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Abstract

Recent advances in large-scale machine learning have produced high-capacity
foundation models capable of adapting to a wide range of downstream tasks.
While such models hold great promise for robotics, the prevailing paradigm still
portrays robots as single, autonomous decision-makers, performing tasks such as
manipulation and navigation, with limited human involvement. However, a large
class of real-world robotic systems, including wearable robotics (e.g., prostheses,
orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous,
and require ongoing interactive coordination with human partners, challenging
single-agent assumptions. In this position paper, we argue that robot foundation
models must evolve to an interactive multi-agent perspective in order to handle the
complexities of real-time human-robot co-adaptation. To ground our discussion,
we identify generalizable neuroscience-inspired functionalities required in such a
multi-agent approach: (1) a multimodal sensing module informed by sensorimotor
integration principles for collaborative sensing, (2) a teamwork model reminiscent
of joint-action frameworks in cognitive science for collaborative actions, (3) a
predictive world belief model grounded in internal forward model theories of motor
control for anticipation and planning, and (4) a memory/feedback mechanism
that echoes concepts of Hebbian and reinforcement-based plasticity for model
refinement. By moving beyond single-agent perspective, our position emphasizes
how foundation models in robotics can engage in adaptive interactions with humans
and other agents, thereby enhancing their functionality and applicability in complex,
dynamic environments.

1 Introduction

In recent years, artificial intelligence has been transformed by foundation models, which are large,
high-capacity neural networks pre-trained on extensive and heterogeneous datasets [14, 2]. These
models, exemplified by large language models (LLMs) such as GPT-4 [2], and large multimodal
models (LMMs) like PaLM-E [45], offer a flexible interface for perception, reasoning, and action. In
robotics, foundation models have been applied to unify diverse tasks, e.g., manipulation, navigation,
or object recognition, under a single policy [101, 13], often operating in a single-agent paradigm
where the robot acts autonomously, under minimal human involvement.
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However, a large class of real-world robotics, particularly those involving continuous human col-
laboration, are inherently multi-agent. Applications such as teleoperation [74, 92, 67] and re-
habilitation robotics, which includes prosthetic devices [10, 24, 97, 127, 42, 40] and exoskele-
tons [83, 102, 77, 31, 38, 29], neural interfaces [60, 44, 108, 124], brain-computer interfaces
[128, 89, 78, 1], and other semi-autonomous systems [115, 25] require ongoing co-adaptation with
humans or other participating agents in the environment, rather than isolated, one-shot instructions. In
these contexts, the single-agent perspective encounters significant limitations: it fails to interpret and
handle non-stationary factors such as dynamic and evolving user states, shifting goals, user fatigue,
and changing environmental conditions.

Human-interactive robotics and bionics, in particular, demand continuous, bidirectional feedback
loops between the human user and the device [66, 35]. They require a high degree of integration and
coordination between the human and the robot. To achieve this, the device must anticipate human
actions, integrate user preferences and environmental cues to ensure effective, safe, and comfortable
completion of user commands. Over time, both the human and the device need to learn to function
as a coordinated pair. Consequently, this paper takes a position: future robot foundation models
must evolve to an interactive multi-agent perspective, by explicitly modeling both the robot and its
counterpart (human or environment) as actively adapting agents. This complexity aligns more closely
with neuroscience-based perspectives on sensorimotor control, which emphasize dynamic feedback
loops, internal predictive models, and adaptive synergy between multiple interacting systems (e.g.,
brain, muscles, external supports) [131, 63]. By translating these concepts into modular components
of a robotic system, we outline how an interactive human-robot dyad can be realized in future
foundation models.

We illustrate this perspective mostly through wearable robotics or human bionic systems, where a
user’s actions and physiological signals (e.g., EMG, joint angles) need to continuously and seamlessly
intertwine with the device’s actuation. In general, the principles outlined here are broadly applicable
to robots operating in semi-autonomous or interactive contexts. By incorporating principles from
neuroscience, cognitive science, and multi-agent systems, this position paper aims to generate
discussion on how to achieve co-adaptation, comfort, and anticipatory control in next-generation
interactive robotics. We suggest that the widespread adoption of interactive, multi-agent paradigms in
robotic foundation models will lead to fundamentally safer, more robust, and user-centric performance,
surpassing what is possible within the single-agent paradigm.

