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ABSTRACT

Deep neural networks are vulnerable to backdoor attacks, where an adversary ma-
liciously manipulates the model behavior through overlaying images with special
triggers. Existing backdoor defense methods often require accessing a few vali-
dation data and model parameters, which are impractical in many real-world ap-
plications, e.g., when the model is provided as a cloud service. In this paper, we
address the practical task of blind backdoor defense at test time, in particular for
black-box models. The true label of every test image needs to be recovered on
the fly from a suspicious model regardless of image benignity. We focus on test-
time image purification methods that incapacitate possible triggers while keeping
semantic contents intact. Due to diverse trigger patterns and sizes, the heuristic
trigger search in image space can be unscalable. We circumvent such barrier by
leveraging the strong reconstruction power of generative models, and propose a
framework of Blind Defense with Masked AutoEncoder (BDMAE). It detects pos-
sible triggers in the token space using image structural similarity and label consis-
tency between the test image and MAE restorations. The detection results are then
refined by considering trigger topology. Finally, we fuse MAE restorations adap-
tively into a purified image for making prediction. Our approach is blind to the
model architectures, trigger patterns and image benignity. Extensive experiments
under different backdoor settings validate its effectiveness and generalizability.

1 INTRODUCTION

Deep neural networks have been widely used in various computer vision tasks, like image classifica-
tion (Krizhevsky et al., 2012), object detection (Girshick et al., 2014) and image segmentation (Long
et al., 2015), etc. Despite the superior performances, their vulnerability to backdoor attacks has
raised increasing concerns (Gu et al., 2019; Nguyen & Tran, 2020; Turner et al., 2019). During
training, an adversary can maliciously inject a small portion of poisoned data. These images contain
special triggers that are associated with specific target labels. At inference, the backdoored model
behaves normally on clean images but makes incorrect predictions on images with triggers.

To defend against backdoor behaviors, existing methods often require accessing a few validation
data and model parameters. Some works reverse-engineer triggers (Wang et al., 2019; Guan et al.,
2022), and mitigate backdoor by pruning bad neurons or retraining models (Liu et al., 2018; Wang
et al., 2019; Zeng et al., 2021). The clean labeled data they require, however, are often unavailable.
A recent work shows that the backdoor behaviors could be cleansed with unlabeled or even out-of-
distribution data (Pang et al., 2023). Instead of modifying the model, Februus (Doan et al., 2020)
detects triggers with GradCAM (Selvaraju et al., 2017), and feeds purified images to the model.

All these defending methods, although effective, assume the model is known. Such white-box as-
sumption, however, may be violated in many real-world scenarios. Due to increasing concerns on
data privacy and intellectual property, many models are provided as black-boxes where detailed pa-
rameters are concealed (Dong et al., 2021; Guo et al., 2022; Chen et al., 2019), e.g., a cloud service
API. It is thus crucial to address the problem for black-box models.

In this paper, we tackle the extreme setting and address the task of Blind Backdoor Defense at Test
Time, in particular for black-box models. Blind means that there is no information on whether the
model and test images are backdoored or not. Shown in Fig. 1, the prediction model is black-box
and may have been injected a backdoor. Test images come in a data stream. The true label of each
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Figure 1: Test time blind backdoor defense with a black-box prediction model (may be backdoored).
Test images come in a stream. The defender purifies them to predict the correct labels on-the-fly.

test image is unknown; it needs to be recovered on the fly only from the hard label predictions of the
suspicious model, without accessing additional data. This is a very challenging task that cannot be
solved by existing test-time defense methods. Simply applying test-time image transformations (Gao
et al., 2019; Sarkar et al., 2020a; Qiu et al., 2021) without model retraining compromises model’s
accuracies on clean inputs (Sarkar et al., 2020b). Heuristic trigger search in image space (Udeshi
et al., 2022; Xiang et al., 2022) does not scale to complex triggers or large image sizes.

To address the challenging task, we resort to the strong reconstruction power of modern image gener-
ation models. Intuitively, it can assist us to detect possible triggers and reconstruct the original clean
image when the triggers are masked. We propose a novel method called Blind Defense with Masked
AutoEncoder (BDMAE). Masked Autoencoders (He et al., 2022) are scalable self-supervised learn-
ers. They randomly mask patches from the input image and reconstruct the missing parts. Each
patch corresponds to one of 14×14 tokens. Even using a high masking ratio (e.g., 75%), the seman-
tic contents can still be recovered. We can therefore search triggers efficiently in the token space. It
enables us to generalize to complex trigger patterns or large image sizes.

Our method belongs to test-time image purification that incapacitates possible triggers while keep-
ing semantic contents intact. We seek trigger scores that measure how likely each image patch
contains triggers. High score regions are then removed and restored with MAE. The whole frame-
work includes three main stages. First, we randomly generate MAE masks, and calculate two types
of trigger scores based on image structural similarity and label prediction consistency between test
images and MAE restorations, respectively. Then, we use the topology of triggers to refine both
scores. The trigger scores help to generate topology-aware MAE masks that cover trigger regions
more precisely, and the corresponding MAE restorations in turn help to refine trigger scores. Finally,
we fuse multiple MAE restorations from adaptive trigger score thresholding into one purified image,
and use that image for label prediction. Our approach is blind to the network architecture, trigger
patterns or image benignity. It does not require additional training images for a particular test-time
defense task. Extensive results demonstrate that BDMAE effectively purifies backdoored images
without compromising clean images. BDMAE is generalizable to diverse trigger sizes and patterns.

Our main contributions are summarized as follows:
1. We address the practical task of blind backdoor defense at test time and for black-box models.

Despite some general techniques for simple attacks, this challenging task has not been formally
and systematically studied.

2. We propose to leverage generative models to assist backdoor defense. It may open a door to
design general defense methods under limited data using abundant public foundation models.

3. A novel framework of Blind Defense with Masked Autoencoders (BDMAE) is devised to detect
possible triggers and restore images on the fly. Three key stages are delicatedly designed to
generalize to different defense tasks without tuning hyper-parameters.

4. We evaluate our method on four benchmarks, Cifar10 (Krizhevsky et al., 2009), GTSRB (Stal-
lkamp et al., 2012), ImageNet (Deng et al., 2009) and VGGFace2 (Cao et al., 2018). Regardless
of model architectures, image sizes or trigger patterns, our method obtains superior accuracies
on both backdoored and clean images.

2 RELATED WORKS

Backdoor attack. BadNets (Gu et al., 2019) is the earliest work on backdoor attack. It attaches a
checkerboard trigger to images and associates them with specific target labels. Many different trigger
patterns are used in later works (Nguyen & Tran, 2020; Turner et al., 2019; Wenger et al., 2021).
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These triggers are visible local patches in the images. Visible global triggers are used in (Chen et al.,
2017; Barni et al., 2019). To make the attack stealthy, invisible patterns (Li et al., 2021c; Zhong
et al., 2022; Zhao et al., 2022) and attacking strategies based on reflection phenomenon (Liu et al.,
2020), image quantization and dithering (Wang et al., 2022c), style transfer (Cheng et al., 2021) and
elastic image warping (Nguyen & Tran, 2021) are proposed. Although these stealthy attacks are
less perceptible to humans, they are vulnerable to noise perturbations or image transformations. To
make it hard for defenders to reconstruct triggers, sample-specific backdoor attacks (Li et al., 2021c;
Nguyen & Tran, 2020) are proposed. This paper focuses on the visible triggers of local patches. The
triggers can be either shared by samples or sample-specific.
Backdoor defense. Backdoor defense aims to mitigate backdoor behaviors. The training-stage
defenses attempt to design robust training mechanism via decoupling training process (Huang et al.,
2022), introducing multiple gradient descent mechanism (Li et al., 2021a) or modifying linearity
of trained models (Wang et al., 2022b). However, intruding the training stage is often infeasible.
Model reconstruction defenses mitigate backdoor behaviors by pruning bad neurons or retraining
models using clean labeled data (Liu et al., 2018; Wang et al., 2019; Zeng et al., 2021). A recent
work shows that backdoor behaviors could be cleansed by distillation on unlabeled data or even out-
of-distribution data (Pang et al., 2023). Februus (Doan et al., 2020) is a test-time defense method. It
detects triggers with GradCAM (Selvaraju et al., 2017), and feeds purified images to the model.

Recently, black-box backdoor models have drawn increasing attention (Chen et al., 2019; Dong
et al., 2021; Guo et al., 2022; Zhang et al., 2021). In this setting, model parameters are concealed
for data privacy or intellectual property. These works focus on identifying backdoored models, and
usually reject predictions for such situations. Differently, we handle the task of blind backdoor
defense at test time, aiming to obtain true label of every test image on the fly, with only access to the
hard-label predictions. Test-time image transformation (Gao et al., 2019; Sarkar et al., 2020a; Qiu
et al., 2021) and heuristic trigger search in image space (Udeshi et al., 2022) do not work well.
Masked AutoEncoder. Masked AutoEncoders (MAE) (He et al., 2022) are scalable self-supervised
learners based on Vision Transformer (Dosovitskiy et al., 2021). It masks random patches of the
input image, and restore the missing pixels. MAE has been used in many vision tasks (Bachmann
et al., 2022; Pang et al., 2022; Tong et al., 2022; Xie et al., 2022; Chen et al., 2022; Li et al., 2022).
Motivated by the powerful and robust data generation ability, for the first time we leverage MAE to
detect triggers and restore images.

