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Abstract

Studying data memorization in neural lan-001
guage models helps us understand the risks002
(e.g., to privacy or copyright) associated with003
models regurgitating training data and aids in004
the development of countermeasures. Many005
prior works—and some recently deployed006
defenses—focus on “verbatim memorization”,007
defined as a model generation that exactly008
matches a substring from the training set. We009
argue that verbatim memorization definitions010
are too restrictive and fail to capture more sub-011
tle forms of memorization. Specifically, we de-012
sign and implement an efficient defense that013
perfectly prevents all verbatim memorization.014
And yet, we demonstrate that this “perfect” fil-015
ter does not prevent the leakage of training016
data. Indeed, it is easily circumvented by plau-017
sible and minimally modified “style-transfer”018
prompts—and in some cases even the non-019
modified original prompts—to extract memo-020
rized information. We conclude by discussing021
potential alternative definitions and why defin-022
ing memorization is a difficult yet crucial open023
question for neural language models.024

1 Introduction025

The ability of neural language models to memo-026

rize their training data has been studied extensively027

(Kandpal et al., 2022; Lee et al., 2021; Carlini et al.,028

2022; Zhang et al., 2021; Thakkar et al., 2021;029

Ramaswamy et al., 2020). When language mod-030

els, especially ones used in production systems,031

are susceptible to data extraction attacks, it can032

lead to practical problems ranging from privacy033

risks to copyright concerns. For example, Carlini034

et al. (2021) showed that the GPT-2 language model035

could output personally identifying information of036

individuals contained in the training dataset.037

One natural way to avoid this risk is to filter out038

any generations which copy long strings verbatim039

from the training set. GitHub’s Copilot, a language-040

model-based code assistant, deploys this defense041

partnering
going… get arm-loads 

of free stuff. So

The Prompt

I’m
I’d

We’re

…

doing

…

giving

with

…

Figure 1: Illustration of Memorization-free Decoding,
a defense which can eliminate verbatim memorization
in the generations from a large neural language model,
but does not prevent approximate memorization.

by giving users the option to “block suggestions 042

matching public code” (GitHub, 2022). 043

In this work, we ask the question: “Do lan- 044

guage models emit paraphrased memorized con- 045

tent?” This scenario can happen maliciously (e.g., 046

adversaries trying to extract private user data) or 047

through honest interactions (e.g., users prompting 048

in real-world scenarios). Indeed, we find that Copi- 049

lot’s filtering system is easy to circumvent by ap- 050

plying plausible “style transfers” to the prompt. 051

For example, by translating variable names from 052

English to French the model outputs completely 053

memorized examples, but post-processed with the 054

en-fr style transfer. We further show that GPT- 055

3 (Brown et al., 2020), a model trained on natural 056

language, is also vulnerable to extraction attacks. 057

Unfortunately, Copilot’s training set and precise 058

algorithm for their defense are non-public. There- 059

fore, to investigate this phenomenon systematically, 060

we develop MEMFREE decoding (Figure 1), an ef- 061

ficient defense that is guaranteed to prevent all ver- 062

batim memorization, and which scales to training 063

sets consisting of hundreds of gigabytes of text. In 064

MEMFREE decoding, at each step of generation 065

we check whether the model’s chosen next token 066

would create an n-gram found in the training set. If 067

it does, an alternative next token is selected (with- 068

out a computationally expensive regeneration) by 069
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sampling from the model’s token posterior. The070

check for membership in the training set is per-071

formed efficiently using a Bloom filter containing072

all common n-grams from the training set.073

We use MEMFREE to study Copilot’s verbatim-074

filtering defense on other state-of-the-art large075

language models such as GPT-Neo (Gao et al.,076

2020). We first confirm that even honestly de-077

signed prompts often bypass verbatim memoriza-078

tion checks. Then, we observe another interesting079

phenomenon: language models succeed at emit-080

ting approximate memorization that bypass our081

filter all by themselves. Indeed, when prevented082

from generating exact n-grams from the training083

set, models are capable of “cheating” the filter by084

producing close paraphrases–for example, insert-085

ing spelling errors, adjusting punctuation or whites-086

pace, or using synonyms (e.g., swapping ‘and’ with087

‘&’). These changes lead to generated text a human088

would perceive as nearly identical, even if it is not089

verbatim memorization.090

Clearly, defenses which prevent verbatim copy-091

ing are necessary but not sufficient to protect092

against training data leakage. As a result of these093

failure modes, we argue that a broader defini-094

tion of memorization is necessary when reason-095

ing about training set memorization in language096

models. Such a definition should not only capture097

verbatim notions of memorization, but also notions098

based on high “semantic similarity” between model099

outputs and training data. We conclude our work by100

comparing approximate and verbatim memoriza-101

tion, discussing their relation to other domains of102

literature, and the challenges surrounding the ambi-103

guity of approximate memorizations. Future work104

that aims to faithfully measure or prevent memo-105

rization in language models will need to take this106

ambiguity into account—for example, our analysis107

suggests that the fraction of datasets that large lan-108

guage models is likely far larger than the fraction109

as reported in prior work (Carlini et al., 2022).110

2 Background111

Language Models. We consider auto-regressive112

language models that operate over sequences of113

text and, given a prefix p, output a probability dis-114

tribution for the next token in the sequence. To115

generate text for a prompt p, the language model116

starts with an empty suffix s, and repeatedly sam-117

ples the next token from its prediction on p ` s,118

and then appends this token to s. The success of119

neural language models has, in large part, been 120

driven by the transformer architecture introduced 121

of Vaswani et al. (2017), which allowed models to 122

scale from millions to hundred of billions of pa- 123

rameters over the past half-decade (Brown et al., 124

2020; Chowdhery et al., 2022; Zhang et al., 2022). 125

This increase in model sizes has likewise driven 126

increases in dataset sizes, with most of this data 127

coming from internet crawls (Lee et al., 2021; Raf- 128

fel et al., 2020; Gao et al., 2020).1 129

Prior work has shown that large language models 130

can memorize and regurgitate potentially private 131

information, like phone numbers and addresses, as 132

well as memorize long sequences from their train- 133

ing sets (Carlini et al., 2019, 2021; Lee et al., 2021; 134

Carlini et al., 2022; Zhang et al., 2021; Thakkar 135

et al., 2021; Ramaswamy et al., 2020; Kandpal 136

et al., 2022). Our work focuses on large language 137

models trained to generate English text or code. 138

Measuring Memorization. Many studies of 139

memorization stem from a concern of privacy leak- 140

age: if a model memorizes sensitive training data 141

and can generate it, then interactions with a model 142

can lead to the leakage of that sensitive data. Nearly 143

all of this literature is focused on measuring verba- 144

tim cases of memorization. 145

Eidetic memorization (Carlini et al., 2021) de- 146

fines a string s as memorized if there exists a 147

prompt p so that fppq “ s and s is contained in the 148

training dataset. This definition and variations of 149

it have been used widely in the literature (Kandpal 150

et al., 2022; Lee et al., 2021; Carlini et al., 2022). 151

For example, Tirumala et al. (2022) study a simi- 152

lar per-token definition called exact memorization 153

and Kandpal et al. (2022) a document-level defini- 154

tion called perfect memorization. 155

There is also a newly emerging line of works 156

exploring differential-privacy (DP)-based defini- 157

tions (Zhao et al., 2022; Stock et al., 2022), which 158

relate to document-level DP guarantees in language 159

modelling (Yu et al., 2021). These works differ 160

from the above in that they define a probabilis- 161

tic leakage measure. However, this is based on the 162

probability of generating—verbatim—a canary sen- 163

tence s, depending on whether s was contained in 164

the training set or not. There are different prob- 165

abilistic definitions, also based on verbatim se- 166

quences, such as the counterfactual memorization 167

proposed by Zhang et al. (2021). 168

1A common source for datasets is the Common Crawl
dataset found at: https://commoncrawl.org/
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In the domain of language model memorization,169