2 Single-Agent Foundation Models in Robotics

The advent of Large Language Models (LLMs) such as GPT-4 [2], LLaMA [120], and Vision-
Language Models (VLMs) such as CLIP [98], BLIP [72], BLIP-2 [71] has significantly advanced
robotics by enhancing perception, planning, and action generation capabilities. These models
demonstrate exceptional abilities in understanding and generating multimodal data, which are crucial
for complex robotic tasks [45, 13, 118]. By leveraging the robust linguistic capabilities of LLMs,
robots can interpret and execute tasks based on natural language commands [53], eliminating the
need for complex programming interfaces. For instance, robots can parse instructions such as "Bring
the red cup from the kitchen table" into structured subtasks involving object identification, navigation,
and manipulation [14].

Despite the impressive capabilities of modern robot foundation models, such as Gato [101], RT-1 [13],
RT-2 [12], RT-X [94], Octo [118], and OpenVLA [65] their predominantly single-agent framework
can limit performance in scenarios requiring tight coordination with humans or other agents. These
models typically learn policies under the assumption that the robot operates largely on its own,
taking in sensory inputs and issuing motor commands without ongoing, interactive feedback from
a collaborator or user. Although they have achieved notable results on tasks like manipulation,
navigation, and even some language grounding, key shortcomings emerge when real-time and
collaboration with the human operator or continuous human guidance is essential.

2.1 Limitations of Single-Agent Robot Foundation Models

1) Inability to Handle Mid-Task User Corrections and Human-Robot “Turn-Taking”. Con-
temporary robot foundation policies (e.g. Gato, RT-1, RT-2, Octo) are trained to execute a given
goal end-to-end without intermediate interaction. Gato [101], for example, was demonstrated in
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multiple discrete and continuous control tasks, ranging from Atari gameplay to real-world robotic
arm manipulation. However, it was not designed to handle situations where a human might intervene
mid-task with corrective feedback or dynamically changing instructions (e.g., “Wait, do not place the
block there, hand it to me instead.”). As a single-agent learner, Gato or Octo follow their end-to-end
policy after receiving an initial goal or observation. If the human’s intent shifts during task execution,
they cannot seamlessly incorporate that feedback without externally resetting or retraining the policy.
A multi-agent perspective, by contrast, would treat the user as a parallel decision-maker; the system
would maintain a belief state about the user’s evolving instructions, thus adapting plans in real time
rather than requiring full restarts.

2) Missed Opportunities for Co-Adaptation. Both Gato and RT-1 illustrate the single-agent
assumption that the robot alone adapts its policy. In scenarios like teleoperation or assistive tasks,
however, adaptation is a two-way street: the human also modifies their behavior in response to how
the robot is acting, and vice versa. A single-agent viewpoint cannot fully leverage user posture shifts,
subtle gestural cues, or real-time user feedback on comfort and safety. By contrast, a multi-agent
approach (e.g., ad-hoc teamwork [99, 81]) would explicitly model how the human’s internal state
may change, whether due to fatigue, changing preferences, or partial completion of sub-goals and
modify the robot’s behavior accordingly. This co-adaptive loop can prevent errors (e.g., collisions,
user frustration) that arise when the robot rigidly executes a policy absent mutual feedback.

3) Overlooking Collaborative Goal Setting and Preference Tracking. Another limitation is
that single-agent foundation models rarely incorporate long-term preference tracking for an external
user. For instance, neither Gato, RT-1, RT-2, nor Octo record that a particular user “prefers gentler
grasps” or has a habit of signaling differently; every instruction is treated in isolation. While they
excel at learning general policies from large datasets, they do not maintain a persistent model of a
user’s personal constraints or historical preferences (e.g., “User typically prefers lighter grip force on
fragile objects” or “User signals discomfort when the end-effector approaches from the left”). In a
multi-agent framework, the robot could treat the user’s preferences as a dynamic factor, continually
updating its internal representation as tasks progress and new user feedback arises, thus improving
safety, utility and user satisfaction [70].

3 From Autonomous Single Agents to Multi-Agent Collaboration

To address limitations of single-agent paradigms, especially in environments that demand complex,
dynamic interactions and collaborative problem solving, research has advanced toward multi-agent
systems (MAS) [111], multi-agent reinforcement learning [3], and ad-hoc teamwork [81], frameworks
designed to facilitate effective collaboration among multiple entities. Multi-agent systems research
has long studied how agents can cooperate or compete without central coordination [111, 133, 3].
These agents can be homogeneous or heterogeneous, cooperative or competitive, and operate within
shared or overlapping environments. The primary distinction between MAS and single-agent systems
lies in the ability to manage interdependencies and leverage collective intelligence to solve problems
that are intractable for individual agents. In particular, ad hoc teamwork research formalizes the
challenge of rapidly adapting to unknown teammates and tasks without prior coordination [81, 114].
This capability is crucial in environments where agents must form temporary coalitions spontaneously
to achieve common objectives, often under conditions of uncertainty and incomplete information
[7, 79, 99].