3 MOTIVATION AND INTUITION

Blind backdoor defense at test time aims to obtain correct label prediction for test images on-the-
fly regardless the benignity of images and models. To solve this, test-time image purification is a
viable solution that incapacitates backdoor triggers within images while keeping semantic contents
intact. Some early works apply a global image transformation like blurring or shrinking (Sarkar
et al., 2020a; Qiu et al., 2021; Li et al., 2021b). However, there is often a trade-off in selecting the
strength. A stronger transformation is more likely to incapacitate the trigger but at a higher risk of
ruining the semantic information. Recently, diffusion model based image purification methods (Nie
et al., 2022; Wang et al., 2022a) leverage pretrained diffusion models to restore the content, but
they highly reply on the image generation quality. When the test data distribution is different from
the pretrained data distribution (e.g., different image resolutions), the generated images may appear
overall similar to the original test images but still different in the details. This makes it hard for the
classifier to predict true labels.

Our motivation is to locate possible triggers and restore the missing contents simultaneously. The
clean regions are kept intact. With this, the model predictions on clean images or clean models
are minimally affected. Searching triggers in images can be challenging considering the diversity
of trigger patterns and image sizes. Fortunately, with the help of pretrained Masked AutoEncoders
(MAE), we can instead search triggers in the token space and use MAE to restore missing parts.

Compared with previous works, ours is fundamentally different in that
• We care about accuracies on both clean images and backdoored images, unlike other defense

methods that only filter out backdoored images and refuse to make predictions on them.
• We leverage pretrained MAE models mainly to assist trigger search, unlike diffusion-based meth-

ods that leverage pretrained generative models to hallucinate the entire image contents.
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Figure 2: Framework of our method. For a test image (may be backdoored), we generate the trigger
score and refine it by considering the topology of triggers. The purified image obtained from adap-
tive restoration is used for making prediction.

4 METHODOLOGY

4.1 PROBLEM FORMULATION

We first formulate the backdoor attack and defense problems, then detail the proposed method of
Blind Defense with Masked AutoEncoder (BDMAE) (Fig. 2). Our key idea is to detect possible
triggers with the help of MAE.

Backdoor attack. Given a set of clean data D = {(x, y)}, an adversary generates backdoored data
D̃ = {(Φ(x), η(y))|(x, y) ∈ D}, where Φ(·) transforms a clean image into a backdoored image and
η(·) transforms its true label into a target label. In this paper, we consider the popular formulation of
Φ(x) = (1− bx)⊙x+ bx ⊙ θx, where bx is a binary mask, θx is the backdoor trigger, ⊙ denotes
the Hadamard product (Dong et al., 2021; Hu et al., 2022; Zheng et al., 2021). η(y) maps all true
labels to one predefined target label. The mask and trigger may not be the same for different images.
While triggers can span over the entire image, we only focus on local triggers that occupy a small
area of the image. A prediction model f is obtained by training on both clean data and backdoored
data. In the situation without backdoor attack, f is obtained from clean data only.

Black-box test-time defense. At test time, the suspicious model f is provided as a black box
and only its hard label predictions are accessible. The true label of each test image x needs to be
recovered on the fly, without accessing additional data. To realize this, we seek a purified version
ρ(x) such that f(ρ(x)) generates the correct label prediction. The test process is blind to the model
or images, meaning that there is no information on whether f is backdoored and whether x contains
triggers. The goal is to achieve high classification accuracies on both clean and backdoored images.

4.2 TRIGGER SCORE GENERATION

For clarity, we assume that f is backdoored and the test image x contains triggers. Our method can
directly apply to clean models or clean images (c.r. Sec.4.5). Let ŷ = f(x) be its original label
prediction. To infer the trigger mask, one can repeatedly block some particular parts of the image
and observe how model predictions change (Udeshi et al., 2022). However, the search space is huge
for a common image size. Even worse, when the trigger is complex (e.g., of irregular shape), the
model may still predict the target label when some parts of the trigger remain in the image. These
issues make the naı̈ve trigger search method infeasible in practice.

We overcome the above-mentioned issues by leveraging the generic Masked AutoEncoders
(MAE) (He et al., 2022). In MAE, each of the 14×14 tokens corresponds to a square patch of
the image. MAE can recover the image content even when 75% tokens are masked out. This brings
two benefits: 1) we can safely use a high masking ratio to remove triggers without changing the se-
mantic label; and 2) since triggers are irrelevant to the content, they will unlikely present in the MAE
restorations. To locate possible triggers, there are two complementary approaches: the image-based
method that compares the structural similarity between the original image and MAE restorations,
and the label-based method that compares the consistency of label predictions on the original image
and MAE restorations.

We use both approaches to obtain an image-based trigger score matrix S(i) ∈ [0, 1]14×14 and a
label-based trigger score matrix S(l) ∈ [0, 1]14×14. Each element of S(i) or S(l) thus implies how
likely the corresponding image patch contains backdoor triggers. Compared with searching in the
image space of size H ×W , searching in the token space of size 14× 14 is much more efficient.
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Before going to the method, we first describe how to restore x given a pre-trained MAE G and a
token mask m ∈ {0, 1}14×14. Define a function resize(z;h,w) that resizes a tensor z to size
h × w by interpolation. As shown in Eq. 1, x is first resized to 224×224 requested by MAE. Then
we use G to reconstruct the image based on m, and resize it back to H ×W . The additional steps
aim to remove interpolation errors in the unmasked regions from the restoration x̃.

x̄ = resize
(
G(resize(x; 224, 224);m);H,W

)
m̃ = resize(m;H,W )

x̃ = x⊙ (1− m̃) + x̄⊙ m̃

G̃(x,m) ≜ (x̃, m̃)

(1)

Now we describe how to obtain trigger scores S(i) and S(l) from MAE restorations. Let ŷ = f(x) be
its original hard-label prediction. We repeat the following procedure for No times indexed by o. For
each iteration, Ni random token masks {mo,i ∈ {0, 1}14×14} are sampled using a default masking
ratio of 75%. The corresponding MAE reconstructions {x̃o,i} and masks {m̃o,i} are extracted from
G̃(x,mo,i) based on Eq. 1. Their hard-label predictions are {ŷo,i = f(x̃o,i)}.

Image-based score S(i). We fuse Ni restorations into one image x̃o by:

x̃o = F
(
{x̃o,i}, {m̃o,i}

)
=

∑
i

(x̃o,i ⊙ m̃o,i)⊘
∑
i

(m̃o,i) (2)

where ⊙ and ⊘ are element-wise product and division. In Eq. 2, only image patches from MAE
restorations are kept while other patches from the original image are discarded. The motivation is
that triggers may not always be fully masked out, but we do not want them to appear in x̃o. We
manipulate the sampling of {mo,i} to guarantee that every image patch can be restored with Eq. 2.

The image-based score is defined as S(i) =
∑

o[1 − resize(SSIM(x, x̃o); 14, 14)]/No, averaged
over No repeated procedures. Here we use Structural Similarity Index Measure (SSIM) (Wang et al.,
2004) to calculate the similarity between x̃o and x, where the SSIM score lies between −1 and 1.
As triggers are irrelevant to contents and unlikely present in x̃o, SSIM scores in the trigger region
will be low. In contrast, the clean regions will be well restored, leading to high SSIM scores.

Label-based score S(l). We average over token masks that lead to different label predictions. For-
mally, the label-based score is defined as S(l) =

∑
o,i[mo,i× (1− I[ŷ = ŷo,i])]/(NoNi), where I[·]

is the indicator function. The inconsistency in label predictions usually implies that triggers have
been removed by the masks.

The two types of trigger scores are complementary to each other. S(i) favors large and complex
triggers, while S(l) favors small triggers. Using both together can adapt to diverse trigger patterns.

4.3 TOPOLOGY-AWARE SCORE REFINEMENT

The trigger scores S(i) and S(l) obtained previously have high values for trigger regions. Neverthe-
less, they are still very noisy. The difference between scores of trigger regions and clean regions is
also small, making it hard to determine a universal threshold for filtering out trigger regions.

We utilize the topology of triggers to refine trigger scores. Note that backdoor triggers are com-
monly continuous patterns (Hu et al., 2022). The obtained trigger scores indicate possible positions
of triggers among the image. With the information, we can generate topology-aware MAE masks
{mr ∈ {0, 1}14×14} that cover trigger regions more precisely than uniformly sampled ones. This in
turn guides us to enhance the difference between score values of clean regions and trigger regions.
One issue is that if we apply refinement for all tokens, we may accidentally increase the score values
of clean regions in the situation of clean images or clean models. To avoid this, we only focus on the
top L tokens that likely contain triggers, with L =

∑
r,c I[S

(i)
r,c ≥ 0.2] or L =

∑
r,c S

(l)
r,c. Equiva-

lently, a meta mask mrf ∈ {0, 1}14×14 can be defined, whose element is 1 only if the corresponding
token belongs to the top L tokens. mrf thus indicates the regions to be refined.

We use the same procedure to generate topology-aware MAE mask mr for both types of trigger
scores. The main idea is to sequentially select tokens that have higher trigger scores or are adjacent
to already selected tokens. For clarity, let S(∗) denote either S(i) or S(l). We initialize T = {t0}with
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Table 1: Comparison with diffusion model based image purification method (500 test images).

Cifar10 GTSRB VGGFace2 ImageNet10 ImageNet50 ImageNet100

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 94.0 1.0 99.0 99.7 1.1 98.9 96.7 0.0 100. 88.6 9.4 89.4 84.4 0.7 99.2 81.7 0.3 99.6

DiffPure DDPM 74.5 64.5 16.2 74.2 41.0 44.8 51.9 32.9 34.4 71.1 66.5 5.5 57.4 52.7 0.9 51.8 53.9 0.6
SDE 75.5 63.9 15.6 71.7 42.8 44.4 52.8 33.6 35.5 73.2 67.6 5.1 54.1 57.2 1.1 52.8 53.8 0.7

Ours Base 92.9 90.3 0.9 99.7 95.5 0.7 93.7 92.6 0.9 79.6 79.3 3.0 60.7 68.8 0.5 57.4 70.4 0.4
Large 93.3 90.3 0.7 99.7 96.0 1.1 94.3 91.9 1.9 84.1 81.1 2.8 71.3 75.2 0.6 65.4 76.2 0.4

Table 2: Comparison with other image purification methods. (⋄: white-box; others: black-box.)

