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Abstract

Single-cell transcriptomics has revolutionized our understanding of cellular hetero-1

geneity and drug perturbation effects. However, its high cost and the vast chemical2

space of potential drugs present barriers to experimentally characterizing the effect3

of chemical perturbations in all the myriad cell types of the human body. To4

overcome these limitations, several groups have proposed using machine learning5

methods to directly predict the effect of chemical perturbations either across cell6

contexts or chemical space. However, advances in this field have been hindered7

by a lack of well-designed evaluation datasets and benchmarks. To drive innova-8

tion in perturbation modeling, the Open Problems Perturbation Prediction (OP3)9

benchmark introduces a framework for predicting the effects of small molecule per-10

turbations on cell type-specific gene expression. OP3 leverages the Open Problems11

in Single-cell Analysis benchmarking infrastructure and is enabled by a new single-12

cell perturbation dataset, encompassing 146 compounds tested on human blood13

cells. The benchmark includes diverse data representations, evaluation metrics,14

and winning methods from our “Single-cell perturbation prediction: generaliz-15

ing experimental interventions to unseen contexts“ competition at NeurIPS 2023.16

We envision that the OP3 benchmark and competition will drive innovation in17

single-cell perturbation prediction by improving the accessibility, visibility, and18

feasibility of this challenge, thereby promoting the impact of machine learning in19

drug discovery.20

1 Introduction21

Examining gene expression in individual cells via single-cell RNA sequencing (scRNA-seq) provides22

high-resolution insights into cellular behavior within healthy and diseased tissue. One emerging23

application of single-cell technology is to profile cells under basal and perturbed states to characterize24

the changes in cellular states associated with chemical treatments and to associate these changes with25

healthy or pathological tissue phenotypes [1–5]. These technologies have the potential to transform26
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how drugs are discovered and bring new therapies to patients with unmet clinical needs [6–8]. Instead27

of focusing on single molecular targets for drug discovery, it is possible to analyze how compounds28

influence gene expression to shift cells from diseased to healthy states. This approach holds promise29

for treating complex diseases where single-target methods have been less effective, as it addresses the30

interplay of multiple genes and pathways within the cell.31

However, associating small molecules with changes in cell state is challenging. One approach is to32

brute-force screen compounds and measure the associated changes in gene expression, as has been33

done to discover drug candidates for heart valve disorders [9]. However, chemical space is vast. There34

are an estimated 1060 drug-like molecules [10]. Compounds can also have diverse impacts on gene35

expression across different tissues, cell types, and individuals. Moreover, scRNA-seq experiments are36

expensive and require highly-trained technicians to run. Hence, accurate prediction of the changes in37

gene expression induced by compounds across different chemical structures and biological contexts38

could provide immense time and cost savings.39

Recently, machine learning methods to predict the impact on gene expression of small molecule40

perturbations directly from chemical structures have been proposed [11–14]. However, understanding41

such models’ effectiveness is difficult due to a lack of independent evaluations and limited availability42

of benchmarking datasets [15]. Indeed, most existing datasets include only a single perturbation [16],43

a single donor, or are limited to homogeneous cancer cell lines [1, 17]. Although these studies44

represent important contributions to the field, a rigorous, standardized benchmark is needed to assess45

their performance in diverse cell types across a wide range of chemical perturbations.46

Here, we introduce the Open Problems Perturbation Prediction (OP3) benchmark, which is the first47

standardized benchmark for predicting chemical perturbation effects across cell types. It includes a48

formalized task, an open-source benchmarking platform, and a new dataset profiling 146 chemical49

perturbations in human peripheral blood mononuclear cells (PBMCs) from three donors. We hosted a50

NeurIPS 2023 Competition using this benchmark, and used the learnings and proposed methods to51

improve the benchmark. OP3 provides a continuously updated, extensible benchmark for perturbation52

prediction, promoting translation of these methods to applied science.53

2 Related work54

This work builds on previous efforts to generate single-cell chemical perturbation datasets and55

evaluations performed alongside method development for perturbation prediction algorithms.56

Chemical perturbation datasets Recently, several large-scale datasets with drug perturbations57

have been published. The popular sci-Plex [17] dataset profiles 188 compounds in three cancer cell58

lines, and its recent sequel, the sci-Plex-GxE [18] dataset, profiled 22 drugs combinatorially in three59

cancer cell lines. While these datasets feature a large number of compounds, their use of cancer cell60

lines limits their applicability, as cancer cell lines have a number of significant deviations from human61

tissue. These datasets also use nuclei sequencing technologies which are less sensitive and have62

higher noise compared to whole-cell sequencing used in our study [19]. In addition, a recent pre-print63

introduced a scRNA-seq dataset of drug-perturbed human PBMCs [20], but its lack of replicates64

makes it difficult to disentangle technical and biological noise from the drug perturbation signal.65

Finally, a harmonized collection of public single-cell perturbation datasets was recently published,66

but most datasets contain only a single cell type and few perturbations with overlap across datasets,67

making them unsuitable for our benchmarking task [15].68

Perturbation prediction evaluation The task of predicting the transcriptomic effects of small69

molecule perturbations in single-cell data has been tackled by a few machine learning models [13,70

14, 12, 21]. However, the evaluations of these models did not include drug perturbations on primary71

tissue, used evaluation methods that are biased toward natural transcriptional variation [22], and72

lacked assessments of stability across replicates and batches. No independent method evaluations73

exist to our knowledge, which is essential to fairly compare algorithm performance [23].74
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3 A living benchmark for perturbation prediction75

To drive innovation in algorithm development for single-cell perturbation analysis, we set up the76

OP3 benchmark, including a formalized task definition, a fit-for-purpose benchmarking dataset,77

and computational infrastructure to support continuously-updated, community-driven benchmarking78

(Figure 1a). We outline these features below.79

3.1 Task overview80

Chemical perturbations induce cell type-specific gene expression changes by interacting with target81

proteins and altering cellular processes. For example, tamoxifen, a breast cancer drug, binds the82

estrogen receptor and inhibits cell growth, thereby acting selectively on cells expressing the estrogen83

receptor [24]. However, the lack of knowledge about mechanisms of action for most compounds84

hinders predicting their effects on specific cell types.85

The goal of this task is to leverage data about chemical perturbations in some cell types to infer their86

impact on gene expression in other cell types. The data is a tensor with three axes: compounds,87

cell types, and genes. Each value in this tensor is a measurement of the impact on gene expression88

observed in a specific cell type under a specific chemical perturbation (Section 3.3). Models are89

provided with the changes in gene expression for all cell types for a subset of compounds. The90

remaining compounds comprise the test set. These compounds have their differential expression91

values masked for all genes for a subset of the cell types. The target of this task is to predict these92

masked differential expression values (Figure 1b).93

3.2 Generating a single-cell perturbation benchmarking dataset94

Considerations for data set generation We identified the following properties of an ideal dataset95

for benchmarking small molecule perturbation prediction:96

1. Disease-relevance: To reflect the downstream application to drug discovery, an ideal dataset97

ought to focus on a disease-relevant biological system.98

2. Balanced cellular heterogeneity: Cell types must exhibit distinct perturbation responses99

but be similar enough that translating compounds’ effects is tractable.100

3. Diverse perturbations: The compounds should perturb a range of biochemical pathways.101

4. Replicates across multiple donors: Capturing perturbation effects across multiple donors102

enables identifying effects that are preserved across diverse donors.103

5. Positive and negative controls: Because of the high degree of technical and biological104

variability in gene expression measurements, positive and negative controls are essential to105

accurately estimate the variation attributable to perturbation effects.106

6. Open access & informed consent: To ensure open access to benchmarking data collected107

from human donors, samples must be collected under IRB supervision. This ensures donors108

give informed consent for public sharing of any derived data.109

Dataset overview We generated a novel scRNA-seq dataset profiling 146 compounds in PBMCs to110

provide a high-quality reference benchmark dataset for single-cell perturbation prediction (Figure 1c).111

We also included multiome single-nucleus RNA and chromatin accessibility measurements at base-112

line to facilitate gene regulatory network inference. This effort represents, to date, the largest drug113

perturbation dataset on primary human tissue with donor replicates [15], and was specifically de-114

signed to satisfy all the criteria above. First, PBMCs comprise an important subset of the human115

immune system and play a key role in various pathologies, including cancer, autoimmune diseases,116

immunodeficiencies, and allergies. PBMCs also contain discrete cell types (including T-cells, B-cells,117

myeloid cells, and NK cells) that perform distinct biological functions while sharing key biological118

pathways, making perturbation prediction in PBMCs difficult yet tractable. The compounds in this119

dataset were selected to span a wide range of mechanisms of action. Additionally, two positive control120
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Figure 1: Overview of the dataset. (a) A overview of the Open Problems living benchmarking
framework. (b) A graphical description of the perturbation prediction task. (c) The experimental
setup for our benchmarking dataset. (d) UMAP representations of the resulting single-cell profiles
colored by cell type (top) and donor (bottom).

compounds that were known to induce a strong transcriptional signature in PBMCs were included.121

Every perturbation was repeated in three healthy human donors, two male and one female. Finally,122

we performed this experiment using PBMCs that were commercially available with pre-obtained123

consent for public release.124

Data generation, processing and cell type annotation PBMCs were cultured in six separate125

96-well plates, two for each donor (Figure 1c). After the cells were treated with compounds for 24126

hours, samples were collected, pooled to reduce batch effects and increase throughput, and sequenced.127

Sequencing reads were processed using the Cell Ranger pipeline [25], and a best-practice pipeline128

was followed to QC, normalize, reduce, and cluster the data [26]. We assigned each cluster to one129

of four cell type labels (B cell, T cell, NK cell, or myeloid cell) using established marker genes.130

Figure 1d shows the UMAP [27] visualization of the dataset with cell type and donor annotations.131

The baseline multiome data (joint snRNA-seq/scATAC-seq) was processed by filtering out low-132

quality cells, along with both genes and chromatin accessibility features with low counts. Cells in133

this multiome data were then annotated based on marker gene expression in the same manner as the134
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Figure 2: Cross-donor retrieval analysis. (a) For each pair of donors, for each compound in each
cell type, the cross-donor retrieval rank was calculated using various distance metrics. The y-axis
shows the retrieval rank (i.e., the rank of the same compound and cell type measurement in a different
donor). The x-axis separates different retrieval distance metrics. Note that L1 distance is effectively
a rescaled MAE, and L2 distance is effectively a rescaled RMSE. The hue differentiates box plots
for different data representations according to the legend on the right. (b) We further examined
the cross-donor retrieval rank per cell type using the L2-distance metric to ensure the results were
consistent across cell types.

perturbational scRNA-seq data. For a detailed description of the experiment and analysis for both135

perturbational and baseline multiome data, please refer to Appendix A.136

3.3 Representation of perturbation effects137

In genomics, differential expression (DE) analysis is commonly used to identify how compounds138

affect gene activity in different cell types [26]. DE methods estimate perturbation effects by fitting139

generalized linear models to observed count data, explicitly accounting for biological and technical140

covariates. In this study, we performed DE analysis using the limma-voom framework [28], which141

provides estimates of effect size (e.g., log-fold change) and statistical significance while adjusting for142

variability associated with technical covariates.143

Although using estimates of effect size or significance is standard in the genomics community, it is144

more common in machine learning benchmarks to directly predict a conditional distribution, such as145

the gene expression counts. To test whether the effect size (log-fold change), significance (p-values),146

or conditional counts are more suitable for benchmarking, we evaluated each of these representations147

using the replicates across donors in our dataset. We determined that an optimal representation would148

minimize the distance between observations of the same compound across donors, with lower median149

distance ranks indicating better identifiability of compounds across donors. We call this heuristic150

cross-donor retrieval (Appendix C.1).151

We found that the measures of effect significance had better cross-donor retrieval (Figure 2a and152

