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Abstract

Squared tensor networks (TNs) and their generalization as pa-
rameterized computational graphs — squared circuits — have
been recently used as expressive distribution estimators in
high dimensions. However, the squaring operation introduces
additional complexity when marginalizing variables or com-
puting the partition function, which hinders their usage in
machine learning applications. Canonical forms of popular
TNs are parameterized via unitary matrices as to simplify the
computation of particular marginals, but cannot be mapped to
general circuits since these might not correspond to a known
TN. Inspired by TN canonical forms, we show how to param-
eterize squared circuits to ensure they encode already nor-
malized distributions. We then use this parameterization to
devise an algorithm to compute any marginal of squared cir-
cuits that is more efficient than a previously known one. We
conclude by formally showing the proposed parameterization
comes with no expressiveness loss for many circuit classes.

1 Introduction

Tensor networks (TNs) are low-rank tensor factorizations
often used to compactly represent high-dimensional prob-
ability distributions, both in quantum physics (Orts 2013;
Biamonte and Bergholm 2017) and in ML (Stoudenmire
and Schwab 2016; Glasser, Pancotti, and Cirac 2018; Cheng
et al. 2019; Glasser et al. 2019; Novikov, Panov, and Os-
eledets 2021). A TN factorizing a complex function v over
a set of variables X = {X;}%_, having domain dom(X) can
be used to represent a probability distribution via modulus
squaring, i.c., p(X) = Z~ (X)) = Z-1(X)p(X)",
where ( - )* denotes the complex conjugation, and Z =
Jaomex) 1(%) |2dx is the partition function.

Recently, Loconte et al. (2023, 2024b) showed that TNs
can be generalized into deep computational graphs called
circuits (Choi, Vergari, and Van den Broeck 2020). This
is done by casting tensor contraction operations into lay-
ers of sums and products whose feed-forward evaluation
corresponds to a complete contraction to evaluate 1. The
language of circuits offers the opportunity to flexibly build
novel TN structures by just stacking layers of sums and
products as “Lego blocks” (Loconte et al. 2024b); include
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different basis input functions, and offering a seamless in-
tegration with deep learning (Shao et al. 2022; Gala et al.
2024a,b). Furthermore, casting TN as circuits provides con-
ditions as to compose them and compute many probabilis-
tic reasoning tasks in closed-form, such as expectations and
information-theoretic measures (Vergari et al. 2021), which
is crucial, e.g., for reliable neuro-symbolic AI (Ahmed et al.
2022; Zhang et al. 2023). This is done with probabilistic cir-
cuits (PCs), circuits encoding probability distributions, that
are classically restricted to have positive parameters only —
also called monotonic PCs (Shpilka and Yehudayoff 2010).

One can increase the expressiveness of PCs by equip-
ping them with complex parameters, squaring them (Lo-
conte et al. 2024a), similarly to TNs, or even more by mixing
squared PCs (Loconte, Mengel, and Vergari 2024). Differ-
ently from classical monotonic PCs, which are not squared,
the squared PCs require additional computation to be nor-
malized, i.e., to compute Z, which is quadratic in the circuit
size. This computational overhead carries over to comput-
ing marginals and hinders their application in a number of
tasks such as lossless compression (Liu, Mandt, and Van den
Broeck 2022) and sampling (Loconte et al. 2024a), where
performing fast marginalization is crucial.

In this paper, we show that the solution to this inefficiency
of squared PCs comes from the literature of TNs, where
canonical forms are adopted in order to simplify the com-
putation of probabilities (Schollwoeck 2010). For instance,
instead of computing Z explicitly in the case of a matrix-
product state (MPS) TN (Pérez-Garcia et al. 2007), a canon-
ical form ensures [¢)(X)|? is an already-normalized proba-
bility distribution, i.e., Z = 1. In practice, canonical forms
are obtained by parameterizing a TN using unitary matrices,
i.e., matrices A € C™*" satisfying ATA = AAT =1,
where I,, denotes the identity matrix of size n. For rectan-
gular matrices, semi-unitary matrices A € C™*"™ are con-
sidered, i.e., matrices satisfying ATA = I,if m > nor
AAT =1,, if m < n. Under this view, computing Z sim-
plifies into operations over identity matrices. However, com-
puting different marginals over different TN structures re-
quires a different canonical form and these cannot be imme-
diately translated to squared PCs, because the latter allows
us to build factorizations that might not correspond to any
known TN. This begs the question: how can we parameter-
ize squared circuits as to be already normalized and allow



us to accelerate the computation of any marginal? We an-
swer it in the following.

Contributions. We derive sufficient conditions via or-
thonormal parameterizations to ensure that squared PCs are
already normalized (Section 3). These conditions are based
on semi-unitary matrices, similarly to canonical forms in
TNs, but defined within the language of tensorized circuits
instead. Then, by leveraging squared orthonormal PCs, we
present a general algorithm to compute any marginal that
can be much more efficient than the previously known algo-
rithm for squared PCs which required a quadratic increase
in complexity instead (Section 4). Our algorithm, which
exploits the concept of variable dependencies of the cir-
cuit layers, can be used to speed up the computation or ar-
bitrary marginals for TNs as well. Finally, we show how
the proposed parameterization can be enforced efficiently in
squared PCs, thus theoretically guaranteeing no loss of ex-
pressiveness for certain circuit families (Section 5).

2 Circuits and Squared Circuits

We start by defining circuits in a tensorized formalism (Ver-
gari, Di Mauro, and Esposito 2019; Loconte et al. 2024b).