Cifar10 GTSRB VGGFace2 ImageNet10 ImageNet50 ImageNet100

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 93.3 0.9 99.0 98.5 1.4 98.6 95.5 0.0 100. 89.5 9.7 89.2 84.0 0.5 99.4 82.3 0.2 99.8

Februus⋄ XGradCAM 91.6 87.0 7.0 65.4 50.9 38.0 65.5 89.5 5.8 – – – – – – – – –
GradCAM++ 80.0 91.0 2.3 59.1 73.9 14.6 63.1 89.4 5.9 – – – – – – – – –

PatchCleanser Vanilla 89.9 43.9 55.0 95.0 10.0 89.7 93.0 43.0 56.9 84.5 58.0 37.1 79.6 45.7 49.4 78.9 43.4 52.3
Variant 57.6 86.1 1.9 13.3 80.8 1.5 50.7 94.7 0.0 62.0 80.8 4.1 54.1 79.3 0.4 52.1 78.0 0.1

Blur Weak 91.5 14.0 84.9 98.4 3.9 96.0 95.5 0.1 100. 88.4 14.4 83.9 83.3 4.9 94.3 81.2 3.2 96.1
Strong 63.6 60.0 6.4 97.7 94.9 1.8 95.2 10.4 89.4 84.8 34.2 60.9 79.2 49.1 39.3 76.0 51.6 33.1

ShrinkPad Weak 90.7 50.3 45.0 97.5 33.3 65.0 93.8 35.5 62.5 88.4 43.0 52.1 82.0 39.7 51.1 80.0 42.3 46.0
Strong 86.7 36.7 57.9 92.8 23.5 72.3 88.3 54.4 38.3 86.7 56.7 36.0 79.4 55.1 29.8 77.2 58.6 22.5

Ours Base 92.5 90.8 0.9 98.2 95.3 0.9 91.3 92.0 1.6 79.9 81.1 4.8 61.7 70.1 0.8 59.0 67.9 0.4
Large 92.7 91.1 0.8 98.4 96.0 0.9 92.9 91.8 2.2 83.9 83.7 3.9 72.6 76.1 0.6 69.5 73.9 0.3

token t0 = argmaxtk S
(∗)[tk]. Then we repeatedly add token ti = argmaxtk(S

(∗)[tk] + 0.5I[tk ∈
Adj(T )])·σk to T , where Adj(T ) includes all 4-nearest neighbors of tokens in T and σk ∼ U(0, 1)
is a random variable. This step achieves a balance between random exploration and topology-aware
exploitation. The process continues until |T | = L/2. The final T can be converted into an MAE
mask mr, with its complementary part m̄r = mrf −mr.

To refine the trigger score, we obtain the hard-label prediction ŷr of MAE restoration based on
mr. If ŷr ̸= ŷ, we increase the score values of S(∗) by a constant β0 for tokens masked by mr

and −β0 for other tokens; otherwise, we modify S(∗) in an opposite way. Mathematically, S(∗) ←
S(∗) + (1− 2I[ŷ = ŷr])× β0 × (mr − m̄r). Since ∥mr∥0 = ∥m̄r∥0 = L/2, the average value of
S(∗) remains unchanged, while the contrast between trigger region and clean region are enhanced.

4.4 ADAPTIVE IMAGE RESTORATION

The combined trigger score used for label prediction is simply calculated as S = (S(i) + S(l))/2.
One can convert S into a binary mask based on some predefined threshold, and make prediction on
the corresponding MAE restoration. However, the optimal threshold varies across different attack
settings considering the diversity of image resolutions, backdoor attack methods, and trigger sizes.

We propose an adaptive image restoration mechanism to adapt to different attacks and datasets
automatically. The idea is to fuse restorations from K adaptive thresholds, {τ1 ≥ τ2 ≥ · · · ≥ τK}.
If
∑

r,c I[Sr,c ≥ τK ]/(14 × 14) ≤ 25% is not satisfied, we repeatedly increase all thresholds by a
small amount. The rationale is that trigger regions should not dominate the image. These decreasing
thresholds lead to a nest structure. We obtain the corresponding MAE restorations {x̃τk , m̃τk =

G̃(x,mτk)}, where mτk [r, c] = I[S[r, c] ≥ τk], and then fuse them into one purified image ρ(x) =
F({x̃τk}, {m̃τk}). The model prediction f(ρ(x)) is used for final evaluation.

4.5 GENERALIZATION TO CLEAN IMAGES AND CLEAN MODELS

Until now, we assume that both f and x are backdoored. In practice, we deal with blind defense,
meaning that both models and images can be either backdoored or clean. Our method directly
applies to any of these situations, thanks to the dedicated designs. The effectiveness on clean images
has been validated by CA metric. For clean models, we include discussions in Appendix Sec. E.
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Table 3: Comparison results on three challenging attacks, IAB, LC and Blended. (VF2 short for
VGGFace2, and IN10 short for ImageNet10.)

Cifar10–IAB GTSRB–IAB Cifar10–LC GTSRB–LC VF2–Blended IN10–Blended

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 93.4 1.6 98.4 98.0 1.2 98.7 94.5 0.5 99.5 95.8 5.3 94.7 95.1 1.9 98.1 86.5 28.4 68.4

Februus⋄ XGradCAM 91.7 29.9 68.1 68.4 72.5 24.8 92.6 63.7 33.9 80.6 91.7 5.1 68.9 74.6 21.4 – – –
GradCAM++ 77.9 55.8 35.9 49.8 84.1 12.2 83.3 85.7 10.4 72.5 91.7 5.1 66.4 72.5 23.6 – – –

PatchCleanser Vanilla 88.6 25.6 73.8 84.2 13.9 83.0 90.3 0.4 99.6 87.8 0.1 99.9 92.8 41.7 58.2 79.3 56.1 38.2
Variant 62.2 66.7 26.3 16.6 83.0 6.7 56.5 4.7 95.3 9.8 6.0 94.0 47.0 93.4 1.4 56.5 68.7 15.5

Blur Weak 91.3 33.9 63.7 97.8 18.6 81.2 92.5 92.3 0.7 95.5 95.1 1.2 95.1 38.0 60.7 86.5 47.5 46.8
Strong 63.0 53.1 8.4 96.8 47.7 50.7 56.8 56.1 2.5 93.7 93.6 0.7 94.9 94.7 0.3 82.6 73.6 12.8

ShrinkPad Weak 91.2 64.5 28.8 97.1 43.7 55.1 92.4 1.4 98.6 93.6 5.9 94.1 93.5 88.6 5.1 86.3 83.3 4.8
Strong 88.5 80.6 7.1 93.1 62.2 32.5 89.7 85.1 6.1 81.8 68.0 23.1 87.0 86.1 1.0 84.5 80.3 5.4

Ours Base 93.0 81.8 10.5 97.8 76.2 21.4 93.7 94.1 0.4 93.9 93.6 2.3 90.7 91.8 1.0 73.4 68.0 17.3
Large 93.1 80.0 13.0 98.0 70.6 27.4 93.9 94.3 0.4 94.8 93.5 2.4 92.1 92.2 0.9 81.2 73.1 14.3

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on the commonly used Cifar10 (Krizhevsky et al., 2009),
GTSRB (Stallkamp et al., 2012), VGGFace2 (Cao et al., 2018), and three ImageNet (Deng et al.,
2009) subsets, including ImageNet10, ImageNet50 and ImageNet100.

Backdoor attacks settings. We use BadNet (Gu et al., 2019) with different triggers, Label-
Consistent backdoor attack (LC) (Turner et al., 2019), Input-Aware dynamic Backdoor attack
(IAB) (Nguyen & Tran, 2020), and Blended attack (Chen et al., 2017) to build backdoored mod-
els. For Cifar10 and GTSRB, the backbone network is ResNet18 (He et al., 2016) from random
initialization. We conduct 14 repeated experiments from random target labels or initializations for
each attack setting. For VGGFace2 and ImageNet, we use pretrained ResNet50 (He et al., 2016)
and conduct 6 repeated experiments. The backdoor triggers include white/color patches, small im-
age patches, and random curves.

Method configurations. We use the publicly available Masked Autoencoders (He et al., 2022) pre-
trained on ImageNet to assist blind defense. The Base variant has 12 encoder layers, and the Large
variant has 24 encoder layers with an increased hidden size dimension. The same hyper-parameters
are used for all experiments. The initial thresholds used in our work is {0.6, 0.55, 0.5, 0.45, 0.4}.
Baseline methods. We compare with several different lines of methods. Blur and ShrinkPad (Li
et al., 2021b) are two simple purification methods based on test-time image transformation. More
transformations are discussed in Appendix Sec. F.5. PatchCleanser (Xiang et al., 2022) is a certi-
fiably robust defense method against adversarial patches via double-masking. DiffPure (Nie et al.,
2022) uses diffusion models for adversarial purification. In addition to these black-box methods, we
also compare with a white-box method Februus (Doan et al., 2020) that uses GradCAM (Selvaraju
et al., 2017) to locate triggers and restores missing parts with GAN models (Goodfellow et al., 2014).

Evaluation metrics include the classification accuracy on clean images (CA) and backdoored im-
ages (BA), as well as attack success rate (ASR). Due to page limit, we only report results averaged
over all backdoor triggers in the main text, and leave detailed results in Appendix Sec. G.

