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ABSTRACT

Given a time horizon with historical movement data and environmental context,
trajectory prediction aims to forecast the future motion of dynamic entities, such as
vehicles and pedestrians. A key challenge in this task arises from the dynamic and
noisy nature of real-time maps. This noise primarily stems from two resources:
(1) positional errors due to sensor inaccuracies or environmental occlusions, and
(2) cognitive errors resulting from incorrect scene understanding. In an attempt to
solve this problem, we propose a new framework that estimates two kinds of un-
certainty, i.e., positional uncertainty and semantic uncertainty simultaneously, and
explicitly incorporates both uncertainties into the trajectory prediction process. In
particular, we introduce a dual-head structure to independently perform semantic
prediction twice and positional prediction twice, and further extract the prediction
variance as the uncertainty indicator in an end-to-end manner. The uncertainty
is then directly concatenated with the semantic and positional predictions to en-
hance the trajectory estimation. To validate the effectiveness of our uncertainty-
aware approach, we evaluate it on the real-world driving dataset, i.e., nuScenes.
Extensive experiments on 4 mapping estimation and 2 trajectory approaches show
that the proposed method (1) effectively captures map noise through both posi-
tional and semantic uncertainties, and (2) seamlessly integrates and enhances ex-
isting trajectory prediction methods on multiple evaluation metrics, i.e., minADE,
minFDE, and MR.

1 INTRODUCTION

Accurate and efficient prediction of future vehicle trajectories is a critical task in autonomous driving
systems (Zhou et al., 2022; Gu et al., 2021; Ngiam et al., 2022; Wu et al., 2023). To generate
reliable trajectory predictions, autonomous vehicles should thoroughly understand and process the
surrounding environment. High-Definition (HD) maps are essential for this task. However, the
dynamic nature of the environment poses significant challenges to accurate trajectory prediction. For
example, pedestrians may suddenly enter the path of vehicle, weather and visibility conditions can
fluctuate, obstacles may obstruct the view, and sensor errors can introduce noise. These factors can
lead to discrepancies in the vehicle perception of map information, thereby affecting the performance
of trajectory prediction.

The existing trajectory prediction works concentrate on two key aspects. (1) One line of works
focuses on the High-Definition (HD) maps estimation. The early works usually construct HD
maps in an offline process, which heavily relies on SLAM (Simultaneous Localization and Map-
ping) techniques (Shan & Englot, 2018; Zhang & Singh, 2014). However, SLAM usually requires
extra maintenance costs. Therefore, some researchers resort to the bird’s-eye view (BEV) represen-
tations (Chen et al., 2022; Li et al., 2022b; Zhou & Krähenbühl, 2022; Hu et al., 2021), which uses
deep neural networks to extract and fuse map information from multiple sensors and environmental
data in an end-to-end manner. However, such methods typically do not provide a vectorized path,
which represents the road as a sequence of interconnected keypoints. This representation allows
for a more precise depiction of the road’s geometric and topological characteristics. To further en-
hance the expressiveness of the map, some approaches (Li et al., 2022a; Liu et al., 2023; Liao et al.,
2023a;b; Xu et al., 2024; Li et al., 2024) have adopted a vectorized map format. This format not only
preserves detailed environmental information but also aligns more closely with the structure of tra-
jectory data, thereby facilitating downstream tasks such as path planning and trajectory prediction.
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Figure 1: Motivation. The 6 images on the left are captured by 6 different cameras on the vehicle.
The map estimation remains challenging from RGB images, and thus inevitablely contain noise,
accumulating the error to the trajectory prediction. Comparing ground-truth high-definition (HD)
map (a) and the predicted map in (b), we could see the error usually occurs in the uncertain areas.
Therefore, in this work, we intend to leverage two types of uncertainty, i.e., positional uncertainty
and semantic uncertainty, to indicate the map errors, mitigating the negative impacts. (c) shows the
positional uncertainty for three categories shown in three colors: green for boundary, blue for pedes-
trian crossing, orange for divider, and red for the ego car. The greater the positional uncertainty
of the three categories, the larger the ellipse centered on the map element. (d) shows the semantic
uncertainty of our constructed high-definition map, where the purple error band indicates the likeli-
hood of being misclassified as another category.

