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Abstract
The quantum approximate optimization algorithm (QAOA) is a general-purpose
algorithm for combinatorial optimization that has been a promising avenue for
near-term quantum advantage. In this paper, we analyze the performance of the
QAOA on the spiked tensor model, a statistical estimation problem that exhibits a
large computational-statistical gap classically. We prove that the weak recovery
threshold of 1-step QAOA matches that of 1-step tensor power iteration. Additional
heuristic calculations suggest that the weak recovery threshold of p-step QAOA
matches that of p-step tensor power iteration when p is a fixed constant. This further
implies that multi-step QAOA with tensor unfolding could achieve, but not surpass,
the asymptotic classical computation threshold Θ(n(q−2)/4) for spiked q-tensors.
Meanwhile, we characterize the asymptotic overlap distribution for p-step QAOA,
discovering an intriguing sine-Gaussian law verified through simulations. For some
p and q, the QAOA has an effective recovery threshold that is a constant factor
better than tensor power iteration. Of independent interest, our proof techniques
employ the Fourier transform to handle difficult combinatorial sums, a novel
approach differing from prior QAOA analyses on spin-glass models without planted
structure.

1 Introduction

We study statistical estimation in the spiked tensor model, where we observe a q-tensor Y ∈ Rnq

in
nq dimensions given by

Y = (λn/n
q/2) · u⊗q + (1/

√
n) ·W ∈ Rnq

. (1.1)
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Hereu ∼ Unif({+1,−1}n) is some hidden signal,1 andW ∈ (Rn)⊗q is a noise tensor whose entries
are i.i.d. standard Gaussian N (0, 1). The parameter λn > 0 is the signal-to-noise ratio (SNR). The
goal is to estimate u given only access to Y . That is, we seek an estimator û : (Rn)⊗q → Sn−1(

√
n)

achieving nontrivial overlap with the signal:

lim inf
n→∞

E[⟨û(Y ),u⟩2/n2] > 0. (1.2)

This task is known as weak recovery in the spiked tensor model.

The spiked tensor model is a famous problem because it exhibits a huge computational-statistical gap,
referring to regimes of SNR where the statistical estimation problem is information-theoreotically
solvable, but no efficient algorithm has been found. For example, it is known that the Bayes optimal
estimator achieves non-trivial overlap with the signal u when λn > λIT for some constant threshold
λIT = Θ(1), whereas the problem is information-theoretically impossible when λn ≤ λIT [1].
Furthermore, the maximum likelihood estimator also achieves non-trivial overlap with the signal
when λn > λMLE for some λMLE = Θ(1). However, the best-known polynomial-time classical
algorithms for computing a non-trivial estimator require a much higher SNR of λn = Θ(n(q−2)/4).
These include tensor power iteration, gradient descent, approximate message passing, and spectral
methods with tensor unfolding [2–12]. Indeed, assuming the secret leakage planted clique conjecture,
Ref. [13] proves an Ω(n(q−2)/4) lower bound on the SNR needed by any polynomial-time classical
algorithm. See Fig. 1 for an illustration of the different SNR thresholds and Section 2.1 for more
background.

On the other hand, quantum algorithms are widely believed to have computational advantages over
classical algorithms for many problem classes. In particular, we focus on the Quantum Approximate
Optimization Algorithm (QAOA) [14], a general-purpose quantum optimization algorithm that can
be applied to optimize any objective function on bit-strings. The QAOA has received an enormous
amount of attention in the quantum computing community for several reasons. First, the QAOA is
simple and allows efficient implementation on near-term quantum hardware with many applications
[15–19]. Additionally, the QAOA is computationally universal [20], and its generalization can
realize other powerful algorithms such as the quantum singular value transform [21]. Under common
complexity-theoretic assumptions, no classical device can efficiently simulate the output distribution
of the QAOA even at shallow depth [22, 23]. Furthermore, the QAOA is guaranteed to find optimal
solutions when its number of steps (or depth) diverges [14]. Nevertheless, analyzing the asymptotic
performance of QAOA remains challenging: classical simulation of the algorithm is limited to small
problem dimension n, and analytical computations are often highly non-trivial [24–28]. Given the
enormous Ω(n(q−2)/4) computational-statistical gap in the spiked tensor model (compared to e.g.,
the constant factor gap in spin-glass optimization [29]), it is an interesting open question whether the
QAOA, as a realistic quantum algorithm with asymptotic convergence guarantees, can provide any
computational advantages.

In this work, we investigate the performance of QAOA for the spiked tensor model. In particular,
we choose the log-likelihood objective of spiked tensor C(z) = ⟨Y , z⊗q⟩/n(q−2)/2. Its maximizer,
the maximum likelihood estimator, achieves non-trivial overlap with the signal whenever λn >
λMLE = Θ(1). While the infinite-step QAOA could compute the maximizer, we are interested in the
performance of QAOA when the depth is polynomial in the problem size, and hope that it can surpass
the Θ(n(q−2)/4) classical threshold. Although some limitations of the QAOA are known for certain
random optimization problems in the low-depth regime [26, 30–32], these negative results do not
apply to the spiked tensor model since they rely on either sparse connectivity or concentration, both of
which are absent in the current setting. Here, as a first attempt to bridge the gap in understanding how
well a popular quantum algorithm may perform on a classically hard statistical estimation problem,
we study the asymptotic behavior of the QAOA on the spiked tensor model in the constant-depth
regime, where we are able to obtain rigorous and analytical results.

Our contribution. In this paper, we analyze the signal-to-noise ratio threshold of p-step QAOA for
weak recovery in the spiked tensor model, in the regime of fixed p and n approaching infinity. For
p = 1, we prove the weak recovery threshold is λn = Θ(n(q−1)/2), matching that of 1-step tensor
power iteration. For p > 1, heuristic calculations suggest the threshold is λn = Θ(n(q−2+εp)/2)

1Another commonly studied prior is the uniform distribution over the n-sphere, Unif(Sn−1(
√
n)). In this

work, we choose the Rademacher prior for the convenience of the QAOA analysis.
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Figure 1: Different thresholds for the spiked tensor model.

where εp = (q − 2)/[(q − 1)p − 1], again matching p-step tensor power iteration. Additionally,
given an initialization vector with nc/n correlation to the signal for 1/2 < c < 1, we prove the
weak recovery threshold for 1-step QAOA is λn = Θ(n(1−c)(q−1)), identical to 1-step tensor power
iteration. These results indicate that constant-step QAOA has the same asymptotic recovery threshold
as tensor power iteration in the spiked tensor model. Meanwhile, further heuristic analysis suggests
that QAOA with tensor unfolding could achieve the classical computation threshold Θ(n(q−2)/4).

Furthermore, we derive the asymptotic distribution of the overlap for p-step QAOA, revealing an
intriguing sine-Gaussian law distinct from p-step tensor power iteration. Analyzing the second
moment, we see that, for certain (p, q) pairs, the QAOA effectively has a recovery threshold that is a
constant factor better than tensor power iteration. Since there are classical algorithms that achieve
better recovery thresholds than power iteration, it remains an interesting open question whether
quantum advantage over the state-of-the-art classical algorithms may be obtained at larger QAOA
depths that grow with system size. To our current knowledge, our work is the first to obtain analytical
results using the QAOA for a statistical inference problem.

The proof of the sine-Gaussian distribution adopted novel techniques, including using discrete Fourier
transforms and the central limit theorem to handle combinatorial summations. The Fourier transform
technique also allows us to replace nonlinear polynomials in the exponents with dual variables, leaving
linear exponents that become easy in combinatorial sums. These techniques are of independent
interest and could be useful for analyzing the QAOA in other models.

2 Background and related work

2.1 Spiked tensor model and prior algorithms

The spiked tensor model (1.1) was first introduced as a statistical model for tensor principal component
analysis in [2], where it was studied with a spherical prior u ∈ Sn−1(

√
n). The information-theoretic

threshold for weak recovery under this model with the spherical prior [3, 7, 8] and the Rademacher
prior u ∈ {±1}n [1] are both λn = Θ(1).

Tensor power iteration. A well-studied classical algorithm for the spiked tensor model is tensor
power iteration [2, 10, 33]. Starting from a uniform random initialization û0 ∼ Unif(Sn−1), the k-th
iteration is given by ûk, where

ûk =
√
nY [û

⊗(q−1)
k−1 ]/

∥∥Y [û
⊗(q−1)
k−1 ]

∥∥
2
, k ≥ 1, û0 ∼ Unif(Sn−1). (2.1)

Here, Y [û⊗(q−1)] ∈ Rn denotes contracting the order-q tensor Y ∈ Rnq

with the order-(q − 1)

tensor û⊗(q−1) ∈ Rnq−1

. It is shown that with (log n) iterations, weak recovery is possible if the
SNR satisfies λn = Ω(n(q−2)/2/polylog(n)) [10, 33]. However, tensor power iteration does not
match the best-known classical algorithms. Furthermore, we remark that rounding the tensor power
iteration to sign(ûk) ∈ {±1}n does not give a better threshold.

Other classical algorithms and related results. [2] showed that the tensor power iteration and
approximate message passing algorithms with random initialization can recover the signal provided
λn = Ω(n(q−1)/2). This SNR threshold was later improved to λn = Ω(n(q−2)/2) by [3, 10, 33]
for these same methods. The same threshold λn = Ω(n(q−2)/2) could also be achieved by gradient
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descent and Langevin dynamics as proved in [9]. On maximum likelihood estimation for the spiked
tensor model with a spherical prior, [5, 6] studied the loss landscape, providing intuition that it
contains many saddle points and local minima near the equator, but no bad critical points off the
equator.

The best currently known polynomial-time algorithms can achieve a sharp threshold of λn =
Ω(n(q−2)/4). These include spectral methods with tensor unfolding [2, 11], sum-of-squares algo-
rithms [34–36], sophisticated iteration algorithms [37–39], and gradient descent on the smoothed
landscape [40, 41].

Another line of research has attempted to prove computational lower bounds in restricted computa-
tional models, including low-degree polynomials and statistical query algorithms [42, 43]. Under the
secreted leakage planted clique conjecture, [13] proved that any classical polynomial-time algorithm
requires λn = Ω(n(q−2)/4) for weak recovery of the signal.

A quantum algorithm by Ref. [44]. To the best of our knowledge, the only prior quantum algorithm
proposed for the spiked tensor model with provable guarantees is by Hastings in Ref. [44]. Hastings’
algorithm is based on a spectral method for a Hamiltonian on M bosons over n modes, living in
a Hilbert space of dimension nM , where M ≫ [n(q−2)/4/λn]

4/(q−2) × polylog(n). Finding the
dominant eigenvector of this Hamiltonian allows for weak recovery in the regime where λn =
Θ(n(q−2)/4). In this regime, where M = Ω(polylog n), the standard classical matrix power iteration
algorithm can extract the dominant eigenvector and recover the signal in Õ(nM ) time. For the
proposed quantum algorithm, Ref. [44] uses a combination of quantum phase estimation, amplitude
amplification, and clever state initialization to recover the signal in Õ(nM/4) time, achieving a quartic
speedup. (A few months after our paper appeared online, a related work [45] emerged, simplifying
Hastings’ algorithm and generalizing it to another planted inference problem.)

We remark that Hastings’ algorithm runs in superpolynomial time nΩ(polylogn) and does not improve
over the asymptotic computational threshold in SNR for recovery (although a constant factor im-
provement is possible). For comparison, the classical spectral method based on tensor unfolding
[2, 11] achieves recovery when λn > n(q−2)/4 in polynomial time O(poly(nq)). In this work, we
study the QAOA in the constant-step regime, where the gate complexity grows only linearly in the
problem size O(nq).

2.2 Quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) was introduced by [14] as a quantum
algorithm for finding approximate solutions to combinatorial optimization problems. The QAOA can
be applied to optimize any cost function on bit-strings, C : {±1}n → R. In the spiked tensor model,
we consider optimizing the log-likelihood function given by

ûMLE = arg max
σ∈{±1}n

{
C(σ) = ⟨Y ,σ⊗q⟩/n(q−2)/2

}
. (2.2)

The maximum likelihood estimator ûMLE achieves non-trivial correlation with the signal when
λn > λMLE for some constant λMLE = Θ(1). However, classical algorithms cannot efficiently
compute the MLE unless λn = Ω(n(q−2)/4) [13]. This paper investigates whether QAOA could
compute ûMLE, or an approximate estimator, for smaller values of λn.

The inputs to the QAOA algorithm are a cost function C : {±1}n → R and parameter vectors
γ,β ∈ Rp. The initial QAOA state |s⟩ = 2−n/2

∑
z |z⟩ is the rescaled all-one vector 2−n/212n ∈

C2n , assigning equal probability to measuring each possible bit-string upon quantum measurement.
See Appendix A.1 for a review of quantum computing terminology, where we also define the Pauli
operators {Xk, Yk, Zk}nk=1 acting on the k-th qubit. The cost function C associates with a 2n × 2n

diagonal matrix, where the |z|’th diagonal gives C(z). For the spiked tensor model with cost function
C(z) = ⟨Y , z⊗q⟩/n(q−2)/2, this matrix is C =

∑n
j1,...,jq=1 Yj1···jqZ1 · · ·Zq/n

(q−2)/2 ∈ C2n×2n .
Letting B =

∑n
j=1Xj ∈ C2n×2n , for any parameter (γ, β), the unitary matrices e−iγC , e−iγB ∈

C2n×2n are matrix exponents of −iγC and −iγB. Given γ,β ∈ Rp, the p-step QAOA state is

|γ,β⟩ = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |s⟩ ∈ C2n . (2.3)
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One can verify |γ,β⟩ is a unit vector since |s⟩ ∈ C2n is unit and e−iβkB ∈ C2n×2n and e−iγkC ∈
C2n×2n are unitary matrices. After preparing the quantum state |γ,β⟩, QAOA samples a bit string
z ∼ |γ,β⟩ in {±1}n by quantum measurement. In our main results, we will analyze the distribution
of the overlap RQAOA of this quantum measurement z with respect to the signal u:

RQAOA ≡ z⊤u/n =
1

n

n∑
i=1

ziui ∈ [−1, 1]. (2.4)

For any function f(z) =
∑n

k=0

∑
(j1,··· ,jk) f̂j1···jkzj1 · · · zjk , its expectation under the QAOA

state |γ,β⟩ is given by ⟨γ,β|f(Z)|γ,β⟩, where ⟨γ,β| ∈ C1×2n is the conjugate transpose of
|γ,β⟩ ∈ C2n×1, and f(Z) =

∑n
k=0

∑
(j1,··· ,jk) f̂j1···jkZj1 · · ·Zjk ∈ R2n×2n for Pauli-Z matrices

Zj . To simplify the notations, we denote ⟨·⟩γ,β by the expectation with the quantum measurement
from |γ,β⟩, so that

⟨f(Z)⟩γ,β = ⟨γ,β|f(Z)|γ,β⟩. (2.5)
In the main theorems of this paper, we will focus on the second moment of the overlap of QAOA,
denoted as ⟨R2

QAOA⟩γ,β = ⟨γ,β|R̂2|γ,β⟩, where R̂ ≡ 1
n

∑n
i=1 uiZi. We defer further related

literature on theoretical analyses of the QAOA to Appendix A.2.

In terms of experimental realizations, the QAOA has been implemented in quantum computing
platforms such as trapped ions [16, 19], superconducting qubits [17], and neutral atoms [18], for
optimization problems with up to 179 bit variables. Implementing the QAOA for the spiked tensor
model, however, poses additional challenges due to the all-to-all connectivity in its cost function,
leading to a higher overhead in the number of quantum gates and circuit compilation costs. Cur-
rently, the largest experimental implementations for problems with dense connectivity include 17-bit
Sherrington-Kirkpatrick spin-glass models on superconducting qubits [17], and an 18-bit LABS
problem on trapped-ion quantum processors [19]. We expect larger problems can be implemented as
quantum hardware matures, but quantum error-correction is likely necessary to observe any quantum
advantage at scale [46].

3 Main results

3.1 Weak recovery threshold and overlap distribution for 1-step QAOA

We first consider the general 1-step QAOA for weak recovery in the spiked tensor model. Consider the
spiked tensor model Y (1.1) with planted signal u ∼ Unif({±1}n) and the 1-step QAOA quantum
state |γn, βn⟩ = e−iβnBe−iγnC |s⟩ (see Section 2.2) with parameters (γn, βn) ∈ R>0 × [0, 2π]. The
quantum state |γn, βn⟩ depends randomly on Y through C(σ) = ⟨Y ,σ⊗q⟩/n(q−2)/2. Our main
results characterize the distribution of the overlap RQAOA = û⊤u/n between a sample û ∼ |γn, βn⟩
and the signal vector u.
Theorem 1 (Weak recovery threshold and overlap distribution for 1-step QAOA). Consider the
spiked tensor model (1.1) and the 1-step QAOA overlap as defined above. Then the following hold.

