACC harder than the English In-person
dataset; however, this number jumps to 16.3 for
Mandarin and 14.5 for the Mixed data.

5.3 Binary Classification Results

Finally, we evaluate models on the binary classifi-
cation task to distinguish interference from support
behaviors. Detecting interference could be useful
to alert a clinical expert to potential issues, even if
the model cannot identify the type of interference.
As shown in Appendix A.4, GPT-4 outperforms
Llama3 and can achieve an accuracy greater than
83% in both the In-person and Virtual datasets.

6 Conclusion

This paper introduces a new dataset for fine-grained
classification of parental behaviors during bilingual
English-Mandarin child language assessment. Au-
tomating this task would enable more efficient and
reliable language assessments. Current state-of-
the-art LLMs perform somewhat accurately on this
task, but still have considerable room for improve-
ment, especially on examples involving Mandarin
parental speech. We hope our dataset encourages
further NLP research to support clinical tasks that
are specifically designed for multilingual speakers.



7 Limitations

In our current setup, a model must classify parent
behavior given the text of the parent’s speech and/or
a textual description of their actions. This text was
transcribed manually from the video recording of
the language assessment sessions by a human ex-
pert. The use of human transcription ensures high
quality text data inputs, and thus our results repre-
sent a likely upper bound for model performance.
In a real application, it would be ideal to avoid
this manual transcription step and make predic-
tions from the raw video directly. This could be
done by using a separate video transcription model
to first transcribe the video to text, then running an
LLM. It could also be done by using a multimodal
foundation model to process the video directly. We
leave exploration of handling this more challenging
multimodal version of the problem to future work.

Our dataset focuses exclusively on one language
pair, English and Mandarin. This choice was based
on the expertise of the clinical authors of the paper
and their access to English-Mandarin bilingual par-
ticipants. We believe that the framework presented
could be extended to other language pairs, though
validating this would require new collaborations to
collect the required data.

8 Ethical considerations

Data collection and analysis. Our dataset was
originally collected via university human subject re-
search approval and data sharing agreements. The
clinician annotated text transcripts for In-person
and Virtual dataset were generated as a part of the
clinical video analysis, which are all de-identified
behaviors without any sensitive information from
parent-child pairs.

Bias mitigation. In order to ensure a represen-
tative dataset, when comparing the 16 virtual and
16 in-person parent-child pairs, we carefully con-
sidered the impact of children’s age and parents’
education. Children’s ages can be directly corre-
lated to their language ability; parent education
level can results in different abilities to interpret
the testing procedures, leading to various levels of
parent behaviors.
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A Example Appendix

A.1 Description of Labels

Table 3 provides detailed descriptions of the eight
labels used in our dataset.

A.2 Dataset details

The dataset is structured to include the following
components in English and Mandarin:

1. Time Stamps: Precise time stamps for each as-
sessment item and corresponding parent-child
behavior during the assessment sessions.

2. GUI Descriptions: Textual descriptions of the
graphical user interface (GUI) elements dis-
played during the assessment.

3. Audio transcriptions: Transcriptions of the au-
dio recordings from the assessment sessions,
with annotations that identify the speaker for
each voiceover.

4. Behavior Descriptions: Textual descriptions
of the parents’ behaviors during the assess-
ments, detailing both verbal and non-verbal
actions.

The initial data cleaning and annotation were
conducted by a clinical team consisting of two grad-
uate research assistants, with inter-rater reliability
verified by a licensed SLP for MERLS 1.0 Dataset
and SLP assistant for MERLS 2.0 Dataset. The
statistics of our dataset is reported in Table 4.

A.3 Results with paired cohort

Table 5 shows similar results as our main results
table, Table 1, but with a paired subset of the virtual
dataset. In particular, we use a subset of 16 patients
from the virtual dataset who were chosen to match
the 16 in-person patients in terms of child age and
parent education level. Overall, we observe similar
trends to those in Table 1.

A.4 Binary Classification Results

Table 6 shows the binary BEHAVACC results on
our dataset. To evaluate binary classification ac-
curacy, we simply map the predictions from the
model prompted for 8-way classification to either
interference or support. We see that GPT-4 is able
to achieve at least 83% binary classification accu-
racy on both the in-person and virtual datasets.

A.5 Prompts

Figure 2 shows the zero-shot prompt used in our
experiments. Figures 3 and 4 show the few-shot
prompts, split over multiple pages. Both prompts
include (1) Voiceover, the text of the current ques-
tion; (2) Child behavior, a description of the
child’s behavior (if any), and (3) Parent behav-
ior, the utterance and/or a description of the action
performed by the parent.