Appendix Figure 5) than effect size or counts data, and this effect was consistent across cell types153

(Figure 2b). Based on these results, we decided on the following representation as a target for our154

benchmark: for a given compound c, cell type t, and gene g, let pc,t,g and Lc,t,g be the p-value and155

log-fold change computed by limma, respectively. Then156

pertc,t,g = − log10(pc,t,g)× sign(Lc,t,g). (1)

This representation captures both the direction and statistical significance of the perturbation effect on157

each gene. We do not claim that this representation is universally optimal for all tasks and analyses158

and note there are several challenges associated with DE analysis generally (Appendix D).159

3.4 Evaluation metrics160

We considered three metrics for evaluating model performance: mean row-wise root mean squared161

error (MRRMSE), mean absolute error (MAE), and cosine similarity. Mean row-wise indicates that162

we take a mean across predictions for compound-cell type pairs. Each of these metrics is related163

to the distance metrics used in the cross-donor retrieval task, e.g. MAE is effectively a rescaled164
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L1 distance, and MRRMSE is effectively a rescaled L2 distance. Using these relationships, we165

concluded that cosine similarity had the best stability across donors, followed by MRRMSE and166

MAE (Figure 2a). However, not all perturbations are expected to cause a change in gene expression,167

and cosine similarity would not penalize models that incorrectly predict low p-values in such cases,168

unlike MRRMSE and MAE. Hence, we primarily rely on MRRMSE for model evaluation, defined169

as:170

MRRMSE =
1

R

R∑
i=1

 1

n

n∑
j=1

(yij − ŷij)
2

1/2

(2)

Where R is the number of (cell type, compound) tuples, and yij and ŷij are the actual and predicted171

values, respectively, and n is the number of genes.172

3.5 Control methods173

Including control methods in each benchmarking task is one of the basic quality controls required by174

Open Problems not only to verify the integrity of the benchmarking workflow but to also normalize175

the metric outputs. In this benchmark, we implemented six control methods, where each returns176

either a solution derived from the ground truth data (positive control), a naive baseline prediction, or177

a randomly sampled prediction (negative control). The positive and negative control methods define178

an upper and lower bound for the performance metrics, which is used to normalize metric outputs.179

Full descriptions of the control methods can be found in Appendix E.2.4.180

4 The Single-cell Perturbation Prediction Competition at NeurIPS 2023181

To identify the state-of-the-art for perturbation prediction in unseen cell types, we hosted a Kaggle182

competition as part of the NeurIPS 2023 Competitions track called Single-cell perturbation prediction:183

generalizing experimental interventions to unseen contexts. This competition ran from September 12,184

2023 through November 30, 2023 and used an earlier version of the dataset and benchmark before185

it was updated based on learnings from the competition (Appendix B). We ran the competition in186

two tracks. The Leaderboard Track followed the traditional data science competition setup with a187

public and private leaderboard tracking a single metric on public and private test sets (Appendix B).188

We also ran a Judges’ Prize track where participants were judged based on a write-up addressing189

specific questions about perturbation prediction and the specific challenges of using our dataset to190

tackle this task. $50,000 in prizes were awarded for each track. The competition web page with the191

final leaderboard, code submissions, and discussions is available at: https://www.kaggle.com/192

competitions/open-problems-single-cell-perturbations193

4.1 Leaderboard Track194

In the leaderboard competition, competitors trained models on the training set and submitted CSV195

files with predictions for the public and private test tests. During the development phase (3 months),196

only the results from the public test set were used to calculate leaderboard rankings. During the final197

phase (5 days), competitors selected their top submission. Final scores were judged on the private198

test set only visible after the final submission deadline. Due to the limitations of the Kaggle platform,199

we ran the competition with a single metric, MRRMSE, decided on in collaboration with Kaggle data200

scientists. The participants were encouraged to use any publicly available external data.201

Over the competition, 1,318 participants from 84 countries, forming 1,097 teams, submitted 25,529202

solutions to our Leaderboard Track. This makes our competition one of the largest single-cell data203

science competitions to date. Although participants were only required to submit CSV predictions,204

the Kaggle platform has a strong culture of solution sharing. As such, we were able to read through205

reported submission code and identified trends among the best performing methods. We found206

that the top-scoring methods relied on diverse deep learning approaches, including transformer,207

LSTM, GRU, CNN and MLP architectures. The models used diverse loss functions, such as208
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mean squared error, mean absolute error, LogCosh (L(y, ŷ) = 1
N

∑N
i=1 log(cosh(yi − ŷi))), binary209

cross-entropy, MRRMSE, and Huber loss [29]. Despite several reported attempts, only the first of210

the three top-performing models relied on data other than the training set. The winning method211

used ChemBERTa [30], a pre-trained transformer, to encode the small molecule structure SMILES212

representation. According to the competitors’ reports, data preprocessing proved to be very impactful.213

In particular, multiple competitors reported that target encoding and singular value decomposition214

of the high-dimensional input data were effective. One method used pseudolabels [31] for model215

training. All of the top three methods relied on model ensembles. We provide detailed descriptions of216

these methods in Appendix E.1.217

4.2 Judges’ Prize218

In the Judges’ Prize, participants were asked to address how biological priors or alternative model219

architectures influence leaderboard performance, to describe technical challenges that make perturba-220

tion prediction difficult, to characterize how data noise or downsampling affect model robustness,221

and to present well-documented and packaged model code. To identify winners, the write-ups were222

scored by a panel of single-cell experts. 17 teams submitted write-ups for a judges’ prize, all of223

whom also participated in the leaderboard prize.224

Many of the submissions provided valuable insights and were exceptionally detailed—the top-225

scoring team wrote a 33-page report. For example, several participants mentioned their efforts226

on integrating gene regulatory networks (GRN) inferred from ATAC and RNA data as an extra227

modality for prediction task [32, 33]. Although distinct patterns among cell types were observed228

from the provided ATAC-seq data, attempts at incorporating inferred GRNs in model predictions,229

even only for expression-enriched regulators, resulted in performance decreases in their models.230

Other groups attempted to use molecular interactions as an additional modality for model design. For231

example, GSEA-MsigDB [34] provides valuable information about pathways activated in various232

cell types. From these, a correlation network can be constructed based on shared pathways or233

shared regulation target genes. However, the models overall did not benefit from these efforts, which234

suggests that further filtering over inferred regulation/correlation relationships might be necessary.235

Finally, many submissions also investigated challenges associated with data representations and data236

pre-processing, which are described in the following section. We provide detailed descriptions of the237

Judges’ Prize-winning methods in Appendix E.2.238

4.3 Lessons learned239

Here, we list several key learnings and opportunities to improve our benchmarking setup.240

False positives for unexpressed/lowly expressed genes: DE analysis is sensitive to low-count genes,241

which can lead to overestimation of relative expression changes. This is especially problematic for242

compounds with subtle gene effects. To mitigate this, we employed a stricter gene filtering strategy243

per cell type [35], resulting in a reduced 5,317 genes (originally 18,211).244

Inconsistent annotations: Proportions of T cell subtypes were inconsistent across donors (Appendix245

Table 3, Appendix Figure 7). These subtypes had low cell counts and subtle differences in expression246

that suggested misannotation, which may have been caused by perturbation impacts on marker gene247

expression. To resolve this, we grouped all of the T cells together in the final annotations Figure 1b.248

Outlier samples: Certain samples had very few cells, which may be caused by perturbation-associated249

toxicity and was correlated with a high fraction of low p-values. To address this, we removed samples250

with < 10 cells or inconsistent cell type proportions across donors. We also removed three compounds251

for which we could not confidently annotate cell types (Appendix F.2), likely due to toxicity.252

Design matrix: Due to a high number of factors and collinearity, the design matrix used in the253

competition (Appendix Figure 6) was not full-rank, potentially leading to parameter estimation254

issues. We updated the linear model to f(gj) = x1cci + x2pi, where gj is a gene, cci is (cell type,255

compound) tuple, and pi is the plate. The resulting design matrix is full rank.256
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Figure 3: An overview of the benchmarking results of the six selected methods and one control
method. Methods are ordered by the arithmetic mean of the three metrics. The MR Cosine, MR MAE,
and MR RMSE were computed by comparing a method’s predictions to the ground-truth data. Each
of these metric values were min-max scaled between the positive control and random sample. The
resources column group shows the resource usage of the various methods throughout their execution.

Outlier p-values: Our dataset contained some very low p-values (1e-180). As we do not want to257

penalize models for not differentiating between very small p-values, we clipped p-values in the258

dataset at 1e-4.259

Submit algorithms, not predictions: Even though the competition participants submitted methods260

implementations, we were unable to exactly reproduce all of the results. We recommend requiring261

competitors to submit algorithms instead of predictions to promote the development of reusable262

tools. In addition, it allows algorithms to be more easily adapted, ultimately accelerating scientific263

discovery.264

4.4 Updating the living benchmark265

A central challenge in machine learning competitions is translating state-of-the-art methods according266

to competition leaderboards to impact applied science. A review of 10 years of machine learning267

competitions in dementia [36] found that no competition winners had been applied in clinical268

settings, suggested that winning methods may be overfitted to the competition dataset and metric,269

and suggested making methods available for testing in other settings. To enable further testing and270

evaluation of top-performing methods from our competition, we implemented and retrained the271

top 3 methods according to the leaderboard and the top 3 according to judges’ scores in our Open272

Problems Perturbation Prediction living benchmark. This final benchmark includes the changes273

listed in the preceding section. Additionally, the public test set is now part of the training set.274

The results are shown in Figure 3 and the latest results of the living benchmark are available at275

https://openproblems.bio/results/perturbation_prediction.276

Examining model performance across compounds, we observed that for all 6 methods, the error277

residuals correlated with the number of DE genes. This indicates that the methods are better at278

predicting no change in gene expression than a significant change. Indeed, the top performing method,279

NN retraining with pseudolabels, predicts high p-values more often than they occur in the dataset280

(Appendix Figure Figure 8).281
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5 Discussion282

In this study, we presented a living benchmark for single-cell perturbation prediction. The Open283

Problems Perturbation Prediction (OP3) benchmark features a newly generated fit-for-purpose dataset284

that is the largest of its kind, optimized data representations and metrics, positive and negative285

baseline methods that define performance ranges, and a cloud-based infrastructure that enables users286

to add new methods, metrics, and datasets to the benchmark. Using this benchmarking setup we ran287

the Single-cell Perturbation Prediction competition at NeurIPS 2023, in which over 1,300 participants288

contributed over 25,000 method solutions to address the challenge of predicting perturbation responses289

across drugs and cell types. This competition successfully made the topic of single-cell perturbation290

prediction accessible to a non-specialist community (more than half of the surveyed participants never291

worked with single-cell data Appendix F.1), while leveraging the expertise from this community to292

improve upon current state-of-the-art methods (via Leaderboard Track winners) and provide feedback293

on the task definition and implementation (via Judges’ Prize winners). To promote the translation of294

competition outputs to domain impact in perturbation prediction, we used this competitor feedback to295

update the OP3 benchmark and populated it with the top-performing solutions from the competition.296