Recently, multi-agent LLM frameworks have begun exploring how multiple large language models or
“agents” can interact to solve tasks. For example, Microsoft’s AutoGen framework composes multiple
LLM-powered agents that converse with each other to accomplish goals [134]. AutoGen agents can be
specialized (one handling math, another code, etc.) and coordinate via natural language. Similarly, the
AutoAgents system [20] automatically generates a team of agents from a task description, each with
different roles [121]. These and related platforms demonstrate how LLMs can be orchestrated into
collaborative multi-agent pipelines. Indeed, recent surveys highlight that LLM-based MAS enable
groups of agents to collectively perceive, reason, and act on complex problems [134, 121]. Beyond
specific frameworks, many open-source libraries (e.g., LangChain agent chains [19], OpenAI’s
“Swarm” [93], etc.) and commercial tools support building multi-agent workflows where agents
specialize or iteratively refine solutions. This trend suggests that intelligence is being distributed
across LLM agents in an ad hoc fashion. However, most of this work has focused on textual or
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planning tasks, not directly on embodied robotics. In particular, control of wearable robotics, a prime
example of human-robot coupling, was mostly implemented by aiming to "reconnect" the robot
to the sensorimotor structures of the human user. In this framework, the robot controller could be
regarded as a "simple" decoder aiming to estimate user motion intention and translate it into robot
commands [61]. More recently, smart bionic systems have emerged in which the controller possesses
rudimentary reasoning abilities, allowing it to carry out certain tasks autonomously [50]. Thus far,
however, these autonomous controllers have been realized solely as single-agent models.

3.1 Human-Robot Dyad as a Real-World Multi-Agent Challenge

A defining feature of human-interactive robots or bionic systems (i.e., wearable robotics, prostheses,
and exoskeletons) is the fusion of human physiology with artificial actuation [8, 113, 122, 47, 34, 30,
32, 37, 36, 41, 39]. In these scenarios, the user (with biological muscles, joints, and neural control)
and the robotic device (with actuators, sensors, and algorithms) act as two tightly coupled agents.
As explained in prior sections, most existing approaches still adopt a single-agent viewpoint: the
device waits for explicit commands and reacts in a largely feed-forward manner. This perspective
ignores the subtle, bidirectional continual interplay that actually unfolds, an omission that can cause
misinterpreted user inputs, abrupt control actions, delayed task transitions, or poorly personalised
assistance when a user’s biomechanical or cognitive state shifts unexpectedly [87].

Reframing the human and the device as two partially observable, co-evolving agents opens the door
to modern multi-agent collaboration paradigms, wherein: 1) the device continuously estimates the
user’s goals and biomechanical limits from multimodal signals (e.g., EMG, limb kinematics). 2)
The human updates their motor strategy in response to the device’s feedback and behaviour, closing
the loop in real time. 3) The device maintains and updates an internal model of the user’s state and
preferences, enabling more synergistic control over repeated interactions.

Even in ostensibly ’autonomous’ robot applications [33, 43, 107, 84], there can be hidden interaction
partners, such as a human operator providing commands or an environment whose states change in
response to robot actions. Integrating multi-agent interactions into foundation models equips robots
with explicit representations of user states, fostering the ability to predict and adapt continually
based on teammates’ models of the world. This integration addresses the fundamental limitations of
single-agent, autonomous controllers in human-interactive settings.