Definition 1 (Tensorized circuit). A tensorized circuit c is
a parameterized computational graph encoding a function
¢(X) and comprising of three kinds of layers: input, product
and sum. A layer £ is a vector-valued function defined over
variables sc(£), called scope, and every non-input layer re-
ceives the outputs of other layers as input, denoted as in(#€).
The scope of each non-input layer is the union of the scope
of its inputs. The three kinds of layers are defined as follows:

* Each input layer € has scope X € X and computes a
collection of K input functions {f;: dom(X) — C}X |,
i.e., £ outputs a K -dimensional vector.

e Each product layer £ computes either an element-wise
(or Hadamard) or Kronecker product of its /V inputs, i.e.,
ON 1 £:(sc(£;)) or @Y, £;(sc(£;)), respectively.

* A sum layer £ with £; as input, is parameterized by
W € CK1¥K2 and computes the matrix-vector product
L(sc(€)) = WLy (sc(£y)).

Each non-input layer is a vector-valued function, but each
entry it computes is a scalar-valued function computed over
certain entries of its input vectors. We denote as size(£) the
number of scalar inputs to each scalar function encoded in
£. That is, an Hadamard layer consists of K scalar func-
tions each computing the product of N other scalars, thus
size(¢) = NK. A Kronecker layer consists of K scalar
functions each computing the product of N other scalars,
i.e., size(£) = NK™. Finally, a sum layer consists of K
scalar functions each receiving input from K5 other scalars
and computing a linear combination, i.e., size(£) = K7 K>.
The size of a layer is also its computational complexity.

A tensorized PC is a tensorized circuit ¢ computing non-
negative values, i.e., for any x we have ¢(x) > 0. Thus, a PC
c encodes a probability distribution p(x) = Z~!¢(x). A PC
¢ supports tractable marginalization of any variable subset
(Choi, Vergari, and Van den Broeck 2020) if (i) the functions
encoded by the input layers can be integrated efficiently and
(ii) it is smooth and decomposable.

Definition 2 (Layer-wise smoothness and decomposability
(Darwiche and Marquis 2002; Loconte et al. 2024b)). A
tensorized circuit over variables X is smooth if for every
sum layer £, its inputs depend on all the same variables,
ie., Ve, L; € in(£): sc(€;) = sc(¥;). It is decomposable if
for every product layer £ in it, its inputs depend on disjoint
scopes, i.e., V€;, £; € in(£),i # j: sc(¢;) Nsc(€;) = 2.
Since sum layers can have only one input in Definition 1,
circuits are ensured smooth, but not necessarily decompos-
able. Popular TNs like MPS (Pérez-Garcia et al. 2007) and
tree TNs (Shi, Duan, and Vidal 2006; Cheng et al. 2019) are
special cases of smooth and decomposable circuits having a
particular tree structure, and use Hadamard and Kronecker
layers, respectively (Loconte et al. 2024b). However, Defini-
tion 1 allows us to build different factorizations by connect-
ing layers, e.g., mix both Hadamard and Kronecker layers,
include different input functions, and share parameters.
Loconte, Mengel, and Vergari (2024) showed one can
learn PCs with complex parameters by squaring circuits.
Given a circuit c that outputs complex numbers, a squared
PC ¢? is obtained by multiplying ¢ and its complex conju-
gate c*, i.e., ¢2(x) = |e(x)|? = ¢(x)c*(x). Thus, a squared
PC encodes a distribution p(x) = Z~!|c(x)|?, where Z =
J. dom(X) le(x)|?dx. Computing Z tractably requires repre-

senting ¢? as another decomposable circuit, which can be
done if c is structured-decomposable (Vergari et al. 2021),
i.e., each product layer factorizes its scope to its inputs, and
the collection of such factorizations forms a tree (Pipatsri-
sawat and Darwiche 2008). As detailed in Appendix A, c?
can be built from c by retaining its structure and by quadrat-
ically increasing the size of layers. Thus, computing Z re-
quires time O(LS?), where L is the number of layers and S
is the maximum layer size in ¢, i.e., S = maxgc.{size(£)}.
In general, marginalizing any variable subset still requires
time O(LS?) (Loconte et al. 2024a).

Instead, monotonic PCs can be parameterized by (i) using
distributions as input functions (e.g., Gaussian), and (ii) nor-
malizing each parameter matrix row, i.e., for each sum layer
parameterized by W ¢ ]R_IleKZ we have that Vi € [Ki]
Zle w;; = 1, where we denote [n] = {1,...,n}. The
key advantage of (i,ii) is that that the resulting PC encodes
an already-normalized distribution. Moreover, marginaliz-
ing any variable subset requires time O(L.S), as they are not
squared. Note that (ii) is not restrictive, as it can be enforced
efficiently using an algorithm by Peharz et al. (2015).

For squared PCs, what are the sufficient conditions en-
suring they are already normalized? We present them next,
and in Section 4 we show how they lead to an algorithm to
compute any marginal that can be much more efficient.

3 Squared Orthonormal Circuits

Our representation of squared PCs is based on the definition
of orthonormal circuits we introduce below.

Definition 3 (Orthonormal circuits). A tensorized circuit ¢
over variables X is said orthonormal if (1) each input layer
£ over X € X encodes a vector of K orthonormal func-
tions, i.e., £(X) = [f1(X),..., fx(X)]" such that Vi, j €
[K)?: fdom(X) fi(z) f;(x)*da = 6,5, where 6;; denotes the



Figure 1: Squared orthonormal PCs enable a more efficient marginalization algorithm. The left figure shows a tensorized
circuit ¢ with a tree structure over X = {X;, X5, X3, X4} with input , Hadamard HlEM and sum layers. We label
the input layers with the vector-valued function they encode on a variable X;. Consider computing the marginal likelihood
p(x1,22) = fdom(Xg)Xdom(X4) le(z1, T2, 3, 24)|>dasdry. We label group of layers depending on Y = { X7, X5} (red-ish,
ov), Z = {Xs3, X4} (blue-ish, ¢z), and on both (green, ¢y z). A naive algorithm computing p(x1, z2) would (i) square the
whole tensorized circuit as ¢, where the size of each layer quadratically increases, and (ii) compute the integrals of squared
input layers over Z and (iii) evaluate the rest of the squared layers (middle, from left to right). (right) Instead, if ¢ is orthonormal,
Algorithm B.1 avoids the computation of the integral of the sub-circuit depending on Z (as it results in the identity matrix I,

in blue), and requires computing a single Kronecker product (orange) and squaring just the layers in ¢y z (green).

