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Abstract001

Recent clinical research has developed novel002
protocols that enable children to participate in003
bilingual language assessment remotely with004
parents to assist in this process. However, since005
parents are not trained clinicians, they often006
perform interference behaviors—actions that007
could compromise the validity of the assess-008
ment (e.g., providing hints). In this paper,009
we study whether language models can help010
automate the detection and categorization of011
parental interference behaviors during bilingual012
English-Mandarin child language assessment.013
Such a system would reduce the burden on clin-014
icians, who must otherwise rely on transcribing015
video recordings and checking them manually016
for signs of interference. We release a new,017
expert-annotated dataset for this task, and eval-018
uate multiple state-of-the-art large language019
models. While these models achieve non-trivial020
accuracy, they currently lag far behind human021
annotators. We find that understanding Man-022
darin and code-mixed text are key challenges023
these models need to overcome. We hope that024
our new dataset inspires modeling advances025
that could improve the practice of bilingual026
child language assessment.027

1 Introduction028

Receptive and expressive language assessment is029

a standardized clinical procedure to evaluate chil-030

dren’s communication abilities, detect signs of po-031

tential language delays and disorders, and facili-032

tate early clinical interventions in a timely manner033

(Wang et al., 2020; Gorman et al., 2015). However,034

the current practice of language assessment in bilin-035

gual children is hindered by a lack of bilingual clin-036

icians and bilingual assessment tools (Sheng et al.,037

2021; Wang et al., 2024; Pratt et al., 2022). This038

scarcity necessitates the involvement of parents,039

who typically speak the languages that bilingual040

children are exposed to at home, and can serve as041

key informants for clinicians during the assessment042

process (Klatte et al., 2020).043

Prior research on using parents as “e-helpers” for 044

telehealth in the context of bilingual assessments 045

has drawn more attention from multidisciplinary 046

researchers (Edwards-Gaither et al., 2023). Typi- 047

cally, parents are allowed to assist their children in 048

interacting with the graphic user interface (GUI) of 049

the assessment tool (Fissel et al., 2015). Prior work 050

(Du et al., 2020) reported that during in-person 051

language assessments, bilingual Mandarin-English- 052

speaking parents often engage in verbal and physi- 053

cal behaviors (e.g., dyadic conversations, gestural 054

prompting), which are considered interference be- 055

haviors. For example, providing hints or directly 056

suggesting answers can hinder their children’s as- 057

sessment performance and compromise the validity 058

of the assessment results. To ensure the integrity 059

and fairness of the assessment, clinicians are tasked 060

with manually annotating and evaluating parents’ 061

behaviors to determine whether they constitute in- 062

terference. This clinical annotation process is not 063

only time-consuming to complete but also challeng- 064

ing to reach reliable agreements between clinicians 065

without extensive training (Yao et al., 2023). 066

In this paper, we investigate the potential of large 067

language models (LLMs) to support clinicians by 068

automatically annotating parents’ behaviors dur- 069

ing assessments, relying on LLM’s abilities to 070

learn new tasks via zero-shot or few-shot learning 071

(Brown et al., 2020). Such an LLM system would 072

reduce the workload of clinicians to manually iden- 073

tify parental interference, and could even be used to 074

discourage interference in real time during assess- 075

ments. We first collect and release a comprehen- 076

sive dataset comprising conversational transcripts 077

and behavior descriptions from recordings of two 078

groups of parent-child dyads (in-person and virtual) 079

undergoing bilingual English-Mandarin language 080

assessments. This dataset, which is utilized by clin- 081

ical experts for post-assessment analysis, serves 082

as the benchmark for our model development and 083

evaluation in classifying parental behaviors as ei- 084
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ther supportive (i.e., acceptable) or interfering (i.e.,085