4 Position: Embracing an Interactive Multi-Agent Foundational Architecture
Inspired by Neuroscience

We argue that future robot foundation models must adopt an interactive multi-agent framework,
especially for human-robot-interactive domains, one that recognizes the user and the robot (e.g., a
smart robotic prosthetic device) as two interacting agents. To ground our discussion in concrete
building blocks, we outline four desirable functional capabilities: (1) A collaborative sensing module
that fuses heterogeneous modalities and viewpoints, such as, robot exteroception (camera, lidar, force),
egocentric human signals (EMG, inertial units, eye-gaze), and sparse but semantically-rich cues
(speech, gestures) into a compact, task-relevant latent representation, mirroring parietal sensorimotor
integration in biological systems [96]. (2) A teamwork modeling module [99, 70, 81] that applies
multi-agent collaboration principles, aligning with joint-action and shared intentionality theories in
cognitive science [119, 109]. (3) A predictive world belief model that maintains an internal forward
model of the user and/or collaborating agents’ states, to simulate how the collaborative dyad and
the environment are likely to evolve in the future, enabling anticipatory control, inspired by motor
control theories on forward internal models and predictive coding [131, 130, 132, 100, 80, 28].
(4) A memory/feedback mechanism that stores user-specific preferences and updates policies in a
reinforcement-like manner, similar to the role of synaptic plasticity and reinforcement learning in
shaping long-term sensorimotor adaptations [27].

Importantly, these are not a rigid pipeline; rather, we identify the core capabilities that a human-
interactive system should possess. The main purpose of identifying these elements is to invite the
attention of the researchers to the open research questions that need to be addressed for building future
foundation models for human-robot co-adaptation. For each of the elements, we draw neuroscientific
parallels that can eventually guide in manifesting similar capabilities in artificial neural networks.
Where applicable, we also discuss how the current literature in deep learning and robotics approach
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these questions and the gaps that need to be filled to integrate such solutions for human-robot
collaboration. Thus, we aim to formalize the requirements of future robotic foundation models for
human-robot collaboration and propose directions to achieve them.

4.1 Module 1: Multi-agent Collaborative Sensing
Sensing in a multi-agent environment begins with the premise that each agent, human or robotic,
carries a partial, modality-specific slice of reality. The sensing module, therefore, must fuse both
heterogeneous modalities and heterogeneous viewpoints into one temporally coherent belief that
downstream teamwork, prediction, and memory mechanisms can trust. State-of-the-art cooperative
perception offers many alternatives to achieve this in a multi-agent system. Reconstruction-driven
methods [125] learn a shared latent that can rebuild the scene that each agent is missing. Sensor-fusion-
based approaches formalize the information exchange in different collaboration stages [137, 58]: early
fusion, where agents broadcast raw sensor streams; late fusion, where they exchange only high-level
detections; intermediate fusion, where they trade deep-feature maps. Bandwidth-centric solutions
such as When2Com [76], Where2Comm [56], PragComm [57], treat perception as a constrained
communication problem and compress the shared information by learning to select what information
to send and where without compromising accuracy.

Translating these ideas to human-robot interaction (HRI) requires a shift of perspective: the other
agent’s sensorium is biological, bandwidth-limited, and partly private. One approach to bridge this
gap is sensor symmetry: equip the human collaborator with lightweight egocentric cameras [22],
electro-physiological or motion sensors (e.g., EMG sleeves for a prosthesis user, inertial tags for a
teleoperator, eye-trackers for shared mapping) so that their viewpoint can be time-stamped, spatially
calibrated, and fused like any sensor stream [88]. A second approach is asymmetric fusion: treat
language, gaze direction, or hand gestures as sparse but high-semantic tokens [126]; robots learn
a task-aware dictionary that gives a few bits of human intent the same weight as hundreds of lidar
voxels. Finally, implicit embedding approaches can infer human latent belief (e.g., intended obstacle
positions) from motor commands and speech, folding that belief into shared predictive latent [55].

Neuroscience offers the organizing principle to achieve this: parietal circuits fuse visual, vestibular,
and proprioceptive cues to reconcile egocentric and allocentric frames, forwarding only prediction,
error signals to premotor and motor cortices for action selection [59, 117, 21]. An HRI sensing
module should first align robot exteroception with human-embodied signals inside a multisensory
hub, a common, uncertainty-aware body-centred schema, and then broadcast a light-weight latent
vector, weighted by the task value of each cue, to the teamwork and prediction modules, mirroring
sensorimotor integration loops in the brain.