the most similar work to ours is Lee et al. (2021)170

who also argue for a more relaxed definition of171

memorization. Lee et al. say any model output172

for a prompt p is memorized if it is within some173

chosen edit distance of the prompt’s true continua-174

tion in the training set. As we will discuss, a small175

edit distance may not capture all forms of approxi-176

mate memorization either—such as our examples177

of “style-transfer” applied to memorized content.178

Preventing Memorization. Differentially pri-179

vate training, e.g., using DP stochastic gradient180

descent (Abadi et al., 2016), is the gold standard for181

training models which provably do not memorize182

individual training examples. However, in practice,183

these techniques result in worse generative mod-184

els (Anil et al., 2021)—thus, no state-of-the-art,185

large, language models are trained with DP. In-186

stead, data deduplication has arisen as a pragmatic187

countermeasure against data memorization (Lee188

et al., 2021; Kandpal et al., 2022; Carlini et al.,189

2022). The core idea is to remove any duplicated190

content—e.g., repeated documents—because dupli-191

cated content is much more likely to be memorized.192

However, deduplication does not guarantee that a193

model will not still memorize individual (dedupli-194

cated) examples, necessitating defenses that oper-195

ate at inference-time.196

3 Preventing Models from Emitting197

Verbatim Training Data198

In this paper, we consider inference-time defenses199

that eliminate the generation of memorized con-200

tent from the training set. The most immediate201

way to do this is simply to filter all model outputs202

using some fixed definition of memorization. For203

example, in Carlini et al. (2022), a continuation204

s “ fppq of a k-length prompt p is said to be205

memorized if the string s exists verbatim in the206

training dataset. A straightforward implementation207

checks each generation s against the training set208

and rejects any matches. We call the approach of209

re-running a language model, possibly many times210

with different seeds, until a qualifying generation211

is produced, retroactive censoring.212

The problem with retroactive censoring is that it213

effectively prevents the model from emitting any214

output when the model’s confidence in a memo-215

rized string is too high. To encourage a model to216

generate novel outputs, we could also adopt a more217

granular filtering approach: rather than censoring218

memorized content solely at the level of an en- 219

tire sequence s, we could instead check and mark 220

each n-gram within s individually. Filtering for 221

memorization at the n-gram-level rather than at the 222

sequence level allows substrings of a generation 223

which may be novel to be kept, and only the pieces 224

that are verbatim memorized to be modified. We 225

call this approach MEMFREE decoding, as the 226

defense is applied at decoding time. 227

Both retroactive censoring and MEMFREE de- 228

coding explicitly prohibit the model from emitting 229

a sequence if it is contained (entirely or partially) in 230

the training dataset. However, in retroactive censor- 231

ing, if a generation starts off with memorized text, 232

but then veers off track from the true continuation 233

(a common occurrence), this would not be marked 234

as memorization, even though a portion of the out- 235

put sequence is clearly memorized. The MEMFREE 236

decoding approach performs a more fine-grained 237

and aggressive check by filtering out all memorized 238

subsequences of a given length. In this work we 239

use the MEMFREE decoding approach to show that 240

even when a model is restricted from emitting any 241

output with snippets of verbatim memorization, the 242

model can still leak training data. 243

3.1 MEMFREE Decoding Details 244

In order to implement MEMFREE decoding, we 245

alter the model’s generation in an online manner by 246

restricting the production of tokens which would 247

result in an n-gram memorization. Let p be the 248

current working prefix and t be the next proposed 249

token when running the model forward. 250

Our algorithm first checks if any n-gram in the 251

concatenated sequence p||t is contained in the train- 252

ing dataset D. If it is, we suppress this generated 253

token and re-sample from the model. To avoid po- 254

tentially expensive resamplings, we equivalently 255

express this as altering the model’s output probabil- 256

ity distribution by removing the probability mass 257

from token t. In this way, we guarantee that prior 258

to sampling the probability of outputting a mem- 259

orization will be 0. Appendix B.1 gives a formal 260

procedure for this method. 261

Altering the token posterior allows any sampling 262

strategy to be used on top of memorization-free 263

decoding. For example, if one uses top-k sampling, 264

tokens that result in memorization are disqualified 265

before the probability distribution is truncated to 266

the k next most likely tokens.This procedure is 267

guaranteed to generate non-memorized text. 268
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3.2 Querying the Training Set Efficiently269

Our MEMFREE defense has assumed that it is easy270

to perform the query s P D to test if any given271

string is contained in the training dataset. Because272

the defense works at inference-time, it is neces-273

sary that this query is computationally efficient to274

maintain utility of the language model. Given that275

training sets may contain terabytes of data (Brown276

et al., 2020), it is infeasible to maintain an entire277

copy of the training dataset in an efficiently acces-278

sible storage. Thus, we explore three optimizations279

to speed up the process of memorization checking.280

First, as a direct result of our n-gram memoriza-281

tion definition, we can equivalently check only the282

n-gram ending in the current predicted token t; we283

can thus avoid many n-gram queries for each token.284

Further, and in addition to preventing subsequence285

memorization, this allows us to avoid queries into286

a large set of all prefixes and continuations.287

Second, we only check against sequences that288

have a reasonable probability of being memorized289

by the model. In theory, this could be easily de-290

termined by running each n-gram s P D through291

the model and then filtering out all sequences with292

high loss (thus unlikely to be memorized). How-293

ever, this is a computationally expensive procedure294

as it requires re-processing every substring of the295

training dataset. Instead, a computationally- and296

storage-efficient procedure could be to only store297

n-grams which occur more than once in the train-298

ing set—prior work has shown duplicate text is299

the most likely to be memorized (Lee et al., 2021;300

Kandpal et al., 2022).301

Third, by being willing to tolerate some false302

positives (labeling an n-gram as memorized when303

it is in fact not), we can take advantage of prob-304

abilistic data structures such as Bloom filters305

(Bloom, 1970), which admits no false negatives306

but trades off time and space with the false positive307

rate (which can be computed exactly). Thus, by308

using a Bloom Filter, we guarantee that no mem-309

orized n-gram will ever be released (i.e., a false310

negative) but we may (rarely) prevent the emission311

of non-memorized content (i.e., a false positive).312

Integrating a Bloom Filter into our defense is313

straightforward. Let FfppDnq represent the Bloom314

Filter of dataset D, generated by adding each n-315

gram of the dataset s P Dn to the Bloom filter,316

with false positive rate fp. Then, any memoriza-317

tion check s P Dn in Algorithm 1 can be replaced318

with s P FfppDnq. The Bloom filter can be gen-319

erated with a single pass over the model’s training 320

set, which could be performed in parallel with one 321

epoch of model training. 322

Additional Parameters. We must choose an ap- 323

propriate false positive rate based on memory con- 324

straints and the chosen n-gram length. Choosing n 325

has two major impacts: on the population size (i.e., 326

the number of unique n-grams) and thus the size of 327

the filter, and on the effectiveness of memorization 328

mitigation. If n is set too low, then we will cer- 329

tainly prevent all memorized sequences but might 330

also prevent too many common phrases. But if we 331

set n too high, we might not prevent actually mem- 332

orized sequences from being emitted by the model. 333

We discuss these tensions in Appendix B, along 334

with two additional takeaways: (1) that MEMFREE 335

does not impact downstream model performance 336

(which may result from false positives), and (2) 337

that our chosen optimizations maintain a suitably 338

low false negative rate (we observed a 3000x im- 339

provement). These optimizations led to a filter of 340

size 1.6 gigabytes (or, 40.5 gigabytes if all, even 341

non-duplicated, 10-grams were stored) when run 342

over the 800GB Pile dataset. 343

3.3 Measuring Approximate Memorization 344

To show that defenses against verbatim memoriza- 345

tion still allow approximate memorization, we need 346

a definition for approximate memorization. We 347

consider two definitions. First, drawing from stan- 348

dard NLP evaluation techniques, we measure the 349

BLEU score between the generated and ground- 350

truth continuations. Second, we measure the length- 351

normalized character-level Levenshtein similarity 352

between the generated and ground-truth continua- 353

tions. Appendix C.1 gives implementation details. 354

In Section 5, we investigates how these two simi- 355

larity metrics decrease with MEMFREE decoding. 356

For situations requiring a binary label of whether 357

approximate memorization has occurred, we use 358

the following definition: a suffix s for prefix p is 359

labeled as memorized if for generation g “ fppq, 360

BLEUpg, sq ą 0.75. This threshold was chosen by 361

qualitatively inspecting examples. Several exam- 362

ple generations that are close to this threshold are 363

shown in Table A11. 364

When we repeat the prefix-extraction experiment 365

from (Carlini et al., 2022) to measure incidents of 366

generations that could be considered memorized, 367

but using this approximate definition instead of a 368

verbatim one, we find that hat prior literature has 369
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Standard prompting with original prefix and format

