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Abstract

In the framework of Actor-Critic, the policy gradient is often expressed in the form
of an integral E [h(X)]. To estimate this integral with better convergence results, the
quasi-Monte Carlo (QMC) method can be used in conjunction with the maximum
sample size of 2M , and the resulting estimator ÎQMC

2M
achieves an error rate of

O(2−M+ε) with an arbitrarily small ε > 0. However, such a large number of QMC
points often results in a substantial computational cost. To address this issue, we
propose an adaptive two-level quasi-Monte Carlo (ATQ) method for approximating
E [h(X)] with much fewer samples than ÎQMC

2M
. The ATQ method comprises two

levels: the base level and the stochastic level. The base level employs large sample
sizes to increase accuracy in the unstable phase of learning, and shifts to small
sample sizes to save costs once stability is achieved. Within the stochastic level, we
randomize the number of samples to ensure that the ATQ method is an unbiased
estimator of ÎQMC

2M
. Theoretically, for the sample size 2b of the base level, the ATQ

method converges to E [h(X)] at the rate of O(2−b+ε) with an arbitrarily small
ε > 0, which is better than the Monte Carlo (MC) rate O(2−b/2). Experimentally,
we compare the ATQ-based Soft Actor-Critic method with strong baselines in both
online Mujoco environments and offline D4RL suboptimal datasets. Our approach
achieves state-of-the-art performance, outperforming other on-policy and off-policy
methods in most aforementioned online environments and offline datasets.

∗These authors contributed equally.
†Corresponding author.
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1 Introduction

The Soft Actor-Critic (SAC), proposed by Haarnoja et al. [14], is an efficient reinforcement learning
approach, where computing the policy gradient is a crucial component. Under some reasonable
settings, the calculation of the policy gradient boils down to estimating an integral E [h(X)] (see the
form of h in Section 3), where X is a d-dimensional standard Gaussian random vector. In traditional
Actor-Critic (AC) [22] or SAC frameworks, this integral is typically estimated by single samples
which, mathematically, leads to inaccuracy shortcomings. Regarding this issue, one can consider
using the Monte Carlo (MC) [12] method to approximate the policy gradient. Arnold et al. [2]
applied the randomized quasi-Monte Carlo (RQMC) [32] method to SAC. Leveraging the advantage
of the RQMC method, their algorithm achieved promising results. However, they did not provide
the convergence rate of their method. To numerically compute E [h(X)], one can use the QMC
quadrature rule ÎQMC

2M
:= 1

2M

∑2M

i=1 h ◦ Φ−1(yi), where {y1, y2, . . . } is a low discrepancy sequence,
◦ is the composite operator and Φ−1 is the inverse cumulative distribution function of the standard
Gaussian distribution acting on each component of yj . Based on Ouyang et al. [33], we prove that
ÎQMC
2M

converges to E [h(X)] (policy gradient) at the rate of O(2−M+ε) with an arbitrarily small
ε > 0, which is faster than the MC rate O(2−M/2) (see Theorem 1). Our theoretical findings validate
the superiority of the QMC method as evidenced in the experimental results of Arnold et al. [2].

Theoretically and intuitively, to achieve optimal results, one selects the largest M such that 2M is
the maximum computational tolerance for sample size. Nevertheless, employing such an extensive
number of QMC points introduces substantial computational cost. To address this issue, we propose
an adaptive two-level quasi-Monte Carlo (ATQ) method, aimed at reducing computation while
enhancing reinforcement learning performance.

Our ATQ method, inheriting the exploration and exploitation concept from SAC, consists of two
levels: the base level and the stochastic level. The base level is dedicated to exploitation, using 2b

sample points, ensuring that the ATQ method converges to E [h(X)] at a rate of O(2−b+ε). The
stochastic level is for exploration, where we randomize the number of samples to render the ATQ
method an unbiased estimator of ÎQMC

2M
(see Theorem 1). Moreover, we adjust the b during the

training period. A larger b is employed to increase accuracy in the unstable phase of learning, while a
smaller b is utilized to reduce computational costs once training stabilizes (see Section 3 for more
details). This approach substantially reduces the total number of samples used throughout training
while ensuring improved reinforcement learning outcomes.

The ATQ method combines multilevel Monte Carlo and QMC methods. Whereas the classical
randomized multilevel Monte Carlo method [11, 16, 39] employs N stochastic levels, our method
simplifies this by utilizing just a single stochastic level. Such a one stochastic level approach is also
present in [43]. In contrast, we incorporate a base level to adjust the convergence rate of ATQ method,
and the distribution of our stochastic level varies in response to changes within the base level, thus
achieving an unbiased estimator of ÎQMC

2M
.

Our contributions are threefold. First, we propose the ATQ method for estimating the policy gradient
and theoretically prove that our ATQ method has a high order of convergence. Second, our method
dynamically adjusts the number of samples at the base level, which results in the use of far fewer
total samples, thereby reducing computational costs. Third, we experimentally validate the efficiency
of the ATQ-based SAC, which outperforms other baselines in both offline and online settings.

2 Background

2.1 Quasi-Monte Carlo

The numerical computation of integrals in various fields such as statistics, financial engineering,
machine learning, and reinforcement learning often revolves around expectations. There are two
methodologies for numerically solving these integrals–Monte Carlo (MC) [12] and quasi-Monte
Carlo (QMC) [32]. MC uses random sampling and has a convergence rate of O(n−1/2) with n
quadrature points, while QMC utilizes low discrepancy sequences, such as Faure sequence, Sobol’
sequence and Halton sequence (see [3, 32, 37]), yielding a faster convergence rate of O(n−1+ε) with
an arbitrarily small ε > 0. The convergence rate for QMC is on the Koksma-Hlawka inequality [19],
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which relates the integration error to the variation of the integrand in the sense of Hardy and Krause
and the uniformity of sample points measured by star discrepancy. As illustrated in Figure 5, QMC
samples are more ‘uniform’ than MC samples. The randomized quasi-Monte Carlo (RQMC) method,
including random shift [27] and scrambling [34], combines the benefits of randomization and low
discrepancy sequences to potentially obtain a better result. If the integrand is bounded and smooth,
the nested scrambled method achieves a faster convergence rate O(n−3/2+ε) (see [36] for more
details). Recently, Ouyang et al. [33] proved that this high convergence rate maintains for unbounded
and smooth integrands by using appropriate importance sampling methods. We refer the readers to
see more details about QMC in Appendix A.2.

2.2 Reinforcement learning

Reinforcement learning (RL) in continuous state and action space is formulated by a Markov Decision
Process (MDP) defined by the tuple (S,A, p, ρ0, r, γ), where S denotes a continuous state space, A
denotes a continuous action space, p(st+1|st, at) represents the probability of transitioning from
state st to state st+1 after taking action at, ρ0 is the initial state distribution for s0, r is a reward
function that r(st, at) returns the reward received after transitioning from state st with action at, and
γ is a discount factor. The goal of maximum entropy reinforcement learning [13, 14, 52] is to learn
a policy function π : S → A that maximizes the expected cumulative reward as well as expected
entropy of policy,

Jπ =

∞∑
t=0

Eat∼π(·|st),st∼pt(·) [r(st, at)− α log(π(at | st))] ,

where α denotes the relative importance of policy entropy, and pt is the density function of st.

The soft Q function [13], denoted as Qπ(s, a), is defined as the expected sum of future rewards and
entropy, starting from state s, taking action a, and following policy π after that. Mathematically, it is
expressed as

Qπ(s, a) = r(s, a) +

∞∑
t=1

Eat∼π(·|st),st∼pt(·)
[
γt(r(st, at)− α logπ(at|st)) | s0 = s, a0 = a

]
.

In the context of deep reinforcement learning, the Qπ(s, a) and π(a|s) are often represented by neural
networks Qθ(s, a) and πϕ(a|s), where θ and ϕ are the parameters of neural networks, respectively.
The update of the Qθ(s, a) is by Temporal Difference learning (TD) [44] as follows,


Qtarget = r + γEa′∼π(·|s′)[Qθ(s

′, a′)− α logπ(a′|s′)],

L(θ) = 1

2
E{s,a,r,s′}∼D

[
(Qθ(s, a)−Qtarget)

2
]
,

θ ← θ − lθ∇θL(θ),

(1)

where {s, a, r, s′} is the transition tuple from replay bufferD and lθ is the learning rate. The update of
policy parameter ϕ is done by gradient ascend over expected cumulative reward ϕ← ϕ+ lϕ∇ϕJπ(ϕ),
where lϕ is the learning rate for policy parameter. In the framework of Soft Actor-Critic [14], Jπ(ϕ) is
usually expressed as Jπ(ϕ) = Es,a∼πϕ(·|s) [Qθ(s, a)− α logπ(a | s)]. In off-policy RL and offline
RL, the policy gradient is computed by

∇ϕJπ(ϕ) = ∇ϕEs∼D,a∼πϕ(·|s) [Qθ(s, a)− α logπϕ(a | s))] . (2)

As in [14], Es∼D is estimated by the sample mean of a batch of states from the replay buffer D, and
for each s in the batch, one sample Monte Carlo is used to estimate Ea∼πϕ(·|s).

3 Adaptive two-level quasi-Monte Carlo method

In this section, we provide the details of adaptive two-level quasi-Monte Carlo (ATQ) method in the
context of Soft Actor-Critic (SAC).

Our ATQ method focuses on the policy iteration part (2). Without loss of generality, we consider
the one-dimensional case. Suppose that πϕ(·|st) is the density of a Gaussian distribution with mean
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Algorithm 1 ATQ-based SAC

1: Initialize critic networks Qθ1(s, a), Qθ2(s, a), actor network πϕ(s) and replay buffer D
2: Set learning rates lθ, lϕ, lα, set adaptive hyperparameter β, set initial base level parameter b
3: Set maximum sample size to be 2M , set batch size N .
4: for each iteration do
5: for each environment step do
6: Sample at from at ∼ πϕ(·|st)
7: Observe st+1, rt from environment given at
8: Store transition (st, at, rt, st+1) in D
9: Record the latest episodic reward Repisodic

10: end for
11: for each gradient step do
12: Sample batch {(s(j), a(j), r(j), s′(j))}Nj=1 from D
13: Update critics θ1 and θ2 by (1)
14: Adjust the base level parameter b by (11)
15: Draw a ξ according to the distribution (10)
16: Draw 2b+ξ QMC points {y1, . . . , y2b+ξ}
17: Compute h by (6) with {s(j)} in the batch
18: Compute ATQ estimator GQMC(b) by (9) with the QMC points
19: Update actor network ϕ← ϕ+ lϕG

QMC(b)
20: Adjust temperature α for entropy regularization
21: end for
22: end for

µϕ(st) and variance (σϕ(st))
2. We have

logπϕ(x|st) = − log
√
2π − log σϕ(st)−

(x− µϕ(st))
2

2(σϕ(st))2
. (3)

If X ∼ N (0, 1), then at ∼ πϕ(·|st) boils down to

at = µϕ(st) + σϕ(st)X, (4)

where µϕ and σϕ are parametric functions, such as neural networks. Under certain mild conditions
(usually the integrable condition) that allow us to exchange the order of integration and gradient, the
policy gradient of SAC satisfies

∇ϕJπ(ϕ) = ∇ϕEst,X [Qθ(st, µϕ(st) + σϕ(st)X)− α logπ (µϕ(st) + σϕ(st)X|st)]
= Est,X [∇ϕQθ(st, µϕ(st) + σϕ(st)X)−∇ϕα logπ (µϕ(st) + σϕ(st)X|st)]
= EX [Est [∇ϕQθ(st, µϕ(st) + σϕ(st)X)−∇ϕα logπ (µϕ(st) + σϕ(st)X|st)]] ,

(5)

where st ∼ D, X ∼ N (0, 1) and logπϕ(·|st) satisfies (3). Since we can not analytically compute
the inter expectation Est , we use the sample mean of N samples {s(1)t , . . . , s

(N)
t } form the replay

buffer D to approximate it (this approach is also used in [14]). Denote

h(x) =
1

N

N∑
j=1

∇ϕ

[
Qθ(s

(j)
t , µϕ(s

(j)
t ) + σϕ(s

(j)
t )x)− α logπ

(
µϕ(s

(j)
t ) + σϕ(s

(j)
t )x|s(j)t

)]
,

(6)
then an approximation of∇ϕJπ(ϕ) is

∇̂ϕJπ(ϕ) = EX [h(X)] . (7)

To compute ∇̂ϕJπ(ϕ), we approximate the expectation EX [h(X)]. Differently from the one sample
MC approach in [14] (see section 2.2), in the framework of QMC, the following quadrature rule can
be used

ÎQMC
n :=

1

n

n∑
i=1

h ◦ Φ−1(yi), (8)
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where {y1,y2, . . . } is a low discrepancy sequence (see definitions in Appendix A.2), ◦ is the
composite operator and Φ is the cumulative distribution function of the standard Gaussian distribution,
acting on each component of yi.

Let M satisfy that 2M is the maximum sample number for hardware limitations and cost tolerance.
Our ATQ method inherits the exploration and exploitation concept from SAC, it uses the following
two-level estimator to approximate E [h(X)],

GQMC(b) := ÎQMC
2b︸ ︷︷ ︸

base level

+(1/pξ)(Î
QMC
2b+ξ − ÎQMC

2b+ξ−1)︸ ︷︷ ︸
stochastic level

, (9)

where in the base level, b < M is a tuning integer, reflecting the extent of exploitation, and in the
stochastic level, ξ is a random variable in {1, 2, . . . ,M − b} with pk := P(ξ = k). Moreover, let ξ
follow the ‘truncated’ geometric distribution with

pk =
1

2k
, for k = 1, . . . ,M − b− 1, and pM−b =

1

2M−b−1
. (10)

The exploratory nature of the stochastic level is manifested in encouraging the estimator to use more
samples, making GQMC(b) an unbiased estimator of ÎQMC

2M
(see Theorem 1).

The ATQ estimates the policy gradient ∇̂ϕJπ(ϕ) when Qθ(·, ·) is provided. Since Qθ(·, ·) is usually
not sufficiently accurate at the beginning of the learning process, we need more exploitation at this
period. To this end, we proposed an adaptive scheduler to use a large b when the policy is behaving
badly (the reward is small) and use a small b when the policy achieves high rewards. More precisely,
let b satisfy

b = min
{
M − 1,

⌊
(M − 1)e−βRepisodic + 1/2

⌋}
, (11)

where ⌊x⌋ is the integer part of x, β is a hyperparameter, and Repisodic represents the last episodic
reward encountered in the training process. This adaptive scheduler of ATQ addresses the intuition
that when the policy experiences lower episodic reward, we should perform a better estimation of the
gradient, and when the reward is high, indicating that the learning tends to be stable, we use a smaller
b to save computational cost. Such an adaptive strategy allows our ATQ method to allocate resources
effectively.

4 Convergence analysis of the ATQ method

In this section, we study the convergence of the ATQ method. To illustrate the superiority of the QMC
method, we compare GQMC(b) with the corresponding MC estimator GMC(b) with the definition

GMC(b) := ÎMC
2b + (1/pξ)

(
ÎMC
2b+ξ − ÎMC

2b+ξ−1

)
, (12)

where ÎMC
n := 1

n

∑n
i=1 h(Xi) with {Xi} being identically and independently distributed samples

from the standard Gaussian distribution. We make some assumptions about the functions that
contribute h.
Assumption 1. For every θ and ϕ, Qθ, µϕ, σϕ are smooth and their derivatives are bounded by a
polynomial. Moreover, there is a δ > 0 such that σϕ is bounded below by δ.

The assumption holds if we choose the networks appropriately. For example, let Qθ, µϕ, σϕ be
multilayer perceptrons (MLPs) with smooth and bounded activation functions. By the appendix in
Ouyang et al. [33], it is easy to verify that they satisfy Assumption 1 under some mild conditions
about the parameters in networks. The following theorem presents the convergence rates of GQMC(b),
GMC(b), ÎQMC

2m and ÎMC
2m . Denote Eξ the expectation with respect to ξ.

Theorem 1. Assume Assumption 1 holds. Suppose that h(X) has finite variance, and ξ is independent
of X , satisfying (10). Then for every fixed integer b, we have the following results.

1. GQMC(b) is an unbiased estimator of ÎQMC
2M

with respect to ξ, i.e., Eξ

[
GQMC(b)

]
= ÎQMC

2M
.

Moreover, if we use nested scrambled sobol’ sequences in (8) and (9), then for any ε > 0,√
E
[∣∣∣GQMC(b)− ∇̂ϕJπ(ϕ)

∣∣∣2] = O(2−b+ε), (13)
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and for every integer m,√
E
[∣∣∣ÎQMC

2m − ∇̂ϕJπ(ϕ)
∣∣∣2] = O(2−m+ε). (14)

2. GMC(b) is an unbiased estimator of ÎMC
2M with respect to ξ, and thus it is an unbiased

estimator of ∇̂ϕJπ(ϕ). Moreover,√
E
[∣∣∣GMC(b)− ∇̂ϕJπ(ϕ)

∣∣∣2] = O(2−b/2), (15)

and for every integer m,√
E
[∣∣∣ÎMC

2m − ∇̂ϕJπ(ϕ)
∣∣∣2] = O(2−m/2). (16)

Proof. The proof of this theorem is presented in Appendix B.

As shown in (9), the ATQ method has the base level and the stochastic level with the purpose of
exploitation and exploration, respectively. Theorem 1 indicates the efficiency of exploitation of
GQMC(b), thanks to QMC, which has the convergence rate O(2−b+ε) in the sense of root mean
squared error (RMSE). In contrast, the RMSE of MC method GMC(b) is only O(2−b/2). Therefore,
we choose QMC method in our ATQ in order to obtain a more efficient exploitation (a better
convergence rate).

Note that by setting m = M in (14), ÎQMC
2M

is the most accurate estimation of the policy gradient
∇̂ϕJπ(ϕ). However, this optimal estimator is costly. Luckily, due to the effect of the stochastic level,
GQMC is an unbiased estimator of ÎQMC

2M
. Therefore, our ATQ method explores the efficiency of

ÎQMC
2M

and will have better results in the average sense.

Moreover, in the mean sense, the sample size n for ATQ is

n =

M−b−1∑
i=1

2b+i · 2−i + 2b+M−b · 2−M+b+1 = (M − b− 1)2b + 2b+1 = (M − b+ 1)2b.

From this perspective, our ATQ method is efficient, given that for fixed M > 0, it only uses O(2b)
samples, to achieve the RMSE rate O(2−b+ε), which is better than MC methods. If we dynamically
select b by (11) during the learning process, then the ATQ method uses significantly fewer samples in
aggregate. This observation is validated by our experimental results in Section 5 (see Figure 4).

5 Experiments

We start with a toy experiment to show how ATQ aids convergence. And then, we consider online
Mujoco environments and offline D4RL datasets to compare the performance of ATQ-based SAC
with state-of-the-art algorithms. Moreover, a detailed ablation study about ATQ and adaptive two-
level MC, plain QMC [2], one stochastic level QMC is presented in the subsection 5.3. In the last
subsection, we study the performance of ATQ-based SAC under insufficient data. The implementation
details of the proposed ATQ method are discussed in Appendix C.2. The source code will be made
public upon acceptance.

5.1 Toy Experiment

We introduce a toy RL problem to demonstrate how ATQ accelerates convergence. In this simplified
setting, we assume that Q̃(s, a) = Q(s, a) − α logπ(a|s) is a known function, s is fixed, and
at = ϕ + σX where X ∼ N (0, I2). It can be viewed as setting µϕ(st) = ϕ and σϕ(st) = σ in
Equation (4). In this specific case, we set Q̃(s,a) = −∥a− 1∥2 + 50, σ = 5. Then we have
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∇ϕJπ(ϕ) = EX

[
∇ϕQ̃(s, ϕ+ σX)

]
. Reinforcement learning can then be simplified to perform

gradient ascend over Jπ(ϕ). From this setting, we can derive that the optimal policy parameter is
ϕ = (1, 1). Thus the convergence of RL is then simplified to the convergence of ϕ to the static point
(1, 1) in the policy parameter space.

In our toy experiment, we compare the performance of SAC, MC-based SAC, and our proposed
ATQ-based SAC, which use ÎMC

1 , ÎMC
50 and GQMC(4) to estimate the policy gradient ∇ϕJπ(ϕ),

respectively. Figure 1a visualizes the gradient ascend steps. The contour map illustrates the value
of Q̃(s, a) across the action space. Additionally, since at = ϕ + σX , we depict the update of ϕ
on the same map. From the result in Figure 1a, it is clear that ATQ-based SAC achieves the most
stable convergence. Figure 1b demonstrates the RMSEs curve of ÎMC

1 , ÎMC
50 and GQMC(4) in the

learning period. Our ATQ-based SAC uses fewer samples (average 48.21) and achieves significantly
better convergence results in the sense of RMSE. This experiment validates the theoretical result in
Theorem 1.

(a) Gradient ascend path comparison (b) RMSEs comparison for gradient estimations
Figure 1: Comparison of gradient ascend path and RMSEs

5.2 Experiment result for Online and Offline RL

In this subsection, we elaborate on our experiment settings and results for online RL environments
and offline RL datasets. The implementation of our proposed ATQ method remains the same for
online and offline RL, while the backbone SAC network slightly differs in the two settings. For
the online setting, the backbone SAC is a standard SAC with two critic networks [14]. For the
offline setting, the backbone SAC is SAC-N which increases the number of critic networks to N [1].
Detailed implementation of ATQ-based SAC is in Appendix C.2.

(a) env: ant (b) env: halfcheetah (c) env: hopper

(d) env: humanoid (e) env: humanoidstandup (f) env: walker2d

Figure 2: Training return curve for online algorithms.
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Environment and datasets. In this section, the performance of the proposed ATQ-based SAC is
evaluated on the suite of the classic Mujoco [46] environment and D4RL Mujoco datasets[8]. For
the offline experiment, to better demonstrate the behavior of ATQ method, we focus on suboptimal
datasets such as medium-replay and medium. This is because a relatively smaller number of critics
networks is required for the backbone SAC-N network [1].

Online RL Baselines. In the online setting, we compare the performance of our proposed algorithm
with Proximal Policy Gradient (PPO) [41], Deep Deterministic Policy Gradient (DDPG) [28], Robust
Policy Optimization (RPO) [38], TD3 [10], and Soft Actor-Critic (SAC) [14]. Appendix C.1 provides
a more detailed introduction about the baselines. A more detailed comparison using QMC samples
with fixed sample numbers in gradient estimation [2] will be presented in the ablation study section.

Offline RL Baselines. In the offline setting, we consider offline algorithms including Behavior
Cloning (BC), Decision Transformer (DT) [4], SAC-N [1], EDAC, TD3+BC [9], Implicit Q Learning
(IQL) [23], Conservative Q Learning (CQL) [24], and AWAC [30]. A detailed discussion of the
offline baseline can be found in Appendix C.1.

Hardwares. All the experiments are run on regular computer resources such as NVIDIA RTX 3090
GPUs. The regular training run time for our proposed method is around 5 hours. More detailed
information can be found in the Appendix C.1.

Online RL Results. Initially, we present the training curves from our online experiments. The
algorithms were trained using three different random seeds. The solid line in the figures represents
the average episodic return across these seeds during training, while the shaded region indicates the
range between the minimum and maximum returns. As illustrated in Figure 2, ATQ-based SAC
outperforms other baseline algorithms across all six environments. Specifically, ATQ-based SAC
demonstrates greater stability in the training process, as evidenced by lower variance in environments
such as Halfcheetah and Humanoidstandup.

(a) halfcheetah medium v2 (b) halfcheetah medium replay v2

(c) walker medium replay v2 (d) hopper medium replay v2

Figure 3: Evaluation normalized d4rl score curve for selected offline algorithms.

Offline RL Results. Additionally, we report the evaluation score curve for the offline dataset recorded
during training. The evaluation score, represented as the D4RL normalized score [8], is measured
during evaluation rollouts at specified intervals throughout the training process. Each algorithm is
run with 4 different random seeds. As depicted in Figure 3, ATQ demonstrates consistency with the
findings from the prior online experiments, showing that it provides faster convergence.

5.3 Ablation Study

In this subsection, we set the maximum sample size to be 210, i.e., M = 10 in (9), (10) and (11).

8



(a) ATQ vs. adaptive two-level MC (b) ATQ vs. stochastic level QMC

(c) ATQ vs. plain QMC: return (d) ATQ vs. plain QMC: sample sizes

Figure 4: Ablation Study Figures.

ATQ vs. adaptive two-level MC. We discuss the role of the QMC method within ATQ. For this
purpose, we substitute QMC points with MC points to obtain the adaptive two-level MC method. In
other words, we are comparing two estimators, GQMC(b) and GMC(b) (see definition (12)) with b
satisfying (11). In Theorem 1, we prove that GQMC(b) has faster convergence rates than GMC(b).
We validate the theoretical advantages of ATQ through experimental verification in the HalfCheetah
environment. From Figure 4a we can see that ATQ outperforms the adaptive two-level MC method.

ATQ vs. plain QMC. We delve into the role of the two-level structure within ATQ. We compare
the training curve of ATQ-based SAC to QMC-based SAC [2] in the HalfCheetah environment. In
our experiment setting, the base level parameter b follows (11) for ATQ method GQMC(b), and the
QMC-based SAC uses the plain QMC estimator ÎQMC

28 with the sample size 256. The dynamic
sample sizes curve is displayed in Figure 4d. The curve shows that ATQ utilizes more samples in
the early stages of training and gradually reduces the number of samples thereafter, thus achieving a
reduction in computational costs. The average sample size of ATQ-based SAC is 65.68, which is
sufficiently lower than QMC-based SAC [2] (which is 256). Figure 4c shows that ATQ-based SAC
achieves better performance than QMC-based SAC [2], while uses less samples in aggregate.

ATQ vs. stochastic level QMC. We now study the effect of the base level in ATQ. We compare the
performance differences between ATQ and stochastic level QMC (lack of the base level). The role
of the base level is to explore; as can be seen from Theorem 1, the base level directly impacts the
convergence rate. From the Figure 4b, it is apparent that without the base level, stochastic level QMC
performs worse than ATQ.

5.4 The performance of ATQ-based SAC under insufficient data

Insufficient data is a common challenge, particularly when interaction with the environment is slow
and expensive in an online setting, or when the dataset size is limited in an offline setting. In this
experiment, we used various percentages of D4RL halfcheetah-medium suboptimal data to train
the baseline methods and our ATQ method. We reported the average normalized score over 100
evaluation rollouts after the training was completed. According to Table 1, ATQ demonstrates robust
performance even when only 10% of the dataset is used, outperforming other baseline algorithms.

6 Conclusion and future work

In conclusion, we propose an adaptive two-level quasi-Monte Carlo method to approximate policy
gradient. The ATQ method inherits the concept of exploitation and exploration from SAC. It uses one
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Table 1: Evaluation Score under Different Levels of Data Insufficiency
Used Data Percentage 10% 30% 50%
ATQ (Ours) 58.32 ± 0.52 61.52 ± 0.31 65.20 ± 4.89
SAC-N 48.06 ± 0.13 53.78 ± 0.13 56.46 ± 0.55
IQL 46.49 ± 0.94 47.00 ± 0.70 47.13 ± 0.86
CQL 45.93 ± 0.75 46.30 ± 0.73 46.03 ± 0.76
BC 36.32 ± 9.08 40.89 ± 6.36 42.04 ± 1.34

base level to ensure the high convergence rate and one stochastic level to make ATQ an unbiased
estimator of the optimal one ÎQMC

2M
. Experimentally, the ATQ-based SAC outperforms other strong

baselines in online and offline reinforcement learning tasks. A direct line of future work is to refine
the adaptive mechanism and study the multi-level quasi-Monte Carlo method in SAC framework.
Other future directions may related to exploring quasi-Monte Carlo methods in multi-agent RL.
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A Supplementary introduction

A.1 Related work

Reinforcement learning. The Deep Deterministic Policy Gradient (DDPG) algorithm [28] based on
this architecture learns policies in high-dimensional, continuous action spaces and it is an extension
of the earlier Deterministic Policy Gradient (DPG) algorithms [42], combining ideas from DPG and
deep Q-networks. To overcome the problems of Trust Region Policy Optimization (TRPO) [40],
Schulman et al. [41] proposed Proximal Policy Optimization (PPO) method. PPO is an on-policy
algorithm that improves upon the stability and simplicity of policy gradient methods, providing an
easier-to-tune but powerful method for training deep reinforcement learning policies. Inspired by
the DDPG algorithm, Fujimoto et al. [10] proposed the Twin Delayed Deep Deterministic policy
gradient algorithm (TD3). TD3 improves upon DDPG by addressing the function approximation
errors through the use of twin Q-networks and delayed policy updates, enhancing learning stability.

Soft Actor-Critic. Regarding policy regularization, Haarnoja et al. [14] proposed an entropy regu-
larization term in their seminal work on Soft Actor–Critics (SACs) which is still a state-of-the-art
algorithm in model-free, off-policy reinforcement learning optimized for environments with con-
tinuous action spaces. Haarnoja et al. [15] introduced an extension to the original SAC algorithm
that includes an automatic mechanism to adjust the temperature parameter. This modification aims
to automate the tuning of the entropy coefficient, making SAC more adaptive and easier to deploy
across different tasks without manual tuning of hyperparameters. Zhang et al. [51] improved the
explanation of SAC at the theoretical level and this research provided deeper theoretical insights into
actor-critic methods, including SAC, focusing on issues like discounting mismatch and how it affects
the convergence and performance of these algorithms.

A.2 Quasi-Monte Carlo

Many problems in statistics, financial engineering, machine learning, and reinforcement learning
involve calculating expectations. How to numerically solve integration problems efficiently is key
to improving computational efficiency. For numerically computing the integral E [f(Z)], where
Z ∼ U [0, 1]d, a commonly used estimator is

În :=
1

n

n∑
i=1

f(yi).

The choice of different quadrature points corresponds to different methods. Monte Carlo (MC)
method use random points, i.e., {yi}ni=1 are independent and identically distributed random samples
from U [0, 1]d. In this situation, În is an unbiased estimator of E [f(Z)]. Moreover, if f(Z) has finite
variance, then MC method achieves the convergence rate O(n−1/2) due to the central limit theorem.
Unlike the MC method, the quasi-Monte Carlo (QMC) method uses low-discrepancy point sets. The
error rate of QMC is based on the following Koksma-Hlawka inequality [19]∣∣∣∣∣

∫
[0,1]d

f(y)dy − 1

n

n∑
i=1

f(yi)

∣∣∣∣∣ ≤ VHK(f)D
∗
n ({y1, . . . , yn}) , (17)

where VHK(f) is the variation of f in the sense of Hardy and Krause and D∗
n ({y1, . . . , yn}) is the

star discrepancy of the point set {y1, . . . , yn}. In order to provide a complete explanation of (17), we
need the following definitions.

Define 1 : d to be the set {1, 2, . . . , d}. For a subset u ⊆ 1 : d, let |u| denote the cardinality of u.
For a = (a1, . . . , ad) and b = (b1, . . . , bd), the vector au : b−u is then defined such that its j-th
component is aj if j ∈ u, and bj otherwise. Denote mixed derivatives as ∂u :=

∏
i∈u ∂/∂xi. We

call f a smooth function if for every u ∈ 1 : d, ∂uf is continuous.
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If f is smooth, then VHK(f) is defined by (see [32] for a general definition)

VHK(f) :=
∑

∅ ̸=u∈1:d

∫
[0,1]d

∣∣∂uf(yu : 1−u)
∣∣ dy,

where 1 := (1, . . . , 1) is the vector of d ones and y = (y1, . . . , yd).

The key to the QMC method lies in the construction of low discrepancy sequences. There are several
kinds of low discrepancy sequences, such as Faure sequence, Sobol’ sequence and Halton sequence
with their first n points achieving star discrepancy of O(n−1(log n)d) (see [12, 32, 37] for more
details). The star discrepancy measures the uniformity of sample points. In Figure 5, the left side
shows random samples, while the right side displays a Sobol’ sequence. It can be observed that the
specially constructed Sobol’ sequence is more ‘uniform’ than the random sequence.

Figure 5: MC samples and QMC samples

As a result, if VHK(f) <∞, then it follows from (17) that the QMC methods achieve a convergence
rate of O(n−1+ε) with ε being arbitrarily small, while the MC convergence rate is O(n−1/2).
Theoretical results indicate that QMC converges faster than MC.

The randomize quasi-Monte Carlo (RQMC) method is a technique that randomizes QMC point
sequences while maintaining the low discrepancy. Common RQMC methods include scrambling and
random shifts (see [32, 35, 37, 27, 25]). In this paper, we consider the nested scrambled Sobol’ point
set {y1, . . . , yn} (see [34, 36, 37]), which satisfies

1. ∀1 ≤ i ≤ n, yi ∼ U [0, 1]d;

2. there is a constant C independent of n such that

D∗
n ({y1, . . . , yn}) ≤ C

(log n)d−1

n
, a.s. (18)

Every point of RQMC point sets is uniformly distributed on [0, 1]d, but they are not independent.
They are correlated in order to keep the low discrepancy. By (18), RQMC point set is also a low
discrepancy point set, thus, RQMC methods also have the convergence rate O(n−1+ε). Moverover, if
the integrand is smooth and bounded, Owen [36] proved the nested scrambled RQMC method achieves
the convergence rate of O(n−3/2+ε). Ouyang et al. [33] proved the O(n−3/2+ε) convergence rate also
holds for smooth and unbounded integrands if applying appropriate importance sampling methods.

Additional work on QMC includes the study of lattice rule [5, 6, 7, 17, 25, 26, 27, 31, 48], investigation
of the non-asymptotic convergence rates of QMC methods [29], the study of the effects of Brownian
path generation and dimension reduction methods on QMC [18, 50], and the efficiency of QMC
methods for solving partial differential equations by deep learning [49].
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B Proof

Proof of Theorem 1. For the proof of the QMC, note that

Eξ

[
GQMC(b)

]
= Eξ

[
ÎQMC
b +

1

pξ

(
ÎQMC
2b+ξ − ÎQMC

2b+ξ−1

)]
= ÎQMC

2b
+

M−b∑
i=1

pi
1

pi

(
ÎQMC
2b+i − ÎQMC

2b+i−1

)
= ÎQMC

2M
.

Therefore, GQMC(b) is the unbiased estimator of ÎQMC
2M

. For the proof of (14), under Assumption 1,
it is easy to verify that h(x) and its derivatives are bounded by a polynomial. In fact, for u ⊂ 1 : d
(see definitions in Appendix A.2),

|∂uh(x)| ≤ 1

N

N∑
j=1

(∣∣∣∣∂u∇ϕQθ(s
(j)
t , µϕ(s

(j)
t ) + σϕ(s

(j)
t )x)

∣∣∣∣ ∣∣∣σϕ(s
(j)
t )
∣∣∣

+ α∂u∇ϕ

∣∣∣logπ (µϕ(s
(j)
t ) + σϕ(s

(j)
t )x

∣∣∣s(j)t

)∣∣∣ ).
(19)

Due to logπ(x|st) is a quadratic function with respect to x (see (3)) and the derivatives of Qθ are
bounded by a polynomial, the right hand side of (19) can be bounded by A|x|k+B for some constant
A,B > 0 and integer k ≥ 1 that independent of u. Noting that the nested scrambled Sobol’ sequence
satisfies (18), by the corollary 4.10 of Ouyang et al. [33], we prove the desired result.

Based on (14), we next prove (13). Notice that

E
[∣∣∣GQMC − ∇̂Jπ(ϕ)

∣∣∣2] = E
[
E
[∣∣ÎQMC

2b
+

1

pξ

(
ÎMC
2b+ξ − ÎQMC

2b+ξ−1

)
−∇Jπ(ϕ)

∣∣2∣∣∣∣ξ]] , (20)

and

E
[∣∣ÎQMC

2b
+

1

pξ

(
ÎQMC
2b+ξ − ÎQMC

2b+ξ−1

)
−∇Jπ(ϕ)

∣∣2∣∣∣∣ξ]
≤ 3E

[∣∣∣ÎQMC
2b

− ∇̂Jπ(ϕ)
∣∣∣2]+ 3

1

pξ

(
E
[∣∣ÎQMC

2b+ξ − ∇̂Jπ(ϕ)
∣∣2∣∣∣∣ξ]+ E

[∣∣ÎQMC
2b+ξ−1 − ∇̂Jπ(ϕ)

∣∣2∣∣∣∣ξ])
≤ C

(
2−2b +

1

pξ

(
2−2(b+ξ) + 2−2(b+ξ−1)

))
,

where C is a constant. It follows from (20) that

E
[∣∣∣GMC − ∇̂Jπ(ϕ)

∣∣∣2] ≤ C2−2b

(
1 +

5

4

m∑
k=1

(
2−k

))
= O(2−2b). (21)

For the QMC part, we can apply the same method as in the proof of (15). Noting that h(X) has finite
variance, the proof of (15) and (16) is straightforward.

C Experiment Details

C.1 Experiment Setups

Online Experiments Setup. For the online experiments, we utilized the default Mujoco implemen-
tation provided by the Gymnasium project [47]. Although all environments were tested, our work
reports results from only six environments. This selection was made because the difficulty level of
the other environments was too low, resulting in uniformly high performance across all algorithms,
making it difficult to distinguish the performance of individual algorithms.

Offline Experiment Setup. For the offline experiments, we take the D4RL benchmark[8]. In our
work, we focus on suboptimal offline datasets. The selection of datasets is because the backbone
network we used in offline experiments requires a large number (up to 500) of critic networks[1] for
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other datasets. Due to computation resource limit, we focus our work on suboptimal offline datasets
where relatively less critic networks are needed.

Baselines. For the online RL baselines, a collection of high-performing algorithms in continuous
action space is selected. The implementation of online baselines is based on an open-sourced baseline
project [20]. For the offline RL baselines, The implementation of offline baselines is based on the
open-source baseline library[45].

To ensure fairness among all compared online baselines, we have the following constraints. Firstly,
the batch size for off-policy algorithms such as ATQ-based SAC, SAC, TD3, and DDPG is set to
256. Secondly, the policy learning rate is set to 0.0003 for all the online algorithms. Thirdly, all the
algorithms use the same Adam optimizer [21].

Similarly, to ensure a fair comparison across offline baselines, we established the following constraints.
Firstly, the batch size was set to 256 for all algorithms except for Decision Transformer. Secondly,
the learning rate was set to 0.0003 for BC, IQL, ATQ, AWAC, EDAC, TD3, and SAC-N . The
Decision Transformer [4] was excluded from these constraints due to its fundamentally different
model architecture.

C.2 Implementation Details for ATQ

Source code. The source code will be made public upon acceptance. In the ATQ-based SAC method,
we modified the policy gradient computation in the SAC as described in Algorithm 1. The backbone
structure of SAC remains untouched in ATQ implementation. The update of critic networks follows
the standard SAC procedure. It is worth noticing that we use different SAC backbones for online and
offline RL. Standard SAC [14] backbone is used for online environments and SAC-N [1] backbone
is used for offline datasets.

For the implementation of the ATQ method, the generation of QMC samples is by the Sobol sequence
engine. After the generation of QMC samples, the process of approximating the policy gradient (8) is
computed parallelly for all QMC samples.

Hyperparameters. The tables below shows the hyperparameters used in our experiments. The M
indicates the logarithm of the maximum sample number for hardware limitations and cost tolerance.
Table 2 shows the choices of hyperparameter β in Equation 11 for online environments. Table 3
shows the choices of hyperparameter β in Equation 11 for offline environments.

Table 2: Task-Specific Hyperparameters for Online Environments
Task Name β M
Hopper 0.0003333 10
HalfCheetah 0.00015 10
Ant 0.0002 10
Walker2d 0.0003 10
HumanoidStandup 0.00001 10
Humanoid 0.001 10

Table 3: Task-Specific Hyperparameters for Offline Environments
Task Name β M
HalfCheetah-Medium 0.0000667 8
HalfCheetah-Medium-Replay 0.0000667 8
Hopper-Medium-Replay 0.0003 8
Walker-Medium-Replay 0.0003 8

C.3 Additional experiment results

We report some additional results to help illustrate the behavior of the ATQ-based SAC method.
Figure 6 shows the sample sizes used in each iteration during training for online experiments. This
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(a) env: Ant (b) env: Halfcheetah (c) env: Hopper

(d) env: Humanoid (e) env: Humanoidstandup (f) env: Walker

Figure 6: Sample sizes used per iteration for online different environments.

figure is directly related to Figure 2. From this figure, we can see the dynamic adjustment of sample
sizes of the ATQ method.

D Limitations and future work

The limits of the current work can be summarized as follows. Firstly, additional experiments
on a broader set of environments are encouraged to validate the generalizability of the proposed
method. Secondly, the adaptive function used in our approach could be further refined to enhance its
performance and applicability across different scenarios.
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