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ABSTRACT

Recent years have witnessed significant progress in developing effective training
and fast sampling techniques for diffusion models. A remarkable advancement is
the use of stochastic differential equations (SDEs) and their marginal-preserving
ordinary differential equations (ODEs) to describe data perturbation and genera-
tive modeling in a unified framework. In this paper, we carefully inspect the ODE-
based sampling of a popular variance-exploding SDE and reveal several intriguing
structures of its sampling dynamics. We discover that the data distribution and the
noise distribution are smoothly connected with a quasi-linear sampling trajectory
and another implicit denoising trajectory that even converges faster. Meanwhile,
the denoising trajectory governs the curvature of the corresponding sampling tra-
jectory and its various finite differences yield all second-order samplers used in
practice. Furthermore, we establish a theoretical relationship between the opti-
mal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm,
with which we can characterize the asymptotic behavior of diffusion models and
identify the empirical score deviation.

1 INTRODUCTION

Diffusion models, or score-based generative models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020; Song et al., 2021c) have attracted growing attention and seen impressive suc-
cess in various domains, including image (Dhariwal & Nichol, 2021; Rombach et al., 2022), video
(Ho et al., 2022; Blattmann et al., 2023), audio (Kong et al., 2021; Chen et al., 2021), and especially
text-to-image synthesis (Saharia et al., 2022; Ruiz et al., 2023). Such models are essentially gov-
erned by a certain kind of stochastic differential equations (SDEs) that smooth data into noise in a
forward process and then generate data from noise in a backward process (Song et al., 2021c).

Generally, the probability density in the forward SDE evolves through a spectrum of Gaussian kernel
density estimates of the original data with varying bandwidths. As such, one can couple theoreti-
cally infinite data-noise pairs and train a noise-dependent neural network (a.k.a. diffusion model) to
minimize the mean square error for data reconstruction. Once such a denoising model with suffi-
cient capacity is well optimized, it will faithfully capture the score (gradient of the log-density w.r.t.
the input) of the data density smoothed with various levels of noise (Raphan & Simoncelli, 2011;
Bengio et al., 2013; Karras et al., 2022). The generative ability is then emerged by simulating the
(score-based) backward SDE with any numerical solvers. Alternatively, we can simulate the corre-
sponding ordinary differential equation (ODE) that preserves the same marginal distributions as the
SDE (Song et al., 2021c;a; Lu et al., 2022; Zhang & Chen, 2023). The deterministic ODE-based
sampling gets rid of the stochasticity, apart from the randomness of drawing initial samples, and
thus makes the whole generative process more comprehensible and controllable (Song et al., 2021a;
Karras et al., 2022). However, more details about how diffusion models behave under this dense
mathematical framework are still currently unknown.

In this paper, we provide a geometric perspective to facilitate an intuitive understanding of diffusion
models, especially their sampling dynamics. The state-of-the-art variance-exploding SDE (Karras
et al., 2022) is taken as the main example to reveal the underlying intriguing structures. Our empiri-
cal observations (Section 3) are summarized and illustrated in Figure 1. Given an initial sample from
the noise distribution, the difference between its denoising output and its current position forms the
score direction for simulating the sampling trajectory. This explicit trajectory is almost straight such
that the ODE simulation can be greatly accelerated at a modest cost of truncation error. Besides, the
denoising output itself forms another implicit trajectory that quickly appears decent visual quality,
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Figure 1: The geometric picture of ODE-based sampling in diffusion models. An initial sample
(from the noise distribution) starts from a big sphere and converges to its final sample (in the data
manifold) along a smooth, quasi-linear sampling trajectory. Meanwhile, its denoising output lays in
an implicit, smooth denoising trajectory starting from the approximate dataset mean. The denoising
output is relatively close to the final sample and converges much faster in terms of visual quality.

which offers a simple way to accelerate existing samplers (Section 3.2). Intriguingly, the derivative
of denoising trajectory shares the same direction as the negative second-order derivative of sampling
trajectory, and in principle, all previously developed second-order samplers can be derived from the
specific finite differences of the denoising trajectory (Section 4). Overall, these two trajectories fully
depict the ODE-based sampling process in diffusion models.

Furthermore, we establish a theoretical relationship between the optimal ODE-based sampling and
(annealed) mean shift (Comaniciu & Meer, 2002; Shen et al., 2005), which implies that each single
Euler step in sampling actually moves the given sample to a convex combination of annealed mean
shift and its current position. Meanwhile, the sample likelihood increases from the current position
to the vicinity of the mean-shift position. This property guarantees that under a mild condition, the
likelihood of each sample in the denoising trajectory consistently surpasses its counterpart from the
sampling trajectory (Section 5), and thus the visual quality of the former generally exceeds that of
the latter. The theoretical connection also helps to identify different behaviors of the empirical score,
and based on which, we argue that a slight score deviation from the optimum ensures the generative
ability of diffusion models while greatly alleviating the mode collapse issue (Section 6). Finally, the
geometric perspective enables us to better understand distillation-based consistency models (Song
et al., 2023) (Appendix D) and latent interpolations in practice (Appendix E).

2 PRELIMINARIES

We begin with a brief overview of the basic concepts in developing score-based generative models.
With the tool of stochastic differential equations (SDEs), the data perturbation in diffusion models
is modeled as a continuous stochastic process {xt}Tt=0 (Song et al., 2021c; Karras et al., 2022):

dx = f(x, t)dt+ g(t)dwt, f(·, t) : Rd → Rd, g(·) : R→ R, (1)
where wt is the standard Wiener process; f(·, t) and g(t) are drift and diffusion coefficients, respec-
tively (Oksendal, 2013). We denote the distribution of xt as pt(x) and such an Itô SDE smoothly
transforms the empirical data distribution p0(x) = pd(x) to the (approximate) noise distribution
pT (x) ≈ pn(x) in a forward manner. By properly setting the coefficients, some established models
referred to as variance-preserving (VP) and variance-exploding (VE) SDEs can be recovered (Song
& Ermon, 2019; Ho et al., 2020; Song et al., 2021c). The reversal of Eq. (1) is another SDE that
allows to synthesize data from noise in a backward manner (Feller, 1949; Anderson, 1982). Re-
markably, there exists a probability flow ordinary differential equation (PF-ODE) sharing the same
marginal distribution {pt(x)}Tt=0 as the reverse SDE at each time step of the diffusion process:

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (2)

The deterministic nature of ODE offers several benefits including efficient sampling, unique encod-
ing, and meaningful latent manipulations (Song et al., 2021c;a). We thus choose Eq. (2) to ana-
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lyze model behaviors throughout this paper. Simulating the above ODE requests having the score
function ∇x log pt(x) in hand (Hyvärinen, 2005; Lyu, 2009), which is typically estimated with the
denoising score matching (DSM) criterion (Vincent, 2011; Song & Ermon, 2019). From the per-
spective of empirical Bayes (Robbins, 1956; Efron, 2011; Saremi & Hyvärinen, 2019), there exists
a profound connection between DSM and denoising autoencoders (DAEs) (Vincent et al., 2008;
Bengio et al., 2013; Alain & Bengio, 2014) (see Appendix A.1). Therefore, we can equivalently
obtain the score function at each noise level by solving the corresponding least squares estimation:

Ex∼pdEz∼N(0,σ2
t I)
‖rθ(x̂;σt)− x‖22, where x̂ = x + z. (3)

The overall training loss is a weighted combination of Eq. (3) across all noise levels, with the weights
reflecting our emphasis on visual quality or density estimation (Song et al., 2021b). Unless other-
wise specified, we follow the configuration of EDMs (Karras et al., 2022). In this case, f(x, t) = 0,
g(t) =

√
2t, σt = t, the perturbation kernel pt(x̂|x) = N(x̂;x, t2I), and the kernel density estimate

pt(x̂) =
∫
pd(x)pt(x̂|x)dx. The optimal estimator for Eq. (3) is given by the conditional expecta-

tion E(x|x̂), or specifically, r?θ(x̂; t) = x̂ + t2∇x̂ log pt(x̂) as revealed in the literature (Raphan &
Simoncelli, 2011; Karras et al., 2022). In practice, we assume that this connection approximately
holds after the model training converges, and plug∇x log pt(x) ≈ (rθ(x; t)− x)/t2 into Eq. (2) to
derive the empirical PF-ODE:1

dx =
x− rθ(x; t)

t
dt. (4)

As for sampling, we first draw x̂tN ∼ pn(x) = N(0, T 2I) and then numerically solve the ODE
backwards with N steps to obtain a sampling trajectory {x̂t} with t ∈ {t0 = 0, t1, · · · , tN = T}.2
The final sample x̂t0 is considered to approximately follow the data distribution pd(x).

Besides, we denote another important yet easy to be ignored sequence as {rθ(x̂t, t)} or simplified to
{rθ(x̂t)} if there is no ambiguity, and designate it as denoising trajectory. The following proposition
reveals that a denoising trajectory is inherently related with the tangent of a sampling trajectory. The
visual examples of these two trajectories are provided in the second and third rows of Figure 5.

Proposition 1. The denoising output rθ(x; t) reflects the prediction made by a single Euler step
from any sample x at any time toward t = 0 with Eq. (4).

Proof. The prediction of such an Euler step equals to x + (0− t) (x− rθ(x; t)) /t = rθ(x; t).

This property was previously mentioned in (Karras et al., 2022) to advocate the use of Eq. (4) for
ODE-based sampling. There, Karras et al. (2022) suspected that this sampling trajectory is approxi-
mately linear across most noise levels due to the slow change in denoising output, and verified it in a
1D toy example. In contrast, we provide an in-depth analysis of the high-dimensional trajectory with
real data and discover more intriguing structures, especially those related to the denoising trajectory
(Sections 3.2 and 4), and reveal a theoretical connection to the classic mean shift (Section 5).

3 VISUALIZATION OF HIGH DIMENSIONAL TRAJECTORY

In this section, we present several tools to inspect the trajectory of probability flow ODE in high-
dimensional space. We mostly take unconditional generation on CIFAR-10 as an example to demon-
strate our observations. The conclusions also hold on other datasets (such as LSUN, ImageNet) and
other model settings (such as conditional generation, various network architectures). More results
and implementation details are provided in Appendix F.

We adopt d(·, ·) to denote the `2 distance. Take the sampling trajectory as an example, the distance
between a given sample x̂tn and the final sample x̂t0 is denoted as d(x̂tn , x̂t0). The trajectory devia-
tion is calculated as the distance between each intermediate sample x̂tn and the straight line passing
through two endpoints [x̂t0 x̂tN ], and denoted as d(x̂tn , [x̂t0 x̂tN ]). The expectation quantities (e.g.,
distance, magnitude) in every time steps are estimated by averaging 50k generated samples.

1There seems to be a slight notation ambiguity. Generally, rθ(·) refers to a converged model in our paper.
2The time horizon is divided with the formula tn = (t

1/ρ
1 + n−1

N−1
(t

1/ρ
N − t

1/ρ
1 ))ρ, where t1 = 0.002,

tN = 80, n ∈ [1, N ] and ρ = 7 (Karras et al., 2022).
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(a) The statistics of magnitude. (b) The statistics of the sampling (top) and denoising (bottom) trajectories.