This enables methods to be further scrutinized by the community on the generalizability of their297

performance across data contexts and metrics.298

To power our single-cell perturbation prediction competition and benchmark, we generated the largest299

multi-donor single-cell drug perturbation dataset on primary human tissue. However, despite profiling300

146 drug perturbations in over 300,000 cells, the training data size is still limited from the perspective301

of building models that generalize across drugs, donors, and cell types. There are over 16,600302

clinical-stage drugs [37], which typically elicit heterogeneous responses across cell types [38] and303

individuals [39]. Predicting the cell-type-specific response of a drug on an unseen individual will304

likely require data generation efforts that are not feasible by individual groups, but rather coordinated305

across consortia. Such efforts would also be needed to ensure aspects such as differing drug efficacy306

across genetic backgrounds [40, 41] can be taken into account, which is not feasible with existing307

perturbation datasets that often only profile cells from a single genotype [15]. In this context, our308

OP3 benchmark and dataset represent a first step towards this larger goal.309

A further limitation of our competition, and indeed most other Kaggle competitions, derives from310

the use of a single performance metric, which is a limitation of the Kaggle platform. Goodhart’s311

law suggests that when a performance metric becomes the optimization target, the metric ceases312

to be a good metric [42, 43]. This phenomenon is especially challenging when the chosen metric313

represents a proxy for good performance that is easy to evaluate during a model development loop314

(i.e. is differentiable and quickly calculable). In our case, perturbation prediction would ideally315

assess how well an unseen candidate drug treats a disease of unknown pathology in a particular316

patient. To make this tractable, we instead evaluate the transcriptome response in an unseen hold-out317

donor, cell type, and drug combination. A mitigation strategy for overfitting to this setting is to318

define additional relevant tasks related to perturbation prediction to evaluate method performance on319

different criteria. To promote innovation towards the overall goal of improving perturbation prediction,320

we specifically enable such a multi-task evaluation setup via the OP3 living benchmark and the design321

of our dataset. To promote generalizability of developed solutions [44], future competitions in this322

direction may further include orthogonal readouts, such as cell type proportions, rates of cell death,323

or inflammation [45].324

Taken together, the OP3 benchmark and corresponding competition represent the first community-325

extensible standard for predicting perturbation responses from single-cell transcriptomic data. While326

several algorithms existed for this task also prior to our competition, the competition has been327

successful in greatly expanding the set of possible solutions available, which can be further scrutinized328

via the OP3 living benchmark. Indeed, the combination of a large-scale competition and a cloud-329

based living benchmark represents a promising approach to promoting innovation towards critical330

domain-specific challenges. We envision that the OP3 benchmark will lay the groundwork for further331

method development for this question, which is of critical importance to realize the promise of332

personalized medicine and optimized drug discovery.333
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Checklist594

1. For all authors...595

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s596

contributions and scope? [Yes] Our three main claims are that we (a) introduce a597

valuable benchmarking dataset, (b) we used it to run a NeurIPS 2023 competition598

“Single-cell perturbation prediction: generalizing experimental interventions to unseen599

contexts“, analyzed the results, and (c) implemented the lessons learned in a new600

benchmark. The sections that describe these contributions are correspondingly (a) 3.2,601

(b) 4, (c) 3,4.3, 4.4.602

(b) Did you describe the limitations of your work? [Yes] See Section 5.603

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We604

believe our work does not have potential for negative societal impact.605

(d) Have you read the ethics review guidelines and ensured that your paper conforms to606

them? [Yes]607

2. If you are including theoretical results...608

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical609

results included.610

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results611

included.612

3. If you ran experiments (e.g. for benchmarks)...613

(a) Did you include the code, data, and instructions needed to reproduce the main experi-614

mental results (either in the supplemental material or as a URL)? [Yes] We included the615

links to code (Appendix I, H) and data (Appendix ??) in the supplementary material.616

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they617

were chosen)? [Yes] See Appendix B for data splits. The hyperparameters of the618

models in the benchmark are specified in the attached code (Appendix I). As they were619

not developed by us, we do not provide an explanation for their choice.620

(c) Did you report error bars (e.g., with respect to the random seed after running experi-621

ments multiple times)? [Yes] See Appendix Figure 8 for the results of the experiments622

under dataset bootstrapping, with the corresponding standard deviation error bars.623

(d) Did you include the total amount of compute and the type of resources used (e.g., type624

of GPUs, internal cluster, or cloud provider)? [Yes] Described in Appendix I.5.625

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...626

(a) If your work uses existing assets, did you cite the creators? [Yes] We implemented627

models that were submitted to the competition, see Appendix E and the code linked in628

Appendix I for credits.629

(b) Did you mention the license of the assets? [Yes] See Appendix E and the repository630

linked in I for information on the implemented methods and code license information631

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]632

Yes, see the repositories linked in Appendix I and H for the code of the benchmark and633

analysis, respectively. See Appendix A for the description of the introduced dataset.634

(d) Did you discuss whether and how consent was obtained from people whose data you’re635

using/curating? [Yes] See Appendix J.636

(e) Did you discuss whether the data you are using/curating contains personally identifiable637

information or offensive content? [Yes] See Appendix J.638

5. If you used crowdsourcing or conducted research with human subjects...639

(a) Did you include the full text of instructions given to participants and screenshots, if640

applicable? [N/A]641
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(b) Did you describe any potential participant risks, with links to Institutional Review642

Board (IRB) approvals, if applicable? [Yes] See Appendix J.643

(c) Did you include the estimated hourly wage paid to participants and the total amount644

spent on participant compensation? [N/A] We did not directly hire participants; we645

only used data acquired from human subjects as described in Appendix J.646
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A Detailed dataset description647

A.1 Overview648

We measure the impact of 146 compounds in human PBMCs with three replicates, one per each donor.649

The dataset was generated in a 96-well plate format with sample multiplexing such that each of the650

12 wells in each row of the plate were pooled in a single lane of the 10x Chromium chip. We included651

controls in 3 out of 12 wells in each row of the plate such that each resulting multiplexed library652

contains a negative control DMSO well treatment and two positive controls of either belinostat or653

dabrafenib. The remaining 9 wells per row each contained a different treatment condition. The result654

is 576 unique scRNA samples (Appendix A.5). The dose of belinostat is 0.1µM, DMSO 14.1µM,655

and the rest of the compounds 1µM. After sample demultiplexing, preprocessing, and quality control656

filtering, we retained 301,785 single cells and 21265 genes for further analysis. Further filtering and657

processing were performed to better tailor the dataset for the perturbation prediction task. Differential658

expression was computed with limma to create the representation of perturbation effects used in the659

benchmark (Appendix A.8).660

A.2 Data Availability661

As is standard in the computational biology field, processed counts data is publicly available through662

the Gene Expression Omnibus (GEO) with accession GSE279945 and raw sequencing data is available663

through the Sequencing Read Archive (SRA) with accession PRJNA1149320.664

Maintenance plan The dataset will be stored on GEO and SRA indefenitely. Any updates to the665

dataset will be made available on these platforms. The souce code of the components and workflows666

used in this study are stored on GitHub at github.com/openproblems-bio/task_perturbation_prediction.667

At the time of publication, the project was published on GitHub and Zenodo as release 1.0.0.668

Each component is backed by a Docker container published at ghcr.io/openproblems-bio, also669

using tag 1.0.0. Any feedback or found errors can be reported through GitHub issues at670

github.com/openproblems-bio/task_perturbation_prediction.671

Responsibility We, the authors, bear all responsibility to withdraw our paper and data in case672

of violation of licensing or patient privacy rights. The dataset will be distributed under a Creative673

Commons license (CC BY 4.0).674

A.3 Culture of PBMCs675

Human PBMCs from three donors were purchased from AllCells (www.allcells.com). Donor676

information is described in Table 1, and the informed donor consent process is described in Appendix J.677

PBMCs from one female and two males were used and were selected due to similarities in age and678

BMI, the absence of reported use of medications, and sufficient cell inventory for data generation.679

Table 1: PBMC Donor Information

Donor Name Donor ID Lot # Age Sex BMI Blood Type Race Smoker CMV+

Donor 1 110044355 3097601 45 F 25.4 O+ White - Neg
Donor 2 110044590 3096819 52 M 37.2 O- White No Pos
Donor 3 888676709 3094710 45 M 24.7 A+ White No Neg

PBMCs were thawed in RPMI (Gibco cat # 11875-093) supplemented with 10% heat inactivated680

fetal bovine serum (HI-FBS, Gibco cat # 10082-147) and centrifuged for 8 minutes at 300 x G.681

The cell pellet was resuspended in RPMI supplemented with 10% HI-FBS, counted on a Luna682

fluorescent cytometer (Logos Biosystems) using AO/PI stain (Logos Biosystems, cat # F23001) per683

the manufacturer’s instructions, and centrifuged to wash cells. The cell pellet was then resuspended684

to a concentration of 1,000,000 cells/mL in RPMI supplemented with 10% HI-FBS. For perturbation685
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experiments, cells were plated at 200,000 cells/well in 96-well V-bottom plates (Thermo Scientific686

cat # 277143) in 200 µL media and were cultured for a total of 48 hours prior to collection. For687

multiome profiling experiments, PBMCs were seeded into a T75 flask (Corning cat # 430641U) and688

were cultured 24 hours before collection.689

A.4 Characterization of PBMCs Across Donors690

Flow cytometry was used to characterize the major cell populations in the PBMC samples from the691

three donors after thaw (0 hours) and at 48 hours of culture in 96-well V-bottom plates. This was692

performed to confirm the relative consistency of cell types across donors and to ensure that the time693

in culture and media conditions did not bias the survival of specific cell types. 200,000 PBMCs per694

well were seeded in a 96-well V-bottom plate and centrifuged for 8 minutes at 300 x G. The cell pellet695

was resuspended in antibodies against established cell lineage markers, which were diluted in Cell696

Staining Buffer (Biolegend cat # 420201) and incubated at 4C in the dark for 25 minutes. PBMCs697

incubated in a Cell Staining Buffer without adding antibodies were used as unstained controls. Cells698

were washed by centrifugation for 8 minutes at 300 x G and resuspended in a Cell Staining Buffer.699

Events were captured on a Novocyte Quanteon (config. V8B7Y6R4) with an average of 56,500700

PBMCs per well acquired for analysis.701

Prior to quantification, the spectral overlap of our conjugated antibodies was adjusted for using702

UltraComp eBeads™ Plus Compensation Beads (Invitrogen cat # 01-3333-42), per the manufacturer’s703

instructions. Briefly, two conditions were used to compensate for spectral overlap: 1) unstained beads,704

and 2) single-colored controls with each antibody applied individually to the beads. Antibodies were705

incubated together with beads for 15 minutes, washed, and resuspended in a Cell Staining Buffer,706

following which events were captured on the cytometer. The compensation matrix was generated on707