Several research threads open, of which we discuss a few important ones to spur discussion within the
community. The success of any model hinges on data. Therefore, the first most important question
is (1) how to effectively capture and curate interactive experiences between a human and a robot.
Autonomous-driving consortia have released large multi-agent datasets, V2X-SIM [73], OPV2V
[137], DAIR-V2X [140], that pair synchronized sensor logs with ground-truth maps. Yet, only a few
capture the bidirectional dynamics of a human-robot interaction [88, 18]. New corpora must record
the closed-loop triad 〈robot state, environment state, human internal state proxies〉 at millisecond
scale, and must annotate not only “what was seen” but “what was useful.” Wearable inertial units,
body-mounted cameras, and privacy-preserving eye trackers are promising instrumentation for raw
data collection, with emerging HRI datasets such as PARTNR [18] going in this direction; the
open challenge is to curate and synchronize more meta-level features such as humans’ interactive
experience, cognitive state, comfort, fatigue, and trust levels. Another consideration is the difference
in timescales of the functioning of humans and robots. (2) How can we measure true collaboration
when human intent and actions unfold far faster than robot policy updates? Simultaneous sampling
blurs causality: the human adapts before the robot moves. A practical fix, used in PARTNR, is
dual-rate logging: first, run the task online with real robot latency, then replay the same robot actions
time-warped to the human clock. However, this still assumes the robot would choose the same actions
if it could react earlier and ignores real-world factors, sensor noise, network jitter, actuator limits, and
privacy-driven sensing gaps, that reshape both partners’ decisions; capturing true collaboration will
require hardware-level traces that synchronise heterogeneous clocks and explicitly label moments
where reduced latency would have changed either agent’s plan. Further, while this remedy is feasible
for largely autonomous robots whose decisions are locally self-consistent, it is not useful for wearable
robots whose perception-action cycle is tightly coupled to the human.
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4.2 Module 2: Teamwork Model for Collaborative Actions

Human-robot cooperation hinges on how well each partner can keep track of the other’s current
internal state and fold that estimate into its own action choices. This requires modeling the human and
robot as two co-agents collaborating with imperfect information. The robot should model human’s
condition (e.g., intent, fatigue, affective state, comfort thresholds) as a latent state to be inferred
and updated continuously, not as a fixed input [4]. For instance, in shared-control teleoperation or
exoskeleton use, the operator or wearer adapts to the device’s actions as much as vice versa. The
robot should therefore, use all available cues (e.g., EMG or motion patterns, visual observations,
spoken instructions) to infer the user’s goals and actions. This enables coordination. One example is
presented in [85] where a prosthesis controller uses multimodal sensor input to anticipate the target
object the user would like to grasp, estimate its size and shape, and preshape the device accordingly,
all of this while tracking and reacting to user movements (e.g., a change in the approach trajectory).

Parallels can be drawn in cognitive science, where joint action explores how individuals coordinate
tasks by internally representing each other’s goals and actions [109]. The brain also employs
partial models of another person’s internal states in collaborative tasks, often referred to as shared
intentionality [11]. When humans collaborate, they engage in shared intentionality, and mutual
understanding of each other’s intentions, states, and possible actions [11]. Neuroscientific research
further reveals that humans utilize a form of theory of mind [6], allowing one to infer another’s mental
states, thereby enabling synchronization in activities such as dancing, carrying a table together, or
passing objects. These mechanisms underpin our ability to anticipate partners’ behavior, rapidly
adapt to unexpected changes, and maintain coordinated trajectories.

Robot foundation models can replicate the same skill set through three complementary sub-functions:
1) Intent inference: although the robot (e.g., a leg prosthesis) cannot directly “read” the user’s mind,
it can decode immediate goals and motor patterns from EMG envelopes, limb dynamics, or vision
sensors placed on the prosthesis [68]. 2) Belief-state maintenance: by building on the theory of
mind [6], the robot keeps a running posterior over latent human variables. For the bionic limbs,
this includes preferred torque bands, comfort envelopes, onset of fatigue, and corrects the posterior
whenever sensed outcomes diverge from its own prediction. However, a specific challenge is how to
implement such prediction and model correction in a safe manner (e.g., a wrong prediction in a lower
limb prosthesis can lead to falling). 3) Proposal refinement: The teamwork layer filters high-level
action proposals from the sensing module through user-centric constraints (e.g., joint stress) and
situational collaboration tactics (e.g., aligning push-off timing with the user’s weight shift).

Several research avenues open while incorporating a teamwork mechanism into robot foundation
models. (1) Since keeping a theory-of-mind of the partner (human) is important for human-robot
collaboration, one may ask how can a robot do this data-efficiently?. A promising route could be to
pre-train in large simulated multi-agent worlds [91, 123] and then meta-learn a fast adapter that re-
weights the prior online. (2) From the model training perspective, a design choice would be whether
to propagate the gradients from teamwork objectives back into perception. Multi-task reinforcement
learning already shows that a shared encoder feeding multiple task-specific critics promotes transfer
without catastrophic forgetting [135]. Extending that idea, recent world-model-based agents expose
intermediate latent states to an explanation head, forcing the encoder to stay semantically aligned with
downstream reasoning [112]. Applying the same principle across the sensing-teamwork boundary
could yield perceptual features intrinsically shaped for cooperative inference.