Figure 2: (a) The sample magnitude (`2 norm) expands in the forward process (brown curve) while
shrinking in the backward process (gray circles). (b) Each trajectory deviation (red curve) is calcu-
lated as d(x̂tn , [x̂t0 x̂tN ]) or d(rθ(x̂tn), [rθ(x̂t1)rθ(x̂tN )]), respectively, leading to Observation 1.
The distance (blue curve) between the final sample and generated intermediate samples is calculated
as d(x̂tn , x̂t0) or d(rθ(x̂tn), rθ(x̂t1)), respectively, leading to Observation 2.

3.1 FORWARD DIFFUSION PROCESS

As discussed in Section 2, the forward process is generally interpreted as a progressive smoothing
from data to noise with a series of Gaussian perturbation kernels. We further paraphrase it as the
expansion of magnitude and manifold, which means that samples escape from the original small-
magnitude low-rank manifold and settle into a large-magnitude high-rank manifold.

Proposition 2. Given a high-dimensional vector x ∈ Rd and an isotropic Gaussian noise z ∼
N(0;σ2Id), σ > 0, we have E ‖z‖2 = σ2d, and with high probability, z stays within a “thin shell”:
‖z‖ = σ

√
d±O(1). Additionally, E ‖x + z‖2 = ‖x‖2 + σ2d, limd→∞ P (‖x + z‖ > ‖x‖) = 1.

The proofs are provided in Appendix C.2. Proposition 2 implies that in the forward process, the
squared magnitude of the noisy sample x+z is expected to be larger than that of the original sample
x, and their magnitude gap becomes especially huge for the high-dimensional case d� 1 and severe
noise case σ � 0. We can further conclude that as d→∞, the sample magnitude will expand with
probability one and the isotropic Gaussian noise will distribute as a uniform distribution on the
sphere (Vershynin, 2018). In practical generative modeling, d is sufficiently large to make this claim
approximately correct. The low-rank data manifold is thus lifted to about d−1 rank sphere of radius
σ
√
d, with a thin shell of width O(1). In Figure 2a, we track the magnitude of original data in the

forward process and the magnitude of synthetic samples in the backward process. A clear trend is
that the sample magnitude expands in the forward diffusion process and shrinks in the backward
generative process, and they are well-matched thanks to the marginal preserving property.

3.2 BACKWARD GENERATIVE PROCESS

It is challenging to visualize the whole sampling trajectory and the associated denoising trajectory
laying in a high-dimensional space. In this paper, we are particularly interested in their geometric
properties, and find that each trajectory exhibits a surprisingly simple form. Our observations, which
have been confirmed by empirical evidence, are elaborated in the following paragraphs.

Observation 1. The sampling trajectory is almost straight while the denoising trajectory is bent.

We propose to employ trajectory deviation to assess the linearity of trajectories. From Figure 2b, we
can see that the deviation of sampling trajectory and denoising trajectory (red curves) gradually in-
creases from t = 80 to around t = 10 or t = 5, respectively, and then quickly decreases until reach-
ing their final samples. This implies that each initial sample may be affected by all possible modes
with a large influence at first, and become intensely attracted by its unique mode after a turning
point. This phenomenon also supports the strategy of placing time intervals densely near the mini-
mum timestamp yet sparsely near the maximum one (Song et al., 2021a; Karras et al., 2022; Song
et al., 2023). However, based on the ratio of maximum deviation (e.g., maxE [d(x̂tn , [x̂t0 x̂tN ])])
to the endpoint distance (e.g., E [d(x̂t0 , x̂tN )]) in Figure 2b, the deviation of sampling trajectory is
incredibly small (about 16/4428 ≈ 0.0036), while the deviation of denoising trajectory is relatively
significant (about 7/26 ≈ 0.27), which indicates that the former is much straighter than the latter.
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(a) LSUN Cat (256×256). (b) LSUN Bedroom (256×256). (c) ImageNet-64 (64×64).

Figure 3: The comparison of visual quality (top is sampling trajectory, bottom is denoising trajec-
tory) and Fréchet Inception Distance (FID (Heusel et al., 2017), lower is better) w.r.t. the number
of score function evaluations (NFEs). More results are provided in Appendix F.5. The denoising
trajectory converges much faster than the sampling trajectory in terms of FID and visual quality.

Another evidence for the quasi-linearity of sampling trajectory is from the aspect of angle deviation,
which is calculated by the cosine similarity between the backward ODE direction and the direction
pointing to the final sample (x̂t0−x̂tn) at the intermediate time tn. We find that cos(−dxt

dt

∣∣
tn
, (x̂t0−

x̂tn)) always stays in a narrow range from 0.98 to 1.00 (Appendix F.2), which indicates the angle-
based trajectory deviation is extremely small and all backward ODE directions almost exactly point
to the final sample. Therefore, each initial sample converges monotonically and rapidly by moving
along the sampling trajectory, similar to the behavior of gradient descent algorithm in a well-behaved
convex function. This claim is confirmed by blue curves in Figure 2b, and summarized as follows
Observation 2. The generated samples on the sampling trajectory and the denoising trajectory both
move monotonically from the initial points toward their final points in expectation.

Observations 1 and 2 enable us to safely adopt large Euler steps or higher-order ODE solvers with-
out incurring much truncation error (Song et al., 2021c; Liu et al., 2022; Karras et al., 2022; Lu
et al., 2022). Additionally, we provide the visual quality and FID comparison between the sampling
trajectory and the denoising trajectory in Figure 3, and we have the following observation
Observation 3. The denoising trajectory converges faster than the sampling trajectory in terms of
visual quality, FID, and sample likelihood.

The theoretical guarantee w.r.t sample likelihood is provided in Section 5 (Theorem 1). This ob-
servation inspires us to develop a new sampler named as ODE-Jump that directly jumps from any
sample at any time in the original sampling trajectory simulated by any ODE solver to the associ-
ated denoising trajectory, and returns the denoising output as the final synthetic image. Specifically,
we change the sampling sequence from x̂tN → x̂tN−1

→ · · · → x̂tn → · · · → x̂t1 → x̂t0 to
x̂tN → x̂tN−1

→ · · · → x̂tn → rθ(x̂tn), and the total NFE reduces from N to N − n + 1 if
first-order samplers are used. This simple algorithm is highly flexible, extremely easy to implement.
We only need to monitor the visual quality of synthetic samples in the implicit denoising trajectory
and decide when to interrupt the sampling trajectory and make a jump. Take the sampling on LSUN
Bedroom illustrated in Figure 3b as an example, we perform a jump from NFE=54 of the sampling
trajectory into NFE=55 of the denoising trajectory and stop the subsequent process. In this step, we
achieve a significant FID improvement (from 85.8 to 11.4) and obtain a visually comparable sample
with the final one in the original sampling trajectory (NFE=79) at a much less NFE.

All above observations make the picture of ODE-based sampling, as depicted in Figure 1. Geomet-
rically, the initial noise distribution starts from a big sphere and then anisotropically squashes its
“radius” and twists the sample range into the exact data manifold. Meanwhile, the distribution of
denoising outputs initially approximates a Dirac delta function centering in the dataset mean, and
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Table 1: Each second-order ODE-based sampler listed below corresponds to a specific finite differ-
ence of the denoising trajectory. γ denotes a correction coefficient of forward differences. DDIM is a
first-order sampler listed for comparison. GENIE trains a neural network to approximate high-order
derivatives. rθ(x̂tn+2) in S-PNDM and DEIS denotes a previous denoising output. sn =

√
tntn+1

in DPM-Solver-2. x̂′tn in EDMs denotes the output of an intermediate Euler step.

ODE solver-based samplers drθ(x̂tn+1
)/dt γ

DDIM (Song et al., 2021a) None None
GENIE (Dockhorn et al., 2022) Neural Networks None
S-PNDM (Liu et al., 2022) γ

(
rθ(x̂tn+1

)− rθ(x̂tn+2
)
)
/(tn − tn+1) 1

DEIS (ρAB1) (Zhang & Chen, 2023) γ
(
rθ(x̂tn+1

)− rθ(x̂tn+2
)
)
/(tn+1 − tn+2) 1

DPM-Solver-2 (Lu et al., 2022) γ
(
rθ(x̂sn)− rθ(x̂tn+1)

)
/ ((tn − tn+1)/2) tn+1/sn

EDMs (Heun) (Karras et al., 2022) γ
(
rθ(x̂′tn)− rθ(x̂tn+1

)
)
/(tn − tn+1) tn+1/tn

then anisotropically expands its range until exactly matching the data manifold. These two processes
are governed by the simple and smooth sampling trajectory and its associated denoising trajectory.

4 FINITE DIFFERENCES OF DENOISING TRAJECTORY

To accelerate the sampling speed of diffusion models, various numerical solver-based samplers have
been developed in the past several years (Song et al., 2021a;c; Karras et al., 2022; Lu et al., 2022;
Zhang & Chen, 2023). In particular, second-order ODE-based samplers are relatively promising in
the practical use since they strike a good balance between fast sampling and decent visual quality
Rombach et al. (2022); Balaji et al. (2022). More discussion is provided in Appendix D.

In this section, we point out that intriguingly, these prevalent techniques implicitly employ the tan-
gent of denoising trajectory to reduce the truncation error along the sampling trajectory. The proba-
bility flow ordinary differential equation of the denoising trajectory is presented as follows

Proposition 3. The ordinary differential equation of the denoising trajectory (denoising-ODE) is

drθ(x; t)

dt
= −td

2x

dt2
. (5)

Proof. Since rθ(x; t) = x−tdxdt from Eq. (4), we have drθ(x;t)
dt = dx

dt−
(

dx
dt + td

2x
dt2

)
= −td

2x
dt2 .

This equation reveals that the denoising trajectory encapsulates the curvature or concavity informa-
tion of the associated sampling trajectory. Given a sample x̂tn+1 , the second-order Taylor polyno-
mial approximation of the sampling trajectory with Eq. (4) is

x̂tn = x̂tn+1
+
tn − tn+1

tn+1

(
x̂tn+1

− rθ(x̂tn+1
)
)
− 1

2

(tn − tn+1)2

tn+1

drθ(x̂tn+1)

dt
, (6)

where various finite differences of drθ(x̂tn+1)/dt essentially correspond to a series of second-order
samplers, as shown in Table 1. The detailed derivations are provided in Appendix B.

5 THEORETICAL CONNECTION TO MEAN SHIFT

Given a parametric diffusion model with the denoising output rθ(·), the sampling trajectory is sim-
ulated by numerically solving Eq. (4), and meanwhile, an implicitly coupled denoising trajectory
is formed as a by-product. We next derive the formula of optimal denoising output to analyze the
asymptotic behavior of diffusion models as they approach the optima.

Proposition 4. The optimal denoising output of Eq. (3) is a convex combination of the original data,
where each weight is calculated based on the time-scaled and normalized `2 distance between x̂ and
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xi belonging to the dataset D:

r?θ(x̂;σt) =
∑
i

uixi =
∑
i

exp
(
−‖x̂− xi‖2/2σ2

t

)∑
j exp (−‖x̂− xj‖2/2σ2

t )
xi,

∑
i

ui = 1. (7)

The proof is provided in Appendix C.3. This equation appears to be highly similar to the well-known
non-parametric mean shift (Fukunaga & Hostetler, 1975; Cheng, 1995; Comaniciu & Meer, 2002;
Yamasaki & Tanaka, 2020), and we provide a brief overview of it as follows.