FlowJo 10.8.1 and applied before the quantification of cell populations within PBMCs. The gating708

strategy used to quantify CD3+ T-cells, CD14+ myeloid cells, CD19+ B-cells, and CD56+ NK cells709

is described in Appendix Figure 4.710

Overall, we observed that the four major cell populations measured were relatively consistent across711

all donors at each time point, with CD3+ T-cells comprising most cells within the sample. We712

noticed a reduction in the CD14+ myeloid compartment following the culture of the cells, which713

was consistent across all donors. We speculate this could be due to the myeloid population tending714

to differentiate and adhere following time in culture. We also acknowledge that the broad cell type715

markers used for characterization via flow cytometry do not permit quantification of more specific716

cell clusters (e.g., CD4+ vs CD8+ T-cells, monocytes vs. dendritic cells) that can be performed717

using gene markers in the sequencing data, making a direct comparison of cell numbers across the718

modalities more challenging. In sum, we selected PBMCs from three donors that contain relatively719

consistent numbers of cell types within each sample and perform similarly after 48 hours of culture.720

A.5 Compound information and treatment of PBMCs721

146 compounds were applied to PBMCs from three healthy donors 24 hours after thawing and seeding722

into 96 well V-bottom plates. Compounds were selected based on two criteria:723

1. Inclusion in Library of Integrated Network-Based Cellular Signatures (LINCS) Connectivity724

Map dataset, and725

2. Robust transcriptional response observed in CD34+ hematopoietic stem cells (data not726

released).727

These compounds also span a diverse range of mechanisms of action.728

Compounds were resuspended in DMSO to 1 mM and arrayed onto a 96-well PCR plate. Each of the729

first three columns on the plate contained, respectively:730

1. Belinostat, an HDAC inhibitor that we previously observed to induce a large transcriptional731

response in PBMCs (positive control).732
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Figure 4: Gating strategy for quantification of cell types within PBMCs. FlowJo software was
used to quantify the population of cells within PBMCs using the antibodies described in the methods
section. First, a gate was generated by visualizing the forward scatter area and side scatter area to
define the total live cells and to remove non-viable cells and debris from the analysis. Next, a gate
was generated visualizing forward scatter height and area to define single cells and exclude doublets.
Lastly, two-parameter density plots were used to assess the percentage of T cells (CD3+), myeloid
cells (CD14+), B cells (CD3-, CD19+), and natural killer cells (CD3-, CD56+). Using this gating
strategy, the percentage of cells within each population was quantified in PBMCs from the three
donors used prior to full-scale data generation to ensure consistency in the samples and that time in
cluster did not skew populations in a donor-specific manner.

2. Dabrafenib, a BRAF-inhibitor that we previously observed to induce a moderately-strong733

transcriptional response in PBMCs (positive control).734

3. No compound treatment except for DMSO (negative control).735

Each well in columns 4-12 of the 96-well PCR plate (72 wells) contained a unique treatment736

compound. On the day of treatment, compounds were diluted and mixed directly in the PCR to737

100 µM in RPMI (Gibco cat # 11875-093) using an Integra Viaflo 384 automated liquid handler.738

2 µL of compound in solution was then transferred using the Integra Viaflo 384 automated liquid739

handler from the PCR plate and applied to PBMCs cultured in a 96-well V-bottom plate, described740

above. The use of an automated liquid handler enabled simultaneous application of 96 compounds741

and limited errors in transferring. The final concentration of compound applied to the cells was 1 µM.742

Cells were treated 24 hours before collection.743

A.6 Single-cell sequencing of perturbed PBMCs744

48 hours after thaw, PBMCs cultured and treated in 96-well V-bottom plates were mixed with an745

Integra Viaflo 384, and a sample of cell suspension was transferred into a Thermo Scientific U-746

bottom plate (cat # 163320) containing CountBright Plus Absolute Counting Beads (Invitrogen cat #747

C36995) and SYTOX AADvanced Ready Flow (Invitrogen cat # R37173) diluted in DPBS, per the748

manufacturer’s instructions. Total viability and live cell number per well were quantified via flow749

cytometry using a BD FACSCelesta Cell Analyzer (BD Biosciences).750

The remaining treated PBMCs were centrifuged in the 96 well V-bottom plate at 300 x G for 8751

minutes. Culture media was aspirated using semi-automated liquid handling to not disturb the cell752

pellet and washed once with Cell Staining Buffer. Cells were centrifuged and resuspended in 12753
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unique Cell Multiplexing Oligonucleotides (3’ CellPlex Kit Set A, 10X Genomics, cat # 1000261)754

applied in columns 1 through 12, incubated for 5 minutes at room temperature, and then quenched755

and washed three times in DPBS supplemented with 4% human serum albumin (Grifols cat # NDC756

68516-5216-1). This allowed for consolidation of a 96-well plate into 8 pools, each containing cells757

from a well labeled with a unique Cell Multiplexing Oligonucleotide. To ensure equal sequencing758

representation from each compound treatment, 100,000 cells per well (calculated from the initial759

cell count) were pooled by row into a 5 mL conical tube, resulting in a total of 8 pools, 1 conical760

tube collected per row, using an Integra Assist Plus and associated D-ONE module automated liquid761

handling instrument (Integra Biosciences).762

Final pools therefore contained a DMSO negative control, 2 transcriptionally active positive controls,763

and 9 experimental compounds. Cells were pelleted by centrifugation and resuspended to 1.2 x 106764

cells/mL in Cell Staining Buffer for downstream preparation for single-cell sequencing. Single-cell765

libraries were prepared from each pool using Chromium Next GEM Single-cell 3’ Kit v3.1 (10X766

Genomics, cat # 1000268) following the manufacturer’s recommended protocol (10X Genomics,767

CG000388 Rev C).768

Briefly, a total of 12,000 cells (1,200 per multiplexing oligo) were loaded into a single channel of a769

Chromium Next GEM Chip G (10X Genomics, Cat # 1000120) and partitioned into droplets with770

gel beads using a Chromium controller (10X Genomics, cat # 1000204). After emulsion droplets771

were formed and collected, reverse transcription reactions were incubated at 53C for 45 minutes.772

Barcoded transcripts were purified, amplified and size fractionated to create separate libraries for773

the transcriptome and feature barcode fractions from each sample. Transcriptome libraries were774

fragmented and ligated to indexed sequencing adapters according to the manufacturer’s recommended775

protocol. Feature barcode libraries were prepared using 3’ Feature Barcode Kit (10X Genomics,776

cat # 1000262) following the manufacturer’s recommended protocol (10X Genomics, CG000388777

Rev C). Transcriptome libraries were sequenced on an Illumina NovaSeq6000 with paired end reads778

as follows: Read 1 = 28 cycles, i7 Index = 10 cycles, i5 = 10 cycles, Read 2 = 89 cycles. Feature779

barcode libraries were sequenced on an Illumina NovaSeq6000 with paired end reads as follows:780

Read 1 = 28 cycles, i7 Index = 10 cycles, i5 = 10 cycles, Read 2 = 35 cycles. Cell Ranger (v5.0.1)781

mkfastq was used to generate all demultiplexed FASTQ files from the raw sequencing data.782

Cell Ranger count was used to align transcriptome reads to the human GRCh38 genome reference,783

identify corresponding feature barcode reads according to a csv reference file containing all the784

relevant information needed for downstream processing, and quantify gene and UMI counts.785

A.7 Multiome ATAC + gene expression profiling of PBMCs at baseline786

24 hours after thaw, PBMCs cultured in T75 flasks were collected in a 50 mL conical tube, centrifuged787

at 300 x G for 8 minutes, and washed once with DPBS. Viability and total live cells/mL were quantified788

using AO/PI stain on a Luna fluorescent cytometer. Nuclei were isolated from cells using Chromium789

Next GEM Single-cell Multiome ATAC + Gene Expression Reagent Bundle (10X Genomics, cat #790

1000283) and Chromium Nuclei Isolation Kit with RNase Inhibitor (10X Genomics, cat # 1000494)791

following the manufacturer’s recommended protocol (10X Genomics, CG000365, Rev C). Briefly,792

1.2 million cells were pelleted and resuspended in 100 µL of lysis buffer and incubated on ice for793

5 minutes. Multiple rounds of washing were followed by resuspension in 150 µL of diluted nuclei794

buffer and filtered through a 40 µm Flowmi Cell Strainer (Fisher Scientific, cat # 14100150). Nuclei795

were counted on a Nexcelom Cellometer K2.796

Mutliome ATAC + Gene Expression libraries were prepared using Chromium Next GEM Single-cell797

Multiome ATAC + Gene Expression Reagent Bundle (10X Genomics, cat # 1000283) following798

the manufacturer’s recommended protocol (10X Genomics, CG000338, Rev F). Briefly, a total of799

8,000 nuclei were targeted for loading into a transposition reaction, which incubated at 37 C for800

60 minutes. The output was then loaded into a single channel of a Chromium Next GEM Chip J801

(10X Genomics, cat # 1000234) and partitioned into droplets with gel beads using a Chromium802

controller (10X Genomics, cat # 1000204). After emulsion droplets were formed and collected,803
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reverse transcription and transposed DNA fragment barcoding reactions were incubated at 37C for804

45 minutes. Both products were purified, amplified and size fractionated to create the ATAC and805

transcriptome fractions from each sample. ATAC libraries had indexed sequencing adapters added.806

Transcriptome libraries were fragmented and ligated to indexed sequencing adapters. ATAC libraries807

were sequenced on an Illumina NovaSeq6000 with paired end reads as follows: Read 1 = 50 cycles,808

i7 Index = 8 cycles, i5 = 24 cycles, Read 2 = 49 cycles. Transcriptome libraries were sequenced809

on an Illumina NovaSeq6000 with paired end reads as follows: Read 1 = 28 cycles, i7 Index = 10810

cycles, i5 = 10 cycles, Read 2 = 89 cycles. Cell Ranger ARC (v2.0) mkfastq was used to generate811

all demultiplexed FASTQ files from the raw sequencing data. Cell Ranger ARC count was used to812

align transcriptome reads to the human GRCh38 genome reference provided by 10X Genomics and813

generate all downstream count matrices.814

A.8 Processing of scRNA-seq perturbation data815

Starting with the counts matrix output from Cell Ranger, cells with total numbers of transcripts that816

fell below or above specific thresholds were filtered out of the dataset. These transcript thresholds817

were determined per sequencing pool. All cells that had a mitochondrial counts fraction higher than818

0.2 were also removed. The Python package scrublet was then used to label cells with a probability819

of being doublets. These probabilities were smoothed over a k-nearest neighbor graph constructed820

from the cells, and cells with a smoothed doublet probability of greater than 0.2 were filtered out.821