4.3 Module 3: Predictive World Belief Model for Anticipation and Planning

Where the teamwork module concentrates on the present dyad state, the predictive world belief model
looks ahead. Its purpose is to simulate how the human, robot, and environment are likely to co-evolve
over the next few hundred milliseconds. Human movements usually unfold faster than a robot can
sense, process, and react. To keep up with the required pace of actions, a human-interactive robot
must do more than react to what is; it must reason about what will soon be true for both itself and its
partner. The Predictive World Belief Model supplies this anticipatory layer by learning an internal,
probabilistic forward model of the dyad-plus-environment. By rolling forward a learned dynamics
model, the robot gains a distribution over future latent variables such as user intent, muscle fatigue
trajectories, object affordances (e.g., for hand prostheses), or terrain parameters (e.g., for lower-limb
prostheses and exoskeletons). These forecasts are fed back into planning so that the controller can
bias actions toward outcomes that will remain feasible and safe once the human commits.
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Neuroscience offers parallels: Research in motor neuroscience underscores the role of internal
forward models, which predict the sensory outcomes of motor commands, adjusting subsequent
behavior in anticipation of future states. [132, 63]. Predictive coding theories go further, proposing
that the brain continuously attempts to minimize prediction errors by updating these models [46].
Translating this to HRI, the robot should treat the human as a stochastic dynamical subsystem whose
future states can be inferred from present cues, much as the brain treats another person’s intent within
its predictive coding hierarchy.

Integrating predictive world models into human-interactive robotic foundation models opens several
important research directions. (1) Handling uncertainty and non-stationarity: Human behavior
can shift abruptly due to internal state changes such as fatigue or distraction. Predictive models
must detect such distributional shifts early and re-plan accordingly. Online Bayesian change point
detection applied to physiological and kinematic signals can identify fatigue onset before performance
declines [17, 90]. Embedding these detectors into belief update mechanisms would enable adaptive
modulation of assistive control. Deviations of world model predictions from real outcomes can
also signal changes in the user strategy or environment characteristics, prompting model updates.
Fast Bayesian belief updates combined with meta-learned priors can facilitate rapid adaptation with
minimal interaction data [62, 54, 103]. (2) Utilizing predictions for control: A key design question is
how controllers should leverage predictions. One option is to continuously adjust control parameters
to minimize predicted risk, akin to a real-time safety monitor. Another is to use predictions for
internal look-ahead planning, selecting actions based on simulated outcomes. These strategies may
be implemented via model predictive control (MPC), provided predictive models are computationally
efficient [105]. Further research is needed to assess the viability of learning-based models in MPC or
game-theoretic planners for human-robot teams. (3) Temporal planning horizons: As anticipatory
control is the main functionality that the predictive world model satisfies, another consideration is
the planning horizon. Long-term objectives (e.g., energy conservation) often conflict with the need
for rapid reflexes. Hierarchical belief stacks, which maintain temporally layered models, offer a
promising solution [49], potentially enabling slow planners to track latent states like fatigue, while
fast controllers handle immediate dynamics. (4) Incorporating prior knowledge: Predictive models
may benefit from encoding prior world knowledge. Physics-informed neural networks embed physical
laws into the training objective, enabling more robust generalization under limited data [75]. However,
their application in human-robot interaction remains rather underexplored [139, 138]. Addressing
these challenges is necessary to transform a forward predictive model into the anticipatory core of
next-generation collaborative and assistive robots that not only react to the user’s current intent but
routinely predict it and plan future actions accordingly.

4.4 Module 4: Memory & Feedback for Refinement

Continuous interactions with humans allow the robot to learn and improve over time. This requires
the robot to store previous interactions, user preferences, and feedback in its memory. A dedicated
Memory & Feedback mechanism gives the system a place to accumulate user-specific knowledge and
a pathway for feedback signals to reshape future control. This enables the device to be more fluent,
energy-efficient, and trustworthy as it interacts more with the user.

Neuroscience emphasizes how synaptic plasticity drives long-term changes in behavior through
feedback-driven processes, including dopamine-mediated error- and reward-related reinforcement
signals [48, 27]. For example, repetitive practice consolidates motor memories that lead to progressive
refinement of motor representations in the brain and improved task efficiency. The Memory &
Feedback mechanism may adopt the same architecture: it stores traces of past state-action-outcome
tuples, estimates a scalar reward (metabolic cost, user comfort), and adjusts internal parameters so
that future actions shift probability mass toward higher reward.

The Memory and Feedback Mechanism should offer certain critical functionalities such as 1) Long-
term preference storage: The device (e.g., a leg prosthesis) stores user-specific torque settings, comfort
ranges, and typical walking patterns [35], similar to how repeated exposure to a task solidifies neural
pathways in motor learning. Similarly, a hand prosthesis could remember how the user prefers to
grasp particular objects in their home. 2) Reinforcement-based updates: The device can query the user
explicitly (“Is this stiffness comfortable?”) when the adjustment function is activated or automatically
evaluate signals of discomfort, in the background, by adjusting internal parameters to optimize an
objective function (e.g., minimal metabolic cost, subjective comfort). 3) Semantic memory bank:
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Language-based preferences (“I like a softer ankle when walking on grass”) can be retained as textual
or embedding-based knowledge, during the initial setup phase, allowing the device to recall and apply
them in the future.

Designing an effective memory and feedback mechanism for human-robot interaction presents several
challenges. (1) Given constraints on memory and computation, particularly in real-time settings, it is
critical to determine what information should be retained. Storing all state-action pairs is impractical;
thus, approaches such as map-based storage [52] and value-aware compression [106] can prioritize
novel or high-salience experiences, such as those linked to user discomfort. Retrieval-Augmented
Embodied Agents (RAEA) [142] implement this by retrieving relevant strategies from external
memory and integrating them into learning via a generator module. (2) While the ability to store
and leverage prior interactions is powerful, it raises the challenge of incorporating new knowledge
without catastrophic forgetting. Continual learning techniques, including progressive networks
and episodic memory, help preserve existing capabilities while adapting to user-specific data [95].
However, applying these methods to human-robot interaction remains an open problem [5]. (3) A
further concern is data privacy. Robots must avoid leaking sensitive personal information. Federated
learning approaches, such as FedHIP [15], demonstrate that encrypted gradient sharing can support
intention prediction without exposing raw data. Whether such privacy-preserving mechanisms can be
generalized to multimodal, interactive control scenarios remains to be seen. Addressing these issues
is essential for evolving robots from generic assistive devices into personalized, adaptive partners
continually shaped by the user’s feedback and changing needs..

5 Prioritizing Function, Not Form

A monolithic, end-to-end trained foundation model that ingests the full stream of perceptual, physio-
logical, and interaction history, and directly outputs robot actions, can, in principle, internalize the
very competencies we advocate for. This reflects the prevailing philosophy behind many foundation
models: with sufficient data and a powerful architecture (e.g., large transformers), such models might
implicitly learn to integrate human feedback, predict outcomes, and adapt to evolving tasks.

However, emerging research suggests that monolithic architectures benefit from augmentation with
explicit auxiliary modules, such as, memory mechanisms for tracking user preferences, or, latent
models of co-agents [5, 46, 80]. This trend aligns with our position: rather than assuming that scale
alone will yield all necessary competencies, we argue for embedding key multi-agent capabilities,
such as co-adaptation, predictive modeling, and user state inference, into the model design. These
enhancements echo cognitive and neuroscientific insights into memory, anticipation, and adapta-
tion, which are critical for effective human-robot co-adaptation. Rather than prescribing a specific
architecture, fully modular, monolithic, or hybrid, we emphasize the importance of embedding
key capabilities (e.g., multi-agent collaboration, user modeling, predictive reasoning) into future
robotic foundation models. The optimal design will likely depend on application-specific tradeoffs
in adaptability, trainability, and interpretability. As the field rapidly evolves, our goal is to steer
foundational research toward integrating multi-agent principles early, ensuring that future models are
well-equipped for interactive, personalized, and robust human-robot collaboration.

6 Safety, Ethical, and Regulatory Perspectives

Safety and Interpretability. Human-interactive robots must incorporate safety layers and be
explainable. A low-level reflex controller, analogous to spinal reflexes [129], can enforce hard
constraints: for instance, immediate shutdown or torque limits if joint angles become unsafe. Above
this, higher-level policies should be transparent so that clinicians or users can understand why a
particular action was chosen. Techniques from human-aware AI (e.g., generating natural-language
justifications) and explainable AI may help build trust [51, 69]. Extensive validation, especially for
medical devices, must accompany any deployment.

Privacy, Data Ownership, and Bias Mitigation. Multi-agent systems often require extensive
collection and processing of physiological and contextual data, increasing privacy concerns. Imple-
menting robust data protection measures, such as on-device processing [136], federated learning
[141, 110], and anonymized data management [116, 23], is essential to safeguard user information.
Additionally, large-scale models can inadvertently perpetuate biases present in their training data [9].
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In healthcare and assistive contexts, such biases could lead to unequal performance across different
user groups. Thus, rigorous data curation, bias mitigation strategies, and domain-specific fine-tuning
are imperative to ensure equitable and unbiased system performance.

Medical Accountability and Clinical Evidence. Adopting multi-agent foundation models in
robotics, particularly within medical and assistive technologies, necessitates stringent compliance
with regulatory standards [104, 16]. The integration of multiple autonomous agents introduces
complexities in risk assessment and accountability [87]. It is imperative to conduct comprehensive
clinical trials and gather substantial evidence to validate the safety and efficacy of these AI-driven
control strategies. Ensuring minimal risks of adverse events, such as falls or device malfunctions,
and demonstrating reliable performance across diverse user populations is critical for regulatory
approval and widespread adoption [9]. However, an advantage of multi-agent models is that they
could integrate risk assessment and mitigation as an intrinsic function based on the comprehensive
insight into the state of the human user and the environment, which such models have.

7 Conclusion and Outlook

In this paper, we argued that the prevailing single-agent paradigm in robotic foundation models
is fundamentally inadequate for scenarios requiring rich, continuous human-robot interaction. We
proposed a shift toward an interactive multi-agent framework, where both the human and the robot
are treated as dynamically adapting agents. Drawing on insights from neuroscience and cognitive
science, we outlined four key functionalities, multimodal collaborative sensing, teamwork modeling,
predictive world belief models, and memory/feedback mechanisms, needed in robotic foundation
models to realize this vision. While we grounded our arguments mainly in wearable and assistive
robotics, the principles extend broadly to any context where real-time co-adaptation is critical.

To advance interactive intelligence, the community must develop benchmarks and datasets focused on
human-robot co-adaptation. Just as ImageNet and COCO catalyzed breakthroughs in computer vision,
large-scale datasets capturing human-robot interaction can be similarly transformative. The Open
X-Embodiment dataset [26], which includes over one million robot trajectories across platforms,
exemplifies this potential. We advocate for similar open datasets enriched with multi-modal human
cues. Standardized tasks involving human partners, such as collaborative object manipulation or
adaptive gait, would enable consistent benchmarking. Additionally, shared simulation environments
with embodied virtual humans could accelerate development through rapid prototyping and sim-to-
real transfer. In practice, widespread progress will depend on: (1) Standardized benchmarks: Similar
to the large-scale robotics benchmarks in manipulation [86, 82, 64], new testbeds are required for
human-interactive robots, such as robotic prostheses and exoskeletons. These testbeds should capture
real-world complexity such as irregular terrains, evolving user states (e.g., fatigue), and long-term
usage scenarios [86, 82, 64]. (2) Open-source ecosystems: encouraging shared datasets and sharing
pre-trained models can significantly expedite research, as they have in computer vision and NLP.
Large-scale corpora for wearable robotics would play a foundational role in advancing interactive
models. (3) Clinical partnerships with therapists, clinicians, and end-users are essential to ensure
that robotic systems meet real-world functional goals, such as reducing fall risk, improving metabolic
efficiency, and enhancing subjective comfort.

Finally, human-in-the-loop learning should be explored. Instead of passively learning from fixed
logs, future systems could actively query users for feedback or clarification. For example, a robot
might ask “Did I interpret your intent correctly?” in real time, using the answer to update its model.
In wearable robotics, where speaking to a robot is not that common, such communication could be
implemented through tactile cues and usual command interfaces (e.g., a specific muscle pattern could
indicate to the system that the last estimation was wrong). Integrating such interaction schemes with
foundation models could greatly improve personalization and robustness.

In summary, we argue that next-generation robot models must move beyond isolated, single-shot
policies. By adopting a multi-agent perspective, drawing on cognitive and neuroscientific insights,
robots can achieve more flexible, personalized, and anticipatory behaviors. We hope this position
paper sparks discussion on designing and training interactive foundation models that ultimately enrich
human-robot co-adaptation and generalization.
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