Mean shift with a Gaussian kernel and bandwidth h iteratively adds a vector m(x)−x, which points
toward the maximum increase in the kernel density estimate ph(x) = 1

N

∑
iN(x;xi, h

2I), to the
current point x, i.e., x← [m(x)− x] + x. The mean vector is

m(x, h) =
∑
i

vixi =
∑
i

exp
(
−‖x− xi‖2/2h2

)∑
j exp (−‖x− xj‖2/2h2)

xi, xi ∈ D,
∑
i

vi = 1. (8)

From the interpretation of expectation-maximization (EM) algorithm, mean shift converges from
almost any initial point with a generally linear convergence rate (Carreira-Perpinan, 2007). As a
mode-seeking algorithm, it has shown particularly successful in clustering (Cheng, 1995; Carreira-
Perpinán, 2015), image segmentation (Comaniciu & Meer, 2002) and video tracking (Comaniciu
et al., 2003). In fact, the ODE-based sampling of diffusion models is closely connected with an-
nealed mean shift, or multi-bandwidth mean shift (Shen et al., 2005). Annealed mean shift, which
was developed as a metaheuristic algorithm for global model seeking, initializes a sufficiently large
bandwidth and monotonically decreases it in iterations (Shen et al., 2005). By treating the optimal
denoising output as the mean vector in annealed mean shift, we have the following proposition

Proposition 5. Given an optimal probability flow ODE dx =
x−r?θ(x;t)

t dt, one Euler step equals to
a convex combination of the annealed mean shift and the current position.

Proof. Given a current sample x̂tn+1 , n ∈ [0, N − 1], the prediction of a single Euler step equals to

x̂?tn = x̂tn+1 +
tn − tn+1

tn+1

(
x̂tn+1 − r?θ(x̂tn+1 ; tn+1)

)
=

tn
tn+1

x̂tn+1 +
tn+1 − tn
tn+1

m(x̂tn+1 ; tn+1),

(9)
where x̂?tn denotes the generated sample from the optimal PF-ODE, and we treat the discrete time
tn+1 in r?θ(x̂tn+1 ; tn+1) as the annealing-like bandwidth of Gaussian kernel in Eq. (8).

Similarly, for the empirical PF-ODE in Eq. (4), each Euler step equals to a convex combination
of the denoising output rθ(·) and the current position. Since the optimal denoising output, or an-
nealed mean shift, starts with a spurious mode (dataset mean) and converges toward a true mode
over time, a reasonable choice is to gradually increase its weight in the sampling. In this sense, var-
ious time-schedule functions (such as uniform, quadratic, polynomial (Song & Ermon, 2019; Song
et al., 2021a; Karras et al., 2022)) essentially boil down to different weighting functions. This inter-
pretation inspires us to directly search proper weights rather than noise schedules with a parametric
neural network for better visual quality (Kingma et al., 2021).

Proposition 5 also implies that once a diffusion model has converged to the optimum, all ODE tra-
jectories will be uniquely determined and governed by a bandwidth-varying mean shift. In this case,
the forward (encoding) process and backward (decoding) process only depend on the data distribu-
tion and the given noise distribution, regardless of model architectures or perturbation kernels. Such
a property was previously referred to as uniquely identifiable encoding and empirically verified in
(Song et al., 2021c), while we theoretically characterize the optimum with annealed mean shift, and
thus reveal the asymptotic behavior of diffusion models.

Furthermore, we prove that under a mild condition, the sample likelihood keeps increasing unless
x̂tn = rθ(x̂tn), whether the sample advances along the sampling trajectory or jumps into the de-
noising trajectory. This offers a theoretical guarantee about our observed geometric structures.
Theorem 1. Suppose that ‖r?θ(x̂tn)− rθ(x̂tn)‖ ≤ ‖r?θ(x̂tn)− x̂tn‖ for a given sample x̂tn . In the
ODE-based sampling of diffusion models, the sample likelihood exhibits non-decreasing behavior,
i.e., ph(rθ(x̂tn)) ≥ ph(x̂tn) and ph(x̂tn−1

) ≥ ph(x̂tn) in terms of the kernel density estimate
ph(x) = 1

N

∑
iN(x;xi, h

2I) with any positive bandwidth h.
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Figure 4: The likelihoods of rθ(x̂tn)
and x̂tn−1

are larger than that of x̂tn .
The ratio of ‖r?θ(x̂tn)− rθ(x̂tn)‖ to
‖r?θ(x̂tn)− x̂tn‖ is consistently lower
than one in the sampling trajectory.

The proof is provided in Appendix C.1 and a visual illustra-
tion is provided in Figure 4 (top). The assumption requires
that our learned denoising output rθ(x̂tn) falls within a
sphere centered at the optimal denoising output r?θ(x̂tn)
with a radius of ‖r?θ(x̂tn)− x̂tn‖. This radius controls the
maximum deviation of the learned denoising output and
shrinks during the sampling process. In practice, the as-
sumption is relatively easy to satisfy for a well-trained dif-
fusion model, as shown in Figure 4 (bottom).

Therefore, each sampling trajectory monotonically con-
verges (ph(x̂tn−1

) ≥ ph(x̂tn)), and its coupled denoising
trajectory converges even faster (ph(rθ(x̂tn)) ≥ ph(x̂tn))
in terms of the sample likelihood. Given an empirical data
distribution, Theorem 1 applies to any marginal distribu-
tions of our forward SDE {pt(x)}Tt=0, which are actually a
spectrum of kernel density estimates with the positive band-
width t. Besides, with the infinitesimal step size, Theo-
rem 1 is further generalized into a continuous-time version.

We can also obtain the well-known monotone convergence property of mean shift, as presented in
(Comaniciu & Meer, 2002; Yamasaki & Tanaka, 2020), from Theorem 1 when diffusion models are
trained to achieve the optima.

Corollary 1. We have ph(m(x̂tn)) ≥ ph(x̂tn), when rθ(x̂tn) = r?θ(x̂tn) = m(x̂tn).

6 DIAGNOSIS OF SCORE DEVIATION

We simulate four new trajectories based on the optimal denoising output r?θ(·) to monitor the score
deviation from the optimum. The first one is optimal sampling trajectory {x̂?t }, where we generate
samples as the sampling trajectory {x̂t} by simulating Eq. (4) but adopt r?θ(·) rather than rθ(·)
for score estimation. The other three trajectories are simulated by tracking the (optimal) denoising
output of each sample in {x̂?t } or {x̂t}, and designated as {rθ(x̂?t )}, {r?θ(x̂?t )}, {r?θ(x̂t)}. According
to Eq. (9) and t0 = 0, we have x̂?t0 = r?θ(x̂?t1), and similarly, x̂t0 = rθ(x̂t1). As t→ 0, r?θ(x̂?t ) and
r?θ(x̂t) serve as the approximate nearest neighbors of x̂?t and x̂t to the real data, respectively.

We calculate the deviation of denoising output to quantify the score deviation across all time steps
using the `2 distance, though they should differ by a factor t2, and have the following observation:

Observation 4. The learned score is well-matched to the optimal score in the large-noise region,
otherwise they may diverge or almost coincide depending on different regions.

In fact, our learned score has to moderately diverge from the optimum to guarantee the generative
ability. Otherwise, the ODE-based sampling reduces to an approximate (single-step) annealed mean
shift for global mode-seeking (see Section 5), and simply replays the dataset. As shown in Figure 5,
the nearest sample of x̂?t0 to the real data is almost the same as itself, which indicates the opti-
mal sampling trajectory has a very limited ability to synthesize novel samples. Empirically, score
deviation in a small region is sufficient to bring forth a decent generative ability.

From the comparison of {rθ(x̂?t )}, {r?θ(x̂?t )} sequences in Figures 5 and 6, we can clearly see that
along the optimal sampling trajectory, the deviation between the learned denoising output rθ(·) and
its optimal counterpart r?θ(·) behaves differently in three successive regions: the deviation starts off
as almost negligible (about 10 < t ≤ 80), gradually increases (about 3 < t ≤ 10), and then drops
down to a low level once again (about 0 ≤ t ≤ 3). This phenomenon was also validated by a recent
work (Xu et al., 2023) with a different perspective. We further observe that along the sampling
trajectory, this phenomenon disappears and the score deviation keeps increasing (see {rθ(x̂t)},
{r?θ(x̂t)} sequences in Figures 5 and 6). Additionally, samples in the latter half of {r?θ(x̂t)} appear
almost the same as the nearest sample of x̂t0 to the real data, as shown in Figure 5. This indicates
that our score-based model strives to explore novel regions, and synthetic samples in the sampling
trajectory are quickly attracted to a real-data mode but do not fall into it.
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Figure 5: Top: We visualize a forward diffusion process of a randomly-selected image to obtain its
encoding x̂tN (first row) and simulate multiple trajectories starting from this encoding (other rows).
Bottom: The k-nearest neighbors (k=5) of x̂t0 and x̂?t0 to real samples in the dataset.

Figure 6: The deviation (measured by `2 distance) of outputs from their corresponding optima.

7 DISCUSSION

Although all discussions above are provided in the context of VE-SDEs, the similar conclusions also
exist for other types of diffusion models (e.g., VP-SDEs). In fact, a family of diffusion models with
the same signal-to-noise ratio are closely connected, and we can transform other model types into the
VE counterparts with change-of-variables formula (see Appendix A.2). Therefore, we merely focus
on the mathematical properties and geometric behaviors of VE-SDEs to simplify our discussions.

8 CONCLUSION

In this paper, we present a geometric perspective on (variance-exploding) diffusion models, aiming
for a fundamental grasp of their sampling dynamics in an intuitive way. We find that intriguingly,
the data distribution and the noise distribution are smoothly bridged by a quasi-linear sampling tra-
jectory and another implicit denoising trajectory that allows faster convergence. These two trajecto-
ries are deeply coupled, since each second-order ODE-based sampler along the sampling trajectory
corresponds to a specific finite difference of the denoising trajectory. We further characterize the
asymptotic behavior of diffusion models by formulating a theoretical relationship between the op-
timal ODE-based sampling and the anneal mean shift. We hope that our theoretical insights and
empirical observations help to better harness the power of score/diffusion-based generative models
and facilitate more rapid development in effective training and fast sampling techniques.

Future work. The intensively used empirical ODE and its optimal version both behave as a typical
non-autonomous non-linear system (Khalil, 2002), which offers a potential approach to discover and
analyze more properties (e.g., stability) of the diffusion sampling with tools from control theory.
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APPENDIX

A USEFUL RESULTS IN DIFFUSION MODELS

A.1 AN EMPIRICAL BAYES PERSPECTIVE ON THE CONNECTION BETWEEN DSM AND DAE

In fact, the deep connection between denoising autoencoder (DAE) and denoising score matching
(DSM) already existed within the framework of empirical Bayes, which was developed more than
half a century ago (Robbins, 1956). We next recap the basic concepts of these terminologies (Vincent
et al., 2008; Bengio et al., 2013; Alain & Bengio, 2014; Vincent, 2011; Raphan & Simoncelli, 2011;
Efron, 2010; Saremi & Hyvärinen, 2019; Karras et al., 2022) and discuss how they are intercon-
nected, especially in the common setting of diffusion models (Gaussian kernel density estimation).
All theoretical results are followed by concise proofs for completion.