(a) Take any sequence of {γn}n≥1 ⊆ R, {βn}n≥1 ⊆ [0, 2π], and any sequence of {λn}n≥1 ⊆
[0,∞) with limn→∞ λn/n

(q−1)/2 = 0. We have

lim
n→∞

EY [⟨R2
QAOA⟩γn,βn ] = 0. (3.1)

(b) Take any sequence of {γn}n≥1, {βn}n≥1, and {λn}n≥1 which satisfies

lim
n→∞

(γn, βn, λn/n
(q−1)/2) = (γ, β,Λ). (3.2)

Then, over the randomness of Y and the quantum measurement, the overlap RQAOA of the
1-step QAOA converges in distribution to a sine-Gaussian law as

RQAOA
d−→ e−2qγ2

sin(2β) sin(2qΛγGq−1), where G ∼ N (0, 1). (3.3)

(c) As a corollary of (b), under the asymptotic limit of (3.2) with Λ > 0, γ > 0, and β ̸∈ {kπ/2 :
k ∈ Z}, we have

lim
n→∞

EY [⟨R2
QAOA⟩γn,βn

] > 0. (3.4)
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The full proof of Theorem 1 is contained in Appendix C.

Remark 3.1 (Weak recovery threshold). Theorem 1(c) implies that when λn = Θ(n(q−1)/2), the
overlap will be non-zero with non-trivial probability over both the random draw of the tensor and the
quantum randomness. In contrast, Theorem 1(a) shows that when λn = o(n(q−1)/2) the overlap will
be zero with high probability. This establishes that λn = Θ(n(q−1)/2) is the weak recovery threshold
of 1-step QAOA in the spiked tensor model.
Remark 3.2 (Overlap distribution). Theorem 1 does not show that the overlap distribution for a
typical instance Y converges to the same sine-Gaussian law. In Section 4, we perform numerical
simulations that provide evidence that the overlap distribution will concentrate over the random draw
of Y , which would imply that the overlap distribution is indeed sine-Gaussian for any typical Y .

Comparison with classical tensor power iteration. The 1-step tensor power iteration estimator
(Eq. (2.1)) is redefined here for the reader’s convenience: û1 =

√
nY [û

⊗(q−1)
0 ]/∥Y [û

⊗(q−1)
0 ]∥2,

where û0 ∼ Unif(Sn−1) is a random initialization vector. In the following proposition, we show that
the weak recovery threshold for the 1-step power iteration estimator is also λn = Θ(n(q−1)/2), and
we provide the distribution of the overlap RPI ≡ û⊤

1 u/n between the power iteration estimator û1

and the signal u.
Proposition 3.3 (Weak recovery threshold for 1-step tensor power iteration). Assume that the rescaled
signal-to-noise ratio has a limit limn→∞ λn/n

(q−1)/2 = Λ. Then over the randomness of W and
initialization û0, the overlap RPI of the power iteration estimator with the signal converges in
distribution to

RPI
d−→ sin[arctan(ΛGq−1)], where G ∼ N (0, 1). (3.5)

As a corollary, when limn→∞ λn/n
(q−1)/2 = 0, we have RPI

p−→ 0.

The proof of Proposition 3.3 is contained in Appendix H.1.
Remark 3.4 (Comparing the overlaps). Theorem 1 and Proposition 3.3 show that both 1-step QAOA
and 1-step power iteration have the same weak recovery threshold λn = Θ(n(q−1)/2). To compare
the two algorithms more precisely, we take the limit limn→∞ λn/n

(q−1)/2 = Λ for some small
Λ > 0. Eq. (3.3) and Eq. (3.5) give the limiting squared overlap distributions for 1-step QAOA and
1-step power iteration, respectively:

lim
Λ→0

Λ−2 lim
n→∞

EY [⟨R2
QAOA⟩γ,β ] = e−4qγ2

4q2γ2 sin2(2β)EG∼N (0,1)[G
2q−2],

lim
Λ→0

Λ−2 lim
n→∞

EY [R2
PI] = EG∼N (0,1)[G

2q−2].
(3.6)

This gives

max
γ,β

{
lim

Λ→0+
lim
n→∞

EY [⟨R2
QAOA⟩γ,β ]/EY [R2

PI]
}
= e−4qγ2

⋆4q2γ2⋆ sin
2(2β⋆) = q/e, (3.7)

where the maximizer is (γ⋆, β⋆) = ( 1
2
√
q , π/4). Thus, for q > e, 1-step QAOA gives better overlap

than 1-step power iteration.
Remark 3.5 (Rounding via sign(û) will not improve the overlap). The readers may wonder whether
the overlap of tensor power iteration will be improved by rounding the estimator via ū1 = sign(û1) ∈
{±1}n, outputting an estimator in the signal space. Defining RPI = ū

⊤
1 u/n, it is straightforward to

show that as limn→∞ λn/n
(q−1)/2 = Λ,

RPI
d−→ Φ(ΛGq−1), where G ∼ N (0, 1), Φ(t) = 2× PZ∼N (0,1)(Z ≤ t)− 1. (3.8)

Hence, the computational threshold has the same exponent by rounding, but the overlap becomes
smaller:

lim
Λ→0

Λ−2 lim
n→∞

EY [R2

PI] = (2/π) · EG∼N (0,1)[G
2q−2]. (3.9)

Remark 3.6 (Sine-Gaussian law versus sine-arctan-Gaussian law). The sine-Gaussian law of QAOA
is particularly interesting in that the overlap will not concentrate as Λ → ∞. Instead, it will satisfy a
sine-uniform distribution, i.e., sin(2qΛγGq−1)

d−→ sin(U) for U ∼ Unif([0, 2π]). In contrast, the
sine-arctan-Gaussian law of tensor power iteration will concentrate at {±1} as Λ → ∞.
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In Appendix E, we also study the scenario where prior information about the signal may be leveraged
to recover the signal with a smaller SNR. There, we rigorously analyzed the 1-step QAOA applied
to boost the signal in a weak estimator in Theorem 2, and compared it classical power iteration in
Proposition E.2. Our result shows that the 1-step QAOA has the same asymptotic computational
efficiency as 1-step power iteration, albeit with a constant-factor better overlap in the Λ ≪ 1 regime
when q > e.

3.2 Weak recovery threshold and overlap distribution for p-step QAOA

We next consider the general p-step QAOA for weak recovery in the spiked tensor model. Although
it is known that the QAOA is able to output the MLE that weakly recovers the signal when p grows
unboundedly with n, here we focus on a more analytically tractable regime where p is an arbitrary
fixed constant in the n→ ∞ limit. Using a physics-style derivation, we show that the p-step QAOA
can achieve weak recovery when the signal-to-noise ratio satisfies

λn = Ω
(
n(q−2+εp)/2

)
, where εp =

{
q−2

(q−1)p−1 , q > 2,

1/p, q = 2.
(3.10)

Observe that 0 < εp ≤ 1 and limp→∞ εp = 0. Hence, the p-step QAOA can recover the signal
with a progressively weaker SNR as p increases. Moreover, we are able to characterize the overlap
distribution RQAOA ≡ û⊤u/n of p-step QAOA between a sample û ∼ |γ,β⟩ (see Eq. (2.3)) and
the signal u as follows:
Claim 3.7 (p-step QAOA for weak recovery). Consider the p-step QAOA with parameters
{(γn,βn)}n≥1 applied to the spiked tensor model (1.1) with signal-to-noise ratio {λn}n≥1. Suppose

lim
n→∞

(
γn,βn, λn/n

(q−2+εp)/2
)
= (γ,β,Λ). (3.11)

Then, there are parameter-dependent coefficients (ap(γ,β), bp(γ,β)) such that over the randomness
ofY and the quantum measurement, the overlap RQAOA of the p-step QAOA converges in distribution
to a sine-Gaussian law as

RQAOA
d−→ ap sin(bpΛ

1/εpG(q−1)p), where G ∼ N (0, 1). (3.12)

The derivation of Claim 3.7 is contained in Appendix D. We remark that our derivation uses non-
rigorous heuristics from physics such as the Dirac delta function and its Fourier transform to linearize
exponents in combinatorial sums (see Appendix D.1 for a sketch). Analytical expressions for the
coefficients ap(γ,β) and bp(γ,β) can be found in Appendix D.5.

Remark 3.8 (Weak recovery threshold). As Λ → 0, Eq. (3.12) implies that RQAOA
p−→ 0. Thus,

Claim 3.7 implies that λn = Θ(n(q−2+εp)/2) is the weak recovery threshold by the p-step QAOA in
the spiked tensor model in the regime of fixed QAOA parameter. We believe this scaling is also the
weak recovery threshold for the QAOA with any sequence of parameters (γn,βn), but proving this
requires ruling out better performance of the QAOA when (γn,βn) is allowed to depend strongly
on n as we have done in Theorem 1(a); we leave this as future work. Since εp → 0 as p→ ∞, this
means λn = Θ(n(q−2)/2) is the recovery threshold given a diverging number of QAOA steps (but
constant with respect to n). However, this does not achieve the Θ(n(q−2)/4) computational threshold
for classical algorithms.

Comparison with classical tensor power iteration. We now compare the overlap from the p-step
QAOA to that from the classical p-step tensor power iteration algorithm. We show that the weak
recovery threshold for the p-step power iteration estimator is also λn = Θ(n(q−2+εp)/2), and we
provide the distribution of the overlap RPI ≡ û⊤

p u/n between the p-step power iteration estimator
ûp (see Eq. (2.1)) and the signal u.
Proposition 3.9 (Corollary of Lemma 3.2 of [33]). Consider a random instance of the spiked tensor
model with limn→∞ λn/n

(q−2+εp)/2 = Λ. The overlap RPI of the p-step tensor power iteration
algorithm converges in distribution as

RPI
d−→ sin

[
arctan(Λ1/εpG(q−1)p)

]
, where G ∼ N (0, 1). (3.13)
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The proof of Proposition 3.9 is contained in Appendix H.3.
Remark 3.10 (Comparing the overlaps). In the small Λ ≪ 1 regime, we have

RQAOA ≍ (|apbp|εpΛ)1/εpG(q−1)p and RPI ≍ Λ1/εpG(q−1)p . (3.14)

When |apbp| > 1, the QAOA has a constant factor advantage over the classical power iteration
algorithm in the overlap achieved, assuming the conjectured Claim 3.7 based on heuristic derivations.
To quantify this advantage, we consider the quantum enhancement factor, |apbp|εp , which is the
factor that the signal-to-noise ratio can shrink for the QAOA while maintaining the same overlap as
the power iteration algorithm. Effectively, this factor |apbp|εp corresponds to a quantum improvement
in the recovery threshold by the QAOA over classical power iteration. We numerically optimize
|apbp|εp with respect to the QAOA parameters (γ,β), and present the optimized values in Table 1.

Table 1: The quantum enhancement factor |apbp|εp of the p-step QAOA over the p-step tensor
power iteration, for spiked q-tensors when λn = Λn(q−2+εp)/2 in the Λ ≪ 1 regime. Note in the
first row, which corresponds to p = 1 with ε1 = 1, we know the optimal value |a1b1| =

√
q/e from

Eq. (3.7). The remaining values are optimized via a quasi-Newton method starting with 1000 heuristic
initial guesses of (γ,β) and keeping the best value; hence, they currently should be considered as
lower bounds on the best possible enhancement factors.

p
q 2 3 4 5 6 7

1 0.8578 1.0505 1.2131 1.3562 1.4857 1.6047
2 0.9663 1.0505 1.1916 1.2882 1.4167 1.5162
3 1.0204 1.0314 1.1615 1.2555 1.3844 1.4917
4 1.0487 1.0144 1.1419 1.2447 1.3795 1.4858
5 1.0631 1.0063 1.1327 1.2411 1.3770 1.4845
6 1.0697 1.0013 1.1297 1.2399 1.3743 1.4842
7 1.0719

Remark 3.11 (Weak recovery threshold for QAOA with tensor unfolding). Although neither the
constant-step QAOA nor the tensor power iteration matches the Θ(n(q−2)/4) recovery threshold for
the best polynomial-time classical algorithms, we can achieve this threshold using the idea of tensor
unfolding. When q is even, the tensor Y ∈ Rnq

can be unfolded into a matrix Y :

Y = (λn/n
q/2) · ūū⊤ + (1/

√
n) ·W ∈ Rnq/2×nq/2

. (3.15)

Here Y (j1,...,jq/2),(jq/2+1,...,jq) = Yj1···jq , W (j1,...,jq/2),(jq/2+1,...,jq) = Wj1···jq , and ū =

vec(u⊗(q/2)) ∈ {±1}nq/2

. Existing work [2, 47] have demonstrated that the leading eigenvec-
tor z̄ of Y has non-vanishing correlation with the signal ū as soon as λn > n(q−2)/4. Furthermore,
for the eigenvector z̄ in such a regime, standard analysis as in [2] implies that the top singular vector
of mat(z̄) ∈ Rn×nq/2−1

will have non-trivial overlap with the signal u, achieving the Θ(n(q−2)/4)
weak recovery threshold for the spectral method with tensor-unfolding.

A similar tensor-unfolding pre-processing could be applied to the QAOA to improve the computational
threshold. Indeed, the QAOA method could be adopted to maximize the cost function C(σ̄) =

σ̄⊤Y σ̄/n(q−1)/2 with decision variable σ̄ ∈ {±1}nq/2

. Notice that such a QAOA method needs to
be applied to a nq/2-qubit system. Effectively, C(σ̄) could be interpreted as the cost function of a
spiked 2-tensor model of size n̄ = nq/2 and with a rescaled signal-to-noise ratio λ̄n = λn/n

(q−2)/4.
According to Claim 3.7, p-step QAOA outputs a long bit-string z̄ ∈ {±1}nq/2

overlapping with the
signal ū as long as λ̄n = n̄εp/2 for εp = 1/p. Translating to the scaling of λn, the computational
threshold for QAOA with tensor unfolding is λn = Ω(n(q−2+ε′p)/4) where ε′p = q/p. This recovers
the classical Θ(n(q−2)/4) threshold as p→ ∞.

4 Numerical simulations

We now validate our theoretical results by conducting numerical simulations of the QAOA through
classical computers. In this section, we focus on the case of 1-step QAOA (p = 1) for the spiked
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matrix model (q = 2), where we can obtain an explicit formula the expected squared overlap at any
finite problem dimension n (see Appendix F for a derivation):

EY [⟨R2
QAOA⟩γ,β ] =

n− 1

2n
e−8γ2(n−2)/n sin2(2β)[1− cosn−2(8λγ/n)]

+
n− 1

n
e−4γ2(n−1)/n sin(4β) sin(4λγ/n) cosn−2(4λγ/n) +

1

n
.

(4.1)

In Fig. 2(a), we report the overlap distribution of 1-step QAOA (p = 1) for the spiked matrix model
(q = 2) where the SNR is chosen as λn = n1/2. The histogram shows the Monte Carlo simulation
results following the predicted sine-Gaussian law. The dashed gray lines are from the simulations
of the QAOA using classical algorithms for n = 26, each corresponding to one of 40 instances.
Note that simulating QAOA classically has complexity O(2n), which limits us to n = 26. We see

Figure 2: (a) Example overlap distribution from 1-step QAOA for the spiked matrix model (q = 2),
where simulation data is collected from 40 random generated instances with n = 26 bits. The
signal-to-noise ratio is chosen to be λn = n1/2, and (γ, β) = (

√
ln 5/32, π/4). Dash gray lines

connect data from the same instance. (b) Average of squared overlap ⟨R2
QAOA⟩γ,β from the QAOA

output distribution for 40 random instances generated at various problem dimensions.

p=1 p=2 p=3 p=4 p=5

Figure 3: Example overlap distributions from p-step QAOA for the spiked tensor model for 1 ≤ p ≤ 5.
The top row shows data from 40 random 26-bit instances with q = 2 and λn = n1/(2p). The bottom
row shows data from 40 random 23-bit instances with q = 3 and λn = n[1+1/(2p−1)]/2. Different
columns correspond to different p, using the QAOA parameters (γ,β) that optimized |apbp|εp in
Table 1. Dash gray lines connect data from the same instance. Blue histograms are the theoretical
sine-Gaussian distributions in the n → ∞ limit, where RQAOA ∼ ap sin[bpG

(q−1)p ] according to
Claim 3.7. (Note here Λ = 1.)
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that, despite some finite sample effects, the predicted sine-Gaussian distribution matches the QAOA
simulation.

Fig. 2(b) reports the expected squared overlap from the QAOA simulations. The green dashed line is
the theoretical prediction in the n→ ∞ limit. The blue solid line is the finite n theoretical prediction
from Eq. (4.1). The gray dots are the squared overlaps from individual QAOA instances simulated
classically. The average over instances (red crosses) agrees well with the finite n theory prediction,
which converges to the n→ ∞ limit with order 1/n deviation.

We also perform simulations for 1 ≤ p ≤ 5 and q = 2, 3. Fig. 3 plots the overlap distribution for
p-step QAOA. The simulation curves follow the shape of the theoretical histograms for p ≤ 2. For
p ≥ 3, the shapes of the simulated and theoretical overlap distributions do not match well, likely due
to finite size effects (simulations for large n > 26 are computationally challenging).

In Appendix G, we present additional numerical simulation results on higher (p, q) and find the second
moment of the QAOA overlap converges to our theoretical predictions up to O(1/n) deviations. We
also describe more details of the simulation methods.