Top-Level Sub-Level

Category  Category Definition
Repeat Repeating the <Voiceover> audio before and/or during the process of a child selecting the picture on the
Questions web.
Answer . .
Questions Using verbal or gestural cues to suggest or select a correct answer for the child.
Interf S . . L . . . . o
nterfere Analyze Elaborating on the critical linguistic components by labeling objects and actions, making emphasis via
Items prosodic cues, or breaking down complex sentences from <Voiceover>.
Judging of . a1 « S »
gmng Verbally evaluating the child’s response as “correct” or “incorrect”.
Correctness
Showing verbal and/physical affirmation for the child to continue, saying “good job/excellent” to reinforce
Encouragement ST . . i » ;
the child’s selection, expressing empathy (e.g., “it’s okay”) on struggled items.
Analyze Offering verbal and/or physical assistance to the child related to interacting with the website and the
Support Items computer.
Broadcasting After the child makes a selection, describing the selection via a word, a phrase, or a sentence.
Miscellaneous Initiating and/or responding to events that redirected a child’s attention, sharing personal opinions about

test procedures and stimuli, or other verbal and nonverbal behaviors that were out of the child’s view.

Table 3: The classification categories and corresponding definitions of parent behaviors based on established clinical
guidelines. Two high-level categories (“interfere” and “support”) each consists of four sub-categories.

Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents,

who are supervising their bilingual children to answer language comprehension tests in English and
Mandarin.

A <Voiceover> is the system output sound which reads the picture on the website that the child has to
choose.

A <Child Behavior> is the children's behavior.

You need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>

Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions',
Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous’.

Definition for each category is shown in <Definitions>

<Definitions>

- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child
selecting the picture on the web.

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as "correct” or "incorrect”.

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent” to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 2: The full zero-shot prompt used in our experiments.




Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin.

A <Voiceover> is the system output sound which reads the picture on the website that the child has to

choose.

A <Child Behavior> is the children's behavior.

You need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>

Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '
Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous’.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child
selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water”

<Parent Behavior>
"the black cat is drinking water”

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
For example,

<Voiceover>
"What is the cat drinking?”

<Parent Behavior>
"Drinking water.”

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water”

<Parent Behavior>
"This is the one with a black cat.”

<Classification>
Analyze Items

Figure 3: The few-shot prompt used in our experiments, part 1 of 2.
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- Judging of Correctness: Verbally evaluating the child's response as "correct” or "incorrect”. For
example,

<Voiceover>

<Parent Behavior>
"This is not right."
<Classification>

Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent” to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>

"it's fine you are trying your best.”

<Classification>

Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>

"Select the picture to continue.”

<Classification>

Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>

"I selected the picture.”

<Classification>

Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>
<Parent Behavior>
"My child needs to use the bathroom."”

<Classification>
Miscellaneous

Figure 4: The few-shot prompt used in our experiments, part 2 of 2.

11




In-Person  Virtual

# Parents 16 43

# Behaviors 677 795
# Items with > 1 behavior 363 430
# Repeat Questions 144 24
# Answer Questions 12 11

# Analyze Items 89 3

# Judging of Correctness 51 12
# Encouragement 136 281
# Technical Support 148 291
# Broadcasting 60 17
# Miscellaneous 37 156

Table 4: MERLS dataset statistics. Bottom shows the
label distribution, with interference behaviors shaded.



In-Person Virtual (paired 16)

Question Language English Mandarin All English Mandarin All

Llama3 ZS 48.1 (38.9) 43.3(28.0) 44.6(31.4) 30.2(23.2) 33.1(23.7) 31.7(234)
Llama3 FS 449 (33.6) 39.3(27.6) 40.8(29.5) 21.4(159) 19.8(12.9) 20.5(14.3)
GPT-4 ZS 65.2(61.1) 60.0(49.2) 61.4(52.9) 46.5(34.1) 44.8(37.6) 45.6(36.0)
GPT-4 FS 65.8 (60.2) 54.5(40.8) 57.6(46.8) 47.8(40.2) 459(40.9) 46.8(40.6)

Table 5: Results with the entire In-person dataset and the subset of the Virtual dataset consisting of 16 patients
who are matched with the 16 In-person patients in terms of child age and parent education level. Each cell has
BEHAVACC with ITEMACC in parentheses afterwards. ZS = zero-shot, FS = few-shot.

In-Person Virtual

Binary accuracy on:  Interference  Support  All  Interference  Support  All

Llama3 ZS 80.5 65.3 73.0 50.9 64.1 63.1
Llama3 FS 82.9 56.1 69.7 71.9 54.3 55.6
GPT-4 ZS 91.8 82.5 87.2 71.9 71.0 76.6
GPT-4 FS 91.1 80.4 85.8 71.9 84.0 83.1

Table 6: BEHAVACC on the binary classification version of our dataset. We include the overall accuracy as well as
accuracy on interference only or support only. ZS = zero-shot, FS = few-shot.
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