Suppose that x is sampled from an underlying data distribution pd(x), and the corresponding noisy
sample x̂ is generated by a Gaussian perturbation kernel x̂ ∼ pt(x̂|x) = N(x̂;x, σ2

t I) with an
isotropic variance σ2

t . We can equivalently denote the noisy sample as x̂ = x+z with z ∼ N(0, σ2
t I)

based on the re-parameterization trick. In diffusion models, we actually have a spectrum of such
Gaussian kernels but we just take one of them as an example to simplify the following discussion.
Lemma 1. The optimal estimator r?θ (x̂;σt), also known as Bayesian least squares estimator, of the
denoising autoencoder (DAE) objective is the conditional expectation E (x|x̂)

LDAE = Ex∼pd(x)Ez∼N(0,σ2
t I)
‖rθ (x̂;σt)− x‖22

=

∫
pd(x)pt(x̂|x)‖rθ (x̂;σt)− x‖22

=

∫
pt(x̂)pt(x|x̂)‖rθ (x̂;σt)− x‖22.

(10)

Proof. The solution of this least squares estimation can be easily obtained by setting the derivative
of LDAE equal to zero. For each noisy sample x̂, we have

∇rθ(x̂;σt)LDAE = 0∫
pt(x|x̂) (r?θ (x̂;σt)− x) dx = 0∫

pt(x|x̂)r?θ (x̂;σt) dx =

∫
pt(x|x̂)xdx

r?θ (x̂;σt) = E (x|x̂) .

(11)

Lemma 2. Given a parametric score function ∇x̂ log pθ,t(x̂) of the marginal distribution pt(x̂), it
will converge to the true score function ∇x̂ log pt(x̂) whether it is trained with the denoising score
matching (DSM) objective or the explicit score matching (ESM) objective

LDSM = Ex∼pd(x)Ez∼N(0,σ2
t I)
‖∇x̂ log pθ,t(x̂)−∇x̂ log pt(x̂|x)‖22, (12)

LESM = Ex̂∼pt(x̂)‖∇x̂ log pθ,t(x̂)−∇x̂ log pt(x̂)‖22. (13)

Proof. Similar to the Lemma 1, the optimal score function trained with the DSM objective is
∇x̂ log p?θ,t(x̂) = Ept(x|x̂)∇x̂ log pt(x̂|x)

=

∫
pd(x)pt(x̂|x)

pt(x̂)
∇x̂ log pt(x̂|x)dx

=

∫
pd(x)

pt(x̂)
∇x̂ pt(x̂|x)dx =

∇x̂

∫
pd(x)pt(x̂|x)dx

pt(x̂)

=
∇x̂ pt(x̂)

pt(x̂)
= ∇x̂ log pt(x̂).

(14)

By setting the derivative of LESM equal to zero, we can also obtain∇x̂ log p?θ,t(x̂) = ∇x̂ log pt(x̂).
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Lemma 3. The conditional expectation in Lemma 1 can be derived from the score function of the
marginal distribution pt(x̂), i.e., E (x|x̂) = x̂ + σ2

t∇x̂ log pt(x̂).

Proof.

pt(x̂) =

∫
pd(x)pt(x̂|x)dx

∇x̂pt(x̂) =

∫
(x− x̂)

σ2
t

pd(x)pt(x̂|x)dx

σ2
t∇x̂pt(x̂) =

∫
xpd(x)pt(x̂|x)dx−

∫
x̂pd(x)pt(x̂|x)dx

σ2
t∇x̂pt(x̂) =

∫
xpd(x)pt(x̂|x)dx− x̂pt(x̂)

σ2
t

∇x̂pt(x̂)

pt(x̂)
=

∫
xpt(x|x̂)dx− x̂

E (x|x̂) = x̂ + σ2
t∇x̂ log pt(x̂).

(15)

Remark 1. The above intriguing connection implies that we can obtain the posterior expectation
E (x|x̂) =

∫
xpt(x|x̂)dx without explicit accessing to the data density pd(x) (prior distribution).

Remark 2. Furthermore, we can estimate the marginal distribution pt(x̂) or its score function
∇x̂ log pt(x̂) from a set of observed noisy samples to approximate the posterior expectation E (x|x̂),
or say the optimal denoising output r?θ (x̂;σt). This exactly shares the philosophy of empirical Bayes
that learns a Bayesian prior distribution from the observed data to help statistical inference.

We provide a brief overview of empirical Bayes as follows.

In contrast to the standard Bayesian methods that specify a prior (such as Gaussian, or non-
informative distribution) before observing any data, empirical Bayes methods advocate estimating
the prior empirically from the data itself, whether in a non-parametric or parametric way (Robbins,
1956; Morris, 1983; Efron, 2010; Raphan & Simoncelli, 2011). Using Bayes’ theorem, the esti-
mated prior is then converted into the posterior by incorporating a likelihood function calculated in
light of the observed data, as the standard Bayesian methods do.
Remark 3. Learning the marginal distribution in Lemma 3 from the observed data is termed as
f -modeling in the empirical Bayes literature, in contrast to g-modeling that learns the prior distri-
bution from the observed data, see Chapter 21 of a book for more details (Efron & Hastie, 2016).
Proposition 6. The denoising autoencoder (DAE) objective equals to the denoising score matching
(DSM) objective, up to a scaling factor (squared variance), i.e., LDAE = σ4

tLDSM.

Proof.
LDAE = Ex∼pdEz∼N(0,σ2

t I)
‖rθ (x̂;σt)− x‖22

= Ex∼pdEz∼N(0,σ2
t I)
‖x̂ + σ2

t∇x̂ log pθ,t(x̂)− x‖22

= σ4
tEx∼pdEz∼N(0,σ2

t I)
‖∇x̂ log pθ,t(x̂) +

x̂− x

σ2
t

‖22

= σ4
tEx∼pdEz∼N(0,σ2

t I)
‖∇x̂ log pθ,t(x̂)−∇x log pt(x̂|x)‖22

= σ4
tLDSM,

(16)

where we adopt x̂+σ2
t∇x̂ log pθ,t(x̂) as a parametric empirical Bayes estimator to estimate E (x|x̂),

which can be compactly written as rθ (x̂;σt). In fact, we have rθ (x̂;σt) → r?θ (x̂;σt) as soon as
∇x̂ log pθ,t(x̂)→ ∇x̂ log p?θ,t(x̂) = ∇x̂ log pt(x̂), and vice versa.

Remark 4. The relationship between denoising autoencoder (DAE), denoising score matching
(DSM), and empirical Bayes are summarized as

︸ ︷︷ ︸
DAE

rθ (x̂;σt)→ r?θ (x̂;σt) =

Empirical Bayes︷ ︸︸ ︷
E (x|x̂) = x̂ + σ2

t∇x̂ log pt(x̂)← x̂ + σ2
t∇x̂ log pθ,t(x̂)︸ ︷︷ ︸

DSM

. (17)
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A.2 THE CHANGE-OF-VARIABLES FORMULA IN DIFFUSION MODELS

In this section, we show that various diffusion models sharing the same signal-to-noise ratio (SNR)
are closely connected with the change-of-variables formula. In particular, all other model types (e.g.,
variance-preserving (VP) diffusion process used in DDPMs (Ho et al., 2020)) can be transformed
into the variance-exploding (VE) counterparts. Therefore, we merely focus on the mathematical
properties and geometric behaviors of VE-SDEs in the main text to simplify our discussions.

We first recap the widely used forward SDEs in diffusion models and their basic notations as follows
dx = f(t)xdt+ g(t)dwt, f(·) : R→ R, g(·) : R→ R, (18)

where wt is the standard Wiener process; f(t) and g(t) are drift and diffusion coefficients, respec-
tively (Oksendal, 2013; Song et al., 2021c). The perturbation kernels

p0t (xt|x0) = N
(
xt; s(t)x0, s(t)

2σ(t)2I
)
, (19)

are derived with the standard techniques in differential equations (Karras et al., 2022) and the coef-
ficients s(t) and σ(t) in Eq. (19) are expressed with drift and diffusion coefficients f(t) and g(t):

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, and σ(t) =

√∫ t

0

[
g(ξ)

s(ξ)

]2
dξ. (20)

Or equivalently, we can rewrite drift and diffusion coefficients f(t) and g(t) with s(t) and σ(t):

f(t) =
d log s(t)

dt
, and g(t) = s(t)

√
d [σ2(t)]

dt
. (21)

Therefore, the forward SDEs in Eq. (18) can be alternatively expressed in terms of s(t) and σ(t):

dx =
d log s(t)

dt
x dt+ s(t)

√
d [σ2(t)]

dt
dwt. (22)

An importance implication from Eq. (19) is that different diffusion models sharing the same σ(t)
actually have the same signal-to-noise ratio (SNR), since SNR = s(t)2/

[
s(t)2σ(t)2

]
= 1/

[
σ(t)2

]
.

The standard notions of VP-SDEs (Ho et al., 2020; Song et al., 2021a;c) can be recovered by setting

s(t) =
√
α(t), σ(t) =

√
1−α(t)
α(t) in Eq. (19) and Eq. (22), and β(t) = − 1

α(t)
dα(t)
dt . We then have

xt =
√
α(t) x0 +

√
1− α(t) ε, ε ∼ N(0, I),

dx =
1

2α(t)

dα(t)

dt
x dt+

√
− 1

α(t)

dα(t)

dt
dwt,

dx = −1

2
β(t)x dt+

√
β(t)wt.

(23)

Similarly, the standard notions of VE-SDEs (Song & Ermon, 2019; Song et al., 2021c) can be
recovered by setting s(t) = 1, and we have

xt = x0 + σ(t)ε, ε ∼ N(0, I),

dx =

√
d [σ2(t)]

dt
dwt.

(24)

The above examples inspire us to eliminate the effect of s(t) if we hope to transform any other types
of diffusion models into the VE counterparts, i.e., f(t) = 0.
Proposition 7. A diffusion model defined as Eq. (22) can be transformed into its VE counterpart
with the change-of-variables formula x̄ = x/s(t), keeping the SNR unchanged.

Proof. By setting x̄ = x/s(t) in Eq. (22), we have

d [x̄s(t)]

dt
=

d log s(t)

dt
[x̄s(t)] + s(t)

√
d [σ2(t)]

dt

dwt

dt

dx̄

dt
s(t) +

�
�
��ds(t)

dt
x̄ =

��������d log s(t)

dt
[x̄s(t)] + s(t)

√
d [σ2(t)]

dt

dwt

dt
,

dx̄ =

√
d [σ2(t)]

dt
dwt.

(25)

16



Under review as a conference paper at ICLR 2024

In the above derivation, the σ(t) in the new VE-SDE (x̄-space) is exactly the same as the σ(t) used
in the original SDE (x-space), and thus the SNR remains unchanged.