An interesting phenomenon apparent from Fig. 2(a) and Fig. 3 is that the output distribution of
the QAOA appears to concentrate over the randomness of instances Y , but not over the quantum
measurements. This is in stark contrast to previous concentration results on the QAOA where
concentration over measurements were shown, e.g., for spin-glass models in [24, 26, 32]. We note
that such anti-concentration is also expected in the limit of zero noise (λ→ ∞), where it is known
the constant-p QAOA can prepare the GHZ state [48]. Since existing limitations of both classical
[29] and quantum algorithms [26, 30–32] on various problems over random structures rely heavily on
concentration, extending these negative results to the QAOA for the spiked tensor model do not seem
possible due to the absence of concentration. Nevertheless, our analysis shows that the constant-p
QAOA is unable to improve the recovery threshold in the spiked tensor model achieved by classical
algorithms by more than a constant factor.

5 Discussion

In this paper, we have investigated the power of quantum algorithms for the spiked tensor model,
a canonical problem in statistical inference with a large computational-statistical gap that has so
far eluded classical algorithms. We gave the first rigorous study of a polynomial-time quantum
algorithm on this problem by analyzing the performance of the QAOA, a popular variational quantum
algorithm that has been implemented on current quantum computing hardware. We showed that
p-step QAOA achieves the same asymptotic SNR threshold for weak recovery as p-step tensor power
iteration. A heuristic analysis showed that multi-step QAOA with tensor unfolding could achieve, but
not surpass, the classical computation threshold Θ(n(q−2)/4). This implies that achieving a strong
quantum advantage via the QAOA requires using a number of steps p that grows with n. However,
we revealed that the asymptotic overlap distribution of QAOA exhibits an intriguing sine-Gaussian
law, distinct from tensor power iteration. For certain parameters (p, q), the QAOA effectively has a
recovery threshold that is a constant factor better, indicating a modest quantum advantage over the
classical power iteration. Overall, while achieving identical scalings as power iteration, the QAOA
demonstrates qualitative differences and potential for quantum speedups.

There are many interesting questions that remain open. One worthy challenge would be a rigorous
proof for the p > 1 analysis without relying on heuristic arguments. Additionally, it would be
interesting to prove that the sine-Gaussian distribution is concentrated over problem instances but not
over measurements, as suggested by our simulations. This is in contrast to recent results showing that
the low-depth QAOA is concentrated over measurements [26, 32], a seemingly essential ingredient
for many proofs of algorithmic limitations [26, 29–32]. Despite the absence of concentration in the
spiked tensor setting, our results show that the constant-p QAOA has limited power, similar to the
message of recent works [26, 30–32, 49–51] proving limitations up to p = O(log n). This suggests
that demonstrating strong quantum advantage requires analyzing super-logarithmic depth QAOA,
which remains an outstanding open question. Finally, it would be interesting to study quantum
algorithms in other statistical inference models that classically exhibit computational-statistical gaps,
including planted clique, Bayesian linear models, and sparse PCA. Overcoming any such gap with a
polynomial-time quantum algorithm would be an exciting superpolynomial quantum speedup with
practical relevance.
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A Additional background

A.1 Review of quantum computing terminology

For the convenience of readers who are unfamiliar with quantum computing terminology, we
briefly introduce relevant linear algebra concepts. A quantum state of an n-qubit system is a
2n-dimensional unit complex vector ψ ∈ C2n satisfying

∑
i∈[2n] |ψi|2 = 1. Each bit-string

z ∈ {±1}n associates with a quantum state |z⟩ ∈ C2n , representing the |z|’th canonical basis vector
[0, · · · , 0, 1, 0, · · · , 0]⊤ ∈ C2n , where only position |z| equals 1 (with |z| = 1 +

∑
j∈[n] 2

j−1(1−
zj)/2 denoting the rank of bit-string z). Therefore, ψ =

∑
z∈{±1} ψ|z||z⟩ where |ψ|z||2 gives the

probability of observing z upon measurement. This represents ψ as a probability distribution over all
2n bit-strings in {±1}n.

The Pauli operators σx, σy, σz on a single qubit are represented as 2× 2 complex matrices:

I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (A.1)

In an n-qubit system, the Pauli operators {Xk, Yk, Zk} ∈ C2n×2n associated to the k-th qubit are
defined by I⊗(k−1)⊗{σx, σy, σz}⊗I⊗(n−k) ∈ C2n×2n , where ⊗ is the Kronecker product operator.

A.2 Related literature on the QAOA

In terms of theoretical analysis of its computational complexity, the performance of the QAOA
has been studied for various models, including the Sherrington-Kirkpatrick model [24], MaxCut
[25, 27], the Max-q-XORSAT for regular hypergraphs [25], q-spin spin-glass models [26, 52], the
ferromagnetic Ising model [53], and random constraint satisfaction problems [28]. While [24] shows
promising evidence for the QAOA to achieve the ground state energy of the Sherrington-Kirkpatrick
model [54], [26] proves that constant-step QAOA cannot achieve the ground state for q-spin spin-glass
models in general.

There is also a line of work aiming to prove computational hardness results for the QAOA and related
quantum algorithms. [30, 31, 50, 51] studied the limitation of local quantum algorithms like the
QAOA for solving combinatorial optimization problems on sparse random graphs, using the bounded
light-cone of the algorithms at sufficiently low depths. This limitation was translated to the dense
spin-glass models in [26]. Furthermore, [32, 49] proved hardness results for the QAOA by exploiting
the symmetry of the problem. Note all previously known limitations of the QAOA in the average-case
setting [26, 30–32] have relied on concentration of the output distribution in the Hamming weight
basis, which is not present in the spiked tensor model.

Our work studies the QAOA for a statistical inference problem, distinct from these existing results.
Furthermore, we develop new techniques for analyzing the QAOA that do not exist in prior work.
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B Moment generating function of the QAOA overlap at p = 1

We dedicate this section to derive a combinatorial expression for expected moment-generating
function of the QAOA overlap, defined as

Mn(ζ; γn, βn, λn) := ⟨eζR̂⟩γn,βn
. (B.1)

We write Mn(ζ) =Mn(ζ; γn, βn, λn) for short. This quantity will be used in future derivations.

We use the techniques and conventions first introduced in [24]. First, we define bistrings a ∈ B :=
{±1}3 indexed as a = (a1, am, a2). Since p = 1, we write β = β1, γ = γ1. Additionally, define the
quantities given by

Qa =
1

2
⟨a1|eiβX |1⟩ ⟨1|e−iβX |a2⟩ , (B.2)

Φa = γ(a1 − a2). (B.3)

We may also write {na}a∈B ⊆ Z|B| where
∑

a∈A na = n to assign a count to each bit-string. If we
underscore the bit-string, we mean a = (a1,a2, . . . ,aq) ∈ Bq . We also write Φa = Φa1a2···aq

.

We now have the notation to state the following lemma.
Lemma B.1 (QAOA overlap expected moment-generating function in the configuration basis for
p = 1). The expectation over the spiked tensor disorder in Eq. (1.1) of the moment-generating
function defined in Eq. (B.1) for p = 1 is given by

EY [Mn(ζ)] =
∑
{na}

(
n

{na}

) ∏
a∈B

Qna
a exp

[
− 1

2nq−1

∑
a∈Bq

Φ2
a

q∏
s=1

nas
+

iλn
nq−1

∑
a∈Bq

Φa

q∏
s=1

(as)mnas

+
ζ

n

∑
v∈B

vmnv

]
. (B.4)

Proof of Lemma B.1. Without loss of generality, we assume that u = 1 and proceed as in [24,
Section 5] and [26, Appendix D.2]. By definition, we have that

Mn(ζ) = ⟨γ,β| eζR̂ |γ,β⟩

= ⟨s| eiγCeiβBeζR̂e−iβBeiγC |s⟩ . (B.5)

Inserting 3 resolutions of the identity I =
∑

z |z⟩ ⟨z| observing that every computation basis state
|z⟩ is an eigenvector of C and R̂, we have that

Mn(ζ) =
∑

z1,zm,z2

⟨s| eiγC |z1⟩ ⟨z1| eiβBeζR̂ |zm⟩ ⟨zm| e−iβB |z2⟩ ⟨z2| eiγC |s⟩

=
1

2n

∑
z1,zm,z2

⟨z1| eiβB |zm⟩ eiγC(z1)eζR̂(zm)eiγC(z2) ⟨zm| e−iβB |z2⟩

=
1

2n

∑
z1,zm,z2

f∗β(z
1zm)fβ(z

mz2) exp
[
iγ(C(z1)− C(z2)) + ζR(zm)

]
=

1

2n

∑
z1,zm,z2

f∗β(z
1zm)fβ(z

mz2)

× exp

[
iγ

n∑
i1,...,iq=1

(
λn
nq−1

+
Wi1,...,iq

n(q−1)/2

)
(z1i1 · · · z

1
iq − z2i1 · · · z

2
iq ) +

ζ

n

n∑
j=1

zmj

]
, (B.6)

where we defined fβ(zz′) = ⟨z| e−iβB |z′⟩ since this quantity only depends on the bitwise product
zz′. We also used the definitions of C(z) = ⟨Y , z⊗q⟩/n(q−2)/2 and R̂(z) = 1

n

∑n
j=1 zj . Next, we

tranform the zj as follows:

z1 → z1zm, z2 → z2zm. (B.7)
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This gives

Mn(ζ) =
1

2n

∑
z1,zm,z2

f∗β(z
1)fβ(z

2)

× exp

[
iγ

n∑
i1,...,iq=1

(
λn
nq−1

+
Wi1,...,iq

n(q−1)/2

)
zmi1 · · · z

m
iq (z

1
i1 · · · z

1
iq − z2i1 · · · z

2
iq ) +

ζ

n

n∑
j=1

zmj

]

=
1

2n

∑
z1,zm,z2

f∗β(z
1)fβ(z

2)

× exp

[
i

n∑
i1,...,iq=1

(
λn
nq−1

+
Wi1,...,iq

n(q−1)/2

)
zmi1 · · · z

m
iqΦi1,...,iq (Z) +

ζ

n

n∑
j=1

zmj

]
, (B.8)

where we denoted Z = (z1, z2) and

Φi1,...,iq (Z) = γ(z1i1 · · · z
1
iq − z2i1 · · · z

2
iq ). (B.9)

Hence, the expected moment-generating function is

EY [Mn(ζ)] =
1

2n

∑
z1,zm,z2

f∗β(z
1)fβ(z

2)

× exp

[
q∑

i1,...,iq=1

(
iλn
nq−1

zmi1 · · · z
m
iqΦi1,...,iq (Z)− 1

2nq−1
Φ2

i1,...,iq (Z)

)
+
ζ

n

n∑
j=1

zmj

]
.

(B.10)

Now we change to the so-called configuration basis. For any bit-string 1 ≤ j ≤ n, we look at a new
bit-string:

(z1j , z
m
j , z

2
j ) ∈ B. (B.11)

For any a ∈ B, we represent by na the number of times that configuration a happens. Note that∑
a∈B = n. For more details, we again refer the reader to [26, Appendix D.2]. Now, instead of

counting over each bit of z1, zm, z2, we can count over configurations in A:

EY [Mn(ζ)] =
∑
{na}

(
n

{na}

) ∏
a∈B

Qna
a exp

[
iλn
nq−1

∑
a1,...,aq∈B

Φa1···aq
(a1)m · · · (aq)mna1

· · ·naq

− 1

2nq−1

∑
a1,...,aq∈B

Φ2
a1···aq

na1
· · ·naq

+
ζ

n

∑
a∈B

amna

]
, (B.12)

which finishes the proof of Lemma B.1.

C Proof of Theorem 1

C.1 Proof sketch for Theorem 1(b) and emergence of sine-Gaussian law.

Here we briefly sketch the proof of Theorem 1 for 1-step QAOA, explain how the sine-Gaussian law
appears, and highlight the technical ideas.

To derive the distribution of the QAOA overlap, we compute its expected moment-generating function.
We start by following the steps from [24, 26] to reformulate the expected moment-generating function
(MGF). With some algebra, we arrive at the following equation (see Appendix B and Lemma C.1 for
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the derivation):

EY [⟨eζR̂⟩γ,β ] =
n∑

t=0

(
n

t

)( sin(2β)
4n

)t

e−γ2[nq−(n−2t)q ]/nq−1

Sn,t (C.1)

Sn,t = nt
∑

∑
ni=t

(
t

{ni}

)
(−i)n1−n2+n3−n4e(ζ/n)(n1+n2−n3−n4)Zn,t(n1 − n2 − n3 + n4),

(C.2)

Zn,t(k) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
(eζ/n cos2 β + e−ζ/n sin2 β)τ+(e−ζ/n cos2 β + eζ/n sin2 β)τ−

× eiΛγ[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

. (C.3)

Looking upon the term Zn,t(k), we can interpret the summand τ+ as a binomial variable Binom(n−
t, 1/2), and by the Central Limit Theorem, we have (τ+ − τ−)/

√
n

d−→ G ∼ N (0, 1). This gives

lim
n→∞

Zn,t(k) = EG∼N (0,1)[e
i2qkΛγGq−1

] =: Zt(k).

This is the step where the power of Gaussian appears. Next, assuming that we can replace Zn,t by Zt

in the expression of Sn,t as in (C.2), and using the multinomial theorem, we get

Sn,t
·
= EG∼N (0,1) n

t
∑

∑
ni=t

(
t

{ni}

)
(−i)n1−n2+n3−n4e(ζ/n)(n1+n2−n3−n4)e(n1−n2−n3+n4)i2qΛγGq−1

= EG∼N (0,1){[4n sinh(ζ/n) sin(2qΛγGq−1)]t} → EG∼N (0,1){[4ζ sin(2qΛγGq−1)]t} =: St.

This is the step where the sine-Gaussian distribution appears. Finally, suppose that we can replace
Sn,t by St in (C.1), and using the Taylor expansion of the exponential function, we get

EY [⟨eζR̂⟩γ,β ]
·
=

n∑
t=0

(
n

t

)( sin(2β)
4n

)t

e−γ2[nq−(n−2t)q ]/nq−1

EG∼N (0,1)

{
[4ζ sin(2qΛγGq−1)]t

}
·→ E

{ ∞∑
t=0

1

t!
[ζe−2qγ2

sin(2β) sin(2qΛγGq−1)]t
}

= EG∼N (0,1)

{
eζe

−2qγ2
sin(2β) sin(2qΛγGq−1)

}
.

This gives the moment-generating function of the sine-Gaussian law.

We should notice that several steps in the above proof sketch are non-rigorous, in the sense that we
could not sequentially take n→ ∞ in Zn,t, Sn,t, and the MGF. To make this step rigorous, we use
the idea of discrete Fourier transform in Eq. (C.2) to decouple the two terms e(ζ/n)(n1+n2−n3−n4)

and Zn,t (see Lemma C.1), which allows one to treat the n→ ∞ limit of these two terms separately
in the expression of Sn,t. For more details, see the full proof in the following section.

C.2 Proof of Theorem 1(b)

To prove Theorem 1(b), it suffices to show that the moment-generating function (MGF) of the QAOA
overlap converges to the MGF of a sine-Gaussian law as follows:

lim
n→∞

EY [Mn(ζ)] = EG∼N (0,1)

{
exp

[
ζe−2qγ2

sin(2β) sin(2qΛγGq−1)
]}

=:M(ζ). (C.4)

We start the proof of Eq. (C.4) with the following lemma, which obtains a more explicit expression
for the MGF that we derived in Section B.

Lemma C.1 (Expected moment-generating function). The expected moment-generating function in
Eq. (B.4) can be evaluated as

EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

[sinh(ζ/n) sin(2β)]t · En,t, (C.5)

18



where

En,t =
1

2t+ 1

t∑
ξ=−t

sint(2πξ/(2t+ 1))Ẑn,t(ξ),

Ẑn,t(ξ) =

t∑
k=−t

e−2πiξk/(2t+1)Zn,t(k),

Zn,t(k) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
(eζ/n cos2 β + e−ζ/n sin2 β)τ+(e−ζ/n cos2 β + eζ/n sin2 β)τ−

× eiΛnγ[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

.
(C.6)

Here we have Λn = λn/n
(q−1)/2.

The proof of Lemma C.1 is deferred to Section C.2.1. Now we define

Λ = lim
n→∞

Λn,

In,t =

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

[sinh(ζ/n) sin(2β)]t · En,t,

It =
1

t!
EG∼N (0,1)

[
[ζe−2qγ2

sin(2β) sin(2qΛγGq−1)]t
]
.

(C.7)

Then it is easy to see that

EY [Mn(ζ)] =

n∑
t=0

In,t, M(ζ) =

∞∑
t=0

It.

As a consequence, we have∣∣∣EY [Mn(ζ)]−M(ζ)
∣∣∣ ≤ T∑

t=0

|In,t − It|+
∣∣∣ ∑
t≥T+1

It

∣∣∣+ n∑
t=T+1

|In,t|. (C.8)

The following lemma gives the limit of En,t for fixed t as n→ ∞, which indicates that It is the limit
of In,t.