detrimental). Our dataset comprises data from 59086

patients and containing 1,472 total parent behav-087

iors annotated with one of eight fine-grained labels.088

This dataset will facilitate future research that could089

enable more efficient administration of bilingual090

langauge assessments.091

Finally, we benchmark two state-of-the-art092

LLMs—Llama 3 and GPT-4—on our dataset, us-093

ing both zero-shot and few-shot prompting. While094

GPT-4, the stronger model, performs decently well095

on our task, there is still considerable room for im-096

provement compared with human expert accuracy.097

We observe that examples involving Mandarin ut-098

terances by parents are particularly challenging099

for these models, suggesting that improved mul-100

tilingual modeling could make LLMs more use-101

ful for this setting. Overall, our work both sheds102

light on weaknesses of state-of-the-art LLMs and103

introduces a challenging, ecologically valid, mul-104

tilingual benchmark that we hope inspires future105

modeling improvements.106

2 Related Work107

2.1 Clinical NLP Research on Bilingual108

Language Assessment in Telehealth109

Prior NLP research has examined the automation of110

various educational and clinical tasks, such as auto-111

mated scoring and analysis of pediatric language as-112

sessment (Wang et al., 2020; Gorman et al., 2015),113

behavioral testing for clinical outcome prediction114

(Van Aken et al., 2021), novel test item generation115

in clinical assessments (Laverghetta Jr and Licato,116

2023), and narrative tasks (Prud’hommeaux and117

Roark, 2015; Chen et al., 2023). However, prior118

work related to utilizing NLP approaches to ana-119

lyze clinical encounters in the context of telehealth120

using a bilingual dataset has been very limited. In121

clinical language assessment, gathering and analyz-122

ing data for clinician-led language assessment task123

can be challenging to obtain and time-consuming to124

analyze. Therefore, investigating how to use NLP125

approaches to classify and annotate these behav-126

iors brings significant contributions to improving127

efficiency in clinical workflow and increasing the128

quality of bilingual assessment.129

2.2 LLMs for Real-World Domains130

Large language models (LLMs) like GPT-4 (Ope-131

nAI, 2023) and LLaMA (Touvron et al., 2023a,b)132

have shown impressive task-solving performance133

Figure 1: MERLS 1.0 web interface English test item:
“The monkey is hugged by the penguin.”

off-the-shelf, such as question answering and logi- 134

cal reasoning (Wei et al., 2021; Sanh et al., 2021; 135

Chung et al., 2022). Relevant to this work, in- 136

context learning (ICL) (Brown et al., 2020; Zhang 137

et al., 2022; Rubin et al., 2022; Li et al., 2023) is 138

a common prompting strategy to teach LLMs to 139

solve a particular task. ICL enables models to learn 140

from few-shot examples provided in the input con- 141

text. Many recent work have also explored LLMs’ 142

capabilities in real-world scenarios, which gener- 143

ally require significant domain expertise, such as 144

children education (Chen et al., 2023) and medi- 145

cal domains (Xu et al., 2024; M. Bran et al., 2024; 146

Jablonka et al., 2024). 147

3 Dataset 148

We collaborated with bilingual Mandarin-English 149

speaking SLP practitioners and researchers to ob- 150

tain two comprehensive text-based datasets derived 151

from the Mandarin-English Receptive Language 152

Screener (MERLS). MERLS is a web-based recep- 153

tive sentence comprehension assessment designed 154

for Mandarin-English-speaking children between 4 155

and 8 years old (Sheng et al., 2021; Du et al., 2020). 156

The assessment consists of 44 Mandarin test items 157

and 36 English test items. During assessment, the 158

MERLS web interface (see Figure 1) plays Man- 159

darin and English audio instructions for bilingual 160

children to select pictures that match the instruc- 161

tions. Children do not require parental assistance 162

to complete tasks except for technical support. 163

3.1 Data Collection 164

Our dataset comprises two distinct studies using 165

MERLS. The In-Person dataset (MERLS 1.0) was 166

collected in-person with video recording, while 167

the Virtual dataset (MERLS 2.0) was collected re- 168

motely during the COVID-19 pandemic via Zoom. 169

Each dataset includes 16 pairs of parents and chil- 170

dren, resulting in a total of 32 parent-child pairs 171
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that are matched in parent education and children’s172