B SECOND-ORDER ODE SAMPLERS AS FINITE DIFFERENCES OF
DENOISING TRAJECTORY

In the past several years, various second-order ODE-based samplers have been developed to accel-
erate the sampling speed of diffusion models (Song et al., 2021a;c; Karras et al., 2022; Lu et al.,
2022; Zhang & Chen, 2023). We next demonstrate that each of them can be rewritten as a specific
way to perform finite difference of the denoising trajectory. The PF-ODEs of the sampling trajectory
Eq. (4) and denoising trajectory Eq. (5) are provided as follows

sampling-ODE:
dx

dt
= ε(x; t) =

x− rθ(x; t)

t
, denoising-ODE:

drθ(x; t)

dt
= −td

2x

dt2
,

where we introduce the notation ε(x; t) to simplify the following derivations. Given a current sample
x̂tn+1 , the second-order Taylor polynomial approximation of the sampling trajectory is

x̂tn = x̂tn+1
+ (tn − tn+1)

dx

dt

∣∣∣
x̂tn+1

+
1

2
(tn − tn+1)2

d2x

dt2

∣∣∣
x̂tn+1

= x̂tn+1
+
tn − tn+1

tn+1

(
x̂tn+1

− rθ(x̂tn+1
)
)
− 1

2

(tn − tn+1)2

tn+1

drθ(x̂tn+1
)

dt
.

(26)

Or, the above equation can be written with the notion of ε(x; t)

x̂tn = x̂tn+1 + (tn − tn+1)εθ(x̂tn+1) +
1

2
(tn − tn+1)2

dεθ(x̂tn+1
)

dt
. (27)

All following proofs are conducted in the context of our VE-SDE, i.e., dx =
√

2t dwt, and the
sampling trajectory always starts from x̂tN ∼ N(0, T 2I) and ends at x̂t0 .

B.1 EDMS (KARRAS ET AL., 2022)

EDMs employ Heun’s 2nd order method, where one Euler step is first applied and followed by a
second order correction, which can be written as

x̂′tn = x̂tn+1
+ (tn − tn+1)εθ(x̂tn+1

),

x̂tn = x̂tn+1
+ (tn − tn+1)

(
0.5εθ(x̂tn+1

) + 0.5εθ(x̂′tn)
)

= x̂tn+1
+ (tn − tn+1)εθ(x̂tn+1

) +
1

2
(tn − tn+1)2

εθ(x̂′tn)− εθ(x̂tn+1)

tn − tn+1
.

(28)

By using rθ(x; t) = x− tεθ(x; t), the sampling iteration above is equivalent to

x̂tn = x̂tn+1
+ (tn − tn+1)

x̂tn+1 − rθ(x̂tn+1)

tn+1
+

1

2
(tn − tn+1)2

x̂′tn−rθ(x̂
′
tn

)

tn
− x̂tn+1

−rθ(x̂tn+1
)

tn+1

tn − tn+1

=
tn
tn+1

x̂tn+1
+
tn+1 − tn
tn+1

rθ(x̂tn+1
)− 1

2

(tn − tn+1)2

tn+1

tn+1

tn

rθ(x̂′tn)− rθ(x̂tn+1
)

tn − tn+1
.

(29)

B.2 DPM-SOLVER (LU ET AL., 2022)

According to (3.3) in DPM-Solver, the exact solution of PF-ODE in the VE-SDE setting is given by

x̂tn = x̂tn+1 +

∫ tn

tn+1

εθ(x̂t)dt. (30)

The Taylor expansion of εθ(x̂t) w.r.t. time t at tn+1 is

εθ(x̂t) =

k−1∑
m=0

(t− tn+1)m

m!
ε
(m)
θ (x̂tn+1) + O

(
(t− tn+1)k

)
. (31)
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Then, the DPM-Solver-k sampler can be written as

x̂tn = x̂tn+1
+

k−1∑
m=0

ε
(m)
θ (x̂tn+1

)

∫ tn

tn+1

(t− tn+1)m

m!
dt+ O

(
(tn − tn+1)k

)
= x̂tn+1

+

k−1∑
m=0

(tn − tn+1)m+1

(m+ 1)!
ε
(m)
θ (x̂tn+1

) + O
(
(tn − tn+1)k+1

)
.

(32)

Specifically, when k = 2, the DPM-Solver-2 sampler is given by

x̂tn = x̂tn+1
+ (tn − tn+1)εθ(x̂tn+1

) +
1

2
(tn − tn+1)2

dεθ(x̂tn+1
)

dt
, (33)

which is the same as Eq. (27). The above second-order term in (Lu et al., 2022) is approximated by

dεθ(x̂tn+1
)

dt
≈

εθ(x̂sn)− εθ(x̂tn+1
)

(tn − tn+1)/2
, (34)

where sn =
√
tntn+1 and x̂sn = x̂tn+1 + (sn − tn+1)εθ(x̂tn+1). We have

x̂tn = x̂tn+1
+ (tn − tn+1)εθ(x̂tn+1

) +
1

2
(tn − tn+1)2

εθ(x̂sn)− εθ(x̂tn+1
)

(tn − tn+1)/2

=
tn
tn+1

x̂tn+1
+
tn+1 − tn
tn+1

rθ(x̂tn+1
)− 1

2

(tn − tn+1)2

tn+1

tn+1

sn

rθ(x̂sn)− rθ(x̂tn+1
)

(tn − tn+1)/2
.

(35)

B.3 PNDM (LIU ET AL., 2022)

Assume that the previous denoising output rθ(x̂tn+2
) is available, then one S-PNDM sampler step

can be written as

x̂tn = x̂tn+1 + (tn − tn+1)
1

2

(
3εθ(x̂tn+1)− εθ(x̂tn+2)

)
= x̂tn+1

+ (tn − tn+1)εθ(x̂tn+1
) +

1

2
(tn − tn+1)2

εθ(x̂tn+1)− εθ(x̂tn+2)

tn − tn+1

=
tn
tn+1

x̂tn+1
+
tn+1 − tn
tn+1

rθ(x̂tn+1
)− 1

2

(tn − tn+1)2

tn+1

rθ(x̂tn+1)− rθ(x̂tn+2)

tn − tn+1
.

(36)

B.4 DEIS (ZHANG & CHEN, 2023)

In DEIS paper, the solution of PF-ODE in the VE-SDE setting is given by

x̂tn = x̂tn+1
+

r∑
j=0

Cijεθ(x̂tn+1+j
),

Cij =

∫ tn

tn+1

∏
k 6=j

τ − tn+1+k

tn+1+j − tn+1+k
dτ.

(37)

r = 1 yields the ρAB1 sampler:

x̂tn = x̂tn+1 + εθ(x̂tn+1)

∫ tn

tn+1

τ − tn+2

tn+1 − tn+2
dτ + εθ(x̂tn+2)

∫ tn

tn+1

τ − tn+1

tn+2 − tn+1
dτ

= x̂tn+1 + εθ(x̂tn+1)
(tn − tn+2)2 − (tn+1 − tn+2)2

2(tn+1 − tn+2)
+ εθ(x̂tn+2)

(tn − tn+1)2

2(tn+2 − tn+1)

= x̂tn+1 + (tn − tn+1)εθ(x̂tn+1) +
1

2
(tn − tn+1)2

εθ(x̂tn+1
)− εθ(x̂tn+2

)

tn+1 − tn+2

=
tn
tn+1

x̂tn+1 +
tn+1 − tn
tn+1

rθ(x̂tn+1)− 1

2

(tn − tn+1)2

tn+1

rθ(x̂tn+1
)− rθ(x̂tn+2

)

tn+1 − tn+2
.

(38)
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C PROOFS OF THEOREM AND PROPOSITIONS

C.1 MONOTONE INCREASE IN SAMPLE LIKELIHOOD (THEOREM 1 IN THE MAIN TEXT)

Theorem 1. Suppose that ‖r?θ(x̂tn)− rθ(x̂tn)‖ ≤ ‖r?θ(x̂tn)− x̂tn‖ for a given sample x̂tn . In the
ODE-based sampling of diffusion models, the sample likelihood exhibits non-decreasing behavior,
i.e., ph(rθ(x̂tn)) ≥ ph(x̂tn) and ph(x̂tn−1

) ≥ ph(x̂tn) in terms of the kernel density estimate
ph(x) = 1

N

∑
iN(x;xi, h

2I) with any positive bandwidth h.

Proof. We first prove that given a random vector v falling within a sphere centered at the optimal
denoising output r?θ(x̂tn) with a radius of ‖r?θ(x̂tn)− x̂tn‖, i.e., ‖r?θ(x̂tn)− x̂tn‖ ≥ ‖v‖, the sam-
ple likelihood is non-decreasing from x̂tn to r?θ(x̂tn) + v, i.e., ph(r?θ(x̂tn) + v) ≥ ph(x̂tn). Then,
we provide two settings for v to finish the proof.

The increase of sample likelihood from x̂tn to r?θ(x̂tn) + v in terms of ph(x) is

ph(r?θ(x̂tn) + v)− ph(x̂tn) =
1

N

∑
i

[
N
(
r?θ(x̂tn) + v;xi, h

2I
)
−N

(
x̂tn ;xi, h

2I
)]

(i)
≥ 1

2h2N

∑
i

N
(
x̂tn ;xi, h

2I
) [
‖x̂tn − xi‖2 − ‖r?θ(x̂tn) + v − xi‖2

]
=

1

2h2N

∑
i

N
(
x̂tn ;xi, h

2I
) [
‖x̂tn‖2 − 2x̂Ttnxi − ‖r

?
θ(x̂tn) + v‖2 + 2 (r?θ(x̂tn) + v)

T
xi

]
(ii)
=

1

2h2N

∑
i

N
(
x̂tn ;xi, h

2I
) [
‖x̂tn‖2 − 2x̂Ttnr

?
θ(x̂tn)− ‖r?θ(x̂tn) + v‖2 + 2 (r?θ(x̂tn) + v)

T
r?θ(x̂tn)

]
=

1

2h2N

∑
i

N
(
x̂tn ;xi, h

2I
) [
‖x̂tn‖2 − 2x̂Ttnr

?
θ(x̂tn) + ‖r?θ(x̂tn)‖2 − ‖v‖2

]
=

1

2h2N

∑
i

N
(
x̂tn ;xi, h

2I
) [
‖r?θ(x̂tn)− x̂tn‖2 − ‖v‖2

]
≥ 0,

(39)
where (i) uses the definition of convex function f(x2) ≥ f(x1) + f ′(x1)(x2 − x1) with f(x) =
exp

(
− 1

2x
)
, x1 = ‖(x̂tn − xi) /h‖2 and x2 = ‖(r?θ(x̂tn) + v − xi) /h‖2; (ii) uses the relationship

between two consecutive steps x̂tn and r?θ(x̂tn) in mean shift with the Gaussian kernel (see Eq. (8))

r?θ(x̂tn) = m(x̂tn) =
∑
i

exp
(
−‖x̂tn − xi‖2/2h2

)∑
j exp (−‖x̂tn − xj‖2/2h2)

xi, (40)

which implies the following equation also holds∑
i

N
(
x̂tn ;xi, h

2I
)
xi =

∑
i

N
(
x̂tn ;xi, h

2I
)
r?θ(x̂tn). (41)

Since ‖r?θ(x̂tn)− x̂tn‖ ≥ ‖v‖, or equivalently, ‖r?θ(x̂tn)− x̂tn‖
2 ≥ ‖v‖2, we conclude that the

sample likelihood monotonically increases from x̂tn to r?θ(x̂tn) + v unless x̂tn = r?θ(x̂tn) + v, in
terms of the kernel density estimate ph(x) = 1

N

∑
iN(x;xi, h

2I) with any positive bandwidth h.