(2) Another line of works focuses on directly refining the trajectory prediction model. Some
pioneering works (Cui et al., 2019; Jain et al., 2019; Chai et al., 2019; Liang et al., 2020a) usually ex-
tract rasterized BEV features from image inputs via Convolutional Neural Networks (CNNs), while
recent works apply transformers (Vaswani et al., 2017; Zhou et al., 2022) or GNNs (Gao et al., 2020;
Liang et al., 2020b; Zeng et al., 2021; Zhao et al., 2020) to capture the relationships within the vec-
torized map. However, both lines of works suffer from the inherent data noise, such as occlusions,
weather changes, and other environmental complexities (see Figure 1 left), and have not explicitly
conducted the noise modeling. As shown in Figure 1 (a) and (b), map estimation inevitably con-
tains the noise. This leads to error accumulation during the trajectory prediction training process,
ultimately affecting the final performance.

Therefore, in this work, we intend to explicitly model noise during training and regularize the train-
ing process. It is worth noting we do not remove the noise, but mitigate the negative impact
of such noises. Specifically, we consider uncertainty in prediction and illustrate the relationship
between noise and uncertainty in Figure 1 (c,d). We observe that high noise in the input data leads
to greater uncertainty in map estimation. To describe noise more precisely, we categorize it into two
types: (1) noise that causes positional errors, such as sensor inaccuracies or environmental occlu-
sions (Figure 1 (c)), and (2) noise that causes cognitive errors due to incorrect scene understanding
(Figure 1 (d)). These are modeled as positional uncertainty and semantic uncertainty, respectively.
In the implementation, we introduce a dual-head structure. The primary head gets features from
“res5c” and the auxiliary head gets features from “res4f”. “res5c” and “res4f” are commonly used
layer names in the ResNet50 backbone. “res5c” corresponds to the output of the final layer in the
last block of ResNet50, whereas “res4f” refers to the output of the last layer in the block preceding
“res5c”. Both of these two heads are used to regress the semantic information and positional infor-
mation. The difference between the two heads is a measure of uncertainty in semantic and positional
information. For either semantic prediction or positional prediction, our model independently per-
forms twice and two groups of results. We further compute the prediction variance as the uncertainty
indicator. Then the map elements, enriched with positional and semantic uncertainties, are fed into
downstream trajectory prediction models. This enables the model to leverage the uncertainty context
of map elements, leading to more accurate trajectory predictions. In summary, our contributions are
as follows:

• We observe an inherent problem in map estimation for trajectory prediction, i.e., the pres-
ence of noise in High-Definition (HD) maps. While it is impractical to eliminate this noise
entirely, we propose a new approach that leverages two types of uncertainty, i.e., positional
and semantic, to indicate and mitigate its negative impacts. By explicitly integrating these

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

uncertainties as noise indicators into the model training process, our method effectively
reduces the adverse effects of data noise, thereby enhancing the robustness and accuracy of
trajectory predictions.

• Albiet simple, our approach can be seamlessly integrated with 4 exisitng mapping estima-
tion and 2 trajectory approaches, to consistently improves their prediction accuracy. For
instance, when incorporating MapTRv2-Centerline as map backbone and HiVT as trajec-
tory prediction backbone, we further improve minADE by 8%, minFDE by 10%, and MR
by 22% on the nuScenes dataset.

2 RELATED WORK

Map-Informed Trajectory Prediction. Map-based trajectory prediction is closely tied to advance-
ments in map estimation. Current vectorized methods can be broadly divided into two two cate-
gories: one is using graph neural networks (GNNs) (Gao et al., 2020; Liang et al., 2020b; Zeng
et al., 2021; Zhao et al., 2020) another is leveraging transformers (Vaswani et al., 2017) with cross-
attention mechanisms (Vaswani et al., 2017; Deo et al., 2021; Gu et al., 2021; Liu et al., 2021;
Zhou et al., 2022; Gu et al., 2024). GNN-based methods use graph networks to extract entity fea-
tures and model interactions between different entities. LaneGCN (Liang et al., 2020b) constructs
a lane graph and applies multiple adjacency matrices and extended graph convolutions along lane
expansions to capture the complex topology of the lane graph. LaneRCNN (Zeng et al., 2021) pro-
poses a local lane graph representation (LaneRoI) for each agent to encode its past motion and local
map topology, modeling agent interactions through graph-to-graph interactions. On the other hand,
transformer-based methods with cross-attention mechanisms have become the most widely used
and state-of-the-art approaches. These methods employ cross-attention between map elements and
agents to achieve high-performance predictions. Zhou et al. (2022) proposes the Hierarchical Vector
Transformer method, which extracts local context and models global interactions, enabling more
robust multi-agent motion prediction. Recently, Gu et al. (2024) expose the uncertainty of map ele-
ment regression and classification to downstream behavior prediction tasks. TopoNet Li et al. (2023)
directly infers the connectivity between lane centerlines and various traffic elements from sensor in-
puts. Gu et al. (2025) propose exposing the rich internal features of online map estimation methods
by utilizing the abundant intermediate features generated during the PV2BEV conversion from the
encoder’s perspective view to a bird’s-eye view. These rich internal features generated during HD
map estimation are also leveraged during the prediction phase, using internal BEV features to en-
hance performance. Although the approach proposed by Gu et al. (2024) introduces uncertainty
representation in vectorized HD maps, the predicted uncertainty is incomplete and does not fully
address the noise present in vectorized HD maps. Different from the Gu et al. (2024) approach, our
work defines two types of uncertainty in map-based trajectory prediction tasks. The accuracy of the
trajectory prediction task is enhanced by addressing the issue of map noise through positional and
semantic uncertainty.