During the pooling process (Appendix A.6), cells from each of the twelve wells in a plate row were822

tagged with distinct cell multiplexing oligonucleotides to increase throughput and decrease batch823

effects across wells. This multiplexing procedure necessitated a demultiplexing step in the processing824

pipeline, whereby a multivariate Gaussian-mixture model was used to identify the well from which825

each cell most likely originated. Cells that could not be conclusively labeled as belonging to any826

particular well were dropped from the dataset.827

Prior to cell-type annotation, counts were normalized to sum to 1000 in each cell and then transformed828

with the mapping x 7→ ln(x + 1). Cell-type annotation was performed by first running Leiden829

clustering with resolution = 1 on a k-nearest neighbor graph built from the 2000 most highly-830

variable genes, then manually assigning a cell type label (T-cells, B-cells, myeloid cells, or NK cells)831

to each cluster based on expression of the marker genes in Table 2. In addition, we filtered samples832

of certain compounds as described in Appendix F.2.833

Table 2: PBMC Marker Genes

Cell Type Marker Genes

T-cells
CCR6, CCR7, CD2, CD27, CD3D, CD3E, CD3G, CD4, CD6, CD8A, CTLA4,

FOXP3, GZMB, IL2RA, PTPRC, TRDV2, TRGC1, TRGV9

B-cells

CD19, CD24, CD24, CD27, CD38, CD38, CD38, CD79A, CD79B, DERL3,

FKBP11, HLA-DQA1, HLA-DQB1, IGLL5, IGLL5, IGLL5, JCHAIN, MS4A1,

PAX5, PRDX4, PTPRC, SEC11C, SSR4, TCL1A, VPREB3

Myeloid cells CD14, CD163, CD1C, CD68, CD83, ITGAX

NK cells
CD2, CD69, COX6A2, FCGR3A, GNLY, GZMA, GZMB, GZMM, KIR2DL4,

KLRB1, NCAM1, NCR1, NKG7, NKG7, ZMAT4

Next, differential expression (DE) was performed to produce a representation of the perturba-834

tion effects of each drug. To ensure our DE computation was as robust as possible, we used the835

filterByExpr function from the EdgeR package to filter down to 5317 genes that were consistently836

expressed across all cell types. Counts from these 5317 genes are then summed across the cells837

of each type in every well to produce what is known as a pseudobulked expression object. The838
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pseudobulked counts are then fed into the limma/voom pipeline to compute moderated p-values and839

log-fold change statistics per gene for each condition. The linear model fit by limma included an840

additional covariate that captured the plate-to-plate batch effects. This covariate also reflected the841

variability in perturbation effect across donors, as each plate contained samples from only one donor.842

All of the processing steps described in this section, unless explicitly stated otherwise, were performed843

using the scanpy library [46].844

A.9 Processing of baseline Multiome snRNA-seq/scATAC-seq data845

For processing the joint snRNA-seq/scATAC-seq measurements, we start with the outputs provided846

by the Cell Ranger pipeline, namely:847

1. the fragments file, which lists both the region of the chromosome and the cell barcode for848

each detected ATAC-seq fragment, and849

2. the filtered feature-barcode matrix, which contains both the detected genes (snRNA-seq)850

and called peaks (scATAC-seq) assigned to each cell barcode.851

We first split up the feature-barcode matrix into a cell-by-gene snRNA-seq matrix and a cell-by-peaks852

scATAC-seq matrix. The QC steps for the snRNA-seq measurements were nearly identical to the853

process described in Appendix A.8 for the scRNA-seq data, albeit with a slight hand-tuning of the854

filtering thresholds. Namely, cells with low counts (below 500 transcripts), high mitochondrial counts855

percentage (above 0.2), or high probability of being doublets (above 0.2) were removed, and genes856

that were expressed in fewer than 100 cells were also filtered out, resulting in 17438 distinct genes.857

Following this, counts were normalized to sum to 1000 in each cell and then rescaled using the858

mapping x 7→ ln(x+ 1).859

Cells were further filtered using the scATAC-seq measurements. Specifically, cells that met any of860

the following criteria were removed:861

1. fewer than 1000 fragments,862

2. fewer than 750 peaks,863

3. transcription start site (TSS) enrichment score below 0.8, or864

4. nucleosome signal below 2.0.865

Both the TSS enrichment score and nucelosome signal are common metrics for evaluating the quality866

of chromatin accessibility measurements. The TSS enrichment score is calculated by taking windows867

of 2000bp around either side of TSSs, then computing the average ratio of read depth at 100bps on868

either side of these windows to the read depth at the respective TSS in the center of the window [47].869

For the sake of computational efficiency, we estimate the TSS enrichment score by computing this870

average ratio over a random subset of 3000 TSSs rather than every TSS.871

The nucleosome signal is the ratio of the number of single-nucleosome fragments (between 147bp872

and 294bp) to the number of nulceosome-free fragments (shorter than 147bp). Again for the sake873

of computational efficiency, we estimate the the nucleosome signal using a subset of the ATAC-seq874

fragments.875

Specific peaks that were observed in fewer than 20 cells were also dropped.876

After filtering, cell type annotation was performed per-donor by running Leiden clustering, then877

assigning all the cells in each cluster a cell type label using celltypist [48]. These annotations878

were then validated based on the expression of the marker genes listed in Table 2. If a cluster could879

not be conclusively labeled with a specific cell type, the cells from that cluster were filtered out. All880

of these preprocessing steps were performed with either scanpy (for snRNA-seq) and muon (for881

scATAC-seq) [46, 49].882
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A.10 Datasheet for datasets883

Motivation884

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific885

gap that needed to be filled? Please provide a description.886

OP3 dataset was created to enable research on predicting cell-type specific transcriptomic response to887

drugs. The dataset was created intentionally with that task in mind, providing donor replicates to888

account for the variability of outcomes.889

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g.,890

company, institution, organization)?891

The authors of this paper, along with the additional scientists at Cellarity listed in the acknowledgment892

section, namely Lijun Zhao, Roman Montez, Nicole Robichaud, Nina Colon, Sakina Saif, Laura893

Isacco, and Cameron Reilly.894

Who funded the creation of the dataset? If there is an associated grant, please provide the name of895

the grantor and the grant name and number.896

This work was supported by funds from the Chan Zuckerberg Initiative, Cellarity Inc., the Helmholtz897

Association and Helmholtz Munich. This work was co-funded by the European Union (ERC,898

DeepCell -101054957).899

Any other comments?900

None.901

Composition902

What do the instances that comprise the dataset represent (e.g., documents, photos, people,903

countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and904

interactions between them; nodes and edges)? Please provide a description.905

OP3 contains scRNA-seq data of PBMCs across three donors. Cells are either control (DMSO) or906

were exposed to one of 146 drugs. It also provides multimodal (joint snRNA-seq and scATAC-seq)907

data for the same three donors at baseline. Processed data contains p-values and log-fold change per908

cell type and gene for each drug, which indicate the significance and magnitude of gene expression909

change induced by a given compound in a given cell type.910

How many instances are there in total (of each type, if appropriate)?911

There are 449650 cells collected across 576 samples in the raw scRNA-seq dataset. After filtering for912

the perturbation prediction task, this becomes 298087 cells across 567 samples.913

Meanwhile, the raw multiome snRNA-seq/scATAC-seq data contains 53086 cells, which are filtered914

down to 22591 during processing.915

Does the dataset contain all possible instances or is it a sample (not necessarily random) of916

instances from a larger set? If the dataset is a sample, then what is the larger set? Is the917

sample representative of the larger set (e.g., geographic coverage)? If so, please describe how918

this representativeness was validated/verified. If it is not representative of the larger set, please919

describe why not (e.g., to cover a more diverse range of instances, because instances were withheld920

or unavailable).921

While individual cells and samples were removed from the raw data for failing to pass quality-control,922

the raw data is available to download and represents all the samples that were collected in this923

experiment.924

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or925

features? In either case, please provide a description.926

The most raw form of the data is a collection of .bcl files from the Illumina sequencer (not released).927

These are then processed into .fastq files, which we have made available on the Sequencing Read928

Archive (SRA), as is standard practice for the computational biology field. .fastq files are then929

converted into raw counts matrices through standard Cell Ranger bioinformatics pipelines. For930
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the scRNA-seq data, the combined raw counts matrix has 449650 rows (cells) and 58676 columns931

(genes). The majority of columns contain either all zeros or very few measuremnts. For multimodal932

snRNA-seq/scRNA-seq data, the raw counts matrix has 53086 rows (cells) and 172019 columns. Of933

these columns, 36601 are gene expression measurements, while the other 135418 measure chromatin934

accessibility. Similar to the scRNA-seq data, this matrix is extremely sparse.935

Is there a label or target associated with each instance? If so, please provide a description.936

The only information that is known about any given cell with absolute certainty is which sequencing937

library, plate, and donor the cell originated from. However, if a cell can be assigned to a given well938

in the demultiplexing process (Appendix A.8), then well-level metadata, which includes compound939

treatment, can be attached to the cell. Moreover, marker gene expression can be used to label the940

majority of cells with high-confidence cell type annotations.941

The processed dataset (after DGE analysis) contains a − log10(p-value) × sign(log-fold change)942

statistic for each cell type, compound, and gene, which indicates the significance and direction of a943

gene expression change.944

Is any information missing from individual instances? If so, please provide a description, ex-945

plaining why this information is missing (e.g., because it was unavailable). This does not include946

intentionally removed information, but might include, e.g., redacted text.947

Single-cell RNA-seq data is sparse, meaning that counts for the majority of genes are missing from948

each individual cell. This sparsity is caused by a number of different factors, including stochasticity of949

gene expression and constraints on read depth per cell. In addition, the wells with certain compounds950

had few or no viable cells to sequence, which might have been a result of compound toxicity or951

experimental conditions in a given well.952

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social953

network links)? If so, please describe how these relationships are made explicit.954

Which cells belong to the same donor or were cultured on the same plate can be determined directly955

from the raw data. Among the cells that can be successfully demultiplexed (Appendix A.8), it can956

be further determined which cells came from the same well and which were treated with the same957

compound.958

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please959

provide a description of these splits, explaining the rationale behind them.960

See Appendix B.961

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a962

description.963

See Appendix I.2.964

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,965

websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees966

that they will exist, and remain constant, over time; b) are there official archival versions of the967

complete dataset (i.e., including the external resources as they existed at the time the dataset was968

created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources969

that might apply to a future user? Please provide descriptions of all external resources and any970

restrictions associated with them, as well as links or other access points, as appropriate.971

The dataset is entirely self-contained.972

Does the dataset contain data that might be considered confidential (e.g., data that is pro-973

tected by legal privilege or by doctor-patient confidentiality, data that includes the content of974

individuals non-public communications)? If so, please provide a description.975

The dataset contains human samples that were obtained with the consent of the subjects. See976

Appendix J.977

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,978

or might otherwise cause anxiety? If so, please describe why.979

No.980
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Does the dataset relate to people? If not, you may skip the remaining questions in this section.981

Yes. The data was derived from human blood samples.982

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how983

these subpopulations are identified and provide a description of their respective distributions within984

the dataset.985

Yes, we included the age, sex, BMI, race, smoker status, and CMV+ status of the donors. The data986

was collected through the general health interview described in Appendix J.987

Is it possible to identify individuals (i.e., one or more natural persons), either directly or988

indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.989

See Appendix J.990

Does the dataset contain data that might be considered sensitive in any way (e.g., data that991

reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or992

union memberships, or locations; financial or health data; biometric or genetic data; forms993

of government identification, such as social security numbers; criminal history)? If so, please994

provide a description.995

The data contains the racial origin and health information, including BMI, smoker status, and CMV+996

status of the donors that were collected through the general health interview described in Appendix J.997

In theory, unique gene expression patterns could be used to identify donors.998

Any other comments?999

None.1000

Collection Process1001

How was the data associated with each instance acquired? Was the data directly observable (e.g.,1002

raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived1003

from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was1004

reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If1005

so, please describe how.1006

We performed the scRNA-seq and multimodal snRNA-seq/scATAC-seq assays to study the effects of1007

the drugs on the gene expression, as described in Appendix A.1.1008

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or1009

sensor, manual human curation, software program, software API)? How were these mechanisms1010

or procedures validated?1011

The experiments are described in detail in Appendix A.1012

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,1013

probabilistic with specific sampling probabilities)?1014

The raw data is available to download and represents all the samples that were collected in this1015

experiment.1016

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and1017

how were they compensated (e.g., how much were crowdworkers paid)?1018

The information on sample collection is available in Appendix J.1019

Over what timeframe was the data collected? Does this timeframe match the creation timeframe1020

of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please1021

describe the timeframe in which the data associated with the instances was created.1022

Cells were collected from patients in 2021-2022, while the perturbation experiments were performed1023

at Cellarity in June and July of 2023.1024

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,1025

please provide a description of these review processes, including the outcomes, as well as a link or1026

other access point to any supporting documentation.1027
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See Appendix J.1028

Does the dataset relate to people? If not, you may skip the remaining questions in this section.1029

Yes.1030

Did you collect the data from the individuals in question directly, or obtain it via third parties1031

or other sources (e.g., websites)?1032

We purchased commercially available human tissue samples from AllCells, Inc.1033

Were the individuals in question notified about the data collection? If so, please describe (or1034

show with screenshots or other information) how notice was provided, and provide a link or other1035

access point to, or otherwise reproduce, the exact language of the notification itself.1036

Yes, see Appendix J.1037

Did the individuals in question consent to the collection and use of their data? If so, please1038

describe (or show with screenshots or other information) how consent was requested and provided,1039

and provide a link or other access point to, or otherwise reproduce, the exact language to which the1040

individuals consented.1041

Yes, see Appendix J.1042

If consent was obtained, were the consenting individuals provided with a mechanism to revoke1043

their consent in the future or for certain uses? If so, please provide a description, as well as a link1044

or other access point to the mechanism (if appropriate).1045

Yes, see Appendix J.1046

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data1047

protection impact analysis) been conducted? If so, please provide a description of this analysis,1048

including the outcomes, as well as a link or other access point to any supporting documentation.1049

See Appendix J.1050

Any other comments?1051

None.1052

Preprocessing/cleaning/labeling1053

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,1054

tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing1055

of missing values)? If so, please provide a description. If not, you may skip the remainder of the1056

questions in this section.1057

We provide the raw version of the dataset, processed, and the code used for data processing. Data1058

processing is described in Appendix A.8 and A.9.1059

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support1060

unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.1061

Raw data for both the perturbational scRNA-seq and baseline snRNA-seq/scATAC-seq data are1062

currently available through the Sequencing Read Archive (SRA) with accession PRJNA1149320.1063

Is the software used to preprocess/clean/label the instances available? If so, please provide a link1064

or other access point.1065

Yes, see github.com/theislab/task-dge-perturbation-prediction-analysis and1066

github.com/openproblems-bio/task_perturbation_prediction for the code used for data1067

processing. In addition, other steps not included in the code are outlined in Appendix A.1068

Any other comments?1069

None.1070

Uses1071

Has the dataset been used for any tasks already? If so, please provide a description.1072
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The dataset has been used for the Kaggle competition as part of the NeurIPS 2023 Competitions1073

track called Single-cell perturbation prediction: generalizing experimental interventions to unseen1074

contexts. It was also used to develop the benchmark described in this paper, see Section 3.1075

Is there a repository that links to any or all papers or systems that use the dataset? If so, please1076

provide a link or other access point.1077

The dataset will be officially released with this publication. Hence, no other papers used this dataset.1078

What (other) tasks could the dataset be used for?1079

Aside from the use outlined in this study, the dataset enables myriad other inquiries, including but not1080

limited to: the impact of different compound mechanisms of action on gene expression, the variance1081

in compound effects across donors, pathway-based analyses of perturbation effects, etc.1082

Is there anything about the composition of the dataset or the way it was collected and prepro-1083

cessed/cleaned/labeled that might impact future uses? For example, is there anything that a future1084

user might need to know to avoid uses that could result in unfair treatment of individuals or groups1085

(e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms, legal1086

risks) If so, please provide a description. Is there anything a future user could do to mitigate these1087

undesirable harms?1088

Some medical information in the dataset could be used for deanonymization. However, given the1089

limited scope of the provided data, it is highly unlikely that particular individuals or groups would be1090

unfairly treated as a result of using this dataset.1091

Are there tasks for which the dataset should not be used? If so, please provide a description.1092

Given the limited scope of this dataset, it should not be used to influence immediate medical decision-1093

making.1094

Any other comments?1095

None.1096

Distribution1097

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,1098

organization) on behalf of which the dataset was created? If so, please provide a description.1099

Yes, the dataset will be publicly available on the internet.1100

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the dataset1101

have a digital object identifier (DOI)?1102

As is standard in the computational biology field, processed counts data is publicly available through1103

the Gene Expression Omnibus (GEO) with accession GSE279945 and raw sequencing data is available1104

through the Sequencing Read Archive (SRA) with accession PRJNA1149320.1105

When will the dataset be distributed?1106

If this paper is accepted into the Datasets and Benchmarks track, the dataset will be distributed1107

publicly with the submission of the camera-ready version of the paper, at the latest. However, we will1108

likely release the dataset sooner due to interest in the single-cell research community.1109

Will the dataset be distributed under a copyright or other intellectual property (IP) license,1110

and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and1111

provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,1112

as well as any fees associated with these restrictions.1113

The dataset will be distributed under a Creative Commons license (CC BY 4.0).1114

Have any third parties imposed IP-based or other restrictions on the data associated with1115

the instances? If so, please describe these restrictions, and provide a link or other access point1116

to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these1117

restrictions.1118

No.1119
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Do any export controls or other regulatory restrictions apply to the dataset or to individual1120

instances? If so, please describe these restrictions, and provide a link or other access point to, or1121

otherwise reproduce, any supporting documentation.1122

No.1123

Any other comments?1124

None.1125

Maintenance1126

Who will be supporting/hosting/maintaining the dataset?1127

The authors of this paper. The dataset will be hosted on the GEO platform indefinitely.1128

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?1129

Contact the last author of this paper (dburkhardt@cellarity.com).1130

Is there an erratum? If so, please provide a link or other access point.1131

No.1132

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?1133

If so, please describe how often, by whom, and how updates will be communicated to users (e.g.,1134

mailing list, GitHub)?1135

If any correction is needed, such as adjustments to metadata or refiltering of cells, we will upload a1136

new version of the dataset to GEO. This will be noted on the OP3 benchmark GitHub page.1137

If the dataset relates to people, are there applicable limits on the retention of the data associated1138

with the instances (e.g., were individuals in question told that their data would be retained for a1139

fixed period of time and then deleted)? If so, please describe these limits and explain how they will1140

be enforced.1141

There is no such limit. See Appendix J.1142

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please1143

describe how. If not, please describe how its obsolescence will be communicated to users.1144

Older versions will be available to download on GEO.1145

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for1146

them to do so? If so, please provide a description. Will these contributions be validated/verified? If1147

so, please describe how. If not, why not? Is there a process for communicating/distributing these1148

contributions to other users? If so, please provide a description.1149

Changes to data postprocessing can be proposed in GitHub issues and Pull Requests at1150

github.com/openproblems-bio/task_perturbation_prediction. For all other changes,1151

contact the authors of the paper.1152

Any other comments?1153

None.1154

B Data splits1155

To derive the competition training and test splits, the compounds were divided into three groups,1156

public train, public test, and private test, at a ratio of 1:3:5. This lopsided train-test split was chosen to1157

determine whether we could model perturbation signatures in unseen cell types while only measuring1158

roughly 10% of the compounds in those cell types. Differential expression values were provided to1159

competitors for all cell types for compounds in the train set but masked in B and myeloid cells for1160

test perturbations, although they could evaluate their models against the public test set an unlimited1161

number of times. The final score was computed only on the private test set.1162
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To avoid data leakage from the test set, we fit the training and test set DE models separately. To1163

generate the training data, we fit the DE model on only the samples from the training set. To generate1164

the private and public test data, we fit the DE model to all samples in the experiment. This kept the1165

test data private and ensured the test data was the most accurate.1166

For the benchmark, we use only two splits, train and test, where the train split contains public train1167

and public test data, and the test split contains only private test data.1168

C Benchmarking representations of perturbation effect1169

C.1 Cross-donor retrieval1170

As mentioned in Section 3.3, we developed the cross-donor retrieval heuristic to compare different1171

representations of perturbation effects. This heuristic is calculated as follows. Let:1172

1. C = {c1, . . . , c140} be the list of compounds,1173

2. G = {g1, . . . , g5317} be the list of genes,1174

3. T = {t1, t2, t3, t4} be the list of cell types, and1175

4. D = {d1, d2, d3} be the list of donors.1176

First, we compute differential expression (DE) across all genes for each donor-compound-cell type1177

combination (d, c, t). Note that this is slightly different from the approach we take in computing DE1178

for the task data. In that context, we include data from all donors in our model and then add a donor1179

covariate to regress out donor-specific effects. For computing cross-donor retrieval, we compute DE1180

for each donor separately1.1181

We let pertd,c,t,g ∈ R denote the representation for gene g of the perturbation (d, c, t), and let

pertd,c,t ∈ R|G|

be the vector of representations for all genes. The for a fixed donor pair (di, dj) and cell type tk we
compute the pairwise distance matrix

∥∥∥pertdi,c1,tk
− pertdj ,c1,tk

∥∥∥ · · ·
∥∥∥pertdi,c1,tk

−pertdj ,c140,tk

∥∥∥
...

. . .
...∥∥∥pertdi,c140,tk

− pertdj ,c1,tk

∥∥∥ · · ·
∥∥∥pertdi,c140,tk

−pertdj ,c140,tk

∥∥∥

 .

Now we replace each value in this pairwise distance matrix with its (ascending) rank among the1182

values in the same row. After computing the ranked distance matrix for all three pairs of donors, we1183

extract the diagonals of these matrices. This distribution of values for various representations and1184

metrics can be seen in Figure 2 of the main paper.1185

C.2 Perturbation effect representation1186

In Figure 2, we compared the following representations:1187

1. log(counts + 1): natural log of raw counts per gene, with an additional pseudocount to1188

prevent taking the logarithm of 0.1189

2. log-fold change: base-2 logarithm of change in normalized gene expression under the effect1190

of a perturbation, taken directly from the logFC output from limma.1191

3. p-value: significance of change of gene expression, taken directly from the P.Value output1192

from limma.1193

1While there is only one well for all treatment compounds per donor (besides the positive controls), there
are 16 negative control wells for each donor. Hence, we can obtain estimates for the statistical significance of
perturbation effects by comparing gene expression in the 1 treatment well against the 16 negative control wells.
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Figure 5: Cross-donor retrieval for binarized significance. "DE X" stands for the binarized
representation, with sign indicating direction, and X indicates the threshold of significance.

4. − log10(p-value)× sign(log-fold change): the magnitude of this value correlates with the1194

statistical significance of the change in gene expression, while the sign corresponds to the1195

direction of the change.1196

5. − log10(FDR-adjusted p-value)× sign(log-fold change): the FDR-adjusted p-value is the1197

adj.P.Val output from limma, which is computed using the Benjamini-Hochberg proce-1198

dure from the original p-values.1199

In addition, we considered multiple strategies of binarizing the significance of change in gene1200

expression to cast the task as a classification problem. We found that − log10(p-value) ×1201

sign(log-fold change) performs better as a perturbation representation according to the cross-donor1202

retrieval (Figure 5).1203

D Limitations of Differential Expression Analysis1204

Predicting transcriptional differential effects using standard tools in scRNA-seq data from hetero-1205

geneous cell populations, such as PBMCs treated with targeted drugs, presents several challenges.1206

Statistically, these tools must contend with batch effects, which can arise from processing times,1207

reagents, or sequencing runs. Although adjustments for batch effects can be incorporated into the1208

analysis design, the confounding of batch and treatment effects can still obscure true biological signals.1209

Small sample sizes or high biological variability can further hinder accurate dispersion estimates of1210

parametric methods like negative binomial models, thereby reducing statistical power. This limitation1211

is especially pronounced in low-abundance cell types, where variability is high, and transcript detec-1212

tion is low. Additionally, high-quality, consistent data across all samples is recommended, which is1213

challenging in practice. Insufficient sequencing depth and biological variability between donors can1214

obscure true differential effects. Biologically, the complexity of PBMCs introduces further limitations.1215

These cells engage in intricate interactions and signaling pathways that influence transcriptional1216
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responses indirectly, complicating the identification of direct drug effects. Heterogeneity within1217

PBMC populations and baseline variability among donors can obscure drug-induced transcriptional1218

changes. To address these issues, experiments should use matched samples from the same donors and1219

apply robust normalization methods. Additionally, differential gene expression analysis may miss1220

regulatory effects at other levels, such as protein activity and epigenetic modifications. Complement-1221

ing scRNA-seq data with other omics data, such as proteomics or epigenomics, and integrating these1222

datasets can provide a more comprehensive view of drug effects.1223

E Summary of methods1224

Below, we describe 6 methods submitted by challenge participants and the control methods. Note that1225

the methods needed to be updated to generalize to different datasets, which might have impacted their1226

performance. Despite contacting the authors and our efforts, we suspect that the implementations1227

of LSTM-GRU-CNN Ensemble and Transformer ensemble might have worsened their predictions.1228

All of the methods were released under MIT license https://www.kaggle.com/competitions/1229

open-problems-single-cell-perturbations/rules.1230

E.1 Leaderboard winners1231

E.1.1 LSTM-GRU-CNN Ensemble1232

Kaggle user jeannkouagou had the highest score on the private test with a method that integrated1233

additional biological knowledge into the feature space. Towards that, they utilized ChemBERTa [30]1234

embeddings for SMILES encodings of small molecules which resulted in notable improvements in1235

predictive performance. Furthermore, a 5-fold cross-validation setting was utilized, incorporating1236

three model architectures (LSTM [50], GRU [51], and 1d-CNN [52]) with multiple loss functions1237

and three distinct input feature representations (initial, light, and heavy) to optimize model accuracy.1238

The method also included additional data augmentation techniques, such as randomly replacing input1239

features with zeros to simulate biological noise.1240

E.1.2 Transformer ensemble1241

Kaggle user Elior Kalfon proposed a method based on a transformer [53] ensemble and scored 2nd1242

place on the leaderboard. This method employed an ensemble of four transformer models, each1243

with different weights and trained on slightly varying feature sets. Their method considered both the1244

strategies for both feature normalization and data sampling. The feature engineering process involved1245

one-hot encoding of categorical labels, target encoding using mean and standard deviation, and1246

enriching the feature set with the standard deviation of target variables. Their method also considered1247

to normalize data based on both mean value and standard deviation (std), or only mean value. A1248

sophisticated sampling strategy based on K-Means clustering was employed to partition the data into1249

training and validation sets, ensuring a representative distribution. The model architecture leveraged1250

sparse and dense feature encoding, along with a transformer for effective learning.1251

E.1.3 NN retraining with pseudolabels1252

Kaggle user Okon2000 scored 3rd place in the competition leaderboard using their multi-stage1253

MLP approach. Both stages use an ensemble of MLPs that underwent individual hyperparameter1254

optimization to select model dimensions, learning rate and dropout. The first round trains an ensemble1255

of 7 MLPs to predict pseudolabels [31] for the entire test set. These pseudo labels are added to1256

the training dataset and used in the second round, where an ensemble of 20 MLPs to predict the1257

output. 4-fold cross-validation, averaged over 2 repeats per fold, was used to avoid overfitting. The1258

submission finds benefit to replacing one-hot encoding with an embedding layer, but did not find1259

improvements with various dataset denoising and label normalization schemes. The robustness of the1260

model to increasing dataset size, noisy labels, and noisy inputs is examined, demonstrating small1261

benefits to adding noise to training labels.1262
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E.2 Judge prize winners1263

E.2.1 JN-AP-OP21264

The solution by Antoine Passemiers and Jalil Nourisa earned the 1st judge prize. They employed a1265

deep neural network architecture for perturbation modeling. Initially, the training data was encoded1266

using a leave-one-out encoder based on unique pairs of compounds and cell types, converting the1267

data into a format of (n_samples, n_genes, n_encode), referred to as X, where n_encode is 2. Then,1268

the encoded data, X, was fed into the first multi-layer perceptron (MLP1). MLP1 processed X in a1269

sample-wise manner and utilized fully connected layers to learn inter-gene relationships by sharing1270

the encoded data across genes. Next, the output of MLP1 was concatenated with the original encoded1271

data X to form a new representation of (n_samples, n_genes, 2*n_encode), which merged the learned1272

encoding with the original encoding. This combined data was then inputted into a second multi-layer1273

perceptron (MLP2) in a gene-wise manner, resulting in a final representation of n_samples * n_genes.1274

E.2.2 ScAPE1275

Kagle user Los Rodríguez proposed their method named ScAPE, which won 2nd place for the1276

Judge’s award in the competition. With a similar design of chemCPA [13], the core of ScAPE is an1277

auto-encoder that utilizes drug and cell features and outputs signed log(p-values). Specifically, it1278

has separate encoders to learn the latent representations of cells and drugs, respectively. with noise1279

introduced. ScAPE computes the features as the median of signed log(p-values) from differential1280

expression analysis results calculated on single-cell level. In addition, it computes differential1281

expression on pseudobulk level to get mean log(fold-changes) as extra information. The method1282

uses cell features both in the encoding part and the decoding part of the neural network, which is1283

non-probabilistic, as the authors didn’t observe further advantages, either with respect to accuracy or1284

generalization ability, with additional variational inference. Using cell latent features during decoding1285

gives the method better scores in the leaderboard, though there’s not much improvement observed1286

during training. The model also employs a leave-one-drug-out cross-validation strategy to assess1287

generalization to unseen drugs, which ensures robust predictions by leveraging both raw fold changes1288

and the most variable genes, thus it results in a competitive performance. Besides, the authors also1289

proposed several other designs of methods and benchmarked the performances. Their exploration1290

of both the problem and methodology are well documented which could provide useful insights for1291

further studies.1292

E.2.3 Py-boost1293

This solution earned the third judge prize. Kaggle user AmbrosM implemented a gradient-boosted1294

decision tree model using the py-boost framework [54]. The data is preprocessed in two ways before1295

model training. First, -log10(pvalue)sign(lfc) values are converted to t-statistic. This mapping is1296

continuous and bijective, so there is no loss of information. Second, the training data is compressed1297

down to 50 dimensions with PCA. After training, model outputs are mapped through the (pseudo-1298

)inverse of this PCA transform, then converted back into -log10(P-value)sign(lfc).1299

E.2.4 Control methods1300

We implemented six control methods described below:1301

1. Ground truth (id: ground_truth): Return the test set as output.1302

2. Constant zero (id: zeros): Predict no differential expression for any of the samples.1303

3. Random sample (id: sample): Randomly sample counts from the training set per gene.1304

4. Mean outcome: We used three average-based baselines. One that averages over all of the1305

compounds and cell types ŷij =
∑R

i=1 ytrainij (id: mean_outcome), one that averages across1306

all of the cell types for a given compound (id: mean_across_compound), and one that1307

averages across all of the compounds for a given cell type (id: mean_across_celltypes).1308
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Table 3: Comparison of coefficient of variation across Kaggle competition cell types. We observe
high variation in T cells CD8+ and T regulatory cells in control compounds.

Cell type Dabrafenib Belinostat Dimethyl Sulfoxide

B cells 0.319051 0.338520 0.307461
Myeloid cells 0.184550 0.275649 0.185540
NK cells 0.240455 0.577534 0.222283
T cells CD4+ 0.129801 0.162064 0.106406
T cells CD8+ 0.488251 2.288442 0.498569
T regulatory cells 0.411224 1.894598 0.317219

F Competition learnings1309

F.1 Participant survey1310

We surveyed 35 competitors to learn more about the participants’ backgrounds and their experience1311

of the competition. 57% of respondents haven’t worked with single-cell data before, and the same1312

number never participated in a Kaggle competition before. 91% have not participated in an Open1313

Problems competition before. The respondents come from 16 different countries. 31% work in1314

industry, and 54% in academia. Only 9% used other single-cell datasets, and 3% used external1315

references (e.g. KEGG or Gene Ontology) in their solutions.1316

F.2 Outlier compounds1317

One of the 20 clusters identified by the Leiden algorithm (Appendix A.8) could not be conclusively1318

labeled as belonging to any particular cell type. Over 96% of the cells in this cluster were from the1319

wells of three compounds (Delanzomib, Oprozomib, and MLN2238), all of which shared the same1320

mechanism of action, proteasome inhibition. To avoid biasing the perturbation prediction models1321

with low-confidence cell type labels, these three compounds were removed from the dataset. Due to1322

either low counts induced by toxicity or high variability in cell type proportions across replicates,1323

three other compounds were also dropped: CGP60474, BXU45ZH6LI, and Alvocidib.1324

G Single-cell perturbation prediction evaluation1325

Single-cell perturbation models can also be applied to our benchmark task. According to a recent1326

single-cell perturbation benchmark, PerturBench, a latent additive model performs best in this1327

category [55]. We used the parameters from the PerturBench run that performed best on the sci-Plex1328

dataset [17]. We trained the model on unnormalized counts. We then used the limma package for1329

differential expression analysis on the predicted counts, and the resulting outcomes were used as1330

model predictions. The latent additive model performed worse than our benchmark control methods1331

according to mean row-wise RMSE and mean row-wise MAE (Table 4).1332

H Data analysis reproducibility1333

The code for reproducing the figures and data analysis, including cell type annotation and filtering,1334

is available at github.com/theislab/task-dge-perturbation-prediction-analysis. The1335

code is provided under MIT license.1336

I Benchmark details1337

Benchmark code is available at github.com/openproblems-bio/task_perturbation_prediction,1338

DOI:10.5281/zenodo.11537124. The code of the benchmark is provided under MIT license.1339
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Figure 6: High-level overview of the Kaggle competition dataset DE computation, including the
design matrix.