We next provide two settings for v, which trivially satisfy the condition ‖r?θ(x̂tn)− x̂tn‖ ≥ ‖v‖ ,
and have the following corollaries:

• ph(rθ(x̂tn)) ≥ ph(x̂tn), when v = rθ(x̂tn)− r?θ(x̂tn).

• ph(x̂tn−1
) ≥ ph(x̂tn), when v = rθ(x̂tn)− r?θ(x̂tn) + tn−1

tn
(x̂tn − rθ(x̂tn)).
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C.2 MAGNITUDE EXPANSION PROPERTY (PROPOSITION 2 IN THE MAIN TEXT)

Proposition 2. Given a high-dimensional vector x ∈ Rd and an isotropic Gaussian noise z ∼
N(0;σ2Id), σ > 0, we have E ‖z‖2 = σ2d, and with high probability, z stays within a “thin shell”:
‖z‖ = σ

√
d±O(1). Additionally, E ‖x + z‖2 = ‖x‖2 + σ2d, limd→∞ P (‖x + z‖ > ‖x‖) = 1.

Proof. We denote zi as the i-th dimension of random variable z, then the expectation and variance
is E [zi] = 0, V [zi] = σ2, respectively. The fourth central moment is E

[
z4i
]

= 3σ4. Additionally,

E
[
z2i
]

= V [zi] + E [zi]
2

= σ2, E
[
‖z‖2

]
= E

[
d∑
i=1

z2i

]
=

d∑
i=1

E
[
z2i
]

= σ2d,

V
[
‖z‖2

]
= E

[
‖z‖4

]
−
(
E
[
‖z‖2

])2
= 2dσ4,

(42)

Then, we have

E
[
‖x + z‖2 − ‖x‖2

]
= E

[
‖z‖2 + 2xT z

]
= E

[
‖z‖2

]
= σ2d. (43)

Furthermore, the standard deviation of ‖z‖2 is σ2
√

2d, which means

‖z‖2 = σ2d± σ2
√

2d = σ2d±O
(√

d
)
, ‖z‖ = σ

√
d±O (1) , (44)

holds with high probability. In fact, we can bound the sub-gaussian tail as follows

P
(
|‖z‖ − σ

√
n| ≥ t

)
≤ 2 exp

(
−ct2

)
, ∀ t ≥ 0, (45)

where c is an absolute constant. This property indicates that the magnitude of Gaussian random
variable distributes very close to the sphere of radius σ

√
n in the high-dimensional case.

Suppose t = σ
√
d− 2‖x‖ > 0, we have

P (‖x + z‖ ≤ ‖x‖) < P
(
|‖z‖ − σ

√
d| ≥ σ

√
d− 2‖x‖

)
︸ ︷︷ ︸

See Figure 7

≤ 2 exp

(
−c
(
σ
√
d− 2‖x‖

)2)
,

lim
d→∞

P (‖x + z‖ ≤ ‖x‖) < lim
d→∞

2 exp

(
−c
(
σ
√
d− 2‖x‖

)2)
= 0.

(46)

Thus, limd→∞ P (‖x + z‖ > ‖x‖) = 1.

x O 

𝜎 𝑛 

x  

𝑡 

𝑡 

Figure 7: A simple geometric illustration (the green region is bigger than the red region).

C.3 THE OPTIMAL DENOISING OUTPUT (PROPOSITION 4 IN THE MAIN TEXT)

Suppose we have a training dataset D = {xi}Ni=1 where each data xi is sampled from an unknown
data distribution pd(x), and the corresponding noisy counterpart x̂i is generated by a Gaussian
perturbation kernel x̂ ∼ pt(x̂|x) = N(x̂;x, σ2

t I) with an isotropic variance σ2
t . The empirical data

distribution pd(x) is denoted as a summation of multiple Dirac delta functions (a.k.a a mixture of
Gaussian distribution): pd(x) = 1

N

∑N
i=1 δ(‖x− xi‖), and the Gaussian kernel density estimate is

pt(x̂) =

∫
pt(x̂|x)pd(x) =

1

N

∑
i

N
(
x̂;xi, σ

2
t I
)
. (47)
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Based on Lemmas 1 and 3, the optimal denoising output is

r?θ (x̂;σt) = E (x|x̂) = x̂ + σ2
t∇x̂ log pt(x̂)

= x̂ + σ2
t

∑
i

∇x̂N
(
x̂;xi, σ

2
t I
)∑

j N (x̂;xj , σ2
t I)

= x̂ + σ2
t

∑
i

N
(
x̂;xi, σ

2
t I
)∑

j N (x̂;xj , σ2
t I)

(
xi − x̂

σ2
t

)

= x̂ +
∑
i

N
(
x̂;xi, σ

2
t I
)∑

j N (x̂;xj , σ2
t I)

(xi − x̂)

=
∑
i

N
(
x̂;xi, σ

2
t I
)∑

j N (x̂;xj , σ2
t I)

xi

=
∑
i

exp
(
−‖x̂− xi‖2/2σ2

t

)∑
j exp (−‖x̂− xj‖2/2σ2

t )
xi.

(48)

This equation appears to be highly similar to the classic non-parametric mean shift (Fukunaga &
Hostetler, 1975; Cheng, 1995; Comaniciu & Meer, 2002), especially annealed mean shift (Shen
et al., 2005). The detailed discussion is provided in Section 5.

D RETHINKING FAST SAMPLING TECHNIQUES

The slow sampling speed is a major bottleneck of diffusion models. To address this issue, one
potential solution is to replace the vanilla Euler solver with higher-order ODE solvers that use larger
or adaptive step sizes (Lu et al., 2022; Zhang & Chen, 2023). This sort of training-free approaches
improve the synthesis quality almost for free, but their NFEs (≥10) are still too large compared
to GANs (Karras et al., 2020; Sauer et al., 2022). In fact, due to the inevitable truncation error
in each numerical step (unless exactly linear trajectory), their minimum achievable NFE is limited
by the curvature of ODE trajectory. Another solution is to explicitly straighten the ODE trajectory
with knowledge distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022; Zheng et al., 2023;
Song et al., 2023). They optimize a new student score model (rθ) to align with the prediction of a
pre-trained and fixed teacher score model (rφ). Empirically, these learning-based approaches can
achieve decent synthesis quality with a significantly fewer NFE (≈ 1) compared to those ODE
solver-based approaches.

Rethinking Distillation-Based Techniques. A learned score-based model with a specified ODE
solver fully determine the sampling trajectory and the denoising trajectory. Various distillation-based
fast sampling techniques can be interpreted as different ways to linearize the original trajectory. We
provide a sketch in Figure 8 to highlight the difference of typical examples, including KD (Luhman
& Luhman, 2021), PD (Salimans & Ho, 2022), DFNO (Zheng et al., 2023), and CD (Song et al.,
2023). We can see that the student sampling direction is adjusted to make the initial sample directly
point to the synthetic sample of the pre-defined teacher model. To achieve this goal, new noise-
target pairs are built in an online (Salimans & Ho, 2022; Song et al., 2023; Berthelot et al., 2023)
or offline fashion (Luhman & Luhman, 2021; Zheng et al., 2023). Recently, CD (Song et al., 2023)
and TRACT (Berthelot et al., 2023) began to rely on the denoising trajectory to guide the score
fine-tuning and thus enable fast sampling. We present the training objective of CD as follows

Ex∼pdEz∼N(0,t2n+1I)
‖rθ (x̂; tn+1)− rθ− (Tφ (x̂) ; tn)‖22, x̂ = x + z, (49)

where Tφ(x̂) is implemented as a one-step Euler: tn
tn+1

x̂ + tn+1−tn
tn+1

rφ(x̂; tn+1). CD follows the
time schedule of EDMs (Karras et al., 2022), aside from removing the t0, and adopts pre-trained
EDMs to initialize the student model. θ− is the exponential moving average (EMA) of θ.

Based on our geometric observations, we then provide an intuitive interpretation of the training ob-
jective Eq. (49), as shown in Figure 8d. (1) The role of Tφ (x̂) is to locate the sampling trajectory
passing a given noisy sample x̂ and make one numerical step along the trajectory to move x̂ towards
its converged point. (2) rθ−(·) further projects Tφ (x̂) into the corresponding denoising trajectory
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(a) KD. (b) DFNO. (c) PD.

!x

𝒯! !x

𝑟"!(𝒯! !x ) 𝑟" !x

(d) CD.

Figure 8: The comparison of distillation-based techniques. The offline techniques first simulate a
long ODE trajectory with the teacher score and then make the student score point to the final sample
(KD (Luhman & Luhman, 2021)) or also intermediate samples on the trajectory (DFNO (Zheng
et al., 2023)). The online techniques iteratively fine-tune the student prediction to align with the
target generated by the few-step teacher model along the sampling trajectory (PD (Salimans & Ho,
2022)) or the denoising trajectory (CD (Song et al., 2023)).

(a) The comparison of FID. (b) Visualization of latent interpolation with different strategies.

Figure 9: Linear latent interpolation results in blurry images, while a simple re-scaling trick greatly
preserves the fine-grained image details and enables a smooth traversal among different modes.

with the step size tn, which is closer to the converged point compared with rθ(x̂) . (3) The student
denoising output rθ (·) is then shifted to match its underlying target rθ− (·) in the denoising trajec-
tory. By iteratively fine-tuning denoising outputs until convergence, the student model is hopefully
endowed with the ability to perform few-step sampling from those trained discrete time steps, and
thus achieves excellent performance in practice (Song et al., 2023).

E IN-DISTRIBUTION LATENT INTERPOLATION

An attractive application of diffusion models is to achieve semantic image editing by manipulating
latent representations (Ho et al., 2020; Song et al., 2021a;c). Such semantic editing is relatively
controllable for ODE-based sampling due to its deterministic trajectory, compared with SDE-based
sampling that injects stochastic noise in each step. We then take latent interpolation as an example
to reveal the potential pitfalls in practice from a geometric viewpoint.

The training objective Eq. (3) for score estimation tells that given a noise level σ2
t , the denoiser is

only trained with samples belonging to the distribution pt(x̂). This important fact implies that for
the latent encoding x̂tN ∼ N(0, T 2I), the denoiser performance is only guaranteed for the input
approximately distributed in a sphere of radius T

√
d (see Section 3.1). This geometric picture helps

in understanding the conditions under which latent interpolation may fail.
Proposition 8. In high dimensions, linear interpolation shifts the latent distribution while spherical
linear interpolation asymptotically (d→∞) maintains the latent distribution.

Given two independent latent encodings, x̂(1)
tN , x̂

(2)
tN ∼ N(0, T 2I), they are almost orthogonal with

the angle 1
2π+Op(d

−0.5) in high dimensions (Hall et al., 2005; Vershynin, 2018). In this case, linear
interpolation x̂

(α)
tN = (1 − α)x̂

(1)
tN + αx̂

(2)
tN (Ho et al., 2020) quickly pushes the resulting encoding

x̂
(α)
tN away from the original distribution into a squashed sphere of radius T

√
d((1−α)2+α2), which

almost has no intersection with the original sphere of radius T
√
d, unless α → 0 or 1. Our trained

denoiser thus can not provide a reliable estimation for rθ(x̂
(α)
tN , tN ) to derive the score direction,

as shown in Figure 9. Another strategy named as spherical linear interpolation (slerp) (Song et al.,
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(a) Linear interpolation. (b) N-linear interpolation. (c) Slerp.