age within 6 months differences. An additional 27173

parent-child dyads were collected virtually, for a174

total of 43 parent-child dyads in the Virtual dataset.175

3.2 Annotation Process176

For each test item collected in each parent-child177

video recording, a clinical annotation team identi-178

fied, transcribed, and categorized all child and par-179

ent behaviors performed while the child answered180

that item. The transcription of each behavior de-181

scribes both verbal and non-verbal actions. Fol-182

lowing guidelines by(Du et al., 2020), each parent183

behavior was first categorized into one of two pri-184

mary classes: “interference” and “support.” Each185

primary class was further subdivided into four sub-186

classes to capture more detailed behavior types,187

as listed in Table 4 in Appendix A.1. Namely,188

sub-categories for “interference” are: “repeat ques-189

tions”, “answer questions”, “analyze items”, and190

“judging of correctness”; sub-categories for “sup-191

port” include “encouragement”, “analyze items”,192

“broadcasting”, “miscellaneous”.193

Overall, this dataset is therefore an eight-way194

classification task, which tests nuanced understand-195

ing of parental participation during the assessments.196

Each input consists of the text of the current test197

item, a description of the child’s actions (if any),198

and the description of the parent’s behavior. More199

details are provided in Appendix A.2200

To validate the annotations, interobserver agree-201

ment (IOA) was calculated between the two clin-202

ical experts using member checking (Birt et al.,203

2016). IOA is 97% (In-person dataset) (Du et al.,204

2020) and 86.1% (Virtual dataset). We derive hu-205

man accuracy numbers in Table 1 from these IOA206

numbers.207

3.3 Dataset Statistics208

Table 4 presents overall statistics for the In-person209

and Virtual datasets. The two datasets have differ-210

ent label distributions: the Virtual dataset contains211

fewer interference behaviors and more technical212

support behaviors. It may be due to the (1) the213

system redesign of the MERLS website prior to214

the collection of the Virtual dataset (e.g., adding215

an instructional video about prohibited interference216

behaviors), or (2) the use of Zoom for Virtual data217

collection which added additional technical behav-218

iors in parent-child dyads in the Virtual dataset.219

4 Behavior Classification with LLMs 220

We aim to investigate whether LLMs can reliably 221

classify parental behaviors during child language 222

assessments, in comparison with clinical experts’ 223

performance. We focus on the zero-shot (ZS) 224

and few-shot (FS) In-Context Learning prompting 225

strategies for LLMs throughout our experiment. 226

Prompts. Our zero-shot prompt provides instruc- 227

tions, explains the input format, and defines each 228

of the eight labels. From the test example itself, 229

the model is shown (1) the text of the current ques- 230

tion, (2) a description of the child’s behavior (if 231

any), and (3) the description of the parent’s behav- 232

ior. The few-shot prompt is similar but includes 233

one demonstration under each label definition. The 234

demonstrations were written by a clinical expert, 235

to be separate from all dataset examples. The full 236

prompts are in Appendix A.5. 237

Models. We experiment with two LLMs: the 238

open-weight model Llama-3-8B-Instruct and the 239

closed-source model GPT-4. While Llama-3 is a 240

primarily English model, its pre-training dataset 241

does include data from 30 other languages1. GPT-4 242

has also been shown to perform well on Chinese 243

language understanding benchmarks (Xu et al., 244

2023; Zhu et al., 2024). 245

Evaluation metrics. We compute two metrics: 246

Behavior-level Accuracy (BEHAVACC) measures 247

the fraction of behaviors that are predicted cor- 248

rectly, while Item-level Accuracy (ITEMACC) mea- 249

sures the fraction of all test items containing at least 250

one behavior for which all behaviors done during 251

that item were predicted correctly. 252

5 Experimental Results 253

5.1 Main Results 254

Table 1 shows the overall accuracies of all models 255

on our dataset. GPT-4 greatly outperforms Llama3 256

in all data subsets, with the best GPT-4 variant 257

achieving 61.2 BEHAVACC on the In-person dataset 258

and 49.3 BEHAVACC on the Virtual dataset. This 259

is still far below the human expert accuracy of 98.5 260

and 93.0, respectively, indicating significant room 261

for improvement. Appendix A.3 shows results on 262

the subset of 16 Virtual dataset who were paired to 263

match the In-person dataset; we see similar trends 264

as on the full Virtual dataset. 265

1https://ai.meta.com/blog/meta-llama-3/
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In-Person Virtual