float Q_rsqrt( float number )
{
long i ;
f l o a t x2 , y ;
c o n s t f l o a t t h r e e h a l f s = 1 . 5 F ;

x2 = number ∗ 0 . 5 F ;
y = number ;
i = ∗ ( l ong ∗ ) &y ;
Copilot no longer generates continuations

Prompt with Python-style comment

# float Q_rsqrt( float number )
# {
# long i ;
# f l o a t x2 , y ;
# c o n s t f l o a t t h r e e h a l f s = 1 . 5 F ;
#
# x2 = number ∗ 0 . 5 F ;
# y = number ;
# i = ∗ ( l ong ∗ ) &y ;
# i = 0 x 5 f 3 7 5 9 d f ´ ( i >> 1 ) ;
# y = ∗ ( f l o a t ∗ ) &i ;
# y = y ∗ ( t h r e e h a l f s ´ ( x2∗y∗y ) ) ;
#
# r e t u r n y ;
# }

Prompt with French translation (alternate naming
convention)

float Q_sqrt( float nombre )
{
long i ;
f l o a t x2 , y ;
c o n s t f l o a t t r o i s _ m o i t i e = 1 . 5 F ;

x2 = nombre ∗ 0 . 5 F ;
y = nombre ;
i = ∗ ( l ong ∗ ) &y ;
i = 0 x5f3759df ´ ( i >> 1 )
y = ∗ ( f l o a t ∗ ) &i ;
y = y ∗ ( t r o i s _ m o i t i e ´ ( x2∗y∗y ) ) ;
/ / y = y ∗ ( t r o i s _ m o i t i e ´ ( x2∗y∗y ) ) ;

r e t u r n nombre ∗ y ;
}

Figure 2: Honest “style-transfer” prompts evade
verbatim memorization filters. Trivially modifying
prompts causes GitHub’s Copilot language model to
emit memorized, but not verbatim, content. Prompts
highlighted in blue. Model evaluated with the option
“block suggestions matching public code” enabled. For
brevity, we removed comments from model outputs.

significantly underestimated memorization leak-370

age. In Figure 3, the shaded region represents the371

fraction of memorized samples that would have by-372

passed a verbatim memorization filter: in the worst373

case, there is a factor-of-two increase.374

However, we caution that this definition of ap-375

proximate memorization is inaccurate, potentially376

both over and under counting approximate memo-377

rization. While our choice of a 0.75 BLEU score378

threshold shows a significant increase in approxi-379

mate vs. verbatim memorization, it is not clear that380

all identified cases of memorization would be per-381

ceptually tagged as such by a human judge. This is382

one reason why simply switching to this definition383

for defenses may not be ideal—it could introduce384
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Figure 3: Significantly more examples are approxi-
mately memorized (BLEU > 0.75) than are found to
be exactly memorized by Carlini et al. (2022). This
is for undefended generation.

significant false positives. 385

4 Evading Verbatim Mem. Defenses 386

In this section, we show how retroactive censoring 387

of verbatim memorization can be evaded, even in 388

settings where models are used honestly. We first 389

present a case study with Copilot, which has im- 390

plemented retroactive censoring in production. We 391

then show how a large English language models 392

like GPT-3 are susceptible to the same vulnerability, 393

should a defense similar to Copilot’s be deployed. 394

In short, protecting against verbatim memorization 395

can lead to a false sense of privacy. 396

4.1 Evading Copilot’s Memorization Filter 397

Copilot is a code auto-complete service which 398

is trained on GitHub code. Copilot is built us- 399

ing the Codex language model designed by Ope- 400

nAI (Chen et al., 2021). To prevent generating 401

memorized code, Copilot uses a filtering mecha- 402

nism that blocks model outputs from being sug- 403

gested if they overlap significantly (approximately 404

150 characters) with a training example. This is a 405

practical example of a filter that aims at prevent- 406

ing perfect verbatim memorization, presumably 407

by using a procedure similar to Algorithm 1 (the 408

exact mechanism used by GitHub is not public). 409

However, we find that the filter fails to prevent the 410

leakage of training data in many settings. 411

Style-transfer prompting. In Figure 2, we show 412

that Copilot’s filter can easily be bypassed by 413

prompts that apply various forms of “style-transfer” 414

to model outputs, thereby causing the model to 415

produce memorized (but not verbatim) outputs. 416

As a concrete example, we demonstrate how to 417

extract the public code for Quake’s “Fast Inverse 418
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Square Root”. If we naively prompt the model419

with the function definition “float Q_rsqrt (420

float number )”, Copilot correctly aborts gener-421

ation of the full function (“standard prompting”).422

However, we find that simple style-transfers423

applied to the prompt allow us to easily bypass424

Copilot’s restrictions. First, via prompting with425

“Python-style comments” we begin our prompt with426

Python’s comment character “#”. Even though this427

is syntactically invalid C code, Copilot outputs the428

entire verbatim fast inverse square root algorithm,429

but commented out. Second, in prompting with430

“French translations” we change the naming con-431

vention to French. As a result, the generations fol-432

low the new naming convention and are no longer433

flagged as a verbatim match. Other naming con-434

ventions, such as pre-pending “_” to the variable435

or changing the language to Spanish, also work.436

These strategies work because the Copilot model437

is sufficiently powerful: it can both follow the style-438

transfer prompt (by e.g., renaming variables) while439

simultaneously regurgitating memorized training440

data. We provide more examples in Appendix E.441

Copilot Evades its own Filter Not only do ac-442

tively style-transfered prompts evade the verbatim443

memorization filter, but even passively prompting444

Copilot with highly duplicated text from the Pile445

dataset can too. We find several examples where446

Copilot evades its own filter to output memorized447

text, some of which we show in Figure 5. We see448

that Copilot evades the filter by (1) changing cap-449

italization, (2) making small non-stylistic errors,450

and (3) changing whitespaces. The latter evasion451

(changing whitespaces) is surprising, as Copilot’s452

documentation reports ignoring whitespace in its453

filtering mechanism (Appendix A). However, we454

hypothesize that this can be explained by the model455

replacing tabs with space characters. We can verify456

this by adding tabs to the beginning of each line457

of the Q_sqrt function, as an application of our458

style-transfer strategy.459

4.2 English Language Models460

Following our analysis of Copilot, we ask whether461

this vulnerability is pervasive is other language462

models too. We use API access to three versions of463

GPT-3 Davinci to test whether they would be sus-464

ceptible to style transfer of the prompt. Since the465

training set is unknown, we prompt with documents466

we believe are likely to have been memorized:467

open-source licenses, famous speeches and mono-468

Sp
ee

ch
es

(n=
30

0)
Mon

olo
gu

es
(n=

18
0)

OS L
ice

ns
es

(n=
12

6) Nov
els

(n=
23

1)
Lyr

ics
 20

11
(n=

30
0)

Lyr
ics

 20
21

(n=
30

0)

Datasets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n 
M

em
or

ize
d

ori
gin

al
(n=

47
9)

sp
ac

es
(n=

47
9)

low
er

(n=
47

9)
ca

ps
(n=

47
9)

Style

GPT-3 DaVinci Original
GPT-3 DaVinci v2

Figure 4: Fraction of prompts which discover approx-
imate memorization, grouped by domain (left) and by
style transfer applied (right). Full plot in Appendix D.

logues, novel openings, and song lyrics.For each 469

document, we prompt the model with 100 words 470

of either (1) the original document (“base”), (2) 471

the document with all spaces doubled (“spaces”), 472

(3) the document in all lowercase (“lower”), and 473

(4) the document in all uppercase (“caps”). We 474

report approximate memorization results of this 475

experiment in Figure 4, with additional figures in 476

Appendix D. 477

We see that even when prompting with style- 478

transfered prompts, GPT-3 is still often able to 479

generate a memorized continuation. Defenses for 480

verbatim memorization are therefore incomplete. 481

Among the three techniques, uppercasing was the 482

least likely to lead to memorized generations. It 483

is also interesting to note that different versions 484

of GPT-3 have wildly different memorization ten- 485

dencies, emphasizing the importance of models’ 486

training set compositions and training methods. 487

5 MEMFREE Decoding Experiments 488

In this section, we study the effectiveness of our 489

proposed MEMFREE decoding defense from Sec- 490

tion 3.3, and study the appropriateness of our pro- 491

posed definition of approximate memorization. 492

Experimental Design It is not possible to apply 493

MEMFREE to the models from Section 4 since 494

their training sets are non-public. Instead, we turn 495

to the GPT-Neo languge model family (Black et al., 496

2021). These models are trained on the Pile, a 497

publicly available 825GB dataset (Gao et al., 2020). 498

We build a Bloom filter over all 10-grams occur 10 499

or more times (more details in Appendix B). In 500

all experiments, we generate text using argmax 501

decoding as the sampling method. We investigate 502
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1) Misspelling and changed capitalization

This program is free software" ; you can redistributeredistribut i t and / o r ∗
modify i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ asAS p u b l i s h e d by t h e Free S o f t w a r e F o u n d a t i o n ; e i t h e r
v e r s i o n 2 ∗ of t h e L icense , orOR ( a t your o p t i o n ) any l a t e r
v e r s i o n "

2) Small non-stylistic errors

@aws-sdk/protocol-http" ;
import { Command as $Command } from "@aws-sdk/smithy-client";
import {FinalizeHandlerArguments,Handler,HandlerExecutionContext,
MiddlewareStack,HttpHandlerOptions} as __HttpHandlerOptions, M e t a d a t a B e a r e r
a s __MetadataBearerMetadataBear ,

3) Changed whitespace

[...]IPV6_2292PKTINFO(2 ws)\t\t\t\t\t = 0x2\nIPV6_2292PKTOPTIONS \t\t\t\t = 0x6\n
IPV6_2292RTHDR [20 spaces][9 spaces]= 0x5 \ n

Figure 5: CoPilot can “cheat” and emit nearly verba-
tim memorized content. Here, we show prompts from
the training set, where the model makes slight errors
causing the continuations to pass the filter. Prompts are
in cyan, followed by CoPilot’s continuation where er-
rors are highlighted as model’s generation in orange
with the correct characters in green.

four model sizes: 125M–6B parameters.503

We evaluate using substrings of the Pile released504

by Carlini et al. (2022). The dataset includes 30k505

strings of length 150 tokens taken from the training506

set. These are divided into 30 buckets of 1k strings,507

sampled such that the strings in bucket i occur in508

the Pile between 2i{4 and 2pi`1q{4 times. For each509

string, we use the first 50 tokens as a prompt p and510

generate a 50-token long continuation.511

Reduction in Memorization MEMFREE signif-512

icantly reduces the similarity of generations to the513

groundtruth, compared to performing undefended514

generation (Figure 6). We also observe that when515

undefended generation already results in low sim-516

ilarity with the groundtruth, MEMFREE does not517

significantly alter the generations, as desired.518

Previous work shows that increasing model size519

increases discoverable memorization (Carlini et al.,520

2022; Kandpal et al., 2022). We again find a clear521

trend that generations from larger models have, on522

average, a much higher similarity with the original523

continuation (Figure 8). Despite this, MEMFREE524

remains effective at all model sizes (BLEU remains525

near-flat around 0.6). Even when a sequence has526

many duplicates in the train set (a strong indica-527

tor of memorization), MEMFREE significantly de-528

creases similarity with the groundtruth at all model529

sizes (Figure 7).530

Failures in Preventing Memorization A de-531

fense against memorization fails when it allows a532

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(a) BLEU (word-level)

0.0 0.5 1.0
Undefended

0.0

0.5

1.0

M
em

Fr
ee

(b) Edit similarity (char-level)

Figure 6: MEMFREE reduces similarity when the
continuation would have been highly similar to the
ground-truth, and has little impact otherwise. For
5,000 prompts, we plot the similarity of the groundtruth
continuation with the generation from MEMFREE (y-
axis) and with the undefended generation (x-axis). Gen-
erations on the diagonal were not memorized.

101 102

Duplicate Count

0.3
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2.7B

1.3B
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Figure 7: MEMFREE decreases the BLEU score of
generations more for highly duplicated examples.

sequence to be generated which a human would 533

perceive as substantially copied from the true 534

continuation—even if it is not verbatim memorized. 535

This failure case can be seen as the points where the 536

MEMFREE generation is still a close match to the 537

ground-truth continuation (Figure 6). It occurs be- 538

cause the defense only adjusted a few tokens (e.g., 1 539

after every sequence of 10). When looking at these 540

examples, many, but not all, are lists of numbers. 541

Some examples are included in Table A14. There 542

is also a second failure-case: when a full (50 token) 543

generation is made more similar with the ground- 544

truth by MEMFREE (on 10-grams) than without. 545

This may happen depending on the model’s token 546

posterior’s after removing all tokens that fail the 547

MEMFREE check. Almost all of these cases had 548

a trivial increase in similarity. However, 0.16% of 549

samples had a similarity increase above 0.1. We 550

found qualitatively that many of these cases did 551

have significant overlap with the true continuation. 552
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Figure 8: MEMFREE remains effective at reducing
similarity between the generated and groundtruth
continuations even as models grow larger.,

6 Discussion553

Defining Memorization in Language Models.554

While verbatim definitions have helped discover555

significant memorization in large language models,556

they are insufficient to capture more subtle forms557

of memorization. Our work highlights two such558

situations: "style-transfer" prompting, where de-559

fenses for verbatim memorization can be actively560

subverted, and when models “cheat” by outputting561

similar, but not verbatim, continuations. As a result,562

our work suggests that memorization prevention563

must capture these types of paraphrased memo-564

rizations in addition to the previously considered565

verbatim definitions. However, exhaustively an-566

ticipating styles to incorporate into defenses is an567

innumerable problem that will become harder as568

models become more powerful.569

This emphasizes two major challenges in defin-570

ing approximate memorization. First, new approx-571

imate cases must be discoverable by the defini-572

tion which can result in some cat-and-mouse game.573

Second, this definition is domain-dependent. For574

example, our paper focuses on language models575

trained to output English and code—other lan-576

guages will require different considerations when577

defining memorization.578

There are two areas of research which may help579

in improving memorization definitions. The field of580

image generation memorization is already com-581

fortable with measuring fuzzy (in ours, approxi-582

mate) memorization, where generated items may583

be perceptually similar to training set examples,584

despite having high distance according to standard585

metrics. For example, Fredrikson et al. (2015) con-586

sider “model inversion”, where an image is suc-587

cessfully recovered from the model if it is identi-588

fiable to a human worker. In Zhang et al. (2020),589

model inversion success is measured based on pixel590

similarity and feature space similarity to training 591

images. These works also recover “representative” 592

images from different classes, rather than specific 593

training examples. Recent work on reconstructing 594

training images have used feature similarity (Haim 595

et al., 2022) and pixel similarity (Balle et al., 2022). 596

In each of these papers, “fuzzy” reconstructions are 597

allowed by the evaluation metrics and, indeed, are 598

common in their reconstructions. 599

The inherent limitations of verbatim definitions 600

of text regurgitation have also been well docu- 601

mented in the literature on plagiarism detection— 602

both for text and code. Existing plagiarism tools, 603

and their evaluations, go far beyond verbatim 604

matches and consider fuzzy data “clones” ranging 605

from simple transformations (e.g., word variations 606

or shuffles) to arbitrary semantics-preserving para- 607

phrasing (Roy et al., 2009; Potthast et al., 2010). 608

Re-purposing techniques from the plagiarism de- 609

tection literature to minimize generation of mem- 610

orized data in LLMs is an interesting direction to- 611

ward achieving better approximate memorization 612

definitions in machine learning. 613

Consequences for machine learning research. 614

In relaxing definitions of memorization, our paper 615

acknowledges the blurred line between memoriza- 616

tion (e.g., of personal information) and knowledge 617

(e.g., of common facts). Because we use a 10-gram 618

overlap, our MEMFREE decoding algorithm should 619

not significantly impact utility, however studying 620

this interplay is an important area of future work. 621

However, still, identifying which data is considered 622

“memorized” cannot be done only by looking for 623

verbatim reproductions of the training set. This 624

may make the task of understanding memorization 625

and generalization more difficult. 626

We do not believe that our work requires aban- 627

doning all research directions which rely on prior 628

verbatim definitions. These definitions are still 629

useful as an efficient way to test for obvious and 630

undeniable memorization. However it will be nec- 631

essary to continue studying further relaxations of 632

memorization definitions to adequately capture and 633

measure the space of privacy concerns for language 634

models. 635

7 Ethics & Broader Impact 636

Improving the privacy of neural language models— 637

and especially those trained on user data—is an 638

important and timely research problem. In this 639

paper we hope to help both researchers and practi- 640
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tioners develop a more nuanced understanding of641

what constitutes memorization in language mod-642

els. In particular, just because a sequence does643

not appear verbatim in a training dataset does not644

mean the example is a novel generation: as we have645

shown, models today are sufficiently powerful to646

minimally transform memorized data to make it647

appear superficially different even if the underlying648

content remains memorized.649

Our observation will complicate the privacy eval-650

uation of future machine learning models. It should651

no longer be deemed sufficient to check for (ver-652

batim) matches between generated output and a653

training example. Practitioners in the future will654

need to be aware of this potential failure mode655

when applying output post-processing defenses to656

mitigate memorization. To the best of our knowl-657

edge, the only deployed system affected by our658

analysis is GitHub’s Copilot. In order to mitigate659

harm here we shared a copy of our paper with the660

relevant researchers at both GitHub and OpenAI661

prior to paper submission.662

In this paper we focus our efforts entirely on663

public datasets that other researchers have exten-664

sively studied (Gao et al., 2020) to minimize any665

harm caused by demonstrating extraction results.666

However, just because the data that we study is667

public does not mean there are no privacy concerns.668

As Brown et al. (2022) argue, there are many other669

considerations when discussing the privacy of large670

models trained on “public” datasets.671
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A GitHub Copilot 840

At the time of this paper’s writing, GitHub Copilot’s memorization prevention mechanism is described in 841

their FAQ at https://github.com/features/copilot. We copy the text here: 842

What can I do to reduce GitHub Copilot’s suggestion of code that matches 843

public code? 844

845

We built a filter to help detect and suppress the rare instances where a 846

GitHub Copilot suggestion contains code that matches public code on GitHub. 847

You have the choice to turn that filter on or off during setup. With the 848

filter on, GitHub Copilot checks code suggestions with its surrounding code 849

for matches or near matches (ignoring whitespace) against public code on 850

GitHub of about 150 characters. If there is a match, the suggestion will not 851

be shown to you. We plan on continuing to evolve this approach and welcome 852

feedback and comment. 853

B Further Discussion of MEMFREE 854

B.1 Formal Procedure 855

Algorithm 1 provides a formal procedure for MEMFREE decoding. In all our experiments, we used 856

argmax decoding as the sampling method for line 4. 857

Algorithm 1 MEMFREE decoding algorithm.
1: procedure GREEDY MEMFREE DECODING(model f , prefix p, gen length n, training set D)
2: repeat
3: logits Ð fppq ´ 8 ¨ t1rpp||tq P Ds : t P vocabu
4: tok Ð sample from logits
5: pÐ p||tok
6: until n iterations
7: end procedure

B.2 Choice of n-gram length 858

Choosing the n-gram length has two main tradeoffs: it changes the granularity of the memorization 859

checking and the total number of substrings of the dataset that must be stored in the Bloom filter. On 860

the former, notice that short n-grams do not have sufficient novelty (loosely, entropy) to be considered 861

memorizations, e.g., they are often commons words and phrases. However, too large also would not 862

capture shorter sequences that have sufficient novelty. On the latter, notice that the universe of possible 863

n-grams is exponential in n, but that the unique number of such sequences in a fixed dataset may decrease 864

with large n. This total number of unique sequences impacts the required size of the Bloom filter to 865

maintain a fixed false positive rate. With N the number of unique n-grams and fp a decimal probability 866

of the false positive rate, the size of the filter in bits is: 867

m “ ceil

ˆ

´pN ˚ log pfpqq

log p2q2

˙

. 868

Then, k the number of Bloom hash functions can be calculated from the number of bits per element, i.e., 869

m{N , as: 870

k “ ceil ppm{Nq ˚ logp2qq . 871

This determines the cost of inserting and looking up into the Bloom filter as Opkq. But, because k typically 872

remains small (in our case, k “ 7), this can be treated as a small constant-time operation. See Tarkoma 873

et al. (2011) for the full calculations, which the ones listed here are taken from. 874

We err on the side of caution and select n=10 for our experiments. This does prevent the model from 875

generating common words or phrases which consist of 10 or more tokens, such as “The quick brown fox 876
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jumped over the lazy dog.” or “supercalifragilisticexpialidocious”. We find qualitatively that the impact of877

this is low, and that this also presents a balanced trade-off with the Bloom filter size.878

B.3 Choice of Minimum Frequency879

Ideally, we want n large enough so that we do not prevent common phrases and small enough so that we880

catch all (though practically, most) possible memorizations. Optimizing n for this task is both non-trivial,881

as the objective is not clear, and computationally expensive. Instead, we choose n “ 10 based on882

qualitative experience that this does not prevent many common phrases. Further, we do so to also limit the883

storage cost of the Bloom filter, because n too large leads to a blow up in the number of elements, N .884

B.4 Performance of MEMFREE885

In this section, we study two questions: (1) “does MEMFREE maintain model utility?” and (2) “does our886

optimized MEMFREE prevent memorization release”.887

Along question (1), recall that MEMFREE can admit false positives, which may degrade the utility of888

the language model. Fortunately, the false positive rate can be computed exactly, e.g., see Tarkoma et al.889

(2011), and a long literature has proposed optimizations to account for non-uniform distributions (Bruck890

et al., 2006) and to adaptively correct for false positives (Bender et al., 2018).891

Here, we study how, under reasonable computational constraints and inference times, the observed892

rates impact model utility. As we will show, we observe that MEMFREE maintains the highest utility (no893

observable impact) while being the most efficient defense.894

Along question (2), we study if our optimizations lead to a substantial increase in the false negative895

rate. To do this, we repeat the experiment from (Carlini et al., 2022), which prompted GPT-Neo models896

with examples from its training data. We compute how many examples are verbatim memorized when897

MEMFREE decoding is used. The 6B parameter GPT-Neo model memorizes more than 12,000 of these898

documents, but, after applying MEMFREE, it only outputs 4 verbatim memorizations. These 4 remaining899

verbatim memorizations are repeated fewer than 10 times in the training data, and so were not added to900

our Bloom filter. Nonetheless, this strategy reduced verbatim memorization by over 3000ˆ.901

B.5 Bloom Filter Statistics902

Figure 9 shows the distribution in number of tokens (out of 50 generated) that were changed by MEMFREE903

from the token that would have been generated using undefended greedy decoding.904
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Figure 9: Most generations require few (ă 5) changes to pass MEMFREEchecks. Data for histogram from
6000, 50-token generations using MEMFREE decoding on GPT-Neo 6b.

Figure 10 presented some of the query patterns of the MEMFREE decoder to investigate when and how it905

impacts decoding. First, we observe that MEMFREE is trivial to run in terms of compute: it takes only906

49.8 milliseconds to run 10,000 queries on one CPU core. From Figure 10 (left), all generations required907

significantly fewer queries (mean “ 42.1 queries / generation)—even running batches of many hundreds908
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or thousands of queries would incur less than a few seconds additional overhead. Second, we find that the 909

Bloom filter is often hit at the first and tenth tokens after the prompt. We see many hits at the first token 910

because all our prompts are from the training data—so there are relatively fewer single token additions 911

that generate a novel n-gram. Third, we find that most generations need only a few (ă 5) alterations due 912

to MEMFREE decoding. 913
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Figure 10: (left) Most generations have few Bloom queries, as observed by the small quartiles; however, there
is a long tail of few generations with many Bloom hits (12.6% of generations had beyond 50 hits with a max of
1111). (right) Some positions had significantly more hits, e.g., the first and tenth tokens. (both) are histograms
from 6000 generations of 50 tokens each using MEMFREE decoding on GPT-Neo 6B.

C More Details on Measuring Approximate Memorization 914

C.1 Similarity Metrics Implementations 915

As noted in Section 5, we identify instances of approximate memorization by measuring the similarity 916

between a generated continuation and the groundtruth continuation for a prompt. We do so using 917

BLEU-score and character-level edit distance. 918

We computed BLEU score using NLTK’s BLEU computation (nltk.translate.bleu_score) with 919

the default parameters (averaging equally BLEU-1, BLEU-2, BLEU-3, and BLEU-4)(Bird et al., 2009). 920

Edit distance was computed with the ‘editdistance‘ pip package. Normalized edit similarity between two 921

strings x and y is defined as: 922

EDITSIMpx, yq “
EDITDISTANCEpx, yq

maxp|x|, |y|q
923

C.2 Threshold Selection Threshold 924

We chose to use a BLEU score of 0.75 or higher to indicate that a generation substantially memorized 925

from the ground-truth continuation. We choose to threshold BLEU score rather than edit-distance since it 926

is more interpretable to NLP researchers. Table 11 presents several examples of generations that were 927

very close to the 0.75 BLEU score threshold. 928

D Experiments with Large English Language Models 929

D.1 Prompt Selection Process 930

Famous speeches were selected from the "Top 100 Speeches" list found at https://www. 931

americanrhetoric.com/newtop100speeches.htm. Monologues were selected from the list of two- 932

minute monologues found at http://www.monologuedb.com/tag/2-minute-monologues/. Novels 933

were selected from the Time Magazine’s Top 100 All-Time Novels list found at https://www.goodreads. 934
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True Continuation LM Generation BLEU

about a deeper bond with the product. Nostalgia.
It’s delicate, but potent. Sweetheart.\n\nTeddy told
me that in Greek, “nostalgia” literally means “the
pain from an old wound”. It’s a twinge in your
heart far more

about a deeper bond with a product. Nostalgia.
It’s delicate, but potent. Teddy told me that in
Greek, nostalgia literally means the pain from an
old wound. It’s a twinge in your heart, far more
powerful than memory alone. This

0.79

And I’ll show you\nYou want the moves like
jagger\nI got the moves like jagger\nI got the
mooooooves like jagger\nI don’t even try to control
you\nLook into my eyes and I’ll own you\nYou
with the moves

And I’ll show you\nAll the moves like Jagger\nI’ve
got the moves like Jagger\nI’ve got the moves like
Jagger\nI don’t need to try to control you\nLook
into my eyes and I’ll own you\nWith the

0.79

Purpose\n\nThe laws of most jurisdictions through-
out the world automatically confer\nexclusive
Copyright and Related Rights (defined below) upon
the creator\nand subsequent owner(s) (each and all,
an "owner") of an original work of\nauthorship
and/or a database

Purpose\n\n The laws of most jurisdictions through-
out the world automatically confer\n exclusive
Copyright and Related Rights (defined below) upon
the creator\n and subsequent owner(s) of an orig-
inal work of authorship (the "Work").\n Certain
jurisdictions do not recognize a

0.76

Figure 11: Examples of model generations with BLEU score close to 0.75, the threshold we used to declare that
approximate memorization had occurred.

com/list/show/2681.Time_Magazine_s_All_Time_100_Novels. The opening paragraphs of the935

first chapter (skipping over prefaces, introductions, and boilerplate) were used as each example. The936

2011 and 2021 song lyrics were selected from the Billboard Year-End Hot 100 singles lists found at937

https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2011 and https:938

//en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2012.939

For each document, the first 100 words were used as a prompt, and the first 50 generated words were940

compared with the first 50 words of the true continuation. This approach has the ramification that not all941

prompts were the same length in tokens. However, this approach was necessary for fairness across style942

transfers because an all-uppercased string is going to be many subword tokens longer than the lowercased943

version of the same string.944
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Figure 12: "Style-transfer" prompting divulges approximate memorization in several versions of GPT-3.
Note that generations also follow the same style as the prompt. All generations were characterized as memoriza-
tions or not via the threhsold in Equation ??.
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Domain with n total prompts Model
# Prompts Memorized per

Style-Transfer Type

Original Two Spaces Lower Upper

Open-Source Licenses (n=42) GPT-3 DaVinci Original 23 8 14 1
GPT-3 DaVinci v2 30 25 25 13

Famous Speeches (n=100) GPT-3 DaVinci Original 20 1 14 0
GPT-3 DaVinci v2 12 6 11 3

Famous Monologues (n=60) GPT-3 DaVinci Original 3 0 1 0
GPT-3 DaVinci v2 4 3 4 0

Novel Openings (n=77) GPT-3 DaVinci Original 9 0 3 0
GPT-3 DaVinci v2 7 4 5 0

Lyrics 2011 (n=11) GPT-3 DaVinci Original 7 2 6 2
GPT-3 DaVinci v2 14 11 14 4

Lyrics 2021 (n=11) GPT-3 DaVinci Original 3 3 3 2
GPT-3 DaVinci v2 4 2 4 4

Table 1: "Style-transfer" prompting surfaces approximate memorization in GPT-3. We explore n prompts
for each domain. Note that generations also follow the same style as the prompt.
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E Qualitative Examples that Bypass Copilot’s Filter 945
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Standard Prompting

/* low -> Starting index, high -> Ending index
*/

quickSort(arr[], low, high)
{

if (low < high)
{

/* pi is partitioning index, arr[p] is
now
at right place */

pi = partition(arr, low, high);