Figure 10: We provide the k-nearest neighbors (k=10) of our generated images to the real data, in
order to demonstrate how different modes are smoothly traversed in the latent interpolation process.

(a) f(0.1). (b) f(0.3). (c) f(0.5).

Figure 11: The comparison of three interpolation strategies with different dimensions.

2021a;c; Ramesh et al., 2022; Song et al., 2023) greatly alleviates (but is not free from) the squashing
effect in high dimensions and thus stabilizes the synthesis quality of interpolated encodings. But it
still suffers from distribution shift in low dimensional cases (see Section E.1). The comparison of
above two strategies further brings out a basic concept called in-distribution interpolation.

Proposition 9. In-distribution interpolation preserves the latent distribution under interpolation.

This concept gives rise to a family of interpolation strategies. In particular, for the Gaussian encoding
x̂tN , there exists a variance-preserving interpolation x̂

(λ)
tN =

√
(1− λ2)x̂

(1)
tN + λx̂

(2)
tN ∼ N

(
0, T 2I

)
to prevent distribution shift. Since a uniform λ makes x̂(λ)

tN largely biased to x̂
(1)
tN , we derive λ by re-

scaling other heuristic strategies to scatter the coefficient more evenly, such as the normalized linear
(n-linear) interpolation (λ = α/

√
α2 + (1− α2)) with uniformly sampled coefficient α. As shown

in Figure 9, this simple re-scaling trick significantly boosts the visual quality compared with the
original counterpart. Additionally, slerp behaves as λ = sinαπ2 in high dimensions due to ψ ≈ π

2 ,
and this coefficient was used in (Dhariwal & Nichol, 2021) for interpolation.

With the help of such an in-distribution interpolation, all interpolated encodings faithfully move
along our trained ODE trajectory with a reliable denoising estimation for rθ(x̂

(λ)
tN , tN ). We fur-

ther calculate the k-nearest neighbors of our generated images to the real data (see Figure 10), to
demonstrate how different modes are smoothly traversed in this process x̂tN → x̂λtN → x̂λt0 .

E.1 DETAILED COMPARISON OF THREE LATENT INTERPOLATION STRATEGIES

Given two independent latent encodings, x̂(1)
tN , x̂

(2)
tN ∼ N(0, T 2I), and 0 < α < 1, we have three

latent interpolation strategies as follows and their comparison is summarized in Table 2.

• linear interpolation:
x̂
(α)
tN = (1− α)x̂

(1)
tN + αx̂

(2)
tN ; (50)
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• spherical linear interpolation (slerp):

x̂
(α)
tN =

sin[(1− α)ψ]

sin(ψ)
x̂
(1)
tN +

sin(αψ)

sin(ψ)
x̂
(2)
tN , ψ = arccos

(
〈x̂(1)
tN , x̂

(2)
tN 〉

‖x̂(1)
tN ‖2 · ‖x̂

(2)
tN ‖2

)
, (51)

where ψ is calculated as the angle subtended by the arc connecting two encodings;
• in-distribution interpolation:

x̂
(λ)
tN =

√
(1− λ2)x̂

(1)
tN + λx̂

(2)
tN . (52)

In particular, by setting λ = α/
√
α2 + (1− α2), we obtain

• normalized linear interpolation (n-linear):

x̂
(α)
tN =

√
1− α2√

α2 + (1− α2)
x̂
(1)
tN +

α√
α2 + (1− α2)

x̂
(2)
tN . (53)

Thanks to the linearity of Gaussian random variable, the interpolated latent encoding by each of the
above strategies still belongs to a Gaussian distribution with zero mean. We thus only need to check
the variance to see whether the distribution shift happens.

The variance comparison is provided as follows

• linear interpolation:

V
(
x̂
(α)
tN

)
= V

(
(1− α)x̂

(1)
tN + αx̂

(2)
tN

)
= (1− α)2V

(
x̂
(1)
tN

)
+ α2V

(
x̂
(2)
tN

)
=
(
(1− α)2 + α2

)
T 2I

def
= f(α)T 2I,

(54)

where sup f(α) = 1 if α→ 0 or 1, and min f(α) = 0.5 if α = 0.5.
• spherical linear interpolation (slerp):

V
(
x̂
(α)
tN

)
= V

(
sin[(1− α)ψ]

sin(ψ)
x̂
(1)
tN +

sin(αψ)

sin(ψ)
x̂
(2)
tN

)
=

sin2[(1− α)ψ] + sin2(αψ)

sin2(ψ)
T 2I

def
= f(α)T 2I,

(55)

where f(0.5) = 2 sin2[ψ/2]
sin2(ψ)

= 1
2 cos2(ψ/2) = 2 sec2(ψ/2) ≥ 0.5.

Since these two latent encodings x̂(1)
tN and x̂

(2)
tN are almost orthogonal with the angle 1

2π +

Op(d
−0.5) in high dimensions (Hall et al., 2005; Vershynin, 2018), we can conclude that

asymptotically,

lim
d→∞

V
(
x̂
(α)
tN

)
=
(

sin2[(1− α)
π

2
] + sin2(α

π

2
)
)
T 2I = T 2I, (56)

• in-distribution interpolation:

V
(
x̂
(λ)
tN

)
= V

(√
(1− λ2)x̂

(1)
tN + λx̂

(2)
tN

)
= f(λ)T 2I = T 2I. (57)

We provide a comparison of three interpolation strategies with different dimensions in Figure 11.
Remark 5. In high dimensions, linear interpolation (Ho et al., 2020) shifts the latent distribution
while spherical linear interpolation (Song et al., 2021a) asymptotically (d → ∞) maintains the
latent distribution.
Remark 6. In-distribution interpolation preserves the latent distribution under interpolation.

Remark 7. If two latent encodings share the same magnitude, i.e., ‖x̂(1)
tN ‖

2 = ‖x̂(2)
tN ‖

2 = C2, then
spherical linear interpolation maintains the magnitude, i.e., ‖x̂(α)

tN ‖
2 = C2.
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Table 2: The comparison of three latent interpolation strategies.

Interpolation Distribution Shift Magnitude Shift

Linear X X
Spherical linear (asymptotic) 5 5
In-distribution 5 (asymptotic, approximate) 5

Proof. Since sin [(1− α)ψ] = sinψ cos (αψ)− cosψ sin (αψ), we have

‖x̂(α)
tN ‖

2 =

∥∥∥∥ sin [(1− α)ψ]

sinψ
x̂
(1)
tN +

sin (αψ)

sinψ
x̂
(2)
tN

∥∥∥∥2
=

1

sin2 ψ

(
sin2 [(1− a)ψ] ‖x̂(1)

tN ‖
2 + sin2 (αψ) ‖x̂(2)

tN ‖
2

+2 sin [(1− α)ψ] sin (αψ) 〈x̂(1)
tN , x̂

(2)
tN 〉
)
,

(58)

where

sin2 [(1− a)ψ] ‖x̂(1)
tN ‖

2 + sin2 (αψ) ‖x̂(2)
tN ‖

2

=
{[

sin2ψcos2 (αψ) + cos2ψsin2 (αψ)− 2 sinψ cosψ sinαψ cosαψ
]

+ sin2 (αψ)
}
C2

=
[
sin2ψ + 2cos2ψsin2 (αψ)− 2 sinψ cosψ sin (αψ) cos (αψ)

]
C2

(59)

and
2 sin [(1− α)ψ] sin (αψ) 〈x̂(1)

tN , x̂
(2)
tN 〉

=
[
2 sinψ sin (αψ) cos (αψ)− 2 cosψsin2 (αψ)

]
C2 cosψ

=
[
2 sinψ cosψ sin (αψ) cos (αψ)− 2cos2ψsin2 (αψ)

]
C2.

(60)

We then substitute Eq. (59) and Eq. (60) into Eq. (58) and obtain ‖x̂(α)
tN ‖

2 = C2.

Remark 8. If two latent encodings share the same magnitude, i.e., ‖x̂(1)
tN ‖

2 = ‖x̂(2)
tN ‖

2 = C2, then
linear interpolation shrinks the magnitude, i.e., ‖x̂(α)

tN ‖
2 < C2 while in-distribution interpolation

approximately preserves the magnitude in high dimensions.

Proof. In high dimensions (d � 1, C = T
√
d � 1), |〈x̂(1)

tN , x̂
(2)
tN 〉| ≈ C (Vershynin, 2018). Then,

we have

• linear interpolation:

‖x̂(α)
tN ‖

2 =
∥∥∥(1− α)x̂

(1)
tN + αx̂

(2)
tN

∥∥∥2
= (1− α)2‖x̂(1)

tN ‖
2 + α2‖x̂(2)

tN ‖
2 + 2α(1− α)〈x̂(1)

tN , x̂
(2)
tN 〉

≈
(
(1− α)2 + α2

)
C2 < C2.

(61)

• in-distribution interpolation:

‖x̂(α)
tN ‖

2 =
∥∥∥√(1− λ2)x̂

(1)
tN + λx̂

(2)
tN

∥∥∥2
= (1− λ2)‖x̂(1)

tN ‖
2 + λ2‖x̂(2)

tN ‖
2 + 2λ

√
(1− λ2)〈x̂(1)

tN , x̂
(2)
tN 〉

≈ C2.

(62)
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Figure 12: An illustration of two consecutive Euler steps. Each Euler step in ODE-based sampling is
a convex combination of the denoising output and the current position to determine the next position.

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 EXPERIMENTAL SETTINGS

Unless otherwise specified, we follow the configurations and experimental settings of a recent frame-
work called EDMs, with f(x, t) = 0 and g(t) =

√
2t (Karras et al., 2022; Song et al., 2023).

In this case, the forward VE SDE is dx =
√

2tdwt, and the empirical probability flow ODE is
dx = x−rθ(x;t)

t dt. The default ODE-based sampler is Heun’s 2nd order method starting from x̂tN ∼
N(0, T 2I) to x̂t0 . The time horizon is divided with the formula tn = (t

1/ρ
1 + n−1

N−1 (t
1/ρ
N − t1/ρ1 ))ρ,

where t1 = 0.002, tN = 80, n ∈ [1, N ] and t0 = 0, ρ = 7 (Karras et al., 2022).

• We adopt the official implementation and pre-trained checkpoints3 of EDMs (Karras et al.,
2022) for experiments on CIFAR-104 (Krizhevsky & Hinton, 2009) (32×32) withN = 18,
NFE = 35; and FFHQ5 (Karras et al., 2019) (64×64) with N = 40, NFE = 79; and
AFHQv26 (Choi et al., 2020) (64×64) with N = 40, NFE = 79.

• We adopt the re-implementation of EDMs and pre-trained checkpoints7 from consistency
models (Song et al., 2023) for experiments on LSUN Bedroom, LSUN Cat8 (Yu et al.,
2015) (256×256), and ImageNet-649 (Russakovsky et al., 2015) (64×64), with N = 40,
NFE = 79.