Question Language English Mandarin All English Mandarin All

Llama3 ZS 48.1 (38.9) 43.3 (28.0) 44.6 (31.4) 29.3 (26.7) 31.3 (24.3) 30.4 (25.3)
Llama3 FS 44.9 (33.6) 39.3 (27.6) 40.8 (29.5) 22.1 (20.3) 23.6 (19.8) 23.0 (20.0)
GPT-4 ZS 65.2 (61.1) 60.0 (49.2) 61.4 (52.9) 45.3 (36.9) 51.6 (45.3) 48.9 (41.6)
GPT-4 FS 65.8 (60.2) 54.5 (40.8) 57.6 (46.8) 48.5 (43.3) 52.5 (46.5) 50.8 (45.1)

Human Experts - - 98.5 - - 93.0

Table 1: Main results. Each cell shows BEHAVACC with ITEMACC in parentheses. ZS = zero-shot, FS = few-shot.

In-Person Virtual

Parent Language English Mandarin Mixed English Mandarin Mixed

# Examples 233 167 178 226 389 111

Llama3 ZS 39.5 42.5 53.4 44.2 21.1 35.1
Llama3 FS 34.8 40.1 49.4 32.7 14.7 32.4
GPT-4 ZS 64.8 55.1 62.9 56.6 43.2 53.2
GPT-4 FS 57.1 52.1 63.5 60.2 45.5 50.5

Table 2: BEHAVACC results broken down by the language in the transcript of the parent’s behavior (either English,
Mandarin, or a mix of both languages). ZS = zero-shot, FS = few-shot.

Across all models and language subsets, the Vir-266

tual dataset is much harder to classify than the267

In-person dataset. This is likely due to the fact that268

the In-person dataset was collected with a more269

comprehensive view of the parent-child interaction270

with the screen, whereas the Virtual dataset was271

collected via Zoom with limited camera view for272

capturing detailed parent-child interaction. These273

environmental factors influenced human annota-274

tion during initial text transcription. We also ob-275

serve that the zero-shot setting leads to better per-276

formance with GPT-4 on In-person dataset whereas277

the few-shot setting performs best across all models278

on Virtual dataset. This could also be contributed279

to the different behaviors in In-person and Virtual280

datasets that the experts-annotated demonstrations281

are more alike to the ones in the Virtual dataset.282

5.2 Effects of Parent Language283

We now examine whether the language that de-284

scribes the parent’s behavior impacts the LLM’s285

accuracy. This description could be either English-286

only, Mandarin-only, or a mix. In our dataset, all287

descriptions of non-verbal actions are in English;288

on the other hand, many parent speech acts are in289

Mandarin. A mix of languages can occur when the290

parent code-switches, or when the parent’s Man-291

darin speech act is accompanied by an English292

description of a non-verbal action.293

Table 2 shows model accuracies broken down by294

the language describing the parent behavior. All295

models generally perform worst on the Mandarin-296

only items, with the exception of Llama3 on the In- 297

person dataset. Moreover, the higher difficulty of 298

the Virtual dataset relative to the In-person dataset 299

is explained primarily by the increase in difficulty 300

of behaviors that involve Mandarin. Averaging 301

across models, the English Virtual dataset is only 302

0.6 BEHAVACC harder than the English In-person 303

dataset; however, this number jumps to 16.3 for 304

Mandarin and 14.5 for the Mixed data. 305

5.3 Binary Classification Results 306

Finally, we evaluate models on the binary classifi- 307

cation task to distinguish interference from support 308

behaviors. Detecting interference could be useful 309

to alert a clinical expert to potential issues, even if 310

the model cannot identify the type of interference. 311

As shown in Appendix A.4, GPT-4 outperforms 312

Llama3 and can achieve an accuracy greater than 313

83% in both the In-person and Virtual datasets. 314

6 Conclusion 315

This paper introduces a new dataset for fine-grained 316

classification of parental behaviors during bilingual 317

English-Mandarin child language assessment. Au- 318

tomating this task would enable more efficient and 319

reliable language assessments. Current state-of- 320

the-art LLMs perform somewhat accurately on this 321

task, but still have considerable room for improve- 322

ment, especially on examples involving Mandarin 323

parental speech. We hope our dataset encourages 324

further NLP research to support clinical tasks that 325

are specifically designed for multilingual speakers. 326
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7 Limitations327