Lemma C.2. For any fixed integer t, we have

lim
n→∞

En,t = EG∼N (0,1)[sin
t(2qΛγGq−1)] ≡ Et.

As a consequence, we have
lim
n→∞

In,t = It.

Furthermore, we have the following upper bound of In,t.

Lemma C.3. For any t ≤ n and ζ ≤ n, we have

|In,t| ≤
1

t!
(6|ζ|)t(2t+ 1)e|ζ| ≡ st,

where
∞∑
t=0

st <∞.

The proof of Lemma C.2 and C.3 is deferred to Section C.2.2 and C.2.3, respectively. Now we
assume that these two lemmas hold. By the fact that

∑∞
t=0 It is finite and by Lemma C.3, for any

ε > 0, there exists T = Tε such that∣∣∣ ∑
t≥Tε+1

It

∣∣∣ ≤ ε/3,
∑

t≥Tε+1

st ≤ ε/3.
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Furthermore, by Lemma C.2, there exists N = Nε such that as long as n ≥ Nε, we have

Tε∑
t=0

|In,t − It| ≤ ε/3.

As a consequence, by Eq. (C.8), for any n ≥ nε and ζ ≤ n, we have∣∣∣EY [Mn(ζ)]−M(ζ)
∣∣∣ ≤ Tε∑

t=0

|In,t − It|+
∣∣∣ ∑
t≥Tε+1

It

∣∣∣+ ∞∑
t=Tε+1

st ≤ ε. (C.9)

This proves Eq. (C.4) as desired, and hence finishes the proof of Theorem 1(b).

C.2.1 Proof of Lemma C.1

Our starting point is Eq. (B.4), which we can compute explicitly with a careful organization of the
sum. To this end, let

t+ = n++− + n−++, t− = n+−− + n−−+,

d+ = n++− − n−++, d− = n+−− − n−−+,

τ+ = n+++ + n−−−, τ− = n+−+ + n−+−,

∆+ = n+++ − n−−−, ∆− = n+−+ − n−+−.

(C.10)

Observe that these 8 variables completely determine {na : a ∈ B}. Furthermore, let

t = t+ + t−, n− t = τ+ + τ−. (C.11)

Then explicit computation shows that

∑
a∈Bq

Φ2
a

q∏
s=1

nas = 4γ2
∑
a

1{a11 · · · aq1 ̸= a12 · · · aq2}
q∏

s=1

naq

= 2γ2
[
nq − (n− 2t)q

]
, (C.12)∑

a∈Bq

Φa

q∏
s=1

(as)mnas = γ
[(∑

a

a1amna
)q − (∑

a

a2amna
)q]

= γ[(τ+ − τ−) + (d+ − d−))
q − ((τ+ − τ−)− (d+ − d−))

q], (C.13)∑
v∈B

vmnv = t+ − t− +∆+ −∆−. (C.14)

Plugging this into Eq. (B.4) and breaking up the sum, we get

EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+− e(ζ/n)(t+−t−+∆+−∆−)

∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+

eiΛnγ[(d+−d−+τ+−τ−)q−((τ+−τ−)−(d+−d−))q ]/n(q−1)/2

, (C.15)

where Λn = λn/n
(q−1)/2 as shorthand. Now, let us evaluate the sum over ∆±. We can use the

following identity

2τ+
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−− e(ζ/n)∆+ = (2Q+++e

ζ/n + 2Q−−−e
−ζ/n)τ+ . (C.16)
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Applying this to the earlier sum, and note that Q+++ = Q+−+ and Q−−− = Q−+−, we get:

EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
1

2n−t
(2Q+++e

ζ/n + 2Q−−−e
−ζ/n)τ+(2Q+++e

−ζ/n + 2Q−−−e
ζ/n)τ−e(ζ/n)(t+−t−)

∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+

eiΛnγ[(d+−d−+τ+−τ−)q−((τ+−τ−)−(d+−d−))q ]/n(q−1)/2

.
(C.17)

To further simplify the expression, we define Zn,t(k) as in Eq. (C.6), which we reproduce here:

Zn,t(k) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
(eζ/n cos2 β + e−ζ/n sin2 β)τ+(e−ζ/n cos2 β + eζ/n sin2 β)τ−

× eiΛnγ[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

. (C.18)

Then we have

EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

×
∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+ e(ζ/n)(t+−t−)Zn,t(d+ − d−).

(C.19)
Let Ωt = {−t,−t+ 1, . . . , t− 1, t}, and let {Ẑn,t(ξ)}ξ∈Ωt

to be the discrete Fourier transform of
Zn,t(k) as defined in Eq. (C.6), i.e.,

Ẑn,t(ξ) = (FtZn,t)(ξ) =

t∑
k=−t

e−2πiξk/(2t+1)Zn,t(k), (C.20)

By the property of Fourier transforms, we have

Zn,t(k) = (F−1
t Ẑ)(k) =

1

2t+ 1

t∑
ξ=−t

e2πiξk/(2t+1)Ẑn,t(ξ). (C.21)

Plugging Eq. (C.21) into Eq. (C.19), we have

EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

×
∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+ e(ζ/n)(t+−t−) 1

2t+ 1

t∑
ξ=−t

e2πiξ(d+−d−)/(2t+1)Ẑn,t(ξ)

(C.22)

(i)
=

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)
e(ζ/n)(t+−t−)

× (−1)t− · 1

2t+ 1

t∑
ξ=−t

(
2iQ++− sin(2πξ/(2t+ 1))

)t

Ẑn,t(ξ) (C.23)

(ii)
=

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

(sinh(ζ/n) sin(2β))t

× 1

2t+ 1

t∑
ξ=−t

(
sin(2πξ/(2t+ 1))

)t

Ẑn,t(ξ), (C.24)
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where (i) used the equation∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++ eiξd+ =
(
2iQ++− sin ξ

)t+
, (C.25)

and (ii) used the equation∑
r+s=t

(
t

r, s

)
(+1)r(−1)s exp{ζ(r − s)} = 2t sinh(ζ)t. (C.26)

Note we have also used 4iQ++− = sin 2β to get rid of the two factors of 2t. This completes the
proof of Lemma C.1.

C.2.2 Proof of Lemma C.2

We first look at the limit of Zn,t(k) for fixed integer −t ≤ k ≤ t (c.f. Eq. (C.6)). We denote
Tn = (eζ/n cos2 β + e−ζ/n sin2 β), Un = (e−ζ/n cos2 β + eζ/n sin2 β) and Gn = (τ+ − τ−)/

√
n

with τ+ ∼ Bin(n− t, 1/2)) to be a random variable. Then we have

Zn,t(k) = EGn

[
T

√
nGn

n (TnUn)
(n−

√
nGn)/2eiΛnγ

√
n[(Gn+k/

√
n)q−(Gn−k/

√
n)q ])

]
. (C.27)

Note that we have limn→∞ T
√
n

n = limn→∞(TnUn)
−
√
n/2 = limn→∞(TnUn)

n/2 = 1 and by
assumption we have limn→∞ Λn = Λ. Furthermore, by central limit theorem, we have Gn → G ∼
N (0, 1) so that for any fixed −t ≤ k ≤ t,

√
n[(Gn + k/

√
n)q − (Gn − k/

√
n)q])

d−→ 2qkGq−1.

This implies that
lim
n→∞

Zn,t(k) = EG∼N (0,1)[e
ik2qΛγGq−1

] ≡ Z(k).

As a consequence, we have

lim
n→∞

En,t =
1

2t+ 1

t∑
ξ=−t

sin(2πξ/(2t+ 1))t
( t∑

k=−t

e−2πiξk/(2t+1) EG∼N (0,1)[e
ik2qΛγGq−1

]
)
.

Finally, by Lemma C.4 below and noting that sin(2πξ/(2t + 1))t can be expressed as a degree t
polynomial of (e2πiξ/(2t+1), e−2πiξ/(2t+1)), the right hand side of the equation above gives

1

2t+ 1

t∑
ξ=−t

sin(2πξ/(2t+1))t
( t∑

k=−t

e−2πiξk/(2t+1) EG∼N (0,1)[e
ik2qΛγGq−1

]
)
= EG∼N (0,1)[sin(2qΛγG

q−1)t].

This proves Lemma C.2.

Lemma C.4. Let t ∈ Z≥0 be an integer and let Ωt = {−t,−t + 1, . . . , t − 1, t}. For a vector
(Z(k))k∈Ωt

, we denote Ft : C2t+1 → C2t+1 to be the discrete Fourier transform

(FtZ)(ξ) ≡
t∑

k=−t

e−2πiξk/(2t+1)Z(k).

Let P : C2 → C be any fixed polynomials with degree less or equal to t ∈ Z≥0. Let X be a
real-valued random variable. Then we have

1

2t+ 1

t∑
ξ=−t

[
P (e2πiξ/(2t+1), e−2πiξ/(2t+1))

(
Ft

(
EX [eikX ]

))
(ξ)

]
= EX [P (eiX , e−iX)]. (C.28)

Proof of Lemma C.4. By linearity of the expectation operator and the discrete Fourier transform
operator, we just need to prove Eq. (C.28) for P (e2πiξ/(2t+1), e−2πiξ/(2t+1)) = e2πipξ/(2t+1) for
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some integer −t ≤ p ≤ t. Note that we have

1

2t+ 1

t∑
ξ=−t

[
e2πipξ/(2t+1)Ft

(
EX [eikX ]

)]

=
1

2t+ 1

t∑
ξ=−t

t∑
k=−t

e2πipξ/(2t+1)e−2πikξ/(2t+1) EX [eikX ]

= EX

[ 1

2t+ 1

t∑
ξ=−t

t∑
k=−t

e2πi(p−k)(ξ/(2t+1)−X/(2π))eipX
]
= EX [eipX ], (C.29)

where the last equality used the fact that

1

2t+ 1

t∑
ξ=−t

t∑
k=−t

e2πi(p−k)(ξ/(2t+1)−X/(2π)) = 1

for any integer −t ≤ p ≤ t and any real X . This completes the proof of Lemma C.4.

C.2.3 Proof of Lemma C.3

By the definition of Zn,t(k) as in Eq. (C.6), it is easy to see that

|Zn,t(k)| ≤
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

) ∣∣∣eζ/n cos2 β + e−ζ/n sin2 β
∣∣∣τ+ ∣∣∣e−ζ/n cos2 β + eζ/n sin2 β

∣∣∣τ−
×
∣∣∣eiΛnγ[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

∣∣∣
≤ 1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
eτ+|ζ|/neτ−|ζ|/n · 1

= e(n−t)|ζ|/n

≤ e|ζ|. (C.30)

As a consequence, we have |Ẑn,t(ξ)| ≤ (2t+ 1)e|ζ|, which gives

|En,t| ≤ (2t+ 1)e|ζ|.

As a consequence, by the definition of In,t as in Eq. (C.7), we have

|In,t| ≤
nt

t!
| sinh(ζ/n)|t(2t+ 1)e|ζ|.

Note that when ζ/n ≤ 1, we have | sinh(ζ/n)| ≤ 6|ζ|/n. This gives

|In,t| ≤
1

t!
(6|ζ|)t(2t+ 1)e|ζ|.

This proves Lemma C.3.

C.3 Proof of Theorem 1(a)

Theorem 1(a) is a combination of the two lemmas below.
Lemma C.5. Take any sequence of {βn}n≥1 ⊆ [0, 2π], {γn}n≥1 ⊆ R with limn→∞ γn = ∞, and
any sequence of {λn}n≥1 ⊆ [0,∞). We have

lim
n→∞

EW [⟨R2
QAOA⟩γn,βn

] = 0. (C.31)

Lemma C.6. Take any sequence of {βn}n≥1 ⊆ [0, 2π], {γn}n≥1 ⊆ R with supn γn <∞, and any
sequence of {λn}n≥1 ⊆ [0,∞) with limn→∞ λn/n

(q−1)/2 = 0. We have

lim
n→∞

EW [⟨R2
QAOA⟩γn,βn

] = 0. (C.32)
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C.3.1 Proof of Lemma C.5

Proof of Lemma C.5. Denote Λn = λn/n
(q−1)/2. We can write

EY [⟨R2
QAOA⟩γn,βn

] =
∂2

∂ζ2
∣∣
ζ=0

EY [Mn(ζ; γn, βn, λn)]. (C.33)

Using Eq. (C.5), we can see that only a few terms depend on ζ, whose derivative gives

∂2ζ
∣∣
ζ=0

[(
sinh(ζ/n) sin(2β)

)t(
eζ/n cos2(β) + e−ζ/n sin2(β)

)τ+(
e−ζ/n cos2(β) + eζ/n sin2(β)

)τ−]
=
δt=0

2n2
(
2t sin(2β) +

[
(τ+ − τ−)

2 − (τ+ + τ−)
]
cos(4β) +

[
(τ+ − τ−)

2 + (τ+ + τ−)
])

+
δt=1

n2
t(τ+ − τ−) sin(4β)

+
δt=2

n2
t(t− 1) sin2(2β). (C.34)

Hence, only the t = 0, 1, 2 terms survive, and we can write
EY [⟨R2

QAOA⟩γn,βn ] = T0 + T1 + T2 (C.35)
where

T0 =
1

2n+1n2

∑
τ++τ−=n

(
n

τ+, τ−

)([
(τ+ − τ−)

2 − (τ+ + τ−)
]
cos(4β) +

[
(τ+ − τ−)

2 + (τ+ + τ−)
])
,

(C.36)

T1 =
sin(4βn)

3n · 2n−1
e−γ2

n[n
q−(n−2)q ]/nq−1 ∑

ξ∈{±1}

sin(2πξ/3)

1∑
k=−1

e−2πiξk/3

×
∑

τ++τ−=n−1

(
n− 1

τ+, τ−

)
(τ+ − τ−)e

iΛnγn[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

, (C.37)

T2 =
(n− 1) sin2(2βn)

10n · 2n−2
e−γ2

n[n
q−(n−4)q ]/nq−1 ∑

ξ∈{±1,±2}

sin2(2πξ/5)

2∑
k=−2

e−2πiξk/5

×
∑

τ++τ−=n−2

(
n− 2

τ+, τ−

)
eiΛnγn[((τ+−τ−)+k)q−((τ+−τ−)−k)q ]/n(q−1)/2

. (C.38)

Lemma C.5 then immediately follows from the Lemma C.7 below.

Lemma C.7. For any n ≥ n0 for some large n0, we have
T0 = (1 + cos(4βn))/(2n),

|T1| ≤ 2 sin(4βn)e
−qγ2

n ,

|T2| ≤ 2 sin2(2βn)e
−qγ2

n .

Proof of Lemma C.7. We can compute the first term directly as follows. Note that∑
τ++τ−=n

(
n

τ+, τ−

)
(τ+ − τ−)

q =
∂q

∂xq

∣∣∣
x=0

∑
τ++τ−=n

(
n

τ+, τ−

)
ex(τ+−τ−) (C.39)

=
∂q

∂xq

∣∣∣
x=0

(
2 cosh(x)

)n

. (C.40)

In particular, ∑
τ++τ−=n

(
n

τ+, τ−

)
(τ+ − τ−) = 0, (C.41)

∑
τ++τ−=n

(
n

τ+, τ−

)
(τ+ − τ−)

2 = 2nn. (C.42)
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It follows that

T0 =
1

2n+1n2
((2nn− 0) cos(4β) + (2nn+ 0)) =

cos(4β) + 1

2n
. (C.43)

For the remaining terms, upper bounds suffice:

|T1| ≤
sin(4βn)

3n · 2n−1
e−γ2

n[n
q−(n−2)q ]/nq−1 ∑

ξ∈{±1}

1 ·
1∑

k=−1

1 ·
∑

τ++τ−=n−1

(
n− 1

τ+, τ−

)
· (n− 1) · 1

≤ sin(4βn)

3
e−qγ2

n · 2 · 3

= 2 sin(4βn)e
−qγ2

n , (C.44)

and

|T2| ≤
(n− 1) sin2(2βn)

10n · 2n−2
e−qγ2

n

∑
ξ∈{±1,±2}

1 ·
2∑

k=−2

1 ·
∑

τ++τ−=n−2

(
n− 2

τ+, τ−

)
· 1

≤ sin2(2βn)

10
e−qγ2

n · 4 · 5

= 2 sin2(2βn)e
−qγ2

n . (C.45)

This finishes the proof of Lemma C.7.

C.3.2 Proof of Lemma C.6

Lemma C.6 follows from Theorem 1(b).

D Derivation for general p-step QAOA (Claim 3.7)

D.1 Sketch of derivation ideas

We now briefly sketch some ideas behind the derivation for Claim 3.7 that characterizes the overlap
distribution of the p-step QAOA when the SNR ratio scales as in Eq. (3.10). Similar to Theorem 1,
our approach is to evaluate the moment-generating function of the QAOA overlap in the n → ∞
limit. As evident in the proof of Theorem 1, as well as in previous analyses of the QAOA applied to
spin-glass models [24, 26, 28], the key technical difficulty is handling a “generalized multinomial
sum” of the following form:

S =
∑

mj≥0,
∑

j mj=n

(
n

{mj}

)(∏
j

Q
mj

j

)
exp[P (m)], (D.1)

where P (m) is a polynomial over entries ofm = (mj)j with degree q. Note the above summation
has no analytical simplification when P is not a linear polynomial (q > 1). Previous works have
evaluated this sum in the n → ∞ limit either by proving a “generalized multinomial theorem”
that exploits combinatorial structures of the polynomial P [24, 26], or by employing a Gaussian
integration trick and the saddle-point method when q = 2ℓ [28]. However, neither approach is
sufficient for the spiked tensor model that we study in the present paper.