The experimental results provided in Sections F.2 and F.3 confirm that the geometric structures
observed in the main submission widely exist on other datasets (such as LSUN Bedroom, LSUN
Cat) and other model settings (such as conditional generation, various network architectures). We
also provide the preliminary results on VP-SDE in Section F.4.

In Section F.5, we demonstrate that our proposed ODE-Jump works well on other datasets (such as
FFHQ, AFHQv2), other ODE-based samplers (such as DPM-Solver, PLMS), a SDE-based sampler
and a popular large-scale text-to-image model called Stable Diffusion10 (Rombach et al., 2022).

All experiments are conducted on 4 NVIDIA A100 GPUs.

3https://nvlabs-fi-cdn.nvidia.com/edm (Creative Commons Attribution-NonCommercial
ShareAlike 4.0 International License)

4https://www.cs.toronto.edu/˜kriz/cifar.html
5https://github.com/NVlabs/ffhq-dataset
6https://github.com/clovaai/stargan-v2/blob/master/README.md#

animal-faces-hq-dataset-afhq
7https://github.com/openai/consistency_models (MIT License)
8https://www.yf.io/p/lsun
9https://www.image-net.org/index.php

10https://github.com/CompVis/stable-diffusion/ (CreativeML Open RAIL-M License)
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Figure 13: We compare the blue curves in Figure 2b, and find that the expected `2 distance between
the intermediate samples and the final sample in the denoising trajectory is always smaller than that
of the sampling trajectory, which supports the fast convergence of the denoising trajectory.

Figure 14: The angle deviation in the sampling trajectory is calculated by the cosine between the
backward ODE direction −dxt

dt

∣∣
t

and the direction pointing to the final point (x̂t0 − x̂t) at discrete
time t. The angle deviation always stays in a narrow range (from about 0.98 to 1.00).

F.2 MORE RESULTS ON THE VE-SDE

In the main submission, we conduct unconditional generation with the checkpoint11 of the DDPM++
architecture to observe geometric structures of the sampling trajectory and the denoising trajectory.
Under this experimental setup, we provide more results in this section, including:

• A Complement of the Observation 3: The denoising trajectory converges faster than the
sampling trajectory in terms of the expected `2 distance, as shown in Figure 13.

• Angle Deviation: The results are provided in Figure 14;

• Diagnosis of Score Deviation: Apart from Figure 5 in the main submission, we also observe
that there exists a few cases where {r?θ(x̂t)} and {r?θ(x̂?t )} almost share the same final
sample, as shown in Figure 15. In this case, the score deviation is relatively small such that
for the final sample of the denoising trajectory, its nearest neighbor to the real image in the
dataset is exactly the final sample of the corresponding optimal trajectory.

• Trajectory Shape on Other Datasets: The results are provided in Figure 16 and 17. Similar
to Figure 2a, we track the magnitude of original data in the forward SDE process at 500 time
steps uniformly distributed in [0, 80] and we track the magnitude of synthesized samples in
the backward ODE process, starting from 50k randomly-sampled noise. We calculate the
means and standard deviations at each time step, and plot them as circle mark and short
black line, respectively, in Figure 16a and 17a. We find that the magnitude shift happens in
the last few time steps (see Figure 16a and 17a), unlike the case in Figure 2a where the two
distributions are highly aligned. In Figure 16b and 17b, we visualize the deviation in the
sampling trajectory and the denoising trajectory as Figure 2b. A sampling trajectory and
its associated denoising trajectory are also provided for illustration.

11https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.
pkl
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Figure 15: The unconditional generation on CIFAR-10. Top: We visualize a forward diffusion
process of a randomly-selected image to obtain its encoding x̂tN and simulate multiple trajectories
starting from this encoding. Bottom: The k-nearest neighbor (k=5) of x̂t0 and x̂?t0 .

(a) The statistics of magnitude.

(b) Deviation in the sampling trajectory (top) and the denoising trajectory (bottom).

Figure 16: LSUN Bedroom.

F.3 MORE RESULTS ON OTHER SDES

In this section, we provide more results with different VE SDE settings on CIFAR-10, including:

• The conditional generation with the checkpoint12 of DDPM++ architecture:
12https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.

pkl
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(a) The statistics of magnitude.

(b) Deviation in the sampling trajectory (top) and the denoising trajectory (bottom).

Figure 17: LSUN Cat.

– Trajectory Shape: The results are provided in Figure 18.
– Diagnosis of Score Deviation: The results are provided in Figure 19.

All observations are similar to those of the unconditional case in the main submission.
• The unconditional generation with the checkpoint13 of NCSN++ architecture:

– Trajectory Shape: The results are provided in Figure 20. The observations are similar
to those of the unconditional generation case in the main submission. An outlier ap-
pears at about t = 40 and we find that its score deviation becomes abnormally large.
This implies the model probably fails to learn a good score direction at this point.

F.4 MORE RESULTS ON THE VP-SDE

In this section, we provide preliminary results with a variance-preserving SDE, following the con-
figurations of EDM (Karras et al., 2022) (see Table 1 in their paper). We conduct unconditional
generation with the checkpoint14 of DDPM++ architecture.

We find that in this case, the data distribution and the noise distribution are still smoothly connected
with an explicit, quasi-linear sampling trajectory, and another implicit denoising trajectory that con-
verges faster. The geometric properties of VE-SDEs discussed in Section 3.2 are generally (but not
strictly) hold for this VP-SDE.

In fact, as we discussed in Appendix A.2, we can transform other model types (e.g., VP-SDEs) into
the VE counterparts with change-of-variables formula and focus on the geometric behaviors of VE-
SDE instead. Nevertheless, further investigation is required in order to thoroughly understand the
behavior of VP-SDEs. We leave it for future work.

13https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-ve.
pkl

14https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/
baseline-cifar10-32x32-uncond-vp.pkl
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(a) The statistics of magnitude.

(b) Deviation in the sampling trajectory (top) and the denoising trajectory (bottom).

Figure 18: The conditional generation with VE-SDE and DDPM++ architecture.

Figure 19: The conditional generation on CIFAR-10. Top: We visualize a forward diffusion process
of a randomly-selected image to obtain its encoding x̂tN and simulate multiple trajectories starting
from this encoding. Bottom: The k-nearest neighbor (k=5) of x̂t0 and x̂?t0 .
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(a) The statistics of magnitude.

(b) Deviation in the sampling trajectory (top) and the denoising trajectory (bottom).

Figure 20: The unconditional generation with VE-SDE and NCSN++ architecture.

(a) The statistics of magnitude.

(b) Deviation in the sampling trajectory (top) and the denoising trajectory (bottom).

Figure 21: The unconditional generation with VP-SDE and DDPM++ architecture.
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(a) CIFAR-10 (32×32). (b) ImageNet (64× 64). (c) ImageNet (256× 256).

Figure 22: The comparison of Fréchet Inception Distance (FID (Heusel et al., 2017), lower is better)
w.r.t. the number of score function evaluations (NFEs). The sampling trajectory is simulated by the
DPM-Solver sampler (Lu et al., 2022). The denoising trajectory still converges considerably faster
than the sampling trajectory in this case.

(a) CIFAR-10 (32×32). (b) FFHQ (64× 64). (c) AFHQv2 (64× 64).

Figure 23: The comparison of Fréchet Inception Distance (FID (Heusel et al., 2017), lower is bet-
ter) w.r.t. the number of score function evaluations (NFEs). The sampling trajectory is simulated
by second-order stochastic sampler (Karras et al., 2022). The denoising trajectory still converges
considerably faster than the sampling trajectory in this case.

F.5 MORE VISUAL RESULTS

• Figure 22 provides more comparison of the sampling trajectory v.s. the denoising trajectory
on different datasets, with the default setting of DPM-Solver sampler15 (Lu et al., 2022).
For CIFAR-10, we adopt DPM-Solver-3 with N = 18, NFE = 48; for ImageNet-64, we
adopt DPM-Solver-3 with N = 18, NFE = 48; for ImageNet-256 (with guidance), we
adopt DPM-Solver-2 with N = 18, NFE = 34.

• Figure 23 provides more comparison of the sampling trajectory v.s. the denoising trajectory
on different datasets, with the second-order stochastic sampler16 (Karras et al., 2022).

• Figure 24 provides more comparison of the sampling trajectory v.s. the denoising trajectory
on different datasets, with Heun’s 2nd order method (Karras et al., 2022) for ODE-based
sampling as the main submission. We calculate FIDs along the sampling trajectory and
the denoising trajectory. Our proposed ODE-Jump sampling converges significantly faster
than EDMs in terms of FID. More results are provided in Figures 26-28.

• Figures 25, 29 and 30 provide more comparison of the sampling trajectory v.s. the denoising
trajectory on Stable Diffusion17 (Rombach et al., 2022). We adopt the checkpoint “sd-v1-
4.ckpt”, and compute FID following the original paper, i.e., comparing 30,000 synthetic
samples (256× 256 resolution) with the validation set of MS-COCO-2014 dataset.

15https://github.com/LuChengTHU/dpm-solver
16https://github.com/NVlabs/edm
17https://github.com/CompVis/stable-diffusion/
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(a) FFHQ (64× 64). (b) AFHQv2 (64× 64). (c) CIFAR-10 (32×32).

Figure 24: The comparison of visual quality (top is sampling trajectory, bottom is denoising trajec-
tory) and Fréchet Inception Distance (FID (Heusel et al., 2017), lower is better) w.r.t. the number of
score function evaluations (NFEs). The sampling trajectory is simulated by Heun’s 2nd order method
(Karras et al., 2022) as the main submission. The denoising trajectory converges considerably faster
than the sampling trajectory in terms of FID and visual quality. We thus employ ODE-Jump to
obtain decent samples with a much less NFE.

Figure 25: Stable Diffusion Results (Rombach et al., 2022). The comparison of visual quality (top
is sampling trajectory, bottom is denoising trajectory) and Fréchet Inception Distance (FID (Heusel
et al., 2017), lower is better) w.r.t. the number of score function evaluations (NFEs). The sampling
trajectory is simulated by the default PLMS sampler with N = 50, NFE = 50. The denoising
trajectory converges considerably faster than the sampling trajectory in terms of FID and visual
quality. We thus employ ODE-Jump to obtain decent samples with a much less NFE.
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Figure 26: The visual comparison of EDM and ODE-Jump on LSUN Cat.
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Figure 27: The visual comparison of EDM and ODE-Jump on LSUN Bedroom.
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Figure 28: The visual comparison of EDM and ODE-Jump on ImageNet-64.
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(a) “A Corgi lying on the beach wearing sunglasses”

(b) “A cup of coffee with a stack of books behind”

(c) “A handsome man wearing a suit, a bow tie and a sunglasses”

(d) “An ancient castle surrounded by magnificent mountains”

(e) “Long-exposure night photography of a starry sky over mountains, with light trails”

Figure 29: Stable Diffusion (PLMS sampler with N = 50, NFE = 50).
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(a) “A Corgi lying on the beach wearing sunglasses”

(b) “A cup of coffee with a stack of books behind”

(c) “A handsome man wearing a suit, a bow tie and a sunglasses”

(d) “An ancient castle surrounded by magnificent mountains”

(e) “Long-exposure night photography of a starry sky over mountains, with light trails”

Figure 30: Stable Diffusion (DPM-Solver-2 with N = 7, NFE = 12).
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