In our current setup, a model must classify parent328

behavior given the text of the parent’s speech and/or329

a textual description of their actions. This text was330

transcribed manually from the video recording of331

the language assessment sessions by a human ex-332

pert. The use of human transcription ensures high333

quality text data inputs, and thus our results repre-334

sent a likely upper bound for model performance.335

In a real application, it would be ideal to avoid336

this manual transcription step and make predic-337

tions from the raw video directly. This could be338

done by using a separate video transcription model339

to first transcribe the video to text, then running an340

LLM. It could also be done by using a multimodal341

foundation model to process the video directly. We342

leave exploration of handling this more challenging343

multimodal version of the problem to future work.344

Our dataset focuses exclusively on one language345

pair, English and Mandarin. This choice was based346

on the expertise of the clinical authors of the paper347

and their access to English-Mandarin bilingual par-348

ticipants. We believe that the framework presented349

could be extended to other language pairs, though350

validating this would require new collaborations to351

collect the required data.352

8 Ethical considerations353

Data collection and analysis. Our dataset was354

originally collected via university human subject re-355

search approval and data sharing agreements. The356

clinician annotated text transcripts for In-person357

and Virtual dataset were generated as a part of the358

clinical video analysis, which are all de-identified359

behaviors without any sensitive information from360

parent-child pairs.361

Bias mitigation. In order to ensure a represen-362

tative dataset, when comparing the 16 virtual and363

16 in-person parent-child pairs, we carefully con-364

sidered the impact of children’s age and parents’365

education. Children’s ages can be directly corre-366

lated to their language ability; parent education367

level can results in different abilities to interpret368

the testing procedures, leading to various levels of369

parent behaviors.370
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A Example Appendix563

A.1 Description of Labels564

Table 3 provides detailed descriptions of the eight565

labels used in our dataset.566

A.2 Dataset details567

The dataset is structured to include the following568

components in English and Mandarin:569

1. Time Stamps: Precise time stamps for each as-570

sessment item and corresponding parent-child571

behavior during the assessment sessions.572

2. GUI Descriptions: Textual descriptions of the573

graphical user interface (GUI) elements dis-574

played during the assessment.575

3. Audio transcriptions: Transcriptions of the au-576

dio recordings from the assessment sessions,577

with annotations that identify the speaker for578

each voiceover.579

4. Behavior Descriptions: Textual descriptions580

of the parents’ behaviors during the assess-581

ments, detailing both verbal and non-verbal582

actions.583

The initial data cleaning and annotation were584

conducted by a clinical team consisting of two grad-585

uate research assistants, with inter-rater reliability586

verified by a licensed SLP for MERLS 1.0 Dataset587

and SLP assistant for MERLS 2.0 Dataset. The588

statistics of our dataset is reported in Table 4.589

A.3 Results with paired cohort590

Table 5 shows similar results as our main results591

table, Table 1, but with a paired subset of the virtual592

dataset. In particular, we use a subset of 16 patients593

from the virtual dataset who were chosen to match594

the 16 in-person patients in terms of child age and595

parent education level. Overall, we observe similar596

trends to those in Table 1.597

A.4 Binary Classification Results598

Table 6 shows the binary BEHAVACC results on599

our dataset. To evaluate binary classification ac-600

curacy, we simply map the predictions from the601

model prompted for 8-way classification to either602

interference or support. We see that GPT-4 is able603

to achieve at least 83% binary classification accu-604

racy on both the in-person and virtual datasets.605

A.5 Prompts 606

Figure 2 shows the zero-shot prompt used in our 607

experiments. Figures 3 and 4 show the few-shot 608

prompts, split over multiple pages. Both prompts 609

include (1) Voiceover, the text of the current ques- 610

tion; (2) Child behavior, a description of the 611

child’s behavior (if any), and (3) Parent behav- 612

ior, the utterance and/or a description of the action 613

performed by the parent. 614
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Top-Level
Category

Sub-Level
Category Definition

Interfere

Repeat
Questions

Repeating the <Voiceover> audio before and/or during the process of a child selecting the picture on the
web.

Answer
Questions Using verbal or gestural cues to suggest or select a correct answer for the child.