5.2 MAIN RESULTS

Comparison with diffusion model based DiffPure. Since the diffusion sampling process is ex-
tremely slow, we only report results on 500 test images in Tab. 1. Overall, DiffPure can partially
purify backdoored images but is much less effective than ours. DDPM and SDE sampling strategies
obtain comparable performances. The low CA of DiffPure may be due to its reverse generative
process that alternates image content, e.g., on VGGFace2 where face recognition heavily relies on
fine-grained attributes. Another observation is high ASR of DiffPure. This method is originally pro-
posed for imperceptible adversarial perturbation, and the backdoor triggers are hard to be completely
removed with diffusion sampling. More details and analysis are provided in Appendix Sec. F.7.

7



Under review as a conference paper at ICLR 2024

Original
image w/

trigger

Restored
image from
rand masks

SSIM score
map

S(i) before
refinement

S(l) before
refinement

S(i) after
refinement

S(l) after
refinement

S for final
restoration

Purified
image for
prediction

Figure 3: Sampled visualizations. Top: Cifar10 with 2×2-color trigger. Bottom: VGGFace2
with twitter trigger. All the scores are clipped to a range of [0,1], with yellow for high value.
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Figure 4: Visualizations of topology-aware score refinement. Top: Cifar10 with IAB. Bottom:
GTSRB with LC. The numbers in brackets indicate steps of refinement.

Comparison with other purification methods. Table 2 lists results of other methods. For Februus,
we substitute its original GradCAM with two recent improvements to work on complex backbone
networks. The GAN models are released by the authors, yet unavailable for ImageNet. Februus
successfully purifies backdoored images but it is not a black-box model. Its performance is sensitive
to the CAM visualization. PatchCleanser uses two rounds of masking to locate the trigger patch. The
inconsistency check step of vanilla method is frequently affected by noisy label predictions, leading
to low BA and high ASR. We make a variant that can make decent predictions on backdoored
images, but at a cost of much lower accuracies on clean images. The two simple test-time image
transformations, Blur and ShrinkPad, both face a trade-off between CA and BA. Using a strong
transformation is more likely to incapacitate backdoor triggers, but decreases clean accuracies.

Our method achieves high accuracies on both clean and backdoored images. For the two variants,
using MAE-Large performs slightly better due to better restorations. Unlike Blur and ShrinkPad that
apply global transformations, our method first locates possible triggers and then restore the trigger
region only. Compared with Februus and PatchCleanser, our method leverages MAE model to better
locate triggers. These two points are key to our excellent performance. We also want to highlight
that Tab. 2 reports the aggregated results. Using different sizes of backdoor triggers may lead to
different observations of these methods. Please refer to Appendix Sec. F for more discussions.

Results on more challenging attacks. In additional to the commonly used Backdoor attack with
different triggers, we consider three more challenging attacks. IAB attack triggers are sample-
specific irregular color curves or shapes, often split into a few fragments. LC attack triggers are
checkerboards at the four corners. Blended attack triggers are invisible noise patches in the lower
right corner. From Tab. 3, IAB and LC are more challenging for the comparison methods. The
assumption of triggers covered by a small rectangle mask is invalid in PatchCleanser. The perfor-
mances of comparison methods are rather inconsistent across different settings. Blur and ShrinkPad
happen to be suitable choices for the invisible Blended attack. For all these challenging attack set-
tings, our method obtains consistently high accuracies.

6 ANALYSIS

Visualizations of defense process. We plot images and scores in Fig. 3. Restored images from
random masks have the same content as the original images, but are different in the trigger regions
and some details. This is reflected in the SSIM score map. The two trigger scores are slightly higher
in the trigger region, but very noisy. After refinement, high scores concentrate on the triggers, and
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Figure 5: (a-c) Effects of No and Nr. (d) Accuracies with fixed thresholds on backdoored/clean im-
ages, before (dashed) or after (solid) refinement. Refinement enlarges ranges of optimal thresholds.

scores of content regions are suppressed. S is then used to generate the purified images. Compared
with the original backdoored images, triggers are removed while the image contents are preserved.
The purified images lead to correct label predictions.

Effects of topology-aware refinement. The topology-aware refinement is vital to the generalizabil-
ity of our method. It exploits initialized scores, and generates topology-aware token masks to refine
the scores. This is beneficial especially to complex triggers. In Fig. 4, the triggers are random curves
and four distant checkerboards. Before refinement, the trigger regions have relatively high scores
in S(i). But the contrast between trigger regions and clean regions are not significant. For each
refinement, mr is sampled in a topology-aware manner to be continuous patches. S(i) is updated
to have increased values for tokens masked by mr and reduced values for the rest. After 10 refine-
ments, S(i) well reflects the trigger regions. It is worth mentioning that the refinement focuses on
the triggers related to backdoor behaviors. Even though the blue line remains in the purified ‘dog’
image, the red line has been removed, thus it makes correct label prediction.

In Fig. 5c, we find that Nr = 10 is good enough for different triggers. One purpose of refinement is
to increase contrast between scores of trigger regions and clean regions, so that the optimal threshold
is easier to choose. In Fig. 5d, we randomly select three defense tasks for each dataset. Instead
of fusing restorations from multiple thresholds, we choose a fixed threshold ranging from 0.1 to
0.9, and plot the accuracy curves. In each subplot, red/blue lines denote backdoored/clean images,
dashed/solid lines denote before/after refinement. We can see that before refinement, the optimal
thresholds have narrow ranges and vary across tasks. After refinement, they become wider. It is thus
easy to set unified thresholds for different tasks.

Sensitivity on hyper-parameters. Our method mainly involves two critical hyper-parameters, the
repeated times No and the refinement times Nr. Throughout the experiments, we use No = 5
and Nr = 10. Figures 5a,5b plot the effects of No in Base-i and Base-l, respectively. For
the image-based score S(i), the SSIM score map is similar for different MAE restorations. Thus
averaging over 2 repeated results is good enough. For the label-based score S(l), averaging over
many repeated results reduces the variance. No = 5 generally performs well for both scores.

Discussion and Limitation. Test-time backdoor defense has drawn increasing attention. It is a
practical yet challenging task. Only model predictions on the single test image can be used, while
the backdoor attack methods can be quite diverse. By leveraging pretrained MAE models, our
method locates possible triggers inside images and restores the missing contents simultaneously. We
demonstrate its effectiveness on backdoor triggers of different patterns and shapes. One limitation
of our method is that it focuses on the most popular local triggers. Some particular attack methods
use triggers that overlap the entire image. In that case, an additional step of image transformation
can be applied before our method (Shi et al., 2023). We left that for an interesting future work.

7 CONCLUSION

In this paper, we study the novel yet practical task of blind backdoor defense at test time, in particular
for black-box models. We devise a general framework of Blind Defense with Masked AutoEncoder
(BDMAE) to detect triggers and restore images. Extensive experiments on four benchmarks under
various backdoor attack settings verify its effectiveness and generalizability.
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A DATASET DETAILS

Cifar10 is a 10-class classification dataset (Krizhevsky et al., 2009) of size 32×32. There are
50,000 training images and 10,000 test images.

GTSRB (Stallkamp et al., 2012) consists of 43-class traffic signs images of size 32×32, split into
39,209 training images and 12,630 test images.

VGGFace2 is a face recognition dataset (Cao et al., 2018). We use images from 170 randomly
selected classes following (Doan et al., 2020), and resize them to 224×224. Face recognition is a
critical real-world application where backdoor attack may exist.

ImageNet10, ImageNet50 and ImageNet100 are three subsets of ImageNet (Deng
et al., 2009), resized to 224×224. We created them by selecting the first 10 (50, 100) classes in
alphabetical order. Each class has about 1,300 training images and 50 test images.

B IMPLEMENTATION DETAILS

B.1 BACKDOOR ATTACK SETTINGS

We use BadNet attack (Gu et al., 2019) with different triggers, Label-Consistent backdoor attack
(LC) (Turner et al., 2019), Input-Aware dynamic Backdoor attack (IAB) (Nguyen & Tran, 2020)
and Blended attack (Chen et al., 2017) to build backdoored models.

The triggers of BadNet attack are chosen from 1×1 ∼ 3×3 white or color patches. In addition, we
use several 15×15 icons as triggers for VGGFace2 and ImageNet. These commonly seen object
icons and social media icons are more natural in the real-world application. The triggers of LC attack
are 3×3 checkerboards in the four images corners. The triggers of Blended attack is 15×15 random
pixels. The triggers of IAB attack are random color curves or shapes. They are sample-specific, in
that each image has its unique trigger pattern.

We randomly select 10% training data to create backdoored images. Then we train a model until it
has a sufficiently high accuracy on clean images and attack success rate on backdoored images. The
backbone network for Cifar10 and GTSRB is ResNet18 (He et al., 2016) from random initial-
ization. The backbone network for VGGFace2 and ImageNet is pretrained ResNet50 (He et al.,
2016). We also considered other backbone networks in Sec. F.3. For each setting of Cifar10
and GTSRB, we report average results over 14 repeated experiments from different target labels or
initializations. For the large VGGFace2 and ImageNet, we reduce it to 6 repeat experiments.

B.2 METHOD CONFIGURATIONS

We avoid tuning our method to some specific dataset or attack. Instead, we use the same set of
hyper-parameters for all experiments. The motivation is that as only one test image is available in
the task, it is unlikely to tune those hyper-parameters reliably. Specifically, the default masking ratio
is 75%. No = Ni = 5 and Nr = 10. Even though, it is worthwhile mentioning that the image
resolution and backdoor trigger patches can be highly diverse, better performances of our methods
are expected with better tuned hyper-parameters.

We use two pretrained Masked Autoencoders (He et al., 2022) that are available from their official
repository. The Base variant has 12 encoder layers, and the Large variant has 24 encoder layers
with an increased hidden size dimension. For Cifar10 and GTSRB, we up-sample each image to
224×224 first in order to fit MAE models. Afterwards, the MAE restorations are down-sampled
back to the original image size.

The detailed procedures of our method can be found in Alg. 1 and Alg. 2.

B.3 EXPERIMENT ENVIRONMENT

We experiment with Nvidia A5000 or A6000 GPUs using PyTorch 1.8. For the implementation, the
MAE related code is adapted from its official repository.
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Algorithm 1 Trigger Score Generation

Input: Prediction model f , test image x, generic MAE model G, repeated times No, Ni.
Output: Trigger scores S(i), S(l)

1: Get original hard-label prediction ŷ = f(x)
2: for o = 0 to No do
3: for i = 0 to Ni do
4: Uniformly sample random token mask mo,i

5: Get MAE reconstruction x̃o,i and the corresponding mask m̃o,i from G̃(x,mo,i)
6: Get hard-label prediction ŷo,i = f(x̃o,i)
7: end for
8: Fuse restorations into x̃o = F({x̃o,i}, {m̃o,i})
9: Calculate structural similarity Io = SSIM(x, x̃o)

10: end for
11: S(i) =

∑
o[1− resize(Io; 14, 14)]/No

12: S(l) =
∑

o,i[mo,i × (1− I[ŷ = ŷo,i])]/(NoNi)

Algorithm 2 Topology-aware Score Refinement

Input: Prediction model f , test image x, generic MAE model G, refinement times Nr, initial
trigger score S(∗), mask mrf for tokens to be refined, β0 = 0.05.

Output: Refined trigger score S(∗).
1: Get original hard-label prediction ŷ = f(x)
2: for r = 0 to Nr do
3: Generate a topology-aware token mask mr

4: m̄r = mrf −mr

5: Get MAE reconstruction x̃r from G̃(x,mr)
6: Get hard-label prediction ŷr = f(x̃r)
7: β = (1− 2I[ŷ = ŷr])× β0

8: S(∗) ← S(∗) + β × (mr − m̄r)
9: end for

C COMPARISON METHODS

Februus (Doan et al., 2020) is a white-box defense method. It uses GradCAM (Selvaraju et al.,
2017) visualization to locate image regions that are more relevant to the backdoor target label. It is
highly likely that backdoor triggers are inside these regions. Then Februus removes those regions
and uses a separately-trained GAN (Goodfellow et al., 2014) for image restoration. We use the GAN
models provided by the authors and skip Februus experiments on ImageNet as the corresponding
GAN model is unavailable.

GradCAM requires knowing detailed model architecture and parameters. In our experiments, we
found that GradCAM does work well on models with deeper layers and more complex classifier
heads. Therefore, we substitute it with two improved versions, XGradCAM (Fu et al., 2020) and
GradCAM++ (Chattopadhay et al., 2018). Another critical issue with Februus is the layer for
visualization and the threshold for selecting highly relevant regions. The choices significantly affects
the performance on clean images and backdoor images. We first find the best layer for each model
architecture, and the try all thresholds from {0.6, 0.7, 0.8}. The reported results are from thresholds
with the best ACCc +ACCb for each defense setting individually.

PatchCleanser is a certifiably robust defense against adversarial patches (Xiang et al., 2022).
It assumes that the entire adversarial patches can be covered by a small rectangle mask, which may
not be applicable to LC and IAB attacks in our task. The method performs two rounds of pixel
masking on the image to neutralize the effect of the adversarial patch. If the first mask covers the
adversarial patch, then moving the second mask will not change the predicted label. Otherwise, the
second round masking may exhibit in-consistent label predictions.
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We adapt the official PatchCleanser implementation to our backdoor defense framework. However,
we found that the vanilla method may fail to locate backdoor triggers frequently. The reason is that
the inconsistency check mentioned above could be affected by noisy label prediction that is neither
real semantic label nor target label. It fails to return the disagreer prediction (Alg.1 Ln. 8-10 of the
original paper), instead the majority prediction (i.e., target label) is returned. This results in low BA
and high ASR on backdoored images. We proposed a variant that returns the majority voting of all
predictions for the in-consistent situations. It works much better to purify backdoored images, but
at an expense of lower accuracies on clean images.

Blur is a simple test-time image transformation method used in (Li et al., 2021b). We implemented
it with a 3×3 Gaussian kernel of standard deviation 0.5 for weak blurring and 1.0 for strong blurring.

ShrinkPad is proposed by (Li et al., 2021b) that first shrinks images and then randomly pads
images to the original size. We adapt the authors’ implementation to our framework. For small
images from Cifar10 and GTSRB, the weak and strong transformation use padding sizes of 4 and
8, respectively. For large images from VGGFace2 and ImageNet, the padding sizes are 28 and
56, respectively.

DiffPure (Nie et al., 2022) uses pre-trained diffusion models to purify images. It first diffuses
an image with a small amount of noise following a forward diffusion process, and then recover the
clean image through a reverse generative process. Our implementation is based on their official
repository. We use the public 256×256 unconditional diffusion model from OpenAI. Each test
image is up-sampled to 256×256 for diffusion model and down-sampled back to the original image
size. For the diffusion sampling strategy, we use both DDPM and SDE following DiffPure. We
found that the diffusion restorations may not always stick to the original content. The issue is more
severe for low-resolution images.

D REMARKS ON SSIM

Structural Similarity Index Measure (SSIM) (Wang et al., 2004) is used to measure the similarity be-
tween two images. Different from Mean-Squared-Error that measures pixel-wise absolution errors,
SSIM considers the inter-dependencies among neighboring pixels. The SSIM index is calculated on
two windows, x and y, from a pair of images. Its definition is

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(A.3)

where µx and µy are mean values, σx and σy are variances, and σxy is covariance. c1 and c2 are
constants. SSIM(x, y) lies between -1 and 1. 1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation. In our experiments, we observe that the minimum SSIM
values are about -0.6∼-0.2 depending on datasets, and the maximum values are close to 1.0.

The window size influences the SSIM values. Generally, a larger window averages over more pixels,
thus the SSIM value is less extreme (i.e., close to 0). We use the commonly used 11×11 Gaussian
window, whose effective window size is about 5×5. On Cifar10 and GTSRB of image size 32×32,
due to their low resolution, a 11×11 window usually covers content regions. The original image and
MAE restorations are similar, thus it is unlikely that the SSIM values will be extremely negatively.
On ImageNet and VGGFace2 of image size 224×224, differently, the window may include some
background regions or image details. The difference between the original image and MAE restora-
tion can be significantly large, leading to significantly negative SSIM values. Since our image-based
trigger score is defined as S(i) = 1−SSIM, S(i) tends to be larger for ImageNet and VGGFace2.
This is why the adaptive thresholds are necessary to achieve good performance on the two datasets.

E GENERALIZATION TO CLEAN IMAGES AND CLEAN MODELS

We highlight that our method is blind to the benignity of images or models. This relies on dedicated
designs in different stages. The key to guarantee correct label prediction in the situation of clean im-
ages or clean models is not destroying semantic contents in clean regions. Since the final prediction
is based on MAE restoration ρ(x) from the final trigger score S, we should keep small score values
of S for those clean regions throughout the test-time defense process.
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Figure A.1: Parameter analysis in the full method. Left: sampling parameter u in topology-aware
token mask generation. Center: repeated times No. Right: refinement times Nr.
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Figure A.2: Varying trigger (checker-board) sizes on Cifar10.

In the trigger score generation stage, if x is a clean image no matter f is backdoored or not, its
MAE restorations should be similar to the original image. This implies that values of S(i) will be
small. The values of S(l) will also be small as the label prediction is unlikely to change. If f is a
clean model and x is a backdoored image, S(l) will still be small. Although S(i) has high values
for trigger region, its impact is reduced when we average S(l) and S(i). In the topology-aware score
refinement stage, only the top L tokens are affected. By construction L =

∑
r,c I[S

(i)
r,c ≥ 0.2] or

L =
∑

r,c S
(l)
r,c, L is generally small in the situation of clean images or clean models. In the adaptive

image restoration stage, image regions with trigger scores greater than τK are generated with MAE.
These regions are either trigger regions or some content-irrelevant regions. The rest clean content
regions are kept intact. Therefore, the model can still make correct label prediction on the purified
image ρ(x).

For backdoored models on clean images, the CA in previous results has validated the effectiveness of
our method. Figure A.3 shows different properties of trigger score S between backdoored and clean
images. S of clean images has small values, thus the image restoration stage will not change the
semantic content. For clean models, Table A.2 lists prediction accuracies for six different datasets.
As can be seen, the accuracies on backdoored and clean images are minimally affected.

F ADDITIONAL ANALYSES

F.1 TOPOLOGY-AWARE TOKEN MASK GENERATION

In the score refinement, we generate topology-aware token masks. We repeatedly choose ti =
argmaxtk(S

∗[tk] + uJtk ∈ Adj(T )K) · σk with u = 0.5, where Adj(T ) includes all 4-nearest
neighbors of tokens in T and σk ∼ U(0, 1) is a random variable. Here u is the additional probability
assigned to the neighboring tokens. When u = 0, the sampling procedure only select tokens with
highest trigger scores. To see the effect of u, Fig. A.1 plots the results on four defense tasks with
increasing u. For the challenging IAB attacks, the performances drops when not using topology-
aware sampling (i.e., u = 0). u = 0.5 obtains relatively good performances on the four tasks. Note
that due to the existence of random variable σk, using u = 1.0 still leads to some randomness in the
token selection.
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Table A.1: Varying backbone network architectures.

Cifar10 VGGFace2

ResNet18 6 Conv + 2 Dense VGG16 ResNet18 ResNet50 VGG16

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 92.8 0.1 99.9 91.3 0.0 100. 89.8 0.0 100. 94.0 0.0 100. 95.5 0.0 100. 91.5 0.0 100.

Februus XGradCAM 91.0 83.9 11.0 86.2 90.0 2.7 87.3 45.7 50.0 46.3 93.6 0.2 65.5 89.5 5.8 81.3 75.6 17.7
GradCAM++ 88.0 88.4 6.1 91.3 91.2 1.5 76.2 77.5 15.1 43.5 92.8 1.1 63.1 89.4 5.9 80.5 77.1 16.1

PatchCleanser Vanilla 89.2 33.1 66.8 87.0 36.8 62.9 86.5 29.7 70.1 92.0 36.4 63.6 93.0 43.0 56.9 88.3 35.6 64.2
Variant 50.4 90.0 3.3 52.6 88.2 2.8 47.8 86.6 2.8 45.0 93.1 0.0 50.7 94.7 0.0 42.8 90.3 0.1

Blur Weak 90.5 90.0 2.3 87.5 73.2 20.0 86.2 27.5 69.6 93.9 0.0 100. 95.5 0.1 100. 88.9 69.5 22.8
Strong 52.5 51.1 10.7 55.0 53.7 7.3 54.7 53.6 6.8 93.7 14.2 85.4 95.2 10.4 89.4 88.3 78.8 11.3

ShrinkPad Weak 86.8 24.5 74.5 83.4 23.5 75.8 82.1 1.6 98.3 91.8 12.1 87.3 93.8 35.5 62.5 88.2 5.4 93.8
Strong 82.7 81.2 10.8 73.8 70.5 23.4 74.1 72.1 16.3 83.5 24.9 71.1 88.3 54.4 38.3 72.6 25.2 52.3

Ours Base 91.5 90.3 3.0 89.9 90.0 1.3 88.5 87.8 2.5 87.9 88.1 4.2 91.3 92.0 1.6 83.7 84.5 5.2
Large 91.7 91.1 2.1 90.3 90.2 1.2 88.8 88.3 2.2 90.5 88.0 4.6 92.9 91.8 2.2 85.5 85.3 4.5

Table A.2: Defense results on clean models.

Cifar10 GTSRB VGGFace2 ImageNet10 ImageNet50 ImageNet100

CA BA CA BA CA BA CA BA CA BA CA BA

Before Defense 93.8 93.7 98.7 98.6 95.7 95.7 89.8 88.8 84.2 83.6 82.7 82.2

Ours Base 93.1 93.1 98.5 98.5 91.5 91.4 81.3 80.7 61.8 61.4 59.3 59.6
Large 93.3 93.2 98.6 98.6 92.8 92.6 85.3 84.1 72.5 72.5 69.8 70.1

F.2 SENSITIVITY ON HYPER-PARAMETERS

Figure A.1 shows additional analysis of hyper-parameter sensitivity on VGGFace2. As can be seen,
using larger repeated times No and refinement times Nr leads to higher accuracies. No = 5 and
Nr = 10 are good enough, which is consistent with our observations on other datasets in Fig. 5.

F.3 GENERALIZATION ON NETWORK ARCHITECTURE

Our method is for black-box defense, thus is generalizable on network architectures. In Tab. A.1,
we show results on Cifar10 and VGGFace2 with different backbone networks. Februus is a
white-box method, thus it relies on the network architecture. On Cifar10, it performs well on
the shallow Convolutional Neural Network originally used by the authors, but is less effective on
ResNet18 and VGG16. On VGGFace2, its clean accuracies are relatively low. Compared with other
black-box methods, our method achieves consistently better performances across different network
architectures.

F.4 VARYING TRIGGER SIZE

The trigger size affects the difficulty to detect these triggers. In the BadNet work (Gu et al., 2019),
the authors use 3×3-checkerboard as triggers. In Fig. A.2, we present defense results on Cifar10
using various sizes of checkerboard triggers. The performances of comparison methods are discour-
aging. Our method maintains high accuracies on clean images. Our Base-i is not working well on
1×1 trigger because it is hard to detect such a small trigger using image similarity. Base-l, on the
contrary, works well on this small trigger using label consistency. As trigger size becomes larger, the
performance of Base-l drops because the trigger can not be removed completely through random
masking. The full method Base combines the merits of both image similarity and label consistency,
and works for all cases.

F.5 DEFENSE WITH MORE TEST-TIME TRANSFORMATIONS

To defense against backdoor attack, test-time transformations have been used in some previous
works (Gao et al., 2019; Sarkar et al., 2020a; Qiu et al., 2021). Since they are training free and can
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Backdoored image S Purified image Clean image S Purified image

Figure A.3: Visualizations on backdoored / clean images.

Original Image
CA = 93.09 %
BA = 0.00 %

ASR = 100. %

Gaussian Noise (w)
CA = 53.57 %
BA = 0.09 %

ASR = 99.82 %

Gaussian Noise (s)
CA = 14.53 %
BA = 3.90 %

ASR = 73.10 %

Gaussian Blur (w)
CA = 91.3 %
BA = 0.30 %

ASR = 99.68 %

Gaussian Blur (s)
CA = 63.15 %
BA = 61.98 %
ASR = 2.01 %

Optical Distortion
CA = 86.78 %
BA = 69.94 %

ASR = 20.00 %

Random Contrast
CA = 93.01 %
BA = 0.00 %

ASR = 100. %

Random Gamma
CA = 93.07 %
BA = 0.00 %

ASR = 100. %

Grid Distortion
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BA = 26.74 %
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Horizontal Flip
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Down Scale
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Affine Trans
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Figure A.4: Defense results of applying test-time image transformations on Cifar10 with 2×2-
color trigger. The metrics shown are calculated on the entire test set.

be applied to our task, we briefly summarize these methods and remark on their limitation in our
blind backdoor defense setting. Supression (Sarkar et al., 2020a) creates multiple fuzzed copies
of backdoored images, and uses majority voting among fuzzed copies to recover label prediction.
The fuzzed copies are obtained by adding random uniform noise or Gaussian noise to the original
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image. However, the intensity of noise is critical. Weak noise would not remove the backdoor be-
haviour, while strong noise may destroy the semantic content. DeepSeep (Qiu et al., 2021) mitigates
backdoor attacks using data augmentation. It first fine-tunes the infected model via clean samples
with an image transformation policy, and then preprocesses inference samples with another image
transformation policy. The image transformation functions include affine transformations, median
filters, optical distortion, gamma compression, etc. The fine-tuning stage requires additional clean
samples, which are unavailable in our setting. STRIP (Gao et al., 2019) superposes a test image
with multiple other samples, and observes the entropy of predicted labels of these replicas. It aims
to detect backdoored inputs, but could not locate the triggers nor recover the true label.

In Fig. A.4, we try different test-time image transformations on Cifar10 with 2×2-color trigger.
For each transformation, we calculate the CA on clean images, BA and ASR on backdoored images.
As can be seen, some weak transformations, like Gaussian Noise (w), Gaussian Blur (w), Ran-
dom Contrast/Gamma, Horizontal Flip and Down Scale, can not reduce ASR. While the rest strong
transformations reduces ASR, they also compromise accuracies on clean images unacceptably. To
maintain performance on clean images, the model needs to adapt to these image transformations,
e.g., through fine-tuning like DeepSeep does. Such requirement is infeasible in the blind backdoor
defense, especially for black-box models.

F.6 ADDITIONAL VISUALIZATION OF DEFENSE PROCESS

We present additional visualization of the defense process in Fig. A.5. The top six rows come from
IAB (Nguyen & Tran, 2020) attack. IAB uses sample-specific triggers, i.e., test images contain
different triggers for one backdoored model. On Cifar10, the triggers are irregular curves. On
GTSRB, the triggers are color patches. Due to the complexity of triggers, the heuristic search in
image space using rectangle trigger blockers (Udeshi et al., 2022) may not work well. In our method,
the refined trigger score S successfully identifies the trigger in each test image. Triggers are removed
in the purified images, leading to correct label predictions. On VGGFace2 and ImageNet10,
despite their larger image size, our method also manages to locate the tiny triggers and restore the
clean images.

F.7 ADDITIONAL VISUALIZATION OF DEFENSE RESULTS

Figure A.6 and Figure A.7 visualize the purified images of comparison defense methods. ShrinkPad
and Blur apply global transformations on the images. They cannot remove the backdoor triggers,
but sometimes can incapacitate the backdoor triggers through adding noises or distorting the trigger
patterns. When the trigger patterns are large (i.e., IAB in Figure A.7), a strong transformation would
be required to reduce ASR. But this will also sacrifice clean accuracies.

DiffPure first adds a small amount noise to the backdoored images, and then uses a reserve generative
process to recover the clean images. However, it frequently hallucinates image content. Looking at
the last three columns of VGGFace2, DiffPure changes the facial expressions and facial features.
These fine-grained attributes are critical to face recognition. For other datasets, DiffPure may not
recover digits of GTSRB and the trigger patterns remain in the images. Although sometimes the
trigger patterns are incapacitated. These visualization clearly shows the difference between our
method and DiffPure, even though they both leverage large pretrained generative models. Ours only
restores trigger-related regions, and keep other clean regions that contains important semantic details
intact.

G DETAILED RESULTS

We present the full results in Tables. A.3-A.8. Februus (Doan et al., 2020) uses GradCAM visu-
alization to locate backdoor triggers. It relies on a threshold parameter to determine the backdoor
removal regions. In the original paper, the authors use a held-out test set to determine this parameter
for each dataset. Since we do not have such held-out test set in our blind backdoor defense task, we
try with {0.6, 0.7, 0.8}, and report results with the parameter leading to best (CA+BA)/2 in the pa-
per. The best parameter is selected for each attack setting individually. Februus is quite sensitive to
this parameter. Generally, using a smaller parameter improves BA but reduces CA in Februus. The
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Figure A.5: Sampled visualizations of the defense process. All the scores are clipped to a range
of [0,1], with yellow for high value. The top six rows are from IAB attack, and the rest are from
BadNet attack.

best parameter varies across different defense tasks. Our method achieves a good balance between
accuracies on clean images and backdoored images.

In the main text, we report aggregated results over different backdoor triggers. However, the defense
performances can be quite different depending on the trigger sizes and patterns. Our method, using
two complementary trigger scores, is designed to achieve decent accuracies in all situations.
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Figure A.6: Sampled visualizations of original images with triggers and images after defense (I).
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Figure A.7: Sampled visualizations of original images with triggers and images after defense (II).
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Table A.3: Defense results on Cifar10 using various sizes of color/white triggers.

1×1-color 1×1-white 2×2-color 2×2-white 3×3-color 3×3-white

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 93.7 0.1 99.9 92.9 2.3 97.5 93.2 0.0 100. 93.1 2.8 97.1 93.7 0.0 100. 93.4 0.5 99.5

Februus

XGradCAM (0.6) 92.0 85.7 7.8 91.1 80.7 13.7 91.3 93.1 0.8 91.2 92.6 1.2 92.1 92.9 1.0 91.6 77.1 17.7
XGradCAM (0.7) 92.8 78.5 16.2 91.9 56.1 40.4 92.2 87.3 7.0 92.1 85.0 9.5 92.8 92.1 1.7 92.4 61.2 34.9
XGradCAM (0.8) 93.3 62.9 33.0 92.4 18.4 80.4 92.8 50.5 46.6 92.7 50.9 46.1 93.3 81.5 13.3 92.9 32.1 65.8
GradCAM++ (0.6) 74.7 91.2 0.9 74.4 89.6 3.3 76.2 92.9 0.8 74.8 91.3 1.7 75.0 92.7 0.8 75.0 87.1 6.6
GradCAM++ (0.7) 85.1 90.8 2.4 84.7 83.6 10.4 85.7 93.1 0.8 84.9 92.0 1.5 85.5 93.0 0.9 85.3 75.7 19.0
GradCAM++ (0.8) 90.8 66.0 29.5 90.0 51.4 45.1 90.7 77.5 17.5 90.3 82.3 12.2 90.8 92.4 1.5 90.5 49.9 46.7

PatchCleanser Vanilla 89.9 37.2 60.7 89.7 46.2 53.0 90.0 47.3 52.2 89.9 49.9 48.7 90.1 48.6 50.8 90.0 34.3 65.0
Variant 58.1 77.6 1.5 56.2 87.5 2.3 57.7 90.1 1.1 57.2 87.2 1.7 59.1 90.2 0.8 57.4 84.0 3.8

Blur Weak 92.0 0.5 99.4 90.9 6.8 92.7 91.5 0.3 99.7 91.2 7.3 92.3 92.1 0.1 99.9 91.6 68.8 25.2
Strong 65.6 65.0 3.5 61.5 59.9 5.6 63.8 62.6 3.4 63.3 54.0 14.8 64.9 60.1 6.7 62.4 58.6 4.4

ShrinkPad Weak 91.5 44.7 51.3 89.6 53.3 42.6 89.6 6.3 93.2 90.8 82.2 9.6 91.5 28.3 70.1 91.1 86.9 3.1
Strong 88.3 32.1 64.5 85.0 9.8 87.5 83.5 2.4 97.4 87.2 82.0 6.4 88.4 11.0 88.3 87.7 83.1 3.2

Ours

Base 93.0 90.7 0.6 91.8 90.3 1.5 92.5 91.5 0.5 92.3 90.0 1.5 92.9 92.1 0.5 92.6 90.5 0.8
Base-i 92.5 73.4 20.0 91.4 86.4 6.4 92.1 91.0 1.1 91.8 84.2 8.4 92.4 90.1 2.9 92.0 84.1 8.1
Base-l 92.1 91.0 0.5 90.6 90.4 1.4 91.6 91.4 0.9 91.1 90.1 1.5 92.1 91.0 1.7 91.5 90.2 0.8
Large 93.1 90.8 0.6 92.0 90.6 1.4 92.7 91.8 0.5 92.5 90.4 1.3 93.1 92.3 0.5 92.7 90.9 0.8

Table A.4: Defense results on GSTRB using various sizes of color/white triggers.

1×1-color 1×1-white 2×2-color 2×2-white 3×3-color 3×3-white

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 98.7 0.0 100. 98.0 2.3 97.5 98.3 0.0 100. 98.5 4.4 95.5 98.8 0.0 100. 98.4 1.4 98.5

Februus

XGradCAM (0.6) 73.0 29.1 64.1 74.7 68.2 25.1 58.6 58.6 15.2 56.9 40.3 52.7 59.3 83.2 4.3 69.7 26.0 66.2
XGradCAM (0.7) 85.2 22.9 74.6 84.8 59.1 38.1 74.8 47.4 41.9 74.4 17.6 81.2 74.8 77.0 16.3 82.4 7.9 90.8
XGradCAM (0.8) 93.2 14.5 84.8 92.2 45.3 53.3 88.3 30.0 67.7 88.0 2.9 97.0 88.3 51.1 46.4 91.8 2.9 96.8
GradCAM++ (0.6) 65.2 45.3 33.5 46.1 94.3 0.2 47.0 59.8 17.2 45.0 91.5 1.6 48.0 86.2 0.9 49.8 73.5 6.1
GradCAM++ (0.7) 80.3 40.8 50.8 64.3 94.8 1.6 64.8 46.7 44.5 65.5 79.2 18.4 64.7 89.1 4.3 68.1 63.2 29.2
GradCAM++ (0.8) 91.3 28.4 69.3 81.8 91.0 6.2 83.0 17.5 81.4 83.6 22.4 77.3 82.6 70.2 26.7 84.6 30.9 67.4

PatchCleanser Vanilla 95.3 4.4 94.6 95.9 10.1 89.5 94.6 12.8 87.2 95.0 16.8 83.0 94.6 10.8 89.1 94.2 5.0 94.6
Variant 12.7 45.9 0.5 12.7 88.8 0.8 14.4 97.8 0.1 13.8 93.3 2.3 14.9 96.1 0.0 11.3 63.1 5.5

Blur Weak 98.6 3.0 96.9 98.0 9.4 90.3 98.2 0.1 99.9 98.5 6.6 93.3 98.6 0.2 99.8 98.3 4.1 95.6
Strong 97.9 97.3 0.2 97.3 97.3 0.1 97.6 96.8 0.9 97.7 94.5 3.1 98.0 96.1 1.8 97.8 87.3 4.6

ShrinkPad Weak 98.0 40.4 57.9 96.9 25.0 74.6 96.7 3.2 96.7 97.8 58.9 39.8 98.0 12.9 87.0 97.8 59.4 34.4
Strong 94.1 27.7 69.4 91.0 5.1 94.2 91.8 2.2 97.8 92.9 32.8 64.5 93.7 10.4 89.0 93.3 62.9 18.6

Ours

Base 98.5 92.4 0.2 97.6 95.9 1.0 98.0 97.8 0.1 98.3 96.5 1.3 98.6 98.3 0.1 98.1 91.0 2.8
Base-i 73.0 29.1 64.1 74.7 68.2 25.1 58.6 58.6 15.2 56.9 40.3 52.7 59.3 83.2 4.3 69.7 26.0 66.2
Base-l 65.2 45.3 33.5 64.3 94.8 1.6 47.0 59.8 17.2 45.0 91.5 1.6 64.7 89.1 4.3 68.1 63.2 29.2
Large 98.7 94.7 0.2 97.9 96.3 0.9 98.3 98.0 0.1 98.5 96.6 1.5 98.8 98.3 0.2 98.3 91.8 2.9

Table A.5: Defense results on VGGFace2 using various types of triggers.

Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 95.6 0.0 100. 95.6 0.0 100. 95.5 0.0 100. 95.4 0.0 100. 95.6 0.0 100.

Februus XGradCAM 65.2 94.1 0.0 65.3 95.0 0.0 67.5 95.4 0.0 64.6 68.2 28.6 65.0 94.8 0.0
GradCAM++ 62.8 94.1 0.0 62.5 95.0 0.0 65.3 95.4 0.0 62.3 67.7 29.2 62.5 94.8 0.1

PatchCleanser Vanilla 93.2 42.4 57.6 93.2 45.8 54.1 92.9 43.8 56.1 93.0 44.8 55.2 92.8 38.3 61.6
Variant 51.1 94.3 0.0 51.7 94.6 0.0 49.6 95.3 0.0 50.6 95.1 0.0 50.3 94.3 0.0

Blur Weak 95.5 0.0 100. 95.5 0.1 99.9 95.5 0.1 99.9 95.3 0.1 99.9 95.5 0.0 100.
Strong 95.3 0.1 99.9 95.3 22.0 77.5 95.2 28.4 70.9 95.0 0.6 99.4 95.2 0.8 99.2

ShrinkPad Weak 93.9 9.1 90.6 93.8 54.4 42.0 93.9 67.3 28.9 93.7 22.9 75.9 93.9 23.9 75.2
Strong 88.4 35.2 61.1 88.2 71.5 17.7 88.5 78.6 11.1 88.1 42.8 50.7 88.2 43.7 51.1

Ours

Base 91.3 91.8 2.1 91.3 92.3 1.2 91.3 93.1 0.1 91.3 93.2 0.0 91.4 89.6 4.7
Large-i 91.1 68.0 28.1 91.1 79.0 16.2 91.0 89.4 4.8 91.0 71.4 23.7 91.2 52.9 44.1
Large-l 90.9 92.0 2.2 90.7 92.2 0.9 90.7 92.4 0.1 90.6 92.5 0.1 90.9 87.3 7.5
Large 93.0 92.4 1.9 92.8 92.6 1.2 93.0 93.5 0.1 92.7 93.5 0.0 92.9 87.0 7.9
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Table A.6: Defense results on ImageNet10 using various types of triggers (†without adaptive
thresholds adjustment).

1×1-color 2×2-color 3×3-color Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 88.4 45.5 49.6 89.2 8.6 90.4 89.8 3.6 96.1 89.7 0.0 100. 89.9 0.7 99.1 89.9 0.0 100.

PatchCleanser Vanilla 83.0 62.3 29.8 84.7 57.8 39.2 84.5 55.2 41.9 85.0 58.0 38.9 84.9 59.4 33.9 84.8 55.0 38.8
Variant 55.4 67.2 14.2 63.8 84.4 3.6 62.3 84.6 2.8 62.2 87.5 1.4 64.7 79.3 1.9 63.9 82.0 0.9

Blur Weak 87.3 49.6 44.1 88.7 18.8 79.4 88.5 16.1 82.0 88.1 0.1 99.9 88.8 1.7 98.1 89.1 0.2 99.8
Strong 82.7 61.3 29.4 85.9 64.7 26.8 85.6 57.0 33.6 84.9 6.0 93.8 84.7 10.2 88.6 84.9 6.2 93.3

ShrinkPad Weak 87.7 80.7 9.0 87.8 76.9 14.3 88.7 60.2 33.1 89.0 6.9 92.7 88.5 28.9 68.0 88.8 4.3 95.6
Strong 85.8 82.6 6.0 86.4 86.1 2.5 86.9 78.2 11.2 87.1 40.8 56.2 86.5 39.5 54.2 87.5 13.1 85.7

Ours†
Base 65.1 60.4 17.5 71.6 70.8 7.0 74.4 73.1 4.6 73.3 75.9 3.2 73.3 69.0 4.5 72.8 75.4 2.2

Large-i 65.2 56.8 25.6 70.3 54.8 33.8 71.6 58.5 28.2 72.9 68.3 13.7 72.7 68.4 12.8 73.4 66.7 15.5
Large-l 83.8 75.8 11.8 85.6 81.2 5.8 86.2 85.1 2.7 86.8 87.3 1.2 85.9 84.3 1.7 86.4 87.8 0.7
Large 77.2 69.9 13.5 81.8 77.7 5.4 82.6 80.0 3.4 82.5 80.5 1.6 82.5 73.3 3.8 83.0 80.1 1.4

Ours

Base 75.1 71.4 13.8 80.1 80.8 5.4 80.9 83.8 3.1 81.5 84.1 2.5 81.0 82.7 2.4 80.9 83.7 1.7
Large-i 79.0 62.0 27.4 82.8 49.9 43.9 82.8 53.4 39.7 83.8 61.2 28.7 83.7 67.2 20.5 83.3 59.0 31.0
Large-l 84.0 76.7 11.8 85.5 82.2 5.9 86.3 85.7 2.6 86.8 87.3 1.2 86.0 85.0 1.6 86.6 87.7 0.7
Large 81.4 76.2 10.9 84.0 83.2 5.6 84.2 84.9 2.9 84.6 86.9 1.5 84.1 84.7 1.4 85.1 86.4 1.0

Table A.7: Defense results on ImageNet50 using various types of triggers.

1×1-color 2×2-color 3×3-color Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 83.7 2.4 97.0 83.8 0.2 99.7 83.9 0.2 99.8 84.4 0.0 100. 84.1 0.1 99.9 84.1 0.0 100.

PatchCleanser Vanilla 79.1 47.1 48.2 79.4 44.9 51.7 79.8 44.4 52.8 79.6 49.0 47.0 80.2 44.7 47.7 79.6 44.1 49.2
Variant 52.9 79.6 1.1 53.8 81.3 0.3 54.3 81.8 0.4 54.8 82.1 0.2 54.2 75.1 0.1 54.6 76.2 0.1

Blur Weak 82.9 11.0 86.9 83.3 7.9 90.4 83.0 9.0 89.8 83.5 0.1 99.9 83.4 0.9 99.0 83.5 0.4 99.5
Strong 78.5 62.5 21.1 79.3 75.5 5.3 78.9 64.6 19.2 79.6 11.2 87.2 79.5 38.3 54.4 79.7 42.6 48.6

ShrinkPad Weak 81.7 70.2 13.9 81.9 77.1 6.1 81.9 49.8 38.5 82.3 7.5 91.4 82.2 27.8 63.5 82.2 6.1 93.2
Strong 79.0 76.7 3.1 79.3 76.0 4.0 79.5 72.4 7.9 79.9 41.9 48.5 79.7 46.1 36.5 79.3 17.7 78.5

Ours†
Base 52.8 54.9 1.6 53.6 61.1 0.8 52.8 60.4 0.9 52.7 59.9 1.3 51.7 48.4 1.5 52.5 56.7 1.0

Large-i 57.2 48.5 22.7 57.2 37.1 44.8 57.6 47.4 29.5 57.4 57.1 10.8 56.9 53.9 10.8 57.7 50.2 17.2
Large-l 75.0 75.5 1.4 75.7 77.3 0.4 75.9 77.8 0.3 75.7 81.0 0.2 76.2 74.3 0.2 75.8 78.6 0.2
Large 66.5 62.7 1.7 67.2 69.7 0.7 67.5 69.1 0.6 66.9 67.7 0.6 67.0 56.5 0.9 67.0 64.3 0.6

Ours

Base 61.8 69.9 1.4 62.3 74.6 0.5 61.8 74.0 0.6 61.7 69.8 0.8 61.3 65.5 0.6 61.4 66.7 0.8
Large-i 71.7 48.3 34.1 71.7 35.8 52.9 72.1 47.6 38.1 71.4 55.9 24.8 72.0 56.7 19.7 71.9 48.1 32.7
Large-l 75.7 77.0 1.4 76.5 79.1 0.3 76.4 79.4 0.3 76.3 81.0 0.2 76.8 75.9 0.2 76.4 78.7 0.2
Large 72.2 75.3 1.3 72.7 78.3 0.5 73.0 78.7 0.4 72.7 76.9 0.4 72.4 73.2 0.4 72.6 74.2 0.5

Table A.8: Defense results on ImageNet100 using various types of triggers.

1×1-color 2×2-color 3×3-color Trigger ‘ ’ Trigger ‘ ’ Trigger ‘ ’

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

Before Defense 81.9 0.9 98.9 82.4 0.1 99.9 82.6 0.1 99.9 82.4 0.0 100. 82.3 0.0 100. 82.4 0.0 100.

PatchCleanser Vanilla 78.5 44.1 51.9 78.9 43.2 53.6 79.2 43.3 53.7 79.0 46.5 49.9 78.8 41.1 52.5 78.9 42.3 52.1
Variant 51.0 78.9 0.3 51.9 80.1 0.1 52.8 80.7 0.1 52.5 80.5 0.1 52.0 72.7 0.1 52.2 75.3 0.1

Blur Weak 80.7 6.4 92.2 81.1 6.1 92.7 81.3 5.9 93.0 81.2 0.1 99.9 81.2 0.8 99.2 81.4 0.2 99.7
Strong 75.5 67.5 10.7 75.9 74.1 2.4 76.2 62.6 18.3 75.9 24.2 71.0 76.4 37.1 53.3 76.2 44.3 43.1

ShrinkPad Weak 79.7 66.4 16.2 79.9 74.9 6.4 80.2 54.8 29.6 80.1 11.6 86.6 79.9 37.4 47.7 79.9 8.9 89.7
Strong 76.7 74.6 2.3 77.0 74.2 3.5 77.3 71.5 7.1 77.4 53.5 31.2 77.7 52.4 22.8 77.0 25.6 68.0

Ours†
Base 48.4 52.3 0.8 49.8 58.6 0.5 49.4 58.4 0.6 49.4 57.6 0.8 48.9 46.3 0.8 48.5 53.6 0.6

Large-i 54.4 47.0 22.0 54.7 37.1 43.1 54.7 46.0 28.8 54.4 54.1 11.2 54.2 51.1 10.8 54.2 47.9 16.4
Large-l 71.8 73.8 0.6 72.1 75.4 0.1 72.1 76.0 0.1 72.1 79.3 0.1 72.0 71.4 0.1 71.9 76.3 0.1
Large 62.9 60.0 0.8 63.3 67.3 0.3 63.2 65.3 0.4 62.8 64.3 0.4 62.7 53.6 0.7 62.9 61.0 0.5

Ours

Base 58.5 67.3 0.6 59.6 73.1 0.2 59.1 71.9 0.3 59.3 68.1 0.5 58.7 62.9 0.3 58.7 64.0 0.6
Large-i 68.8 47.2 33.7 69.3 36.3 51.2 68.9 46.3 37.8 69.1 53.7 25.1 69.1 54.7 19.9 68.9 46.4 31.8
Large-l 73.2 75.4 0.6 73.4 77.4 0.1 73.4 77.6 0.1 73.6 79.3 0.1 73.3 73.1 0.1 73.2 76.3 0.1
Large 69.4 73.8 0.5 69.6 76.9 0.2 69.5 76.6 0.2 69.4 73.9 0.3 69.3 70.8 0.2 69.4 71.4 0.4
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