Instead, we develop an alternative approach based on the Fourier transform to linearize exponents in
the summands. The idea is to replacem with continuous variables µ via Dirac delta functions, which
after Fourier transforms yield exponents that are linear inm, enabling us to analytically evaluate the
multinomial sum overm as follows:

S =

ˆ
dµ

ˆ
dµ̂

∑
mj≥0,

∑
j mj=n

(
n

{mj}

)(∏
j

Q
mj

j

)
exp[P (µ)]eiµ̂·(m−µ)

=

ˆ
dµ

ˆ
dµ̂

(∑
j

Qje
iµ̂j

)n

eP (µ)−iµ̂·µ. (D.2)
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See Appendix D.4 for more details. This is a powerful approach to replace the cumbersome multi-
nomial sums with simpler integrals. However, it is difficult to make such manipulations involving
Dirac delta functions rigorous, which we leave open as future work. Nevertheless, we proceed with
the heuristic derivation in the current paper: by writing the variables (mj)j in an alternative basis
and rescaling them cleverly, we are able to evaluate the integrals to obtain the moment-generating
function in the n→ ∞ limit.

D.2 Organizing the finite n sum

Our goal is to evaluate the moment-generating function of the overlap with signal, Mn(ζ) =

⟨γ,β| exp(ζR̂)|γ,β⟩, for the general p-step QAOA. Using the same method as in the p = 1 case,
we can show that the disorder-averaged moment-generating function can be written as the following
combinatorial sum:

EY [Mn(ζ)] =
∑
{na}

(
n

{na}

) ∏
a∈B

Qna
a exp

[
A+ iλnB + ζC

]
, (D.3)

where

A = − 1

2nq−1

∑
a∈Bq

Φ2
a

q∏
s=1

nas
, B =

1

nq−1

∑
a∈Bq

Φa

q∏
s=1

(as)mnas
, C =

1

n

∑
v∈B

vmnv,

(D.4)

and

B =
{
(a1, a2, . . . , ap, am, a−p, . . . , a−1) : aj ∈ {±1}

}
,

Qa = 1
2

∏p
r=1(cosβr)

1+(ar+a−r)/2(sinβr)
1−(ar+a−r)/2(i)(a−r−ar)/2,

Φa =
∑p

r=1 γr
(
arar+1 · · · ap − a−p · · · a−r−1a−r

)
,

Φa = Φa1a2···aq .

(D.5)

Note Qa and Φa are independent of am.

This is a straightforward generalization of the proof in Appendix B, where we insert 2p+1 resolutions
of the identity instead of 3. This also closely follows the derivation in Ref. [26, Appendix D.2].
B,Qa,Φa are also generalizations of the same quantities in Appendix B for p > 1.

Define the rank function
ℓ(a) = max({i : a−i ̸= ai} ∪ {0}). (D.6)

A canonical basis. We next perform further simplifications that remove the explicit dependence on
am. First we define the set of 2p-bit strings as

A =
{
(a1, a2, . . . , ap, a−p, . . . , a−1) : aj ∈ {±1}

}
,

and define A0 and D according to a similar convention as that in [26] as follows:

A0 := {a ∈ A : ℓ(a) = 0} = {a ∈ A : a−k = ak for 1 ≤ k ≤ p},

D :=
{
a ∈ A : ℓ(a) > 0 and

∏p
j=1 aj = +1

}
. (D.7)

Given the rank function in Eq. (D.6), we can define an ordering on D, which we borrow from [26].
For any two distinct element a1,a2 ∈ D, we define the ≺ relation as following: (1) If ℓ(a1) < ℓ(a2),
we let a1 ≺ a2; (2) If ℓ(a1) > ℓ(a2), we let a2 ≺ a1; (3) If ℓ(a1) = ℓ(a2) and if a1 is lexically
less than a2, we let a1 ≺ a2; (3) If ℓ(a1) = ℓ(a2) and if a1 is lexically greater than a2, we
let a2 ≺ a1 (here lexical order means that, for example, (−1,−1), (−1, 1), (1,−1), (1, 1) are in
lexically increasing order). It is easy to see that such ≺ relation is a full order, so that we can also
define ⪯, ⪰, and ≻ accordingly.

For any a ∈ A, we define

na± = nb where b = (a1, . . . , ap,±1, a−p, . . . , a−1). (D.8)
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Let

ta+ = na+ + nā+, ta− = na− + nā−, ∀a ∈ D,

da+ = na+ − nā+, da− = na− − nā−, ∀a ∈ D,

na = na+ + na−, δna = na+ − na−, ∀a ∈ A0.

(D.9)

Furthermore, ∀a ∈ D, let

ta = ta+ + ta−, da = da+ + da−,

δta = ta+ − ta−, δda = da+ − da−. (D.10)

Observe that these new variables constitute a basis transformation via

{na}a∈B ≡ {ta±, da±}a∈D ∪ {na, δna}a∈A0

≡ {ta, δta, da, δda}a∈D ∪ {na, δna}a∈A0
. (D.11)

We will call the last line as the “canonical basis”. As a side note, comparing to the p = 1 derivation
in Eq. (C.6), we have k = δd+− and τ+ − τ− = δn++ − δn−−.

In what follows, we will convert all our expressions into the canonical basis. It is also helpful to
denote the shorthand

t =
∑
a∈D

ta, and thus n− t =
∑
a∈A0

na. (D.12)

In this basis, we can rewrite (D.3) as

EY [Mn(ζ)] =

n∑
t=0

(
n

t

) ∑
{na}a∈A0

(
n− t

{na}

) ∏
a∈A0

{
Qna

a

∑
δna

(
na
na+

)}

×
∑

{ta}a∈D

(
t

{ta}

) ∏
a∈D

“ ta

da,δda,δta

exp
[
A+ iλnB + ζC

]
.

(D.13)

where we have used the fact that Qa± = Qa does not depend on am (here we also slightly abused
notation allowing Qa to take a ∈ A as argument). Here we also define, for any a ∈ D and ta ∈ Z≥0,
the little-sum operator on functions of (da, δda, δta) as
“ ta

da,δda,δta

(· · · ) :=
∑

ta+,ta−

(
ta

ta+, ta−

)∑
da+

(
ta+
na+

)
Qna+

a Q
nā+

ā

∑
da−

(
ta−
na−

)
Qna−

a Q
nā−
ā (· · · ).

(D.14)

Now let us rewrite B in the canonical basis, and we will show that it is purely a function of
{δda, δta}a∈D ∪ {δnc}c∈A0 . Observe that

nq−1B =

p∑
r=1

γr

[(
B+

r

)q − (
B−

r

)q]
, where B±

r =
∑
a∈B

a∗±ramna, (D.15)

and we have denoted a∗r = ar · · · ap for any 1 ≤ r ≤ p. Note a∗r − a∗−r ̸= 0 only if ℓ(a) ≥ r. Hence,
we have

B+
r =

∑
a∈A0

a∗rδna +
∑

a∈D,ℓ(a)≤r−1

a∗rδta +
∑

a∈D,ℓ(a)≥r

a∗rδda,

B−
r =

∑
a∈A0

a∗rδna +
∑

a∈D,ℓ(a)≤r−1

a∗rδta +
∑

a∈D,ℓ(a)≥r

a∗−rδda.

To reveal additional structures of B, we write

nq−1B =

p∑
r=1

γr[(Rr + Lr)
q − (Rr − Lr)

q] =

p∑
r=1

γr[2qLrR
q−1
r + 2

(
q

3

)
L3
rR

q−3
r + · · · ] (D.16)
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where we have defined

Lr =
1

2
(B+

r −B−
r ) =

∑
a∈D,ℓ(a)≥r

1

2
(a∗r − a∗−r)δda, (D.17)

Rr =
1

2
(B+

r +B−
r ) =

∑
a∈A0

a∗rδna +
∑

a∈D,ℓ(a)≤r−1

a∗rδta +
∑

a∈D,ℓ(a)≥r

1

2
(a∗r + a∗−r)δda.

(D.18)

We note here that B consists of terms that have at least one power of the {δda}a∈D variables through
the dependence on Lr, which is a fact that will become important later.

Proceeding in the same way for A and C, we can also write them in the canonical basis. We note A
is a polynomial that has appeared in [26], where it can be shown to only depend on {ta, da}a∈D ∪
{nc}c∈A0 . In summary, we note the dependence of A,B, C on the canonical basis variables is as
follows:

A = A
(
{ta}a∈D, {da}a∈D, {nc}c∈A0

)
,

iλnB = iλnB
(
{δda, δta}a∈D ∪ {δnc}c,∈A0

)
,

C =
1

n

( ∑
a∈A0

δna +
∑
a∈D

δta

)
.

(D.19)

Operator shorthands for different parts of the sum. To streamline notations, we now introduce
three operators T, S, U as shorthands for different parts of the sum that appear in Eq. (D.13).

Let us define the Tt
n operator acting on a function f({ta : a ∈ D}) as

Tt
nf =

t!

nt

(
n

t

) ∑
ta≥0,∀a∈D,

∑
a ta=t

f({ta}). (D.20)

Next, let us define the operator S{ta}n acting on any function g({da, δda, δta}a∈D) as follows:

S{ta}n g =
∏
a∈D

{
nta

ta!

“ ta

da,δda,δta

}
g

=
∏
a∈D

{
(nQa)

ta

ta!

∑
ta+,ta−

(
ta

ta+, ta−

)∑
da+

(
ta+
na+

)
(+1)na+(−1)nā+

∑
da−

(
ta−
na−

)
(+1)na−(−1)nā−

}
g. (D.21)

Note S{ta}
n 1 = 1{ta = 0 ∀a ∈ D}.

Lastly, we define the Ut
n operator acting on a function h({nc/n, δnc/

√
n : c ∈ A0}) as

Ut
nh =

∑
{na}a∈A0

(
n− t

{na}

) ∏
a∈A0

{
Qna

a

∑
δna

(
na
na+

)}
h. (D.22)

With these summing operators defined, we can rewrite (D.13) as

EY [Mn(ζ)] =

n∑
t=0

en(t), (D.23)

where
en(t) = Ut

nTt
nS{ta}n [exp(A+ iλnB + ζC)]. (D.24)
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D.3 Rescaling the summand for the n→ ∞ limit

In the n → ∞ limit, we want to rescale the canonical basis variables {ta, δta, da, δda}a∈D ∪
{nc, δnc}c∈A0

so that the summing operators (Ut
n,Tt

n,S
{ta}
n ) and the summand A + iλnB + ζC

converge to simplified forms. To this end, for all a, b ∈ D, c ∈ A0, we will rescale by defining

ta = τa, δta/n
ρa = δτa,

db/n = ηb, δdb/n
1−ρb = δηb

nc/n = ωc, δnc/
√
n = δωc,

(D.25)

where (τa, ηb, ωc, δτa, δηb, δωc) are new dimensionless variables that will be integrated over, and
ρa are scaling exponents which we will define shortly.

The goal of this subsection is to derive the summand in the n→ ∞ limit. Specifically, we consider
the summand broken into two parts, each as a polynomial of a distinct subset of the rescaled variables
as follows:

Γn({ta, ηb, ωc}) := A({ta, ηbn, ωcn}), (D.26)

Ξn({δτa, δηb, δωc}) := iλnB({δτanρa , δηbn
1−ρb , δωc

√
n}) + ζC({δτanρa , δωc

√
n}), (D.27)

where the subscripts in the arguments implicitly iterate over a, b ∈ D and c ∈ A0. We think of Γn

and Ξn as polynomials in their arguments, whose coefficients can depend on n.

First, we know from [26, Lemma D.2] that with the rescaling specified in Eq. (D.25) and γj , βj =
Θ(1), we have

lim
n→∞

Γn({ta, ηb, ωc}a,b∈D,c∈A0) =
∑
a∈D

taPa({ηb}b≺a, {ωc}c∈A0) =: Γ. (D.28)

For the rest of this subsection, we derive the limit of Ξn = iλnB + ζC.

Choosing the scaling exponents ρa. We want to choose the scaling exponents for (δda, δta)
variables, such that all the terms of B except those are linear in δda vanish in the n→ ∞ limit. This
would then imply the polynomial Ξn in the limit would only be at most linear in δηa, which is very
helpful later for evaluating certain integrals as we shall see in Eq. (D.61).

In the general p-step QAOA applied to the spiked q-tensor model, suppose the SNR parameter λ has
a scaling as follows

λn = Λnc(p,q), (D.29)

where c(p, q) is to be determined. Also suppose that the appropriate scaling for δda and δta are

δda ∼ n1−ρℓ(a) , δta ∼ nρℓ(a) , (D.30)

so that they only depend on the rank ℓ(a) of a. Based on the explicit derivation at p = 1, we believe
we only care about the terms in B that look like δdaδn

q−1
b when ℓ(a) = 1 and ℓ(b) = 0, or δdaδt

q−1
b

when ℓ(a) = ℓ and ℓ(b) = ℓ− 1 > 0. Also recall that δnb ∼
√
n for b ∈ A0 from (D.25). For these

terms in B, we have

λn
nq−1

δdaδn
q−1
b ∼ nc(p,q)+1−ρ1+(q−1)/2−(q−1), (D.31)

λn
nq−1

δdaδt
q−1
b ∼ nc(p,q)+1−ρℓ+(q−1)ρℓ−1−(q−1). (D.32)

To ensure that all such terms in B are order 1, we impose the condition that

c(p, q) + 1− ρℓ + (q − 1)(ρℓ−1 − 1) = 0, and ρ0 =
1

2
. (D.33)

Solving this recurrence equation, we get that

ρℓ = 1− (q − 1)ℓ

2
+ c(p, q)

(q − 1)ℓ − 1

q − 2
. (D.34)
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If we impose the additional condition that ρp = 1 (so that δta/n = Θ(1) to yield a nonvanishing
overlap in C), this implies that the SNR scaling needs to be

c(p, q) =
q − 2

2

(q − 1)p

(q − 1)p − 1
=
q − 2

2
+

q − 2

2[(q − 1)p − 1]
. (D.35)

Plugging this into Eq. (D.34), we get

ρℓ =
1

2

(q − 1)p + (q − 1)ℓ − 2

(q − 1)p − 1
. (D.36)

For the special case of q = 2, we have c(p, 2) = 1
2p , and ρℓ = 1

2 + ℓ
2p .

Note 1/2 ≤ ρℓ ≤ 1 since 1 ≤ (q − 1)ℓ ≤ (q − 1)p and 0 ≤ ℓ ≤ p. This means δda = O(n1/2) and
δta = Ω(n1/2). Another property to note is that ρℓ is monotonically increasing with ℓ. In particular,
ρ0 = 1/2 and ρp = 1.

The limiting expression for Ξn. To get the limiting polynomial for Ξn = iλnB+ζC, we substitute
δda = δηan

1−ρa , δta = δτan
ρa , and δnc = δωc

√
n, and take the n→ ∞ limit. We first consider

B as written in Eq. (D.16). In terms of the rescaled dimensionless variables, we have

Lr =
∑

a∈D,ℓ(a)≥r

1

2
(a∗r − a∗−r)δηan

1−ρa ,

Rr =
1

2
(B+

r +B−
r ) =

∑
a∈A0

a∗rδωa

√
n+

∑
a∈D,ℓ(a)≤r−1

a∗rδτan
ρa +

∑
a∈D,ℓ(a)≥r

1

2
(a∗r + a∗−r)δηan

1−ρa .

With the exponents defined in Eq. (D.36), we note that Lr is dominated by {δηa : ℓ(a) = r}, and
Rr is dominated by {δωa : a ∈ A0} when r = 1 and {δτa : ℓ(a) = r − 1} when r > 1. Thus, the
appropriately rescaled Lr and Rr in the limit are

L̃r := lim
n→∞

Lr

n1−ρr
=

∑
a∈D,ℓ(a)=r

1

2
(a∗r − a∗−r)δηa =

∑
a∈D,ℓ(a)=r

a∗rδηa, (D.37)

R̃r := lim
n→∞

Rr

nρr−1
≃

{∑
a∈A0

a∗rδωa, r = 1∑
a∈D,ℓ(a)=r−1 a

∗
rδτa, r > 1

. (D.38)

For λn = Λnc(p,q), we have

iλnB =
iλn
nq−1

p∑
r=1

γr
∑
k odd

2

(
q

k

)
Lk
rR

q−k
r ,

lim
n→∞

iλnB = lim
n→∞

iΛnc(p,q)

nq−1

p∑
r=1

γr
∑
k odd

2

(
q

k

)
L̃k
r R̃

q−k
r nk(1−ρr)+(q−k)ρr−1 .