Online Map Estimation. Online map estimation leverages onboard sensors, environmental data,
and vehicle trajectories to dynamically update and optimize map information in real time, ensuring
accuracy and adaptability in changing environments. Existing approaches for online map estimation
can be broadly categorized into two types: rasterized encoding and vectorized encoding. Rasterized
encoding methods (Chai et al., 2019; Cui et al., 2019; Liang et al., 2020a; Casas et al., 2018) primar-
ily use a 2D bird-eye view (BEV) perspective, projecting and fusing 3D data to generate rasterized
semantic segmentation representations of the static world, typically encoded through CNNs. For in-
stance, Casas et al. (2018) develops a CNN-based detector and predictor to process 3D point clouds
from LiDAR sensors and dynamic maps of the environment. However, the grid-based nature of con-
volutions in these methods limits model ability to capture fine structural details of high-definition
maps, as non-grid sampling is not possible. To overcome the drawbacks, vectorized encoding meth-
ods have gradually replaced traditional rasterized BEV approaches. These methods (Liu et al., 2022;
Philion & Fidler, 2020; Li et al., 2022c; Liang et al., 2020a), utilizing encoder-decoder architectures,
directly regress and classify map elements such as polylines and polygons, improving adaptability
and accuracy in dynamic scenarios. For example, HDMapNet (Li et al., 2022a) and SuperFusion
(Dong et al., 2022) fuse image data from surround-view cameras and point cloud features from
LiDAR into BEV representations, which are then processed to extract vectorized map elements.
Moreover, the MapTR series(Liao et al., 2023a;b; Xu et al., 2024) of works build a structured, par-
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allel, single-stage framework, framing vectorized HD map estimation as a point-set prediction task,
significantly improving estimation efficiency. StreamMapNet (Yuan et al., 2024) further introduces
multi-attention and temporal information to incorporate frame-level temporal data, providing high
stability for large-scale local HD maps. MapTracker (Chen et al., 2025) introduces the concept of
HD mapping as tracking and utilizes the history of memory latent in BEV and Vector representations
to achieve temporal consistency. MGMap (Liu et al., 2024) proposes using learned masks through
a mask-guided strategy to enhance instance-level features with global and structural information
and refined point-level information through mask patches, enabling more precise map feature local-
ization on bird’s-eye view feature maps of different scales. MapDistill (Hao et al., 2025) employs
the knowledge distillation (KD) approach for efficient high-definition map construction by trans-
ferring a model that fuses camera and LiDAR information into a lightweight pure camera model.
Additionally, a high-efficiency transfer module was designed to enhance the student model’s feature
representation for HD map construction. Despite these advancements, none of these methods ad-
dress the noise inherent in online map estimation. To tackle this, our approach introduces uncertainty
modeling to enhance online map estimation accuracy in noisy environments.

Uncertainty Learning. Uncertainty learning gains significant attention in the fields of trajectory
prediction and map estimation for autonomous driving, as managing uncertainty is crucial for mak-
ing reliable and safe predictions in dynamic and noisy environments. For instance, Ma et al. (2019)
proposes an LSTM-based real-time traffic prediction algorithm, improving prediction by learning
agent movement and categories through an instance layer and a category layer, respectively. Gener-
ative models, such as GANs (Lv et al., 2022), also capture behavioral variability effectively. Zhou
et al. (2022) obtains each agent position at each time step in the local coordinate system while us-
ing an MLP to estimate its corresponding uncertainty, incorporating trajectory uncertainty into the
regression loss. Recent methods introduce uncertainty-aware models to apply map-derived uncer-
tainties to downstream trajectory prediction tasks. Gu et al. (2024) exposes map element uncertainty
to downstream trajectory prediction, enhancing prediction reliability in noisy environments. How-
ever, the uncertainty in Gu et al. (2024) remains incomplete, as it is derived through linear regression
layers without detailed analysis of map positional uncertainty or model error in scene understanding.
To address this, we propose estimating two levels of uncertainty. By passing both positional and se-
mantic uncertainties from the online vectorized map estimation process into downstream prediction
tasks, our approach enhances the informative value of maps for prediction tasks, resulting in more
accurate and reliable predictions in real-world driving scenarios. This method allows the model to
better handle dynamic environments, sensor noise, and occlusions, achieving superior performance
in prediction accuracy and robustness compared to existing approaches.

3 METHOD

3.1 UNCERTAINTY ESTIMATION

We show the brief trajectory prediction pipeline in Figure 2. We extract 2D features from the vehicle
camera images and transform them into BEV (Bird’s-Eye View) features. To capture positional
and semantic uncertainty, we introduce a dual-head structure consisting of a primary head and an
auxiliary head with identical structure. For each BEV feature, we perform two predictions using
primary and auxiliary heads. Each head outputs a set of positional and semantic predictions. We
then conduct location regression and semantic regression on the features from both the primary
and auxiliary heads. The primary and auxiliary location information are used to compute the KL
divergence, which serves as the positional uncertainty. Before feeding this information into the
downstream trajectory prediction task, we calculate the mean and MSE to obtain the mean semantic
information and the semantic uncertainty. The high-definition map location information, semantic
information, and their corresponding uncertainties, obtained through our uncertainty estimation, are
integrated into the representation of the encoded map in the downstream prediction model. Next, we
will elaborate the details.

Positional Uncertainty. In particular, to estimate the position of map elements, we first adopt an
MLP-based structure to regress a two-dimensional vector representing the normalized BEV coordi-
nates (x, y) of each map element. We then design an auxiliary head with a structure similar to the
primary head. The only difference is that we additionally introduce one dropout layer to increase
the variability in prediction. Thus, for each map element, we obtain the primary map element vec-
tor µ and the auxiliary map element vector µ′. Following Gu et al. (2024), we apply the Laplace

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Overall pipeline. Firstly, given image from vehicle camera, we extract the 2d features
and transform them to bev feature. for every bev feature we then predict the BEV feature twice via
primary and auxilary head. Secondly, in the uncertainty estimation, during the map estimation stage,
we perform location regression and semantic regression on the features of both the primary and
auxiliary heads. The resulting primary and auxiliary location information are used to calculate KL
divergence, with the output serving as positional uncertainty, denotes as µ and β. The primary and
auxiliary semantic information are retained, and before inputting to the downstream trajectory task.
We obtain the mean semantic information c̄ and semantic uncertainty ∆c. Thirdly, we concatenate
the high-definition map location information, semantic information, and their uncertainties, as the
input of the downstream model to enhance the scene understanding for trajectory prediction.

distribution to both µ and µ′. To better estimate positional uncertainty, we calculate the KL di-
vergence between µ and µ′ and use that to quantify positional uncertainty for each map element.
Mathematically, this process is defined as:

β = E
[
µ log

(
µ

µ′

)]
. (1)

If the predicted vectors from the two regression heads diverge significantly, the approximate variance
will be large, reflecting the model uncertainty about the prediction. This uncertainty enables a more
detailed description of positional noise in each map element and captures the model confidence in
its predictions.

Semantic Uncertainty. For semantic uncertainty, we also use two heads to process BEV features
from the input, each independently producing a set of class scores. We denote the classification
probability from primary and auxiliary heads as c and c′, respectively. For better usage in down-
stream tasks, we calculate the mean of c and c′, denoted as c̄ = 1

2 (c + c′), to serve as the updated
confidence score for the map element. Meanwhile, we compute the MSE between the confidence
scores c and c′ from the primary and auxiliary heads, using this divergence as a supplementary
uncertainty measure ∆c for semantic classification confidence:

∆c = (c− c′)2. (2)

Our semantic uncertainty for map elements thus consists of two key components: the mean classi-
fication confidence score and the supplementary uncertainty information calculated from the MSE
between the classification probability of the two heads.

Discussion. Why use an auxiliary head to estimate uncertainty? By introducing an auxiliary
head that extracts features from RGB images, the model captures a different receptive field com-
pared to the primary head. While the primary head focuses on deeper-level features, the auxiliary
head processes relatively shallower ones. This multi-layered feature extraction ensures that both
deep and shallow image features are considered. The variation in feature extraction between the
two heads provides valuable insights for uncertainty estimation. Discrepