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Abstract

Large-scale language model pretraining is a001
very successful form of self-supervised learn-002
ing in natural language processing, but it is003
increasingly expensive to perform as the mod-004
els and pretraining corpora have become larger005
over time. We propose NarrowBERT, a mod-006
ified transformer encoder that increases the007
throughput for masked language model pre-008
training by more than 2×. NarrowBERT spar-009
sifies the transformer model such that the self-010
attention queries and feedforward layers only011
operate on the masked tokens of each sentence012
during pretraining, rather than all of the tokens013
as with the usual transformer encoder. We also014
show that NarrowBERT increases the through-015
put at inference time by as much as 3.5× with016
minimal (or no) performance degradation on017
sentence encoding tasks like MNLI. Finally, we018
examine the performance of NarrowBERT on019
the IMDB and Amazon reviews classification020
and CoNLL NER tasks and show that it is also021
comparable to standard BERT performance.022

1 Introduction023

Pretrained masked language models, such as BERT024

(Devlin et al., 2019), RoBERTa (Liu et al., 2019),025

and DeBERTa (He et al., 2021), have pushed the026

state-of-the-art in a wide range of downstream tasks027

in natural language processing. At their core is the028

transformer architecture (Vaswani et al., 2017) that029

consists of interleaved self-attention and feedfor-030

ward sublayers. Since the former sublayer implies031

quadratic time complexity in the input sequence032

length (Vaswani et al., 2017), many have proposed033

methods to make the self-attention computation034

more efficient (Katharopoulos et al., 2020; Choro-035

manski et al., 2021; Wang et al., 2020; Peng et al.,036

2021, 2022, inter alia).037

In this work, we explore an orthogonal approach038

to efficiency: can we make masked language mod-039

els efficient by reducing the length of the input se-040

quence that each layer needs to process? In particu-041

lar, pretraining by masked language modeling only 042

involves prediction of masked tokens (typically, 043

only 15% of the input tokens; Devlin et al., 2019; 044

Liu et al., 2019). Despite this sparse pretraining 045

objective, each transformer layer computes a repre- 046

sentation for every token. In addition to pretraining, 047

many downstream applications only use a single 048

vector representation (i.e., only the [CLS] token) 049

for prediction purposes, which is much smaller than 050

the number of input tokens (e.g., sequence classifi- 051

cation tasks as in GLUE/SuperGLUE; Wang et al., 052

2018, 2019). By narrowing the input sequence for 053

transformer layers, we can accelerate both pretrain- 054

ing and inference. 055

We present NarrowBERT, a new architecture 056

that takes advantage of the sparsity in the training 057

objective. We present two NarrowBERT meth- 058

ods in the sections that follow (Figure 1). We 059

provide the code to reproduce our experiments at 060

redacted-during-review. The first method re- 061

duces the input sequence for the feedforward sub- 062

layers by reordering the interleaved self-attention 063

and feedforward sublayers in the standard trans- 064

former architecture (Press et al., 2020): after 065

two standard, interleaved transformer layers, self- 066

attention sublayers are first applied, followed only 067

by feedforward sublayers. This way, the feedfor- 068

ward sublayer computations are only performed 069

for masked tokens, resulting in a 1.3× speedup in 070

pretraining (§3). The second approach reduces the 071

input length to the attention sublayers: queries are 072

only computed for masked tokens in the attention 073

mechanism (Bahdanau et al., 2015), while the keys 074

and values are not re-computed for non-masked 075

tokens, which leads to a greater than 2× speedup 076

in pretraining. 077

We extensively evaluate our efficient pretrained 078

models on well-established downstream tasks (e.g., 079

Wang et al., 2018; Tjong Kim Sang and De Meul- 080

der, 2003.) We find that our modifications result 081

in almost no drop in downstream performance, 082
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(a) {6,sf} model: standard BERT with the transformer encoder, trained on MLM loss.

(b) sf{5,s}:{5,f} ContextFirst model: Transformer encoder with re-ordered layers. Attentional contextualization is performed
all-at-once near the beginning of the model.

(c) sf:{5,sf} SparseQueries model: Transformer encoder with sparsified queries. Contextualization is focused on [MASK]
tokens only. (See Fig. 2.)

Figure 1: Examples of standard BERT and NarrowBERT variations. NarrowBERT takes advantage of the sparsity in
the masking (i.e., only 15% of tokens need to be predicted) to reduce the amount of computation in the transformer
encoder.

while providing substantial pretraining and infer-083

ence speedups (§3). While efficient attention vari-084

ants are promising research directions, this work085

presents a different and simple approach to mak-086

ing transformers efficient, with minimal changes in087

architecture.088

2 NarrowBERT089

In Figures 1b and 1c, we illustrate two variations090

of NarrowBERT. We define some notation to de-091

scribe the configuration of our models. s refers to092

a single self-attention layer and f refers to a sin-093

gle feedforward layer. The colon : refers to the094

‘narrowing’ operation, which gathers the masked095

positions from the output of the previous layer.096

The first variation (‘ContextFirst’ in Fig. 1b)097

uses attention to contextualize all-at-once at the098

beginning of the model. In short, the transformer099

layers have been rearranged to frontload the atten-100

tion components. The example given in the fig-101

ure specifies the model as sf{5,s}:{5,f}, which102

means that the input sentence is encoded by a self-103

attention layer, a feedforward layer, and 5 consecu-104

tive self-attention layers. At that point, the masked105

positions from the encoded sentence are gathered106

into a tensor and passed through 5 feedforward lay-107

ers, thereby avoiding further computations for 108

all non-masked tokens. Finally, the masked posi- 109

tions are unmasked and the MLM loss is computed. 110

The second variation (‘SparseQueries’ in Fig. 1c) 111

does not reorder the layers at all. Instead, the 112

sf:{5,sf} model contextualizes the input sen- 113

tence in a more limited way. As shown in Figure 114

2, the input sentence is first contextualized by a s 115

and a f layer, but the non-masked tokens are never 116

contextualized again afterwards. Only the masked 117

tokens are contextualized by the remaining {5,sf} 118

layers. 119

Since the masked tokens are only about 15% 120

of the total sentence length, the potential speedup 121

is ~6.6× for every feedforward or attention layer 122

downstream of a narrowing : operation. The mem- 123

ory usage can also decrease by ~6.6× for those lay- 124

ers since the sequence length has decreased, which 125

allows us to use larger batch sizes during training. 126

For GLUE, Amazon, and IMDB text classifica- 127

tion tasks, only the [CLS] token is used for predic- 128

tion. When we finetune or predict with ContextFirst 129

on a GLUE/Amazon/IMDB task, the feedforward 130

layers only need to operate on the [CLS] token. 131

When we finetune or predict with SparseQueries, 132

only the [CLS] token is used in the queries of the 133
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Figure 2: Sparse queries in the attention layers. Only the masked positions are contextualized as query vectors in
subsequent s layers. The inputs are contextualized once by the first s layer and f layer, and reused as the keys and
values in all subsequent attention layers.

Pretrain Finetune Inference GLUE
Speedup Speedup Speedup MNLI QNLI SST2 STS-B QQP WNLI

Baseline BERT ({12,sf}) 1× 1× 1× 0.83 0.91 0.93 0.89 0.87 0.56
Funnel Transformer (B4-4-4) 0.88× 0.86× 0.78× 0.78 0.87 0.88 0.86 0.86 0.56
ContextFirst (sfsf{10,s}:{10,f}) 1.33× 1.24× 1.64× 0.82 0.90 0.91 0.89 0.87 0.56
SparseQueries:

{1,sf}:{11,sf} 2.47× 4.73× 4.64× 0.77 0.87 0.89 0.84 0.80 0.56
{2,sf}:{10,sf} 2.34× 2.82× 3.49× 0.81 0.88 0.91 0.88 0.87 0.59
{3,sf}:{9,sf} 2.15× 2.43× 2.79× 0.81 0.89 0.91 0.86 0.87 0.56
{4,sf}:{8,sf} 1.63× 2.13× 2.33× 0.82 0.88 0.91 0.89 0.87 0.57

Table 1: Test scores on various GLUE tasks. (‘MNLI’ scores refer to the MNLI matched dev set.) Finetuning and
inference speedups refer to speeds on the MNLI task.