Figure 7: Cross-donor retrieval on the Kaggle competition dataset with cosine-similarity as a metric.
The scores of T cells CD8+ and T regulatory cells stand out.
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Table 4: Latent additive model comparison to OP3 benchmark models, sorted by mean row-wise
RMSE.

Model Mean rowwise RMSE Mean rowwise MAE

Ground truth 0.0000 0.0000
NN retraining with pseudolabels 0.7562 0.5464
LSTM-GRU-CNN Ensemble 0.7921 0.5756
Py-boost 0.7957 0.5609
Mean per cell type and gene 0.8925 0.6437
JN-AP-OP2 0.8965 0.6518
Mean per gene 0.8992 0.6356
Zeros 0.9179 0.6351
Mean per compound and gene 0.9428 0.6979
Latent additive 1.162 0.8223

a
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Ground truth

c
Model

Per-drug MRRMSE with number of differentially expressed genes (DEGs)

MRRMSE with bootstrapping

Distribution of predictions and ground truth

Figure 8: Benchmark results. (a) Results of rerunning the methods with dataset bootstrapping with
10 bootstraps. The error bars are standard deviation. Note that bootstrapping was performed by
sampling cells in both the training and test sets. (b) Distribution of ground truth and the predictions
of the top-performing method, NN retraining with pseudolabels. We note that the predictions are
biased toward lower than true significance. (c) Per-drug MRRMSE and the fraction of genes for a
given compound with a P-value lower than 0.01 (the latter shown with a bar chart). We note that the
errors are larger for compounds with a high fraction of DEGs. The differences in errors across the
methods and the baseline are smaller in samples with a low fraction of DEGs.

36



Community

Contribute Execute on

Publish
results

Form best
practices Task pageOverall

Task description

Funky heatmap

Results table

openproblems-bio/website

GitHub Actions

Netlify

About

Benchmark results

Competition pages

Team

Documentation

Metadata tables

Technologies

Quality control checks

Quarto

Result json files

Benchmark
componentsDatasets

Method

Control methods

Metrics

Benchmark workflow

openproblems-bio/task-perturbation-prediction

Filter observations

Compute pseudobulk

Run limma

File and component formats File and component formats

For each
component

Stability analysis

Filter variables

Component API

Unit test

Docker image

File format specs

Nextflow module

Script

Cloud
compute

Figure 9: An overview of the technology stack of the perturbation prediction living benchmark within
the OpenProblems ecosystem.

Data formats: To ensure interoperability between components, the repository uses AnnData [56] as1340

the standard data format for both input and output files of components, and strict requirements are1341

imposed on the format of these files.1342

Components: Workflows are comprised of Viash components and are themselves also Viash compo-1343

nents [57]. A Viash component is a small amount of metadata combined with a script implemented1344

in Python, R, Bash, or Nextflow. Viash can use this information to build a component-specific1345

Docker container, and turn the component into a Docker-backed Nextflow workflow. These Nextflow1346

workflows can be used as a standalone module, or as a submodule for another workflow.1347

I.1 Workflows1348

The repository consists of three main workflows: process_dataset, run_benchmark, and1349

run_stability_analysis (Figure 10).1350

I.2 Workflow: Process dataset1351

The data processing steps used to transform the single-cell RNA-seq expression matrix into the1352

Perturbation Differential Gene Expression (DGE) matrix for the perturbation prediction task (Figure1353

10 top). It consists of the following components:1354

• Filter obs: Remove low-quality observations from the dataset. The conditions are designed1355

to exclude cells that could introduce bias or noise into the downstream analysis, such as1356

cells from certain donors, cells treated with certain molecules, or certain cell types.1357

• Compute pseudobulk: Aggregate cell types into pseudobulks.1358

• Filter vars: Subset the genes1359

• Limma on train: Run limma on the train and control splits, per cell type and per small1360

molecule. The resulting information is stored as an AnnData object we call DE train.1361

• Limma on train and test: Run limma on train, control and test split, per cell type and per1362

small molecule. The resulting information is stored as an AnnData object we call DE test.1363

• Extract ID map: Extract a data frame containing a combination of the cell types and small1364

molecules which methods will need to predict. The resulting information is called ID map.1365

37



Run benchmark

Filter
observations

Single-cell
counts

Compute
pseudobulk

Filter
variables

Limma on
train

Pseudobulk
counts

Limma on
train & test

DE train

DE test

Extract
ID map

ID map

Process dataset

Metric
values

Normalize
scores

Prediction

DE train

ID map

DE test

Normalized
scores

Method

Control
method

Metric

Stability analysis

Single-cell
counts

Bootstrapped
counts

DE trainBootstrap

DE test

ID map

Normalized
scores

Process
dataset

Run
benchmark

Viash
component

HDF5-backed
AnnData

Node Scripting language

R

Python
Nextflow

Figure 10: The different workflows used to perform the analyses in this study, process_dataset,
run_benchmark, and run_stability_analysis. Each workflow uses HDF5-backed AnnData
(h5ad) files (grey rectangle) as a common data format, and is comprised of Viash components (purple
rhombus) implemented in Nextflow, Python, or R. Since each workflow is also a Viash component, it
can in turn be used as a subworkflow of a larger workflow.

I.3 Workflow: Run benchmark1366

Evaluate the performance of methods and control methods using a set of metrics (Figure 10 middle).1367

This workflow accepts the DE train, DE test and ID map objects and inputs and runs the various1368

control methods and methods on it. Each prediction generated by the methods is evaluated using1369

each of the metrics. In the end, all output results is stored, alongside the dataset metadata, method1370

metadata, metric metadata, and runtime resource information. The workflow consists of the following1371

components:1372

• Method: A method for predicting the perturbation response of small molecules on certain1373

cell types.1374

• Control method: A control method to serve as a quality control for the perturbation1375

prediction benchmark.1376

• Metric: A metric to compare a perturbation prediction to the ground truth.1377

• Normalize scores: Normalise the metric values by min-max scaling the values between the1378

worst control method result and the best control method result.1379
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I.4 Workflow: Stability analysis1380

This workflow is used to perform a stability analysis of the methods (Figure 10 bottom). It bootstraps1381

the original single-cell counts matrix, and runs the Process dataset and Run benchmark workflows to1382

perform a benchmark on each of the bootstrapped datasets. It consists of the following components:1383

• Bootstrap: This component bootstraps the single-cell dataset by sampling the same number1384

of cells with replacement from the dataset.1385

• Process dataset: The process dataset workflow mentioned earlier.1386

• Run benchmark: The run benchmark workflow mentioned earlier.1387

I.5 Execution environment1388

Workflows were executed on AWS Batch, where components could run completely in parallel1389

depending on the topology of the workflow. Components were run on different instance types1390

depending on the specific memory / CPU / GPU requirements of the component. The following is a1391

list of suitable instance types depending on the requirements of the component:1392

• GPU required: g4dn.8xlarge, 32 vCPUs, 128 GB memory, 1 Nvidia T4 GPU.1393

• Low memory: m4.2xlarge, 8 vCPUs, 32 GB memory1394

• Medium memory: m4.4xlarge, 16 vCPUs, 64 GB memory1395

• High memory: m4.10xlarge, 40 vCPUs, 160 GB memory1396

All method components required a GPU to run, whereas dataset processing components, control1397

methods, and metrics did not require a GPU to run.1398

A run of the run_benchmark workflow requires:1399

• 216 jobs on non-GPU and GPU instances1400

• Wall time: 3h 2m1401

• CPU time: 173 CPU hours1402

• Total memory: 232 GB1403

• Disk read: 24 GB1404

• Disk write: 27 GB1405

A run of the run_stability_analysis requires the following resources:1406

• 1271 jobs on non-GPU and GPU instances1407

• Wall time: 6h 52m1408

• CPU time: 2162 CPU hours1409

• Total memory: 3101 GB1410

• Disk read: 321 GB1411

• Disk write: 440 GB1412

J Informed consent for PBMC donors1413

For this study, we purchase commercially available human tissue samples from AllCells, Inc. AllCells1414

is a tissue bank licensed by the State of California Department of Public Health, USA (Tissue Bank1415

ID#: CTB 00080812). AllCells is responsible for maintaining IRB approval for all human subjects1416

research. Below is one of the informed consent documents signed by one of the donors (name and1417

signature redacted). More information is available from AllCells upon request.1418
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IRB APPROVED 
AS MODIFIED 

Nov 09, 2021 

USE OF SAMPLES AND INFORMATION 

Samples may be used to explore possible links between different types of molecules (for 
example, DNA, RNA, proteins) and features of the people (for example, age, gender, family 
history of certain medical conditions). The medical conditions studied will be widespread 
including some that you may not have. None of the results will be linked directly to you. They 
will be linked only to the group of people. Researchers may perform a variety of tests including 
genetic tests, tests of the cells that make up your samples, DNA or RNA sequencing or gene 
editing and even future medical research that is currently unknown at this time. 

Your samples may be stored in ways that allow the cells to grow and multiply. These multiplying 
cells may grow to what is called a cell line. Cell lines can be used for many future studies and 
these cells may be kept alive for many years. None of your donated samples will be infused into 
another human being. 

Researchers may develop products based on things they learn from your samples. Any 
information obtained by the researchers as a result of testing your samples will not be provided 
to you, as applicable. Any applicable information provided to you will come from the Study 
Doctor. These researchers will use your samples as needed and destroy unused portions per 
government regulations. The tests done on your samples are for research purposes only. 

NEW INFORMATION 

You will be told about any new information that might change your decision to be in this Study. 
You may be asked to sign a new Consent if this occurs. 

BENEFITS 

If you agree to take part in this Study, there will be no direct medical benefit to you. 

COSTS 

There are no costs to you for taking part in the Study. 

COMPENSATION FOR PARTICIPATION 

You will be compensated for the time and effort you devote to this Study. The compensation for 
taking part is up to     . 

The site where the procedure is performed will be reimbursed in accordance with separately 
negotiated agreements between the Site and the Sponsor. 

COMMERCIAL USES 

Any samples you provide that are used in research may result in new products, tests, or 
discoveries. In some instances, these developments may have commercial value. There are no 
plans for you to share in any financial benefits from these products, tests, or discoveries. 
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CONSENT TO PARTICIPATE IN THE STUDY 

IRB APPROVED 
AS MODIFIED 

Nov 09, 2021 

I have read this Consent ( or it has been read to me). All my questions about the Study and my 
part in it have been answered. I freely and voluntarily consent to take part in this Study. 
By signing this Consent, I give permission for my samples and limited health information to be 
used and stored for current and future research of my medical diagnosis or other medical 
diagnoses. 
By signing this consent form, I have not given up any of my legal rights. 

�d::� D�� .J -�� 

Subject's Name (Printed) 

PERSON CONDUCTING INFORMED CONSENT DISCUSSION: 

/;).: 54 f'Time 

I confirm that the Study was thoroughly explained to the subject, including but not limited to the 
risks and benefits of participation, and that it is voluntary. I reviewed the Consent with the subject 
and answered the subject's questions. The subject appeared to have understood the information 
with verbal recall about the Study upon my questioning. 

Informed Consent Discuss10n 

Informed Consent Discussion 
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