Copilot no longer generates continuations

Comment Prompting

# /* low -> Starting index, high -> Ending index
*/

# quickSort(arr[], low, high)
# {
# if (low < high)
# {
# /* pi is partitioning index, arr[p] is

now
# at right place */
# pi = partition(arr, low, high);
# quickSort(arr, low, pi - 1); # Before

pi
# quickSort(arr, pi + 1, high); # After pi
# }
# }

Naming Convention Prompting

/* _low -> Starting index, _high -> Ending
index */

quickSort(arr[], _low, _high)
{

if (_low < _high)
{

/* pi is partitioning index, arr[p] is
now
at right place */

pi = partition(arr, _low, _high);
quick_sort(arr, _low, pi - 1); //

Before pi
quick_sort(arr, pi + 1, _high); //

After pi
}

}

Language Prompting

/* depart -> index de départ, fin -> index de fin
*/

quickSort(arr[], depart, fin)
{

if (depart < fin)
{

/* pi est l’index de partitionnement, arr[
p] est maintenant
à la bonne place */

pi = partition(arr, depart, fin);
// Trier les éléments séparément avant et

après la partition
quick_sort(arr, depart, pi - 1);
quick_sort(arr, pi + 1, fin);

}
}

Naming Convention Prompting

/* LOW -> Starting index, HIGH -> Ending
index */

quickSort(arr[], LOW , HIGH )
{

if (LOW < HIGH )
{

/* pi is partitioning index, arr[p]
is now
at right place */

pi = partition(arr, LOW , HIGH );
quickSort(arr, LOW , pi - 1); //

Before pi
quickSort(arr, pi + 1, HIGH ); //

After pi
}

}

Comment Prompting

/* low -> Starting index, high -> Ending index */
//1

quickSort(arr[], low, high) //2
{

if (low < high) //3
{

/* pi is partitioning index, arr[p] is now
at right place */

pi = partition(arr, low, high); //4
quickSort(arr, low, pi - 1); //5
quickSort(arr, pi + 1, high); //6

}
}

Figure 13: Preventing GitHub’s Copilot language model from emitting verbatim memorized content often results
in it emitting memorized, but not verbatim, content. Trivially modifying the prompt bypasses these output fil-
ters. Prompts are highlighted in blue. Model evaluated with the option “block suggestions matching public code”
enabled. For brevity we removed comments from model outputs.
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F Qualitative Examples of Memorization Despite MEMFREE 946

Table 14 gives examples of approximate memorization which occured despite using MEMFREE decoding. 947

Below , we present a longer list of full examples of MEMFREE decoding. In the following paragraphs, 948

the gray highlighted texts are the prompts, and the texts that follow the prompts are generated by the 949

model. For easier reading, we merged the individual tokens to form text spans, except at tokens where 950

bloom-filter rejection happens. In this case, the symbol � indicate connection between tokens. Moreover, 951

red highlighted texts indicate one or more rejected tokens, which are always followed by one accepted 952

token highlighted with green. The texts are lightly edited mostly to properly encode unicode symbols 953

(some garbled symbols are replaced as b) that LATEX does not handle gracefully. 954

Split word “Activity” viewHolder.swipeLayout.setOnDoubleClick Listener(new SwipeLay- 955

out.DoubleClickListener() { Override public void onDoubleClick(SwipeLayout layout, boolean surface) { 956

Toast.makeText(mContext, "DoubleClick : " + position, � Toast � .LENGTH � _ ). � show(); � } // 957

}); if return m � Context.start � Activity Service Activ � ities(new Intent(mContext, � Activity � 958

.class)); � } m � Context.fin � ish ishing � (); 959

Typo “Wildlife”ñ “Wildife” should promptly announce a phase-in of non-lead ammunition for all 960

hunting throughout the rest of the state to protect other wildlife poisoned by lead and to safeguard human 961

health. Hunters can play a critical role in the recovery of the condor and also keep lead from poisoning the 962

wild game they eat.” The lead-free ammunition regulations are designed to reduce lead poisonings of the 963

iconic and extremely endangered California condor. Condors, eagles, and other scavengers such as ravens 964

� , crows, and hawks � are have � been poisoned by lead ammunition. The California Department 965

of Fish and � Wildlife Game Wild � ife (CDFW) is the lead agency responsible for implementing the 966

regulations. The regulations are based on the Condor Protection Act, 967

Singular to plural: “claim”ñ “claims” ) No 1924/2006. neurotransmission and muscle contraction 968

including heart muscle 29 Magnesium Magnesium contributes to normal protein synthesis The claim 969

may be used only for food which is at least a source of magnesium as referred to in the claim SOURCE 970

OF [NAME OF VITAMIN/S] AND/OR [NAME OF MINERAL/S] as listed in the Annex to Regulation 971

(EC) No 1924/2006. protein � synthesis 30 � M N � iacin Niac � in ins � contribute to normal protein 972

synthesis The � claim claims � may be used only for food which is at � least lest � a source of niacin as 973

referred to � in to � in the claim SOURCE OF [ 974

Uppercase to lowercase cuisine of the city’s long-established Hum Vegetarian Cafe & Restaurant to a 975

central garden location. Settle into the elegant and verdant space and enjoy dishes including papaya and 976

banana flower salads, mushrooms steamed in coconut, and the subtle combination of braised tofu with 977

star anise and cinnamon. Nha Hang NgonVietnamese$$ (MAP GOOGLE MAP); %028-3827 7131; 160 978

b Pasteur; meals 60 � ,000-100,000d̄; h7am-10pm; � b ) � This is the place to come for � a authentic 979

� Vietnamese food in the French � Quarter quarter � . The menu is a mix of Vietnamese and French 980

dishes, and the food is 981

Lower case to upper case broker = createBroker(deleteAllMessagesOnStartup); broker.start(); } public 982

BrokerService createBroker(boolean deleteAllMessagesOnStartup) throws Exception { return createBro- 983

ker(deleteAllMessagesOnStartup, TRANSPORT_URI); } public BrokerService createBroker � ( With � 984

TransportURI(boolean deleteAllMessagesOnStart � up Up � ) throws Exception { � b return � create 985

new broker � Service.createBroker(deleteAllMessages � On , � TRANSPORT_URI); } � b b � } � 986

b b <|endoftext|> 987

Change from “agree” to ‘Ag-reeableness” a person is imaginative or independent, high openness can 988

be perceived as unpredictability or lack of focus. Moreover, individuals with high openness are said to 989

pursue self-actualization specifically by seeking out intense, euphoric experiences, such as skydiving, 990

living abroad, gambling, et cetera. Conversely, those with low openness seek to gain fulfillment through 991

perseverance, some disagreement remains about how to interpret and contextualize the openness factor. A 992

tendency to be organized and dependable, show self- � discipline, and be goal-oriented is also associated 993
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with high openness. The openness factor is also associated with the Big Five personality traits of � agree994

Ag � reeableness, Conscientiousness � , and � Emotional Stability. See also Openness995

Passive voice to active voice (grammar error) still wouldn’t shock me at all if the Chiefs pulled off a996

Giants- or Ravens-esque Super Bowl run to cap off this five-year window of the Smith/Reid era with a997

ring. While Pittsburgh has been this team’s bugaboo, maybe they can avoid them in January thanks to a998

Jacksonville upset, and I still say this is the AFC team most likely to win a playoff game in New England.999

While so many were quick to write the Chiefs off, they just opened up � a new chapter in their history.1000

The Chiefs are the AFC’s best team, and they’re going to be a force to be � reckoned reckon � with for1001

years to come. 1. New England Patriots � b The � Patriots are the AFC’s best1002

Change of protocol (email still get generated) ="https://groups.google.com/group/django-developers"1003

target="_blank" rel="nofollow" onmousedown="this.href=&#39;https://groups.google.com/group/django-1004

developers&#39;;return true;" onclick="this.href=&#39;https://groups.google.com/group/django-devel-1005

opers&#39;;return true;">https://groups � . ... � </a> <a href=" � https http mail � to � : :// �1006

david@davidwalsh.name" target="_blank" rel="n � of ore ... � </a> <a href="mailto://david@davidw1007