attention layers. Everything after the narrowing :134

operation only operates on the [CLS] token, which135

dramatically speeds up the NarrowBERT variants.136

3 Experiments137

We focus on 2 models in our experiments:138

ContextFirst (sfsf{10,s}:{10,f}) and Sparse-139

Queries ({1,sf}:{11,sf}, · · · , {4,sf}:{8,sf}).140

Our NarrowBERT models all contain 12 self-141

attention and 12 feedforward layers in total, with142

the narrowing operation used at different points143

in the model. We compare NarrowBERT with144

the baseline BERT model and the Funnel Trans-145

former model (Dai et al., 2020), which is a pre-146

trained encoder-decoder transformer model where147

the encoder goes through a sequence of length bot-148

tlenecks.149

In our experiments, we use 15% masking in150

masked language model (MLM) training. Fol-151

lowing Liu et al. (2019), we do not use next sen-152

tence prediction as a pretraining task. We use large153

batch sizes and high learning rates to fully utilize154

GPU memory, as suggested in Izsak et al. (2021).155

Batches are sized to be the largest that fit in GPU156

memory. We use a learning rate of 0.0005. Models157

are trained for 70k steps, where each step contains 158

1728 sequences of 512 tokens, and gradient accu- 159

mulation is used to accumulate the minibatches 160

needed per step. Models were trained on hosts 161

with 8 Nvidia A100 GPUs. We used the Hugging 162

Face implementations of the baseline BERT and 163

Funnel Transformer models. We pretrained the 164

baseline BERT, Funnel Transformer, and Narrow- 165

BERT models using the same Wikipedia and Books 166

corpora and total number of steps. 167

In Figure 3, we see the evolution of the develop- 168

ment MLM loss over the course of model training. 169

The BERT and NarrowBERT models all converge 170

to similar values, with the NarrowBERT models 171

reaching a slightly higher MLM loss near the end 172

of training. 173

We report the accuracy for MNLI (Williams 174

et al., 2018), QNLI (Rajpurkar et al., 2016), SST2 175

(Socher et al., 2013), WNLI (Levesque et al., 176

2012), IMDB (Maas et al., 2011), and English 177

Amazon reviews (Keung et al., 2020), F1 for 178

QQP (Sharma et al., 2019) and CoNLL-2003 NER 179

(Tjong Kim Sang and De Meulder, 2003), and 180

Spearman correlation for STS-B (Cer et al., 2017). 181

For the Amazon reviews corpus, we consider both 182
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(a) All training steps. (b) Near the end of training.

Figure 3: Development MLM loss over the course of pretraining. At the end of training, the BERT, ContextFirst,
and SparseQueries ({2,sf}:{10,sf}) dev MLM losses are 1.41, 1.43, and 1.47 respectively.

CoNLL NER IMDB Amazon2 Amazon5

Baseline BERT ({12,sf}) 0.90 0.93 0.96 0.66
Funnel Transformer 0.87 0.92 0.95 0.65
ContextFirst (sfsf{10,s}:{10,f}) 0.89 0.93 0.95 0.65
SparseQueries:

{1,sf}:{11,sf} 0.87 0.91 0.94 0.65
{2,sf}:{10,sf} 0.89 0.91 0.95 0.65
{3,sf}:{9,sf} 0.89 0.92 0.95 0.65
{4,sf}:{8,sf} 0.89 0.93 0.95 0.65

Table 2: Test scores on CoNLL NER, IMDB, binarized Amazon reviews, and 5-star Amazon reviews tasks.

the usual 5-star prediction task and the binarized183

(i.e., 1-2 stars versus 4-5 stars) task.184

In Table 1, we present the results for our extrinsic185

evaluation on various GLUE tasks. The reduction186

in performance is small or non-existent, and on187

WNLI, the NarrowBERT variations perform better188

than the baseline. For SparseQueries, it is clear that189

using more layers prior to the narrowing operation190

improves performance, though the training and in-191

ference speedups become smaller. We note that the192

Funnel Transformer implementation in Pytorch is193

slower than the baseline BERT model; this may be194

due to the fact that the original implementation was195

written in Tensorflow and optimized for Google196

TPUs.1197

In Table 2, we provide results on the IMDB198

and Amazon reviews classification tasks and the199

CoNLL NER task. Generally, NarrowBERT is200

close to the baseline in performance, and the201

SparseQueries performance improves as more lay-202

ers are used before the narrowing operation.203

It is well known that the variability in the per-204

formance of BERT on certain GLUE tasks is ex-205

treme (Mosbach et al., 2020; Dodge et al., 2020;206

Lee et al., 2019), where the differences in perfor-207

mance between finetuning runs can exceed 20%208

1See https://github.com/laiguokun/Funnel-Transformer. In
their paper, the Funnel Transformer authors claim to have a
finetuning FLOPs that is 0.58× of the BERT baseline’s.

(absolute). We have also observed this extreme 209

variability in the course of our own GLUE fine- 210

tuning experiments. While many techniques have 211

been proposed to address this issue, it is not the 212

goal of this work to apply finetuning stabilization 213

methods to maximize BERT’s performance. For 214

this reason, we have excluded the RTE, MRPC, and 215

COLA tasks (which are high-variance tasks studied 216

in the aforementioned papers) from our evaluation. 217

4 Discussion and Conclusion 218

We have explored two straightforward ways of ex- 219

ploiting the sparsity in the masked language model 220

loss: rearranging the layers of the transformer 221

encoder to allow the feedforward components to 222

avoid computations on the non-masked positions, 223

and sparsifying the queries in the attention mech- 224

anism to only contextualize the masked positions. 225

The NarrowBERT variants can speed up training 226

by a factor of ~2× and inference by a factor of 227

~3×, while maintaining very similar performance 228

on GLUE, IMDB, Amazon, and CoNLL NER tasks. 229

Based on the favorable trade-off between speed 230

and performance seen in Section 3, we recommend 231

that practitioners consider using the SparseQueries 232

NarrowBERT model with 2 or 3 layers before nar- 233

rowing. 234
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Limitations235

Due to our budget constraint, we only performed236

pretraining and downstream experiments with base-237

sized transformer models. We also only applied the238

masked language modeling objective, but there are239

other effective pretraining objectives (e.g., Clark240

et al., 2020). Nonetheless, since we introduced241

minimal changes in architecture, we hope that sub-242

sequent work will benefit from our narrowing oper-243

ations and conduct a wider range of pretraining and244

downstream experiments. While pretrained models245

can be applied to even more downstream tasks, we246

designed a reasonable task suite in this work, con-247

sisting of both GLUE sentence classification and248

the CoNLL NER sequential classification tasks.249
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