One can verify that for any 1 ≤ r ≤ p,

lim
n→∞

nc(p,q)

nq−1
nk(1−ρr)+(q−k)ρr−1 = n(k−1)(1−ρr−ρr−1) =

{
1, k = 1

1/nϵ for some ϵ > 0, k ≥ 3
(D.39)

Hence, in the n→ ∞ limit, only the k = 1 term survives, and

lim
n→∞

iλB = iΛ

p∑
r=1

2qγrL̃rR̃
q−1
r . (D.40)

Similarly, consider

C =
∑
a∈A0

δna
n

+
∑
a∈D

δta
n

=
∑
a∈A0

δωa√
n

+
∑
a∈D

δτan
ρa

n
. (D.41)

In the n→ ∞ limit, the only terms that survive are δτa when ℓ(a) = p for which ρa = 1.

Combining the two equations above, we have

lim
n→∞

Ξn({δτa, δηb, δωc}a,b∈D,c∈A0
) = iΛ

p∑
r=1

2qγrL̃rR̃
q−1
r + ζ

∑
a:ℓ(a)=p

δτa =: Ξ. (D.42)
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D.4 MGF at general p in the n→ ∞ limit to show Claim 3.7

For succinctness, we denote the following vectors of (rescaled) variables
t = (ta)a∈D, d = (db/n)b∈D, n = (nc/n)c∈A0 ,

δt = (δta/n
ρa)a∈D, δd = (δdb/n

1−ρb)b∈D, δn = (δnc/
√
n)c∈A0

. (D.43)

We can then write the MGF as

EY [Mn(ζ)] = EY

[
⟨γ,β| exp(ζ 1

n

n∑
i=1

Zi)|γ,β⟩
]
=

n∑
t=0

en(t), (D.44)

where
en(t) = Tt

nS{ta}n Ut
n

[
exp

(
Γn(t,d,n) + Ξn(δt, δd, δn)

)]
. (D.45)

Here, Γn and Ξn are polynomials of their arguments whose coefficients can depend on n. Furthermore,
Tt
n, S{ta}n , and Ut

n are summing operators defined in Eqs. (D.20), (D.21), (D.22) earlier.

We now introduce dummy variables (δτ ,η, δη,ω, δω) which will replace (δt,d, δd,n, δn) via
Dirac delta functions:

en(t) =

ˆ
δτ ,η,δη,ω,δω

Tt
nS{ta}n Ut

n

[
exp

(
Γn(t,η,ω) + Ξn(δτ , δη, δω)

)
δ(δt− δτ )δ(d− η)δ(δd− δη)δ(n− ω)δ(δn− δω)

]
=

ˆ
δτ ,η,δη,ω,δω

ˆ
δτ̂ ,η̂,δη̂,ω̂,δω̂

Tt
nS{ta}n Ut

n

[
exp

(
Γn(t,η,ω) + Ξn(δτ , δη, δω)

)
eiδτ̂ ·(δt−δτ )+iη̂·(d−η)+iδη̂·(δd−δη)+iω̂·(n−ω)+iδω̂·(δn−δω)

]
.

where in the last line we used the Fourier representation of delta functions and introduced dual
variables (δτ̂ , η̂, δη̂, ω̂, δω̂).

Note that S{ta}n is a sum over (d, δd, δt) and Ut
n is a sum over (n, δn). We can apply them directly

to the relevant exponentials since their dependence is now linear, but involves the dual variables.

First, let us evaluate the S{ta}n sum, which is defined in Eq. (D.21) as a composition of many little-
sums. We start by considering a single little-sum with parameters (κI, κII, κIII) of the following
form:

Fa(κI, κII, κIII) :=

“ ta

da,δda,δta

eκIda+κIIδda+κIIIδta (D.46)

=
∑

ta+,ta−

(
ta

ta+, ta−

)∑
da+

(
ta+
na+

)
Qna+

a Q
nā+

ā

∑
da−

(
ta−
na−

)
Qna−

a Q
nā−
ā eκIda+κIIδda+κIIIδta .

This can be evaluated using Qā = −Qa and the basic identity∑
da+

(
ta+

na+

)
(+1)na+(−1)nā+eκda+ = [2 sinhκ]ta+ . Applying this to the two inner sums

in Fa, we get that

Fa(κI, κII, κIII) = Qta
a

∑
ta+,ta−

(
ta

ta+, ta−

)
[2 sinh(κI + κII)]

ta+ [2 sinh(κI − κII)]
ta−eκIIIδta

= (2Qa)
ta [sinh(κI + κII)e

κIII + sinh(κI − κII)e
−κIII ]ta

= (4Qa)
ta(sinhκI coshκII coshκIII + coshκI sinhκII sinhκIII)

ta . (D.47)

Returning to Stn, we get

S{ta}n [eiδτ̂ ·δt+iδη̂·δd+iη̂·d] =
∏
a∈D

{
nta

ta!

“ ta

da,δda,δta

}
eiδτ̂ ·δt+iδη̂·δd+iη̂·d

=
∏
a∈D

(4nQa)
ta

ta!

(
i sin

η̂a
n

cos
δη̂a
n1−ρa

cos
δτ̂a
nρa

− cos
η̂a
n

sin
δη̂a
n1−ρa

sin
δτ̂a
nρa

)ta
. (D.48)
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Next, for Ut
n, we have from the multinomial theorem that

Ut
n[e

iω̂·n+iδω̂·δn] =
∑

{na}a∈A0

(
n− t

{na}

) ∏
a∈A0

{
Qna

a

∑
δna

(
na
na+

)}
eiω̂·n+iδω̂·δn

=
( ∑

a∈A0

2Qae
iω̂a/n cos

δω̂a√
n

)n−t

. (D.49)

Take n → ∞ limit of en(t). We now take the n → ∞ limit while keeping t fixed, assuming
λn = Λnc(p,q). Recall the fact from Appendix D.3 that 0 < ρa < 1 when ℓ(a) < p and ρa = 1
when ℓ(a) = p. Then taking the n→ ∞ limit of (D.48) yields

lim
n→∞

S{ta}n [eiδτ̂ ·δt+iδη̂·δd+iη̂·d] =
∏
a∈D

(4Qa)
ta

ta!
[ga(δτ̂a, η̂a, δη̂a)]

ta (D.50)

where

ga(δτ̂a, η̂a, δη̂a) =

{
iη̂a − δη̂aδτ̂a, ℓ(a) < p

iη̂a cos δη̂a − δτ̂a sin δη̂a, ℓ(a) = p
. (D.51)

Similarly, taking the n→ ∞ limit of (D.49) gives

lim
n→∞

Ut
n[e

iω̂·n+iδω̂·δn] = exp
[ ∑
a∈A0

2Qa(iω̂a − 1

2
δω̂2

a)
]
, (D.52)

where we used the fact that
∑

a∈A0
2Qa = 1. We also note that for any sequence of functions

{fn(t)}n that pointwise converges to f(t), we have

lim
n→∞

Tt
nfn(t) = lim

n→∞

t!

nt

(
n

t

) ∑
ta≥0,∀a∈D,

∑
a ta=t

fn(t) =
∑

ta≥0,∀a∈D,
∑

a ta=t

f(t) =: Ttf(t).

(D.53)

Plugging these back into en(t), we get in the limit
e(t) := lim

n→∞
en(t)

=

ˆ
δτ ,η,δη,ω,δω

ˆ
δτ̂ ,η̂,δη̂,ω̂,δω̂

Tt
[
eΓ(t,η,ω)+Ξ(δτ ,δη,δω)e−iδτ̂ ·δτ−iη̂·η−iδη̂·δη−iω̂·ω−iδω̂·δω

eiω̂·(2Q)− 1
2δω̂·(2Q δω̂)

∏
a∈D

(4Qa)
ta

ta!
[ga(δτ̂a, η̂a, δη̂a)]

ta
]
.

(D.54)
where we denoted the vector Q = (Qa)a∈A0 , and (2Q δω)j = 2Qjδωj to mean element-wise
product.

Sum over e(t) to get MGF. Now we perform the sum over t to get the moment-generating function
of the overlap distribution, since (heuristically) limn→∞ EY [Mn(ζ)] =

∑∞
t=0 e(t). Note that

∞∑
t=0

Ttf(t) =
∑

ta≥0,a∈D

f(t). (D.55)

So in the n→ ∞ limit, effectively we are summing over {ta} independently. We can also use the
fact from [26, Lemma D.2] that Γ(t,η,ω) is linear in t,

Γ(t,η,ω) =
∑
a∈D

taPa(η,ω). (D.56)

Hence, we have
∞∑
t=0

e(t) =

ˆ
δτ ,η,δη,ω,δω

ˆ
δτ̂ ,η̂,δη̂,ω̂,δω̂

e−iδτ̂ ·δτ−iη̂·η−iδη̂·δηeiω̂·(2Q−ω)e−iδω̂·δω− 1
2δω̂·(2Q δω̂)

exp

[ ∑
a∈D

4Qaga(δτ̂ , η̂, δη̂)e
Pa(η,ω)

]
eΞ(δτ ,δη,δω).

(D.57)
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The integrals over (ω̂,ω) yield Dirac delta functions that set each ωa = 2Qa. The integral over
δω̂ yields a Gaussian density function for δω, each with mean 0 and variance 2Qa. So we can
set δωa = Ga ∼ N (0, 2Qa), and replace the integrals over (δω̂, δω) with an expectation over
G = (Ga)a∈A0

. Our expression then simplifies to
∞∑
t=0

e(t) = EG

ˆ
δτ ,η,δη

ˆ
δτ̂ ,η̂,δη̂

e−iδτ̂ ·δτ−iη̂·η−iδη̂·δη exp
[ ∑
a∈D

4Qaga(δτ̂ , η̂, δη̂)e
Pa(η,2Q)

]
eΞ(δτ ,δη,G)

=: EG

ˆ
δτ ,η,δη

ˆ
δτ̂ ,η̂,δη̂

eS . (D.58)

To do the remaining integrals, it is necessary to use additional structure of the polynomials Pa, ga
and Ξ. From [26], we know there is an ordering (≺) of the elements of D such that the η dependence
in Pa is only on {ηb : b ≺ a}. Furthermore, from Appendix D.3, we know Ξ(δτ , δη, δω) has a
particular form:

Ξ(δτ , δη, δω) = i
∑
a∈D

δηaRa(δτ , δω) + ζ
∑

b:ℓ(b)=p

δτb. (D.59)

We also know that the δτ dependence in Ra is only on {δτb : ℓ(b) < ℓ(a)}. More explicitly, from
Eq. (D.38),

Ra(δτ ,G) = 2qΛγra
∗
rX

q−1
r , where r = ℓ(a) and Xr =

{∑
b∈A0

b∗rGb, r = 1∑
b∈D,ℓ(b)=r−1 b

∗
rδτb, r > 1

.

(D.60)

Let us now write out the exponent S in (D.58) using the form of ga in (D.51) and Ξ in (D.59):

S = −iδτ̂ · δτ − iη̂ · η − iδη̂ · δη

+
∑

a∈D:ℓ(a)<p

4Qa(iη̂a − δη̂aδτ̂a)e
Pa(η,2Q) +

∑
a∈D:ℓ(a)=p

4Qa(iη̂a cos δη̂a − δτ̂a sin δη̂a)e
Pa(η,2Q)

+ i
∑
a∈D

δηaRa(δτ ,G) + ζ
∑

b:ℓ(b)=p

δτb.

Regrouping terms, we have

S =
∑

a∈D:ℓ(a)<p

iη̂a(4Qae
Pa(η,2Q) − ηa) +

∑
a∈D:ℓ(a)=p

iη̂a(4Qa cos δη̂ae
Pa(η,2Q) − ηa)

+
∑

a∈D:ℓ(a)<p

iδτ̂a(i4Qaδη̂ae
Pa(η,2Q) − δτa) +

∑
a∈D:ℓ(a)=p

iδτ̂a(i4Qa sin δη̂ae
Pa(η,2Q) − δτa)

+
∑
a∈D

iδηa[Ra(δτ ,G)− δη̂a] + ζ
∑

b∈D:ℓ(b)=p

δτb. (D.61)

Integrating over (η̂,η) yields delta functions that assign ηa = 4Qae
Pa(η,2Q) when ℓ(a) < p, or

ηa = 4Qa cos δη̂ae
Pa(η,2Q) when ℓ(a) = p. Note 4Qae

Pa = 2Wa where Wa is defined the same
way for q-spin models as in [26], so we will use Wa = 2Qae

Pa in what follows. Then, integrating
over (δη, δη̂) yields delta functions that assign δη̂a = Ra(δτ ,G). Note here the linear dependence
in δηa in Ξ(δτ , δη, δω), as in Eq. (D.59), is important for allowing us to evaluate the integrals.
Finally, integrating over (δτ̂ , δτ ) yields delta functions that assign δτa = i4QaRae

Pa = i2WaRa

when ℓ(a) < p, and δτa = i4Qa sinRae
Pa = i2Wa sinRa when ℓ(a) = p. Note that these

assignments by delta functions are consistent if we perform the integrals according to the ascending
order of the set D, since Pa, Ra only depend on the variables {(ηb, δτb) : b ≺ a}, which would
have already been assigned values from earlier integrals.

The MGF of the overlap distribution is then

lim
n→∞

EY [Mn(ζ)] =

∞∑
t=0

e(t) = EG

[
exp

(
ζ

∑
b∈D:ℓ(b)=p

i2Wb sinRb(G)
)]
. (D.62)
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In what follows, let us denote Dr = {b ∈ D : ℓ(b) = r} for 1 ≤ r ≤ p. Also let γ̃r = 2qΛγr, and
G =

∑
a∈A0

a∗1Ga. Note G ∼ N (0, 1) since Ga ∼ N (0, 2Qa) and
∑

a∈A0
2Qa = 1. To get a

sense of the MGF formula, observe that

ℓ(a) = 1 =⇒ Ra = γ̃1a
∗
1G

q−1,

ℓ(a) = 2 =⇒ Ra = γ̃2a
∗
2

( ∑
b∈D1

i2WbRbb
∗
2

)q−1

= γ̃2a
∗
2

( ∑
b∈D1

i2Wbb1

)q−1

[γ̃1G
q−1]q−1.

Note in the last line we used b∗1b
∗
2 = b1. Doing this iteratively, we see that when ℓ(a) = r, we have

Ra = a∗rKrG
(q−1)r , where Kr = γ̃r

( ∑
b∈Dr−1

i2Wbbr−1

)q−1

Kq−1
r−1 (D.63)

with initial condition K1 = γ̃1. Note that Kr ∼ Λ[(q−1)r−1]/(q−2) when q > 2 and Kr ∼ Λr

when q = 2. Furthermore, using the fact that sin(aX) = a sinX when a ∈ {±1}, we have from
Eq. (D.62) that

RQAOA
d−→

( ∑
a∈Dp

i2Waa
∗
p

)
sin

[
KpG

(q−1)p
]
, (D.64)

which is indeed of the form of the sine-Gaussian law in Claim 3.7.

We then note that the factors ∑
b∈Dr−1

2Wbbr−1,
∑
b∈Dp

2Wbb
∗
p (D.65)

can be evaluated efficiently using the iterative procedure in [25] due to Theorem 3 in [26]. We give
this procedure in the section that immediately follows. This concludes the derivation that shows
Claim 3.7.

D.5 A self contained formula for ap(γ,β) and bp(γ,β)

In this section, we give a self-contained description of the formula for (ap, bp), following Eq. (D.64).
Let B be the set of (2p + 1)-bit strings indexed as B =

{
(z1, z2, . . . , zp, z0, z−p, . . . , z−1) : zj ∈

{±1}
}

. Define

f(z) =
1

2
⟨z1|eiβ1X |z2⟩ · · · ⟨zp−1|eiβp−1X |zp⟩ ⟨zp|eiβpX |z0⟩

× ⟨z0|e−iβpX |z−p⟩ ⟨z−p|e−iβp−1X |z−(p−1)⟩ · · · ⟨z−2|e−iβ1X |z−1⟩ (D.66)

where zi ∈ {+1,−1}, and ⟨z1|eiβX |z2⟩ = cosβ if z1 = z2, or i sin(β) otherwise. Define matrices
H [m] ∈ C(2p+1)×(2p+1) for 0 ≤ m ≤ p as follows. For j, k ∈ {1, . . . , p, 0,−p, . . . ,−1}, let
H

[0]
j,k =

∑
z∈B f(z)zjzk, and

H
[m]
j,k =

∑
z∈B

f(z)zjzk exp
(
−q
2

p∑
j′,k′=−p

(
H

[m−1]
j′,k′

)q−1
γj′γk′zj′zk′

)
for 1 ≤ m ≤ p, (D.67)

where we use the convention that γ−r = −γr for 1 ≤ r ≤ p, and γ0 = 0. Note these matrices
first appeared in [25] in the context of assessing the performance of the QAOA on locally treelike
Max-q-XORSAT problems and can be evaluated in O(p24p) time.

Once we have the matrixH [p], we compute for 1 ≤ r ≤ p,

ar = i
∑
z∈B

f(z)
zrzr+1 − z−rz−(r+1)

2

p∏
s=r+1

1 + zsz−s

2
exp

(
−q
2

p∑
j,k=−p

H
[p]
j,kγjγkzjzk

)
.

(D.68)

Finally, let b1 = 2qγ1, and for r = 2, 3, . . . , p, compute

br = 2qγr(ar−1br−1)
q−1. (D.69)
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Example formula at p = 2. As an example, we now describe the explicit formula at p = 2, which
applies in the regime where λn = Λn(q−2+1/q)/2 (note here εp=2 = 1/q). We have

b2 = 2qqq−1e−2q(q−1)γ2
1γq−1

1 γ2 sin
q−1(2β1),

a2 = −e−2q(γ2
1+γ2

2+2Re[X]γ1γ2) sin 2β2×[
cos2 β1 + e8qγ1γ2 Re[X] sin2 β1 + e2q(γ

2
1+2γ1γ2 Re[X]) sin 2β1 sin(4qγ1γ2 Im[X])

]
,

where X = (cos 2β1 + ie−2qγ2
1 sin 2β1)

q−1. Then the overlap R d−→ a2 sin(b2Λ
qG(q−1)2).

Although the above formula is complicated, we can understand the scaling with q by considering a
simple choice of γ1 = γ2 = 1/2

√
q and β1 = β2 = π/4. Then the above simplifies to

b2 = e(1−q)/2qq/2,

a2 = e−1 cosh[e(1−q)/2 sin(πq/2)]− e−1/2 sin[e(1−q)/2 cos(πq/2)]. (D.70)

E Signal boosting with 1-step QAOA

Consider a scenario where we have some prior information about the signal, in the form of a weak
estimator that overlaps partially with the true signal. Our goal is to boost the overlap of this weak
estimator. We study the SNR threshold of the 1-step of QAOA and compare it to the 1-step of power
iteration. For QAOA, we encode the weak estimator into the initial state: rather than initializing
with the uniform superposition across all bit-strings |s⟩, we bias a fraction of the qubits toward the
signal. For power iteration, instead of starting from a uniform vector, we sample from a Bernoulli
distribution biased toward the signal.

More precisely, for QAOA we consider the following initial state:

|sbiased⟩ =
n⊗

j=1

(
cos θj |uj⟩+ sin θj |−uj⟩

)
, (E.1)

where the θj are drawn i.i.d. according to

θj =

{
π/4, with probability 1− k

n ,

π/4− δ, with probability k
n ,

(E.2)

and δ > 0. As in Eq. (2.3), we prepare the 1-step QAOA state as |γ, β⟩biased = e−iβBe−iγC |sbiased⟩.
Note the spiked tensor model Y is encoded in this state through C(σ) = ⟨Y ,σ⊗q⟩/n(q−2)/2. The
following theorem concerns the SNR threshold for weak recovery and the distribution of overlap
RQAOA,biased = û⊤u/n between a sample û ∼ |γ, β⟩biased and the signal u.

Theorem 2 (Signal boosting with 1-step QAOA). Consider the biased 1-step QAOA state |γ, β⟩biased
as defined above. Fix γ > 0, β ∈ [0, 2π], δ ∈ [0, π/4], and let k = Θ(nc) for 1/2 < c < 1. Suppose

lim
n→∞

λn/n
(1−c)(q−1) = Λ. (E.3)

Then, over the randomness of θ,Y and quantum measurement, the overlap RQAOA,biased of 1-step
QAOA converges in probability to

RQAOA,biased
p−→ e−2qγ2

sin(2β) sin(2qΛγ sinq−1(2δ)). (E.4)

We give the proof Theorem 2 in Appendix E.1 that follows.

Remark E.1. Theorem 2 considers an initial state with a fraction k/n of qubits biased toward the sig-
nal vector u, representing some side information. It shows that the SNR threshold is Θ(n(1−c)(q−1)),
which becomes lower with increasing side information k/n = nc−1. In particular, if k = Θ(n3/4),
the weak recovery threshold of 1-step QAOA improves to Θ(n(q−1)/4), compared to the Θ(n(q−1)/2)
threshold given by Theorem 1 without any initial overlap between the state and planted signal.
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Comparison with classical tensor power iteration. We compare the boosting produced by the
1-step QAOA to that provided by 1-step power iteration. Recall the 1-step tensor power iteration
estimator (2.1) is û1,biased =

√
nY

[
û
⊗(q−1)
0,biased

]
/
∥∥Y [

û
⊗(q−1)
0,biased

]∥∥
2
, where in this case, analogously to

Eq. (E.1), the initial vector û0,biased has its entry (û0,biased)j sampled as

(û0,biased)j ∼
{
uj/

√
n, with probability 1

2

[
1 + k

n sin(2δ)
]
,

−uj/
√
n, with probability 1

2

[
1− k

n sin(2δ)
]
.

(E.5)

One can check that
√
nû0,biased ∼ |sbiased⟩ is a sample from the biased initial QAOA state, so that

we are making a fair comparison with QAOA. In the following proposition, we show that the required
SNR for the 1-step power iteration estimator is also Θ(n(1−c)(q−1)), and we provide the distribution
of overlap RPI,biased ≡ u⊤û1,biased/n between the power iteration estimator û1,biased and the signal
u.
Proposition E.2 (Signal boosting with 1-step tensor power iteration). Assume that the rescaled
signal-to-noise ratio has a limit limn→∞ λn/n

(1−c)(q−1) = Λ. Then over the randomness of W
and initialization û0,biased, the overlap RPI,biased of the power iteration estimator with the signal
converges in probability to

RPI,biased
p−→ sin[arctan(Λ sinq−1(2δ))]. (E.6)

The proof of Proposition E.2 is contained in Appendix H.2. This shows yet again that the QAOA
has the same asymptotic computational efficiency as power iteration. Nevertheless, in the Λ ≪ 1
regime, by choosing γ = 1/2

√
q and β = π/8, the QAOA achieves an overlap that is larger than

power iteration by a factor
√
q/e.

E.1 Proof of Theorem 2

Without loss of generality, we assume that u = 1. Recall that the initial state is given by Eq. (E.1),
which we can rewrite as

|sbiased⟩ =
∑
z

n∏
j=1

(cos θj)
δzj=1(sin θj)

δzj=−1 |z⟩ , (E.7)

where θj = π/4 with probability 1− k/n, and θj = π/4− δ with probability k/n.

To prove Theorem 2, it suffices to show that the moment-generating function (MGF) of the QAOA
overlap converges to the MGF of a deterministic variable as follows:

lim
n→∞

Eθ EY [Mn(ζ)] = exp
[
ζe−2qγ2

sin(2β) sin(2qΛγ sin(2δ)q−1)
]
=:M(ζ). (E.8)

The argument for the proof is the same as that for Theorem 1(b), except that we must prove analogous
versions of Lemma C.1, C.2 and C.3, which become Lemma E.3, E.4 and E.5, respectively.
Lemma E.3. The expected moment-generating function at p = 1 for the overlap of the QAOA
initialized with |sbiased⟩ is given by

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

[
sinh(ζ/n) sin(2β)

(
1− k

n
+
k cos(2δ)

n

)]t
· En,t,

(E.9)
where

En,t =
1

2t+ 1

t∑
ξ=−t

sint(2πξ/(2t+ 1))Ẑn,t(ξ),

Ẑn,t(ξ) =

t∑
l=−t

e−2πiξl/(2t+1)Zn,t(l),

Zn,t(l) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
(eζ/n cos2 β + e−ζ/n sin2 β)τ+(e−ζ/n cos2 β + eζ/n sin2 β)τ−

×
(
1 +

k sin(2δ)

n

)τ+ (
1− k sin(2δ)

n

)τ−

× eiΛnγ[((τ+−τ−)+l)q−((τ+−τ−)−l)q ]/nc(q−1)

. (E.10)
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The proof of Lemma E.3 is deferred to Section E.2. Note the only difference from the unbiased case
(Lemma C.1) is the presence of the two terms(

1− k

n
+
k cos(2δ)

n

)t

and
(
1 +

k sin(2δ)

n

)τ+ (
1− k sin(2δ)

n

)τ−

,

and the rescaled power of n in the exponent.

We further define
Λ = lim

n→∞
Λn,

In,t =

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

[
sinh(ζ/n) sin(2β)

(
1− k

n
+
k cos(2δ)

n

)]t
· En,t,

It =
1

t!

[
[ζe−2qγ2

sin(2β) sin(2qΛγ sinq−1(2δ))]t
]
,

(E.11)

where the definition of En,t is given in Eq. (E.10). Then it is easy to see that

Eθ EY [Mn(ζ)] =

n∑
t=0

In,t, M(ζ) =

∞∑
t=0

It.

As a consequence, we have∣∣∣EY [Mn(ζ)]−M(ζ)
∣∣∣ ≤ T∑

t=0

|In,t − It|+
∣∣∣ ∑
t≥T+1

It

∣∣∣+ n∑
t=T+1

|In,t|. (E.12)

The following lemma gives the limit of En,t for fixed t as n→ ∞, which indicates that It is the limit
of In,t.
Lemma E.4. For any fixed integer t, we have

lim
n→∞

En,t = sint(2qΛγ sinq−1(2δ)) ≡ Et. (E.13)

As a consequence, we have
lim
n→∞

In,t = It.

Lemma E.5. For any t ≤ n and ζ ≤ n, we have

|In,t| ≤
1

t!
(18|ζ|)t(2t+ 1)e|ζ| ≡ st, (E.14)

where
∞∑
t=0

st <∞. (E.15)

The proof of Lemma E.4 and E.5 is deferred to Section E.3 and E.4, respectively. Now we assume
that these two lemmas hold. By the fact that

∑∞
t=0 It is finite and by Lemma E.5, for any ε > 0,

there exists T = Tε such that ∣∣∣ ∑
t≥Tε+1

It

∣∣∣ ≤ ε/3,
∑

t≥Tε+1

st ≤ ε/3.

Furthermore, by Lemma E.4, there exists N = Nε such that as long as n ≥ Nε, we have
Tε∑
t=0

|In,t − It| ≤ ε/3.

As a consequence, by Eq. (E.12), for any n ≥ nε and ζ ≤ n, we have∣∣∣EY [Mn(ζ)]−M(ζ)
∣∣∣ ≤ Tε∑

t=0

|In,t − It|+
∣∣∣ ∑
t≥Tε+1

It

∣∣∣+ ∞∑
t=Tε+1

st ≤ ε. (E.16)

This proves Eq. (E.8) as desired, and hence finishes the proof of Theorem 2.
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E.2 Proof of Lemma E.3

With an added expectation over θ, Eq. (B.4) still holds with a modified Qa:

Eθ EY [Mn(ζ)] =
∑
{na}

(
n

{na}

) ∏
a∈B

Qna
a exp

[
− 1

2nq−1

∑
a∈Bq

Φ2
a

q∏
s=1

nas

+
iλn
nq−1

∑
a∈Bq

Φa

q∏
s=1

(as)mnas +
ζ

n

∑
v∈B

vmnv

]
, (E.17)

and

Q(a1,am,a2) = fβ,k,δ(a1, am, a2) (E.18)

with f defined below:

fβ,k,δ(z
1
j , z

m
j , z

2
j ) =



1
2

(
1 + k sin(2δ)

n

)
cos2 β, if (z1j , z

m
j , z

2
j ) = (1, 1, 1),

− 1
2

(
1− k

n + k cos(2δ)
n

)
i sinβ cosβ, if (z1j , z

m
j , z

2
j ) = (1, 1,−1),

1
2

(
1− k sin(2δ)

n

)
cos2 β, if (z1j , z

m
j , z

2
j ) = (1,−1, 1),

− 1
2

(
1− k

n + k cos(2δ)
n

)
i sinβ cosβ, if (z1j , z

m
j , z

2
j ) = (1,−1,−1),

1
2

(
1− k

n + k cos(2δ)
n

)
i sinβ cosβ, if (z1j , z

m
j , z

2
j ) = (−1, 1, 1),

1
2

(
1− k sin(2δ)

n

)
sin2 β, if (z1j , z

m
j , z

2
j ) = (−1, 1,−1),

1
2

(
1− k

n + k cos(2δ)
n

)
i sinβ cosβ, if (z1j , z

m
j , z

2
j ) = (−1,−1, 1),

1
2

(
1 + k sin(2δ)

n

)
sin2 β, if (z1j , z

m
j , z

2
j ) = (−1,−1,−1).

(E.19)

This proof follows very closely that of Theorem 1(b) in Appendix C. From the change of variables in
Eq. (C.10) to the breaking up in Eq. (C.15), the same expression still hold, except that we redefine
Λn = λn/n

(1−c)(q−1), which amounts to the power of n in the exponential changing: when compared
to Eq. (C.15):

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+− e(ζ/n)(t+−t−+∆+−∆−)

∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+

eiΛnγ[(d+−d−+τ+−τ−)q−((τ+−τ−)−(d+−d−))q ]/nc(q−1)

. (E.20)

However, it is not true anymore that Q+++ = Q+−+ and Q−−− = Q−+− in general. We use the
identity in Eq. (C.16) to write

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
1

2n−t
(2Q+++e

ζ/n + 2Q−−−e
−ζ/n)τ+(2Q+−+e

−ζ/n + 2Q−+−e
ζ/n)τ−e(ζ/n)(t+−t−)

∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+

eiΛnγ[(d+−d−+τ+−τ−)q−((τ+−τ−)−(d+−d−))q ]/nc(q−1)

.
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Then we redefine

Zn,t(l) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
(eζ/n cos2 β + e−ζ/n sin2 β)τ+(e−ζ/n cos2 β + eζ/n sin2 β)τ−

(
1 +

k sin(2δ)

n

)τ+ (
1− k sin(2δ)

n

)τ−

eiΛnγ[((τ+−τ−)+l)q−((τ+−τ−)−l)q ]/nc(q−1)

(E.21)

and, analogously to Eq. (C.19) write

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

×
∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+ e(ζ/n)(t+−t−)Zn,t(d+ − d−).

(E.22)
Using the discrete Fourier transform, we have

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

×
∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+ e(ζ/n)(t+−t−) 1

2t+ 1

t∑
ξ=−t

e2πiξ(d+−d−)/(2t+1)Ẑn,t(ξ)

=

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1 ∑

t++t−=t

(
t

t+, t−

)
e(ζ/n)(t+−t−)

× (−1)t− · 1

2t+ 1

t∑
ξ=−t

(
2iQ++− sin(2πξ/(2t+ 1))

)t

Ẑn,t(ξ) (E.23)

since the same relations between Q++−, Q−++, Q+−−, Q−−+ hold. Finally,

Eθ EY [Mn(ζ)] =

n∑
t=0

(
n

t

)
e−γ2[nq−(n−2t)q ]/nq−1

(sinh(ζ/n) sin(2β))t
(
1− k

n
+
k cos(2δ)

n

)t

× 1

2t+ 1

t∑
ξ=−t

(
sin(2πξ/(2t+ 1))

)t

Ẑn,t(ξ), (E.24)

which is analogous to Eq. (C.24). This completes the proof of Lemma E.3.

E.3 Proof of Lemma E.4

We first look at the limit of Zn,t(l) for fixed integer −t ≤ l ≤ t. Letting Tn = (eζ/n cos2 β +

e−ζ/n sin2 β), Un = (e−ζ/n cos2 β + eζ/n sin2 β) and ϵ = k sin(2δ)/n, we can write

Zn,t(l) =
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
T τ+
n Uτ−

n (1 + ϵ)
τ+ (1− ϵ)

τ− eiΛnγ[((τ+−τ−)+l)q−((τ+−τ−)−l)q ]/nc(q−1)

.

(E.25)

We let Gn = (τ+ − τ− + ϵn− t(ϵ− 1))/
√
n so that

Zn,t(l) = EGn

[
T (

√
nGn+(ϵ+1)n−t(ϵ+1))/2

n U (−
√
nGn−(ϵ−1)n+t(ϵ+1))/2

n

× e
iΛnγ

nc(q−1)
[(
√
nGn+ϵn−t(ϵ+1)+l)q−(

√
nGn+ϵn−t(ϵ+1)−l)q ]

]
, (E.26)
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where τ+ ∼ Binom(n− t, (1 + ϵ)/2) so that Gn → G ∼ N (0, 1) by the central limit theorem since
Eτ+ [τ+ − τ−] = ϵn− t(ϵ+ 1) and Varτ+ [τ+ − τ−] = (n− t)(1− ϵ2).

Recall that ϵ = sin(2δ)nc−1 where 1/2 < c < 1. It follows that limn→∞ T
((ϵ+1)n−t(ϵ+1))/2
n =

limn→∞ U
(−(ϵ−1)n+t(ϵ+1))/2
n = 1 as well as limn→∞ T

√
n/2

n = limn→∞ U
√
n/2

n = 1. Hence, for
any fixed −t ≤ l ≤ t, it follows that

1

nc(q−1)

[
(
√
nGn + ϵn− t(ϵ+ 1) + l)q − (

√
nGn + ϵn− t(ϵ+ 1)− l)q

]
=

1

nc(q−1)

[
(
√
nGn + nc sin(2δ)− t(nc−1 sin(2δ) + 1) + l)q

− (
√
nGn + nc sin(2δ)− t(nc−1 sin(2δ) + 1)− l)q

]
→ 2ql sinq−1(2δ). (E.27)

With this, we can conclude

lim
n→∞

Zn,t(l) = eiqΛγ2l sinq−1(2δ). (E.28)

Hence

lim
n→∞

En,t =
1

2t+ 1

t∑
ξ=−t

sin(2πξ/(2t+ 1))t
( t∑

l=−t

e−2πiξl/(2t+1)eiΛγ2l sinq−1(2δ)
)

= sint(2qΛγ sinq−1(2δ)), (E.29)
where we used Lemma C.4 with X = 1 with probability 1. This completes the proof of Lemma E.4.

E.4 Proof of Lemma E.5

We first bound Zn,t(k):

|Zn,t(l)| ≤
1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

) ∣∣∣eζ/n cos2 β + e−ζ/n sin2 β
∣∣∣τ+ ∣∣∣e−ζ/n cos2 β + eζ/n sin2 β

∣∣∣τ−
×
(
1− k sin(2δ)

n

)τ+ (
1 +

k sin(2δ)

n

)τ− ∣∣∣eiΛnγ[((τ+−τ−)+l)q−((τ+−τ−)−l)q ]/nc(q−1)
∣∣∣

≤ 1

2n−t

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)(
1− k sin(2δ)

n

)τ+ (
1 +

k sin(2δ)

n

)τ−

eτ+|ζ|/neτ−|ζ|/n · 1

= e(n−t)|ζ|/n · 1
≤ e|ζ|. (E.30)

The rest of the proof is exactly as the proof of Lemma C.3, except that In,t involves the following
extra factor which we can bound: ∣∣∣∣(1− k

n
+
k cos(2δ)

n

)∣∣∣∣ ≤ 3. (E.31)

So the end bound on |In,t| ends up with a different constant factor:

|In,t| ≤
1

t!
(18|ζ|)t(2t+ 1)e|ζ|. (E.32)

This finishes the proof of Lemma E.5.

F Finite n calculation for 1-step QAOA on the spiked matrix (q = 2)

In this appendix, we calculate the average squared overlap outputted by the QAOA at any finite
problem dimension n and obtain the formula we reported in Eq. (4.1). As done in Appendix B, we
first take u = 1 to be the all-one vector without loss of generality. The cost function is

C(z) =

n∑
j,k=1

Yj,kzjzk, where Yj,k =
λn
n

+
1√
n
Wj,k. (F.1)
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Here Wj,k ∼ N (0, 1).

The QAOA state at level p = 1 with this cost function is

|γ,β⟩ = e−iβBe−iγC |s⟩ . (F.2)

We are interested in the overlap of the QAOA output with the hidden signal u = 1. Following the
same method as in Appendix B, we can write the disorder-averaged overlap as

EY [⟨R2
QAOA⟩γ,β ] =

∑
{na}

(
n

{na}

) ∏
a∈B

Qna
a e−

1
2n

∑
a,b∈B Φ2

abnanb+
iλn
n

∑
a,b∈B Φabambmnanb

( 1

n

∑
v∈B

vmnv

)2

,

(F.3)
where

B =
{
(a1, am, a2) : aj ∈ {±1}

}
, (F.4)

Qa =
1

2
⟨a1|eiβX |1⟩ ⟨1|e−iβX |a2⟩ , (F.5)

and Φab = γ(a1b1 − a2b2). (F.6)

We can calculate EY [⟨R2
QAOA⟩γ,β ] explicitly with a careful organization of the sum. To this end,

similar to what we did in Section C.2.1, we perform a change of variables given by

t+ = n++− + n−++, t− = n+−− + n−−+,

d+ = n++− − n−++, d− = n+−− − n−−+,

τ+ = n+++ + n−−−, τ− = n+−+ + n−+−,

∆+ = n+++ − n−−−, ∆− = n+−+ − n−+−.

(F.7)

Observe that these 8 variables completely determine {na : a ∈ B}. Furthermore, let

t = t+ + t−, and thus n− t = τ+ + τ−. (F.8)

Using the identity a1b1 − a2b2 = [(a1 + a2)(b1 − b2) + (a1 − a2)(b1 + b2)]/2, we can show that∑
a,b∈B

Φ2
abnanb = 8γ2t(n− t), (F.9)

∑
a,b∈B

Φabambmnanb = 4γ(d+ − d−)(τ+ − τ−), (F.10)

∑
v∈B

vmnv = t+ − t− +∆+ −∆−. (F.11)

Plugging these into (F.3) and breaking up the sum yield

EY [⟨R2
QAOA⟩γ,β ] =

1

n2

n∑
t=0

(
n

t

)
e−4γ2t(n−t)/n

∑
t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+− (t+ − t− +∆+ −∆−)

2

∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++

∑
d−

(
t−

n+−−

)
Q

n+−−
+−− Q

n−−+

−−+ eiΛ(d+−d−)(τ+−τ−),

(F.12)

where we’ve denoted Λ = 4λγ/n as shorthand. Note we need to perform these sums in a carefully
chosen order in order to get a closed-form answer at the end.

We start with the last line, where we sum over d±. We can use the fact that Q+x− = −Q−y+ =
− i

2 sinβ cosβ for any x, y ∈ {±}. Then, for example we have∑
d+

(
t+

n++−

)
Q

n++−
++− Q

n−++

−++ eiΛd+(τ+−τ−) =
(
2iQ++− sin[Λ(τ+ − τ−)]

)t+
. (F.13)

41



After doing the same thing for the sum over d−, we get

EY [⟨R2
QAOA⟩γ,β ] =

1

n2

n∑
t=0

(
n

t

)
e−4γ2t(n−t)/n

∑
t++t−=t

(
t

t+, t−

) ∑
τ++τ−=n−t

(
n− t

τ+, τ−

)
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+− (t+ − t− +∆+ −∆−)

2

(
2iQ++− sin[Λ(τ+ − τ−)]

)t

(+1)t+(−1)t− .

Next, consider the sums over {(t+, t−) : t+ + t− = t}. We can use the following identity

∑
r+s=t

(
t

r, s

)
(+1)r(−1)s(r − s)k =


δt=0, if k = 0,

2δt=1, if k = 1,

8δt=2, if k = 2.

(F.14)

Collecting the relevant terms and applying this identity yield

∑
t++t−=t

(
t

t+, t−

)
(t+ − t− +∆+ −∆−)

2(+1)t+(−1)t−

=
[
8δt=2 + 4(∆+ −∆−)δt=1 + (∆+ −∆−)

2δt=0

]
. (F.15)

So we have

EY [⟨R2
QAOA⟩γ,β ] =

1

n2

n∑
t=0

(
n

t

)
e−4γ2t(n−t)/n

∑
τ++τ−=n−t

(
n− t

τ+, τ−

)(
2iQ++− sin[Λ(τ+ − τ−)]

)t

∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+−[

8δt=2 + 4(∆+ −∆−)δt=1 + (∆+ −∆−)
2δt=0

]
. (F.16)

Note the Kronecker deltas will collapse the sum over t, so it remains to evaluate the sums over ∆±
and τ±. To perform the sum over ∆±, note that Q+x+ = 1

2 cos
2 β and Q−y− = 1

2 sin
2 β, for any

x, y ∈ {±}. Thus, we can use the following identity

2τ+
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−− (∆+)

k =


1, if k = 0,

τ+ cos 2β, if k = 1,

τ+[1 + (τ+ − 1) cos2(2β)], if k = 2,

(F.17)

to write

2n−t
∑
∆+

(
τ+

n+++

)
Q

n+++

+++ Q
n−−−
−−−

∑
∆−

(
τ−

n+−+

)
Q

n+−+

+−+ Q
n−+−
−+− (∆+ −∆−)

k

=


1, if k = 0,

(τ+ − τ−) cos(2β), if k = 1,

τ+ + τ− +
[
τ2− + τ+(τ+ − 1)− τ−(1 + 2τ+)

]
cos2(2β), if k = 2.

(F.18)

Finally, we just need to evaluate the sum over τ± subject to the three possible values of t. Returning to
(F.16), we can break EY [⟨R2

QAOA⟩γ,β ] = S2 + S1 + S0 into three parts, corresponding to t = 2, 1, 0,
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where

S2 =
8

n2

(
n

2

)
e−8γ2(n−2)/n

∑
τ++τ−=n−2

(
n− 2

τ+, τ−

)(
2iQ++− sin[Λ(τ+ − τ−)]

)2

2−(n−2), (F.19)

S1 =
4

n2

(
n

1

)
e−4γ2(n−1)/n

∑
τ++τ−=n−1

(
n− 1

τ+, τ−

)(
2iQ++− sin[Λ(τ+ − τ−)]

)
2−(n−1)(τ+ − τ−) cos 2β,

(F.20)

S0 =
1

n
. (F.21)

Finally, since, sinx = (eix − e−ix)/(2i), we have the following identities:∑
r+s=m

(
m

r, s

)
sin2[Λ(r − s)] = 2m−1[1− cosm 2Λ], (F.22)

∑
r+s=m

(
m

r, s

)
sin[Λ(r − s)](r − s) = 2mm sinΛ cosm−1 Λ. (F.23)

Thus, plugging in Λ = 4λγ/n and using the fact that 2iQ++− = 1
2 sin 2β, we arrive at

EY [⟨R2
QAOA⟩γ,β ] =

n− 1

2n
e−8γ2(n−2)/n sin2(2β)[1− cosn−2(8λγ/n)]

+
n− 1

n
e−4γ2(n−1)/n sin(4β) sin(4λγ/n) cosn−2(4λγ/n) +

1

n
.

(F.24)

G Additional numerical simulations

In this appendix, complementing the simulation results in Section 4, additional numerical simulations
are performed for 1 ≤ p ≤ 7 at q = 2 and 1 ≤ p ≤ 6 at q = 3.

Fig. 4 displays the second moment of QAOA overlap versus problem dimension n. The y-axis
plots the simulated second moment subtracting the theoretical value in the n → ∞ limit. For all
demonstrated (p, q) pairs, the simulation appears to converge to the theoretical value with order 1/n
deviations. This is consistent with the rigorous finite-n formula for (p, q) = (1, 2) in Eq. (F.24).

p=1
p=2
p=3
p=4
p=5
p=6
p=7

p=1
p=2
p=3
p=4
p=5
p=6

Figure 4: Log-log plots of the difference between observed overlap (averaged over instances and
quantum measurements) at various problem dimension n and the predicted value from the sine-
Gaussian law in the n → ∞ limit. Different colored lines correspond to different QAOA depth p,
with parameters (γ,β) set to be the same as in Table 1. We choose Λ = 0.2, λn = Λn1/(2p) (left),
and λn = Λn[1+1/(2p−1)]/2 (right). Error bars are standard errors of the mean.

Our numerical simulations use the GenQAOA library, available at https://github.com/
leologist/GenQAOA. The simulations are conducted on a laptop (MacBook Pro M2), where
the simulation of each 26-qubit instance with p-step QAOA for 1 ≤ p ≤ 7 took about 160 seconds.
Data used in the figures are available upon request.
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H Analysis of classical power iteration algorithm

H.1 Proof of Proposition 3.3

Define Λn = λn/n
(q−1)/2, we have

Y [û
⊗(q−1)
0 ] = Λn⟨û0,u⟩q−1 u√

n
+

1√
n
W [ûq−1

0 ] ≡ ΛnG
q−1
n

u√
n
+

1√
n
h,

where we define Gn = ⟨û0,u⟩, and h =W [ûq−1
0 ]. Then marginally overW and û0, we have Gn

is independent of h, and Gn converges in distribution to a Gaussian random variable G ∼ N (0, 1),
h ∼ N (0, In). As a consequence, we have

(Gn, ∥Y [û
⊗(q−1)
0 ]∥2)

p−→ (G,
√
1 + Λ2G2q−2), n→ ∞.

This gives

⟨u, û1⟩/n =
ΛnG

q−1
n + ⟨u,h⟩/n

∥Y [û
⊗(q−1)
0 ]∥2

p−→ ΛGq−1

√
1 + Λ2G2q−2

, n→ ∞.

This proves the Proposition 3.3.

H.2 Proof of Proposition E.2

In this proof, we denote in short ûk = ûk,biased. Define Λn = λn/n
(1−c)(q−1), we have

Y [û
⊗(q−1)
0 ] = Λn[n

(1/2)−c⟨û0,u⟩]q−1 u√
n
+

1√
n
W [ûq−1

0 ] ≡ ΛnU
q−1
n

u√
n
+

1√
n
h,

where we define Un = n1/2−c⟨û0,u⟩, and h = W [ûq−1
0 ]. Then marginally over W and û0, we

have Un → sin(2δ), and h ∼ N (0, In). As a consequence, we have

(Un, ∥Y [û
⊗(q−1)
0 ]∥2)

p−→ (sin(2δ),
√

1 + Λ2 sin(2δ)2q−2), n→ ∞.

This gives

⟨u1, û⟩/n =
ΛnU

q−1
n + ⟨u,h⟩/n

∥Y [û
⊗(q−1)
0 ]∥2

p−→ Λ sin(2δ)q−1√
1 + Λ2 sin(2δ)2q−2

, n→ ∞.

This proves the Proposition E.2.

H.3 Proof of Proposition 3.9

We prove this proposition using results in [33]. The notations in [33] are slightly different from the
notations in this paper, and in the following, we will adopt the notations in the former.

Suppose we observe the spiked tensor model
T = λ̄nv

⊗q +W , (H.1)
where v ∼ Unif({±1/

√
n}n) and each element ofW is iid Gaussian. Note that the λ̄n in Eq. (H.1)

is different from the λn in Eq. (1.1). We should take λ̄n =
√
nλn so that λ̄n/n(q−1+εp)/2 → Λ.

Consider the tensor power iteration algorithm with initialization v0 = ṽ0 ∼ Unif(Sn−1), and

vt+1 = T [(ṽt)⊗(q−1)] = λ̄n⟨v, ṽt⟩q−1v +W [(ṽt)⊗(q−1)], ṽt+1 = vt+1/∥vt+1∥2. (H.2)

We let αt := λ̄n⟨v, ṽt−1⟩q−1. Then [33] shows the following lemma.
Lemma H.1 (Lemma 3.2 of [33]). Consider the spiked tensor model as in Eq. (H.1) and consider
the tensor power iteration (H.2). For any fixed ε ∈ (1/4, 1/2), define the stopping time

Tε := min {t ∈ N+ : |αt| ≥ nε} . (H.3)

Then, there exists an absolute constantC > 0, such that with probability no less than 1−exp(−C
√
n),

the following happens: For all t < min(Tε, n
1/2(q−1)), we have

αt+1
d
= (λ̄nn

−(q−1)/2)ζt(αt + bt + ctZt)
q−1, α0 = 0, (H.4)

where Zt ∼ N (0, 1) is independent of (ζt, αt, bt, ct),

ζt ∈ [1− n−1/6, 1 + n−1/6], |bt| ≤ Cn1/4+(q−1)(ε−1/2), |ct − 1| ≤ Cn2(q−1)(ε−1/2), (H.5)
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We take ε ∈ ([(q− 1)p−1 − 1]/[2(q− 1)p − 2], 1/2) to be fixed. By Lemma H.1, for a fixed p ∈ N+,
with high probability, we have Tε ≥ p, as well as the upper bounds indicated in Eq. (H.5) for all
t ≤ p− 1. Applying Eq. (H.4) recursively implies that

αp
d
= (1 + oP(1)) · n1/2Λ1/εpG(q−1)p−1

, G ∼ N (0, 1).

By the last equation on page 9 of [33], we see that (forHp = {0, 1, 2, . . . , p}q−1)

vp = αpv +
∑

(i1,i2,··· ,iq−1)∈Hp−1

β
(p−1)
i1,i2,··· ,iq−1

wi1,i2,··· ,iq−1
,

where wi1,i2,··· ,iq−1
∼iid N (0, In), and

∑
(i1,i2,··· ,iq−1)∈Hp−1

|β(p−1)
i1,i2,··· ,iq−1

|2 = 1. Invoking

the uniform law of large numbers, we are able to conclude that RPI
d
= ⟨vp,v⟩/∥vp∥2

d→
sin[arctan(Λ1/εpG(q−1)p)]. This concludes the proof of Proposition 3.9.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have carefully written the abstract and introduction to accurately reflect
the paper’s contributions and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We are explicit in our abstract and introduction that our theoretical results on
p-step QAOA are only rigorous for p = 1 and rely on heuristics for p > 1. We also conduct
careful comparisons to classical algorithms in Section 3. We have also explicitly stated in
our Introduction and Discussion sections that our results are limited to constant-step QAOA.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Every theorem, proposition, and lemma is very clear about the assumptions.
Results that depend on conjectures are listed as claims with explicit reference to the conjec-
tures.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: The sections on numeric experiments include detailed choices of all parameters
so that one may reproduce the simulation results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code for numerical simulation is based on an open-source library as stated
in Appendix G. The data used to generate the figures are available upon request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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