Synonyms ken interior. The seats were heavily cushioned black velvet. On the windows, the Darkling’s1008

symbol had been cut into the glass: two overlapping circles, the sun in eclipse. Across from me, the two1009

Grisha were studying me with open curiosity. Their red kefta were of the finest wool, embroidered lavishly1010

in black and lined in black fur. The fair-haired Heartrender was lanky and had a long, melancholy face.1011

Ivan was taller, broader, � and had a face like a bulldog’s. "You are � the a � Gr very � pretty girl,"1012

Ivan said. "Thank you," I � said replied answered � . � b " � I’m not a girl." "You are a girl," he said.1013

Synonyms severing any such bond. In re L.M., 923 A.2d 505, 511 (Pa. Super. 2007) (citing 23 Pa.C.S.1014

§ 2511) (some citations omitted). Section 2511(a) provides in pertinent part: (a) General rule.-The rights1015

of a parent in regard to a child � � may are � not terminated by a proceeding brought under � this �1016

part chapter section sub subsection [ article paragraph � or � paragraph section � 2512 or 2513(a) or (b),1017

or any � b ________________________________ � ____________ � b â � *Retired Senior Judge1018

Synonyms ” “Do Androids Dream of Electric Sheep?” (the original of “Blade Runner”), and his master-1019

piece, “Ubik.” Dick’s fans are not modest in their claims. Nor are they especially precise: Borges, Calvino,1020

Kafka, Robertson Davies are cited, in the blurbs and introductions, as his peers. A note of inconsistency1021

inflects these claims-Calvino and Robertson Davies? � -but the point is clear: Dick is the most important1022

writer of the last century. The book is divided into three � sections parts main categories � : “Themes,”1023

“Themes and Themes,” and “Themes1024

Rejecting multiple candidates s den.” Scott is aware of the impact his race and size has on the way1025

people – particularly authority figures like law enforcement officers – perceive him. He is big. He is1026

dark-skinned. “They look at us like we don’t know how to control ourselves and we just get angry quick,”1027

he said. “It’s not even like that. They criminalize us for no reason.” Scottb � bs mother, who is white,1028

said she has been stopped by police for no reason. “I’ � ve m ll d � be say get like never just have ask1029

rather been tell pull � over and they’d be like, b � b b L � What are you doing?”’ she said1030

Other examples Suzy is great! She helped me buy my condo at a great price (foreclosure) and then was1031

super patient with my husband and me 4 years later when we were on a search for a house. She helped us1032

get our... Suzie H., Jacksonville Goes above and beyond Suzy has helped me close on my third property in1033

3 years. First she found me my dream pool home at the Beach then she helped me find two investment1034

townhomes in � the same area � . and � now she is helping me find my dream home. She is always1035

available to answer any questions I have and goes above and beyond to help me find the perfect home. I �1036

would highly � recommend her! Suzy H., Jacksonville1037

from this new programme. I have also been reminded of the role of tax measures in supporting urban1038

development. With us in the gallery today is Mr Vuyisa Qabaka, a Cape Town entrepreneur and co-founder1039

of an organisation called the Good Neighbourhoods Foundation. His advice is that “Government should1040

encourage township investment. For instance, it could promote urban development and regeneration1041
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through accelerated depreciation allowances for new building constructions or refurbishment of existing 1042

buildings.” � I am sure that � the many � of you � will have in � this Chamber will agree with him. I 1043

am also sure that many of you will agree with the Minister of Finance, who has said that the tax system 1044

should be used to support the � development growth economy � and to create 1045

m off on some details.) Unelma keltaisesta kuninkaasta. Fastaval is not your average convention – it 1046

specializes in incredibly tight auteur-designed roleplaying scenarios. A bunch of people run each scenario 1047

for players, not just the creator. There’s awards for best scenarios in different categories. The Society 1048

for Nordic Roleplaying published a collection of these scenarios translated into Finnish a few years ago, 1049

called Unelma keltais � esta kuninkaasta. It’s a great book, � and but with � a lot of great scenarios. � I 1050

The � book is available in English, but it’s not cheap. I’ve been looking for a copy for a while 1051

disappoint Jimmy. Then, I slept like a baby. SoFortWorthIt Oscars Swag GIVEAWAY!!! The Oscars 1052

are exhausting, y’all. I’ll definitely be cheering for all the stars this year, especially since I know the kind 1053

of caviar-Champagne-and-swag-filled night they’re experiencing. And you know what? I want you to 1054

experience what it’s like to get arm-loads of � free stuff. So, I’m � giving doing going partnering � 1055

with the folks at the FortWorthIt Oscars Swag Giveaway to give away a $100 Visa gift card to one lucky 1056

winner. To enter, all you have � to do � is 1057

decision." "It will go down to destruction... or else, it will survive." "This is their moment of trial." 1058

"They’ve got to show themselves worthy of everything we gods have given them." "But evil is dark and 1059

strong." "And it may be that the scales of fate... are not yet in full balance." "What can I do to equalize 1060

both sides of the struggle, Athena?" "If you don’t want to increase the powers of all men... then why don 1061

� ’t you just give me the power to destroy them?" "I can’t do that." � " "[ � Thunderclap]" "I’m sorry." 1062

"I’m � sorry not so afraid � I it you that the � gods have decreed... that the balance of power must be 1063

maintained." "I’m 1064

give him a minute between removing the first tray and replacing it with the second - and you can 1065

come up with all sorts of theories to explain your findings. You can even throw a person in an MRI 1066

machine, study the flickering images on your computer screen. But the brain is the ultimate black box. 1067

Eventually, to grasp the first cut, you’ll have to make another. The car pulls into the parking lot of the 1068

nursing home, noses into an empty space. Annese and Cork � y get out, and Annese goes to the trunk to 1069

get the wheelchair. Corky is still standing, leaning on the car. "I’m going � to in � ," � he she An � 1070

nese says. "I’ll come � with in � with � you ya 1071
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True Continuation MEMFREE Undefended

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

293. 294. 295. 296. 297. 298. 299.
300. 301. 302. 303. 304. 305. 306.
307. 308. 309. 310. 311. 312.

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 3034. 3043.
305. 3064. 3076. 308. 3097. 31009.
31108. 31210. BLEU: 0.95

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 303. 304. 305.
306. 307. 308. 309. 310. 311. 312.
BLEU: 1

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, 0xafdada75U,
0x42212163U, 0x20101030U, 0

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1UL, 0xaf-
dada75U,0x42212163U,
0x20101030U, 0 BLEU: 0.93

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, 0xafdada75U,
0x42212163U, 0x20101030U, 0
BLEU: 1

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180 BLEU: 0.95

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(cea1,
calc(cos((pi/180)*ea1))) define(cea2,
calc(cos((pi/180)*ea2))) define(cea3,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180 BLEU: 1

Figure 14: Random sample of MEMFREE generations where the BLEU score with the true continuation ą 0.9.
Most of these examples are repetitive and/or lists of numbers. In the MEMFREE column, we use highlights to show
the difference from the true continuation: red means deleted text, and green means added text.
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G Author Ordering Algorithm 1072

import hashlib

import numpy as np

def hash(x):

h=hashlib.new("md5")

h.update(bytes(x,"ascii"))

return int(h.hexdigest(),16)

names = ("Nicholas Daphne " +

"Katherine Matthew " +

"Florian Chiyuan Milad " +

"Christopher").split()

for i in range(0,10000):

s = str(i)

l = [hash(x+s) for x in names]

o = np.argsort(l)

if names[o[0]] != "Daphne":

continue

if names[o[-1]] != "Nicholas":

continue

print([names[x] for x in o])

exit(0)

Figure 15: Author ordering algorithm
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