Analyze
Items

Elaborating on the critical linguistic components by labeling objects and actions, making emphasis via
prosodic cues, or breaking down complex sentences from <Voiceover>.

Judging of
Correctness Verbally evaluating the child’s response as “correct” or “incorrect”.

Support

Encouragement Showing verbal and/physical affirmation for the child to continue, saying “good job/excellent” to reinforce
the child’s selection, expressing empathy (e.g., “it’s okay”) on struggled items.

Analyze
Items

Offering verbal and/or physical assistance to the child related to interacting with the website and the
computer.

Broadcasting After the child makes a selection, describing the selection via a word, a phrase, or a sentence.

Miscellaneous Initiating and/or responding to events that redirected a child’s attention, sharing personal opinions about
test procedures and stimuli, or other verbal and nonverbal behaviors that were out of the child’s view.

Table 3: The classification categories and corresponding definitions of parent behaviors based on established clinical
guidelines. Two high-level categories (“interfere” and “support”) each consists of four sub-categories.

Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents,

who are supervising their bilingual children to answer language comprehension tests in English and
Mandarin.

A <Voiceover> is the system output sound which reads the picture on the website that the child has to
choose.

A <Child Behavior> is the children's behavior.
You need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect".

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 2: The full zero-shot prompt used in our experiments.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin.

A <Voiceover> is the system output sound which reads the picture on the website that the child has to
choose.

A <Child Behavior> is the children's behavior.
You need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"the black cat is drinking water"

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
. For example,

<Voiceover>
"What is the cat drinking?"

<Parent Behavior>
"Drinking water."

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"This is the one with a black cat."

<Classification>
Analyze Items

Figure 3: The few-shot prompt used in our experiments, part 1 of 2.
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- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect". For
example,

<Voiceover>

<Parent Behavior>
"This is not right."

<Classification>
Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>
"it's fine you are trying your best."

<Classification>
Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>
"Select the picture to continue."

<Classification>
Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>
"I selected the picture."

<Classification>
Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>

<Parent Behavior>
"My child needs to use the bathroom."

<Classification>
Miscellaneous

Figure 4: The few-shot prompt used in our experiments, part 2 of 2.
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In-Person Virtual

# Parents 16 43
# Behaviors 677 795
# Items with ≥ 1 behavior 363 430

# Repeat Questions 144 24
# Answer Questions 12 11
# Analyze Items 89 3
# Judging of Correctness 51 12
# Encouragement 136 281
# Technical Support 148 291
# Broadcasting 60 17
# Miscellaneous 37 156

Table 4: MERLS dataset statistics. Bottom shows the
label distribution, with interference behaviors shaded.
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In-Person Virtual (paired 16)

Question Language English Mandarin All English Mandarin All

Llama3 ZS 48.1 (38.9) 43.3 (28.0) 44.6 (31.4) 30.2 (23.2) 33.1 (23.7) 31.7 (23.4)
Llama3 FS 44.9 (33.6) 39.3 (27.6) 40.8 (29.5) 21.4 (15.9) 19.8 (12.9) 20.5 (14.3)
GPT-4 ZS 65.2 (61.1) 60.0 (49.2) 61.4 (52.9) 46.5 (34.1) 44.8 (37.6) 45.6 (36.0)
GPT-4 FS 65.8 (60.2) 54.5 (40.8) 57.6 (46.8) 47.8 (40.2) 45.9 (40.9) 46.8 (40.6)

Table 5: Results with the entire In-person dataset and the subset of the Virtual dataset consisting of 16 patients
who are matched with the 16 In-person patients in terms of child age and parent education level. Each cell has
BEHAVACC with ITEMACC in parentheses afterwards. ZS = zero-shot, FS = few-shot.

In-Person Virtual

Binary accuracy on: Interference Support All Interference Support All

Llama3 ZS 80.5 65.3 73.0 50.9 64.1 63.1
Llama3 FS 82.9 56.1 69.7 71.9 54.3 55.6
GPT-4 ZS 91.8 82.5 87.2 71.9 77.0 76.6
GPT-4 FS 91.1 80.4 85.8 71.9 84.0 83.1

Table 6: BEHAVACC on the binary classification version of our dataset. We include the overall accuracy as well as
accuracy on interference only or support only. ZS = zero-shot, FS = few-shot.
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