Kronecker delta; and (2) each sum layer is parameterized
by a (semi-)unitary matrix W € CK1¥K2 || < K, ie.,
WW =1 K, or the rows of W are orthonormal.

If we take a tensorized circuit ¢ that is orthonormal, then
the squared PC obtained from c is guaranteed to encode a
normalized probability distribution, as formalized below.

Proposition 1. Let ¢ be a structured-decomposable ten-
sorized circuit over variables X. If ¢ is orthonormal, then
its squaring encodes a normalized distribution, i.e., Z = 1.

Appendix B.1 shows our proof. The idea is that integrat-
ing products of input layers encoding orthonormal functions
yields identity matrices in c?. Then, the (semi-)unitarity of
parameter matrices in sum layers is used to show the output
of each layer in ¢? is (the flattening of) an identity matrix,
thus eventually yielding Z = 1.

The computation of the partition function Z represents
a special case of marginalization, where all variables are
marginalized out. In general, computing any marginal prob-
abilities in squared PCs requires worst-case time O(LS?)
(Loconte et al. 2024a). In the next section, we show how to
exploit the properties of orthonormal circuits (Definition 3)
to also provide an algorithm that computes any marginal
probability with a better complexity.

4 A Tighter Marginalization Complexity

The idea of our algorithm is that, when computing marginal
probabilities using c2, we do not need to evaluate the layers
whose scope depends on only the variables being integrated
out. This is because they would always result in identity ma-
trices, as noticed in our proof for Proposition 1.

In addition, we observe that we do not need to square the
whole tensorized circuit ¢, but only a fraction of the layers
depending on both the marginalized variables and the ones
being kept. By doing so, a part of the complexity will depend
on S rather than S2. We formalize our result below.

Theorem 1. Let ¢ be a structured-decomposable orthonor-
mal circuit over variables X. Let Z C X, Y = X\ Z. Com-
puting the marginal likelihood p(y) = fdom(Z) le(y, z)|*dz

requires time O(|¢y |S+ |y z|S?), where ¢y (resp. ¢y z)
denotes the set of layers in ¢ whose scope depends on only
variables in Y (resp. on variables both in Y and in Z).

We prove it in Appendix B.2 and show our algorithm in
Algorithm B.1. Note that the complexity shown in Theo-
rem 1 is independent on the number of layers whose scope
depend on Z only, i.e., ¢z. Depending on the circuit struc-
ture and the variables Z, Algorithm B.1 can be much more
efficient than O(LS?). For example, the tree structure of a
circuit defined over pixel variables can be built by recur-
sively splitting an image into patches with horizontal and
vertical cuts (Loconte et al. 2024b). If Z consists of only
the pixel variables of the left-hand side of an image (i.e., we
are computing the marginal of the right-hand side Y'), then
|¢v,z| < L since only a few layers near the root will de-
pend on both Y and Z. We illustrate an example in Fig. 1.

5 Are Orthonormal Circuits less Expressive?

Orthonormal tensorized circuits restrict their input layers to
encode orthonormal functions, and require parameter ma-
trices to be (semi-)unitary (Definition 3), thus arising the
question whether these conditions make them less expres-



sive when compared to non-orthonormal ones. Below, we
start by analyzing which input layer functions we can en-
code in terms of orthonormal functions.

Are orthonormal functions restrictive? Depending on
whether a variable is discrete or continuous, we have dif-
ferent ways to model it with orthonormal functions. For
a discrete variable X with finite domain dom(X) =
[v], any function f(X) can be expressed as f(x) =
ZZ:1 f(k)dp, ie., f can be written in terms of v basis
functions {d,x}}_, that are orthonormal. That is, we have
that ZxEdom(X) Oxk0zk = Op for k, k' € [v]. Therefore,
any input layer over a finitely-discrete variable X can be ex-
actly encoded with a sum layer having a layer encoding the
orthonormal basis {d,%}}_, as input.

In the case of a continuous variable X, many classes
of functions can be expressed in terms of orthonormal ba-
sis functions. For instance, periodic functions can be repre-
sented by Fourier series of sines and cosines basis that form
an orthonormal set of functions (Jackson 1941). Under cer-
tain continuity conditions, functions can be approximated
arbitrarily well by finite Fourier partial sums (Jackson 1982).
Moreover, depending on the support of X, many classes of
functions can be described in terms of families of orthonor-
mal polynomials, such as Legendre, Laguerre and Hermite
polynomials (Abramowitz, Stegun, and Miller 1965). No-
tably, Hermite functions generalize Gaussians and are a ba-
sis of square-integrable functions over all R (Roman 1984).
Are (semi-)unitary matrices restrictive? Next, we inves-
tigate whether the requirement of sum layer parameter ma-
trices to be (semi-)unitary may reduce the expressiveness of
squared PCs. In the following, we answer to this question
negatively, as we can enforce this condition in polynomial
time w.r.t the number of layers and the layer size.

Theorem 2. Let ¢ be a tensorized circuit over variables

X. Assume that each input layer in ¢ encodes a set of or-

thonormal functions. Then, there exists an algorithm return-

ing an orthonormal circuit ¢’ in polynomial time such that

¢ is equivalent to ¢ up to a multiplicative constant, i.e.,
1

d(X) = Z72¢(X) where Z = fdom(X) le(x)]?dx.

Appendix B.3 presents our proof, and Algorithm 1 shows
our algorithm to “orthonormalize” a tensorized circuit. The
idea of Algorithm 1 is that we can recursively make sub-
circuits orthonormal by (i) factorizing the sum layer param-
eter matrices via QR decompositions, and (ii) by “push-
ing” the non-unitary part of such a decomposition towards
the output, until the reciprocal square root of the partition
function of ¢? is retrieved at the top level of the recursion.
Fig. B.1 illustrates the algorithm. Therefore, Theorem 2
guarantees that squared orthonormal PCs are as expressive
as general squared PCs with orthonormal input functions.

Finally, we note that Algorithm 1 is the dual of a re-
sult about monotonic PCs shown by Peharz et al. (2015):
they show an algorithm that updates the positive weights
of a smooth and decomposable PC such that the distribu-
tion it encodes is already normalized. Here, we show an al-
gorithm that updates the (possibly) complex weights of a
structured-decomposable circuit such that its squaring en-
codes an already-normalized probability distribution.

Algorithm 1: ORTHONORMALIZE(£)

Input: The output layer £ of a structured-decomposable circuit,
whose input layers encode a set of orthonormal functions.
Output: The output layer of a structured-decomposable circuit ¢’
that is orthonormal, and a matrix R € C*1 %52 K, < Kos.
1: if £ is an input layer then
Assume £ outputs vectors in C*
return (£, 1)
if £ is a sum layer with input £; and parameterized by W then
(27, R1) < ORTHONORMALIZE(¢;), R, € CR2* K3
Assume W € CK1¥XK2 g < K,
Let V.=WR; € CK5s K < K
Factorize VI = QR where Q € CK3*¥1 R e CcK1xK1
such that QT Q = Ik, and R is upper triangular
10: Let £’ be a sum layer computing Q€] (sc(£))
11:  return (¢,R)
12: if £ is a Kronecker product layer with inputs £;, £> then
13:  (£},R1) + ORTHONORMALIZE(£;), Ry € CF1*K2
14: (€5, Rsa) + ORTHONORMALIZE(f:), Ry € CK3xK4
15: Let £’ be a layer computing £3 (sc(€1)) ® £5(sc(£2))
16: return (¢, R1 ® Ro) > ®: Kronecker matrix product
17: if £ is an Hadamard product layer with inputs £;, £> then

VRN NE DD

18:  (£;,R;) + ORTHONORMALIZE(£;), Ry € CK1xK2

19: (£, Rs2) + ORTHONORMALIZE(£s), Re € CK1%Ks
20:  Let £ be alayer computing £1 (sc(£1)) ® £5(sc(£2))

21: return (¢, R; e R2) > e: Face-splitting matrix product

6 Related Work and Conclusion

In this paper, we presented a parameterization of squared
PCs inspired by canonical forms in TNs, based on orthonor-
mal functions and (semi-)unitary matrices, as to speed-
up the computation of marginal probabilities. As squared
orthonormal PCs support faster marginalization, they are
amenable for future works on applications where computing
marginals is key, e.g., lossless compression (Yang, Mandt,
and Theis 2022; Liu, Mandt, and Van den Broeck 2022).

Orthonormal basis functions have been used to parameter-
ize shallow squared mixtures encoding already-normalized
distributions, both in signal processing (Pinheiro and Vi-
dakovic 1997) and in score-based variational inference (Cai
et al. 2024). Our squared orthonormal PCs generalize them,
as they represent deeper squared mixtures.

We plan to investigate different methods as to learn
squared orthonormal PCs from data for distribution estima-
tion, and compare how do they perform w.r.t. squared PCs
with unconstrained parameters. For instance, there are many
ways of parameterizing unitary matrices, with different ad-
vantages regarding efficiency, numerical stability, and opti-
mization (Arjovsky, Shah, and Bengio 2015; Huang et al.
2017; Bansal, Chen, and Wang 2018; Casado and Martinez-
Rubio 2019). Moreover, Hauru, Damme, and Haegeman
(2020); Luchnikov et al. (2021) proposed optimizing the
parameters of MPS TNs and quantum gates by performing
gradient descent over the Stiefel manifold (Absil, Mahony,
and Sepulchre 2007). Furthermore, recent works parameter-
ize more expressive monotonic PCs using neural networks
(Shao et al. 2022; Gala et al. 2024a,b), thus motivating pa-
rameterizing squared orthonormal PCs similarly.
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Algorithm A.1: SQUARETENSORIZEDCIRCUIT(#)
Input: A tensorized circuit with output layer £ that is
structured-decomposable.
Output: The tensorized squared circuit having 02 as output
layer computing £ ® £*.

1: if £ is an input layer then

2:  £computes K functions {f;}X | over X

return An input layer £ computing all /2
product combinations f;(X) f7 (X)

3
4:
5: if £ is a product layer then
6:
7
8

(£1,£2) + GETINPUTS(£)
£2 « SQUARETENSORIZEDCIRCUIT(£;)

: £3 < SQUARETENSORIZEDCIRCUIT(£3)
9: if £ is an Hadamard product layer then

10 return £5 (sc(£1)) © £3(sc(£s))

11: else > £ is Kronecker product layer
12: return P (€3 (sc(£1)) ® £3(sc(£2))),

13: where P is a permutation matrix

> £ is a sum layer
14: (£1,) < GETINPUTS(£)
15: £ < SQUARETENSORIZEDCIRCUIT(#;)
16: W € RS*K < GETPARAMETERS(¥)
17: W e RS W @ W*
18: return W'¢7(sc(£,))

A Squaring Tensorized Circuits

Given a tensorized circuit ¢, a squared PC models p(X) =
Z7He(X))? = Z71e(X)e(X)*. To compute Z efficiently,
one has to represent |¢(X)|? as a decomposable circuit (Def-
inition 2), since it would allow tractable variable marginal-
ization (Choi, Vergari, and Van den Broeck 2020).

Algorithm A.1 recursively constructs the circuit ¢? com-
puting |c¢(X)|? as yet another decomposable tensorized cir-
cuit. Algorithm A.1 is taken from Loconte et al. (2024a), but
here we trivially generalize it as to allow complex weight
parameter matrices. In this algorithm, each layer £ in c is re-
cursively squared into a layer £2 in ¢? as to compute the Kro-
necker product between the output of £ and its conjugate. As
a consequence, the size of each layer in c is quadratically in-
creased in c2. For instance, each input layer £ in c over a vari-
able X and computing £(X) € C¥ is squared as to recover
an input layer £2 in ¢? such that £2(X) = £(X) ® £(X)* €
cK’ (L1-4). An Hadamard (resp. Kronecker) product layer
in ¢ is squared as another Hadamard layer (resp. a compo-
sition of sum and Kronecker layers) in ¢? (L5-13). Finally,
a sum layer £ in ¢ computing W£;(sc(£;)) is squared as
to recover a sum layer 22 in 2 that is parameterized by
W ® W™ instead (L14-18). Fig. 1 (left) shows an example
of tensorized circuit and Fig. 1 (middle) shows its squaring
obtained with Algorithm A.1.

B Proofs

We start with some notation.
Notation. In Proposition 1 and Theorem 1 we require in-
tegrating layers £ that output vectors, e.g., in CX. That

is, given a layer £ having scope sc(f) = Y U Z and
encoding a function £: dom(Y U Z) — CK, we write
dom(Z) L(y,z)dz to refer to the K-dimensional vector ob-

tained by integrating the K function components encoded
by 4, ie., fdom(Z) L(y,z)dz =

.
= [fdom(z) L(y,z)1dz fdom(Z) Ly, z)Kdz} cCK.

Therefore, due to the linearity of the function computed by
sum layers, we write fdom(Z) Wiy, z)dz =

.
= W [Juom(z) £ 211z Jiomz) £y 2) 2]

=W Ly, z)dz.
dom(Z)

For Hadamard product layers in decomposable circuits (Def-
inition 2), we generally write fdom(Zl)Xdom(Zg) £i(y.,21)®
£2 (yQ, Zg)dzleQ =

/ £1(y,,21)dz1 © /
dom(Z1) dom(Z2)

where (Y1,Y5) is a partitioning of Y and (Z;,Zs)
is a partitioning of Z. Similarly, we will write
fdom(Zl)xdom(Zz)Kl(yl’zl) ® La(yq,2z2)dzidzy  as
above by replacing ® with ® instead.

Ly(yy,z2)dzo,

B.1 Normalized Squared Circuits

Proposition 1. Let ¢ be a structured-decomposable ten-
sorized circuit over variables X. If ¢ is orthonormal, then
its squaring encodes a normalized distribution, i.e., Z = 1.

Proof. We prove it by showing how the orthonormal prop-
erty satisfied by c¢ (Definition 3) yields Z = 1. In particu-
lar, we do so by following Algorithm A.1 to compute the
modulus square of a tensorized circuit ¢ that is structured-
decomposable as yet another smooth and decomposable cir-
cuit c2. The idea is to recursively show that the output of
each layer in ¢ must output the flattening (or vectoriza-
tion) of an identity matrix when computing Z, thus yielding
Z =1 as output in the last step of the recursion.

Case (i): input layer. Given an input layer £ com-
puting a vector of K orthonormal functions £(X) =
[f1(X),..., fx(X)]T, Algorithm A.1 materializes another
input layer €% such that £%(X) = £(X) ® £(X)* (L3-4).
Thus, £2 computes a vector of K2 functions { f;(X) [ (X) |
i,7 € [K]}, and it is an input layer of the squared PC
¢%. Since £ encodes orthonormal functions, we observe
that integrating £ over the whole domain of X yields
fdom(Z) £2(z)dz = vec(I k), where vec( - ) denotes the flat-
tening of a matrix into a vector.

Case (ii): Hadamard product layer. Given a Hadamard
product layer £ with scope Z and computing £1(Z;) ©
EQ(ZQ) with Z1 n Z2 = J, Z1 U Z2 = Z, AlgO-
rithm A.1 constructs another Hadamard product layer 2



computing £5(Z1)®#€5(Zy), where £3 (tesp. £3) is the squar-
ing of the layer £; (resp. £5) obtained recursively in Algo-
rithm A.1 (L8-9). Now, if [y, £7(z1)dz1 = vec(Ix,)

and fdom(Zg) 03(z2)dzy = vec(Ik, ), then we have that

/ £2(z)dz = vec(Ig,) ® vec(Ig,) = vec(Ik,),
dom(Z)

by exploiting the decomposability of ¢ (thus also ¢? (Vergari
et al. 2021)) (Definition 2).

Case (iii): Kronecker product layer. Given a Kronecker
product layer £ with scope Z and computing £;(Z;) ®
05(Zs) with Zy N Zy = @, Z1 U Zy = Z, Algorithm A.1
constructs a composition of a sum and a Kronecker prod-
uct layer £%(Z) = P(€;(Z)) ® £5(Z2)), where P is a
permutation matrix ensuring £ outputs £(Z) @ £(Z) (as
the Kronecker product is not commutative). Similarly to
the Hadamard product layer above, if we assume by induc-
tive hypothesis that fdom(zl)ﬁ(zl)dzl = vec(Ig,, ) and

Saom(z») £5(2z2)dzs = vec(Ik,, ), then we recover that

/ 0*(z)dz = P(vec(Ig,, ) ® vec(Ik,,))
dom(Z)

= vec(Ik,),

where K, = Kp, - Ky,, by again exploiting the decompos-
ability of c.

Case (iv): sum layer. Finally, let £ be a sum layer over
Z and computing the matrix-vector product W¥£;(Z), with
W e CKi*Fe K < Ky and WWT = Ik, by hypoth-
esis. Algorithm A.1 materializes a sum layer £2 computing
02(Z) = (W @ W*)£2(Z), where £2 is the squared layer
obtained from £, by recursion (L15). Now, if we assume that
fdom(Z) £2(z)dz = vec(Ik,), then we have that

/ 0(z)dz = (W @ W*)vec(Ig,)
dom(Z)

= vec(WIx, W) = vec(Ik, ).

Therefore, if £ (resp. £2) is the output layer of the tensorized
circuit c (resp. ), thenZ = X, K; = 1 as £ must output a
scalar, and therefore Z = fdom(X) |le(x)|?dx = 1. O

B.2 A Tighter Marginalization Complexity

Theorem 1. Let c be a structured-decomposable orthonor-
mal circuit over variables X. Let Z C X, Y = X\ Z. Com-
puting the marginal likelihood p(y) = fdom(Z) le(y,z)|%dz

requires time O(|¢y |S+|¢dv,z|S?), where ¢y (resp. ¢y .z)
denotes the set of layers in ¢ whose scope depends on only
variables in Y (resp. on variables both in Y and in Z).

Proof. We prove it by constructing Algorithm B.1, i.e., the
algorithm computing the marginal likelihood given by hy-
pothesis. Algorithm B.1 is based on two ideas. First, inte-
grating sub-circuits whose layer depend only on the vari-
ables being integrated over (i.e., Z) will yield identity ma-
trices, so there is no need to evaluate them. Second, the sub-
circuits whose layers depend on the variables that are not

Algorithm B.1: MARGINALIZE(c, y, Z)

Input: A structured-decomposable tensorized circuit ¢ over vari-
ables X that is orthonormal (Definition 3); a set of variables Z to
marginalize, and an assignment y to variables Y = X \ Z.
Output: The marginal likelihood p(y) = fdom(Z) le(y, 2)|*dz.

1: out <~ Map > A map from layers £ in c to their output vector.

2: mar < Map > A map from
layers £ to the integral [, .\ £(y',2") ® £(y’, z')"dz" with
Z =sc(®)NZ, Y =sc({)NY

3: for £ € TOPOLOGICALORDERING(c) do

4: if sc(£) C Z then SKIP > Skip to the next layer
5: if £ is an input layer then

6: outf] <+ £(y') >y’ denotes y restricted to Y’
7: SKIP

8: if £ is a sum layer with input £; parameterized by W then
9: if sc(£) N Z = @ then > Evaluate £ without squaring
10: out[€] + Wout[¢]
11: else > Evaluate the corresponding squared layer £2
12: mar[f] < (W ® W*)mar[¢;]
13: SKIP
14: > £ is either an Hadamard or Kronecker product layer

15: (€1, 4£2) < GETINPUTS(£)

16: if sc(£) N Z = @ then > £ depends on Y only

17: > Evaluate the product layer £ without squaring it
18: if £ is an Hadamard product layer then

19: out[£] < out[€1] ® out[€2]

20: else > £ is a Kronecker product layer
21: out[£] < out[€1] ® out[€2]

22: SKIP

23: > £ is a product layer depending on both Y and Z
24: if sc(¢1) C Z then > £1 depends on Z only

25: 01 + vec(Ik, ) > K, denotes the width of £;
26: else if sc(£1) N Z = & then > £1 depends on Y only
27: 01 < out[f1] ® out[¢]*

28: else > sc(£1) depends on both Y and Z
29: 01 < mar[fq]

30: repeat 1.19-1.24 by replacing £; with £2 to obtain o2

31: > Evaluate the corresponding squared layer £2
32: if £ is an Hadamard product layer then

33: mar[£] < 01 © 02

34: else > £ is a Kronecker product layer
35: mar[£] < P(01 ® 02),

36: where P is a permutation matrix (Appendix A)

37: return mar[OUTPUTLAYER(c)]

integrated over (i.e., Y) do not need to be squared and can
be evaluated without squaring their size (see Appendix A).
Below, we consider different cases for each layer and
based on the variables they depend on.
Case (i) layers depending on variables Z only. Consider a
layer £ in ¢ such that sc(€) C Z, i.e., £ € ¢z by hypothesis.
Moreover, let Z' = Z N sc(£). Since the sub-circuit rooted
in £ is orthonormal by hypothesis, we have that integrating
such a sub-circuit yields the flattening of an identity matrix,
ie., fdom(Z’) £2(2')dz’ = vec(I), where £? is the squared
layer constructed by Algorithm A.1, and K is the size of the
outputs of £. This can be seen from our proof of Proposi-
tion 1. Therefore, layers in ¢z do not need be evaluated, and
this is reflected in L4 of Algorithm B.1.



Case (ii) layers depending on variables both in Y and
Z. Consider a layer £ in ¢ such that sc(€) N Y # & and
sc(£) NZ # 3, i.e., £ € ¢y z by hypothesis. Moreover, let
X' =sc(f) CX,Z =X'NZ,and Y = X'\ Z'. Since
input layers can only be univariate, £ must be either a sum
or product layer.

Assume £ is a sum layer in ¢ receiving input from £; and is
parameterized by W € CX1*E2_ Then, the corresponding
squared layer 02 in 2 receives input from E% and is parame-
terized by W @ W™, Therefore, we have that

/ 2y, 2 )dz = (W®W*)/
dom(Z’) dom(Z’)

hence the integral is simply “pushed” towards the sub-circuit
of ¢? rooted in Ef. The computation of the above integral for
a sum layer can be found at L12 of Algorithm B.1.

Now, assume £ is an Hadamard product layer in c re-
ceiving input from £1,#> having scopes X7, X5, respec-
tively. Then, the corresponding squared layer £2in % is an
Hadamard layer receiving inputs from £; and €5 (see Ap-
pendix A). Moreover, let Y] = X NY, Z| = X| NZ,
Y, =X,NY,Z,=X,NY.Below we proceed by cases
in order to prove L23-36 in Algorithm B.1. Due to decom-
posability of ¢ (Definition 2), if Z] = @ and Y5, = & we
recover that

| et = [ 2o faa
dom(Z}) dom(ZY)

~gie [

dom(ZY)
= (ti(y1) @ &u(y1)") © vec(Ik),

because £2(y’) = £1(y’) ® £1(y')* and £ depends on Z
only (see Case (i)) above. Therefore, for this case we do
not need to square the sub-circuit rooted in £1, i.e., we can
evaluate £; as is on the input y} and then computes the Kro-
necker product of the output vector with its conjugate only.
Conversely, if Y] = @ and Z), = & we recover a similar
result: we do not need to square the sub-circuits rooted in £5.
This case is captured by L.24-27 in Algorithm B.1.

Furthermore, consider the case Z’1 = &, then similarly to
the above we recover that

/ C () ) de!
dom(Z})

— (¥} ® b(y)) O /

dom(Z4)

Oy, 2')dz

£3(25)dz)

03 (v, zb)dzh.

Therefore, while we do not require squaring the sub-circuit
rooted in £;, we however need to square the one rooted in
€5 and integrate it. Conversely, we recover a similar result if
Z:, = @. This case is captured by L28-29 in Algorithm B.1.
If neither Z/ nor Z/, are empty, then we need to square the
sub-circuits rooted both in £; and €5, since we have that

/ C(yly, )z’
dom(Z{UZY)

- / E(y),2)dz, © / By}, 2)ddh,
dom(Z}) dom(Z5)

Instead of Hadamard product layers, a similar discussion
can be carried for the case of £ being a Kronecker product
layer. In particular, the computation of the above integrals
for Hadamard or Kronecker product layers for the discussed
cases can be found at L23-36 of Algorithm B.1.

We now discuss what is the computational complexity

for the Case (ii) above. First, we observe that we need to
quadratically increase the size of each layer that depends
on both variables in Y and in Z. This already requires time
O(|¢y.z|S?). In addition, we need to compute a Kronecker
product of the outputs of layers that depend on variables Y
only, but that are also input to product layers depending on
both Y and Z. However, since (i) each product layer depend-
ing on both Y and Z receives input from exactly two other
layers £1, €5, and (ii) at most one between £; and €5 can
depend on variables Y only, we recover that the complex-
ity of computing these Kronecker products is O(|¢y z|J?),
where J is the maximum output size of each layer in c.
Since the output size of each layer .J is always bounded by
the layer size S (see below Definition 1), it turns out that
|py.z|J* € O(|¢y z|S?). Therefore, the Kronecker prod-
ucts mentioned above account for only a constant multiplica-
tive factor in our complexity.
Case (iii) layers depending on variables Y only. In Case
(i) we have shown that we need to evaluate the layers in ¢
whose scope depends on variable Y only. Since such layers
do not need to be squared (see above), it turns out computing
them requires time O(|¢y|S). This case is captured by L9-
10 and L16-L22 in Algorithm B.1.

Therefore, by combining Cases (i-iii) above, we recover
the overall time complexity of Algorithm B.1 is O(|¢y|S +
¢y ,z|S?). O

B.3 Are Orthonormal Circuits less Expressive?

Theorem 2. Let ¢ be a tensorized circuit over variables
X. Assume that each input layer in ¢ encodes a set of or-
thonormal functions. Then, there exists an algorithm return-
ing an orthonormal circuit ¢’ in polynomial time such that
¢ is equivalent to ¢ up to a multiplicative constant, i.e.,

c/(X) — Z_%C(X_) Whel‘e Z - fdom(x) ‘C(X)‘de

Proof. For the proof, we will show the correctness of our
Algorithm 1 as to retrieve a tensorized orthonormal circuit
¢’ from c such that ¢/(X) = SB¢(X) for a positive real con-
stant 3. Before showing this, we observe that, since ¢’ is
orthonormal, then

p(X) = | (X)[* = B2[e(X)|*.

Therefore, we must have that 8 = Z —% with Z being the
partition function of c?, ie., Z = [, ) le(x)[?dx. In
other words, it turns out Algorithm 1 not only returns ¢/,
but also the value 3 = Z~2 thus implicitly computing the
partition function. It remains to show the correctness of Al-
gorithm 1 as mentioned above.

Let ¢ be a structured-decomposable tensorized circuit
whose input layers encode sets of orthonormal functions. We
show by structural induction how the orthonormal circuit ¢’



Figure B.1: Algorithm 1 recursively make the sum layer parameter matrices of (semi-)unitary. Given a fragment of a
tensorized circuit (left), our algorithm computes QR decompositions of the sum layer parameter matrices Vi and V;, thus
yielding V; = RJ{QJ{ and Vo = REQE (mid) (L9-13 in the algorithm). The matrices RJ{, R; are propagated towards the
subsequent Hadamard layer in Algorithm 1, where RJ{ ° R; is computed (L21) and then multiplied to the parameter matrix
W (right) (L8). Note that the Hadamard product layer is replaced with a Kronecker product layer, accounting for a polynomial
increase in the layer size. The same procedure is then recursively applied to the parameter matrix W(RJ{ ° R;) (not shown).

is constructed from c using Algorithm 1. The idea is to ap-
ply QR decompositions to the sum layer parameters, retain
the (semi-)unitary matrix of the decomposition and “push”
the upper-triangular matrix towards the output layer of the
circuit in a bottom-up fashion. For this reason, after each
recursive step Algorithm 1 also returns a matrix R, which
can be a wide matrix and in general it is not (semi-)unitary.
In particular, given (£, R) the output of Algorithm 1 for a
layer £, we associate the semantics £(sc(£)) = R£'(sc(£))
to it, where the circuit rooted in £’ is orthonormal by induc-
tive hypothesis. Note that for any input layer £ in ¢ encod-
ing K orthonormal functions, we assume £ is also in ¢’ and
R = Ik (see L3 of the algorithm).

Case (i): sum layer. Let £ be a sum layer with scope sc(£) =
Z and computing the matrix-vector product W£;(Z), with
W € CKv* K2 ) < K. By applying Algorithm 1 on the
circuit rooted in £;, we retrieve the layer E'l and the ma-
trix Ry € CK2xKs guch that £,(Z) = R1£)(Z) holds.
Therefore, we can write the function computed by £ as
L(Z) = WR £} (Z). Let V = WR, € CKi*Es with
K, < K3. To retrieve a sum layer parameterized by a (semi-
Junitary matrix, we apply the QR decomposition on Vi,
ie, Vl = QR, where Q € CK3*K1 and R € CK1xK1,
Here, Q'Q =1 x, and R is an upper triangular matrix. Us-
ing the QR decomposition above, we can rewrite £(Z) =
R'QT¢/(Z). Finally, we retrieve a sum layer £ in ¢ com-
puting £'(Z) = Q'2,(Z), ie., £(Z) = R'¢'(Z). Thus, L11
in Algorithm 1 returns both £’ and R

Case (ii): Kronecker product layer. Consider the case £
is an Kronecker product layer having scope Z = sc(£) =
sc(£1) U sc(€2), and computing €(Z) = £1(Z1) ® €2(Zs).
By inductive hypothesis, let £; and £, be the output layers
of orthonormal circuits obtained by applying Algorithm 1
on £; and 5, respectively. Moreover, let R; € CKixKz
and Ry € CKsxKa with K7 < K, and K3 < Ky, be
the wide matrices returned by the algorithm. Therefore, we
have that £; (resp. £2) computes £1(Z1) = R, £} (Z1) (resp.
£1(Z2) = Ral,(Zs)). For this reason, we can rewrite the

function computed by £ as
L(Z) = (R1£1(Z1)) @ (Rabh(Zs))
= (R1 @ R2)(£1(Z1) ® £5(Z2)),

where we use the Kronecker mixed-product property. Fi-
nally, we retrieve a Kronecker layer £ in ¢’ computing
£(Z) = £1(Z1) @ £y(Zs), i.e., £(Z) = (R; @ Ry)€'(Z).
Thus, L16 in Algorithm 1 returns both £ and Ry ® Ro.
Case (iii): Hadamard product layer. Similarly, we con-
sider the case of £ being an Hadamard product layer hav-
ing scope Z = sc(£) = sc(£;) U sc(€2), and computing
£(Z) = €1(Z1) @ €2(Z5). By inductive hypothesis, let £
and £/, be the output layers of orthonormal circuits obtained
by applying Algorithm 1 on £; and €5, respectively. More-
over, let Ry € CK1*K2 and Ry, € CK X3 with Ky < K,
and K; < Kj, be the wide matrices returned by the al-
gorithm. Therefore, we have that £; (resp. £3) computes
£1(Z1) = R1€,(Zy) (resp. £1(Z2) = Roly(Zs)). For this
reason, we can rewrite the function computed by £ as

£(Z) = (R1£1(Z1)) ® (Rot5(Zy))
= (R1 e R2)(£1(Z1) ® £5(Z2)),
where for the last equality we used the Hadamard mixed-

product property, and e denotes the face-splitting matrix
product operator as defined next.

Definition B.1 (Face-splitting product). Let A € C™** and
B € C™*" be matrices. The face-splitting product A e B is
defined as the matrix C € C™xk7,

aj (%] bl al b1
C= : where A = | : B=|:],

a;, @ by, an, b,
and {a; }", {b;}, are row vectors.

Finally, we retrieve a Kronecker layer £ in ¢/ computing
L(Z) = £(Z1) @ 5(Zs), ie., £(Z) = (R; e Ry)¥(Z).
Thus, L21 in Algorithm 1 returns both £’ and R; e Ry. We
note that the Hadamard layer is replaced by a Kronecker



layer (see e.g. Fig. B.1), thus Case (iii) is the only case ac-
counting for a polynomial increase in the size of the layer.
Case (iv): output layer. Finally, we consider the case of
£ being the output layer in ¢, thus resulting in the last step
of the recursion. W.1.o.g. we consider £ being a sum layer.
Then from our Case (i) above, we have that R € C!*!
is obtained by the QR decomposition of a column vector
Ve CEXL thus corresponding to the scalar r1; such that
1
2

I Ville = Liew my = IV = (S5 foal?) .
Therefore, the non-negative scalar S mentioned at the be-
ginning of our proof must be 8 = ry; = Z~%. Hence,
Z =3 alt

Finally, the computational complexity of Algorithm 1
mainly depends on the complexity of performing QR de-
compositions and computing Kronecker products of matri-
ces. In particular, we need to perform as many QR decompo-
sitions as the number of sum layers in ¢, each requiring time
O(K3) in the case of a matrix V. € CK1*FKs | < K3,
is O(K3). In addition, in the worst case ¢ consists of only
Kroneckers as product layers, we have to compute Kro-
necker products between matrices R; € CK1*%2 and R, €
CHKsxKaeach requiring time O(K; Ky K3K,4). Assuming
matrix products require asymptotic cubic time, we recover
the overall complexity of Algorithm 1 is O(LgymJ® +
LprodJ 1), where J is the maximum output size of each layer
in ¢ and Lgym (resp. Lprod) is the number of sum (resp. prod-
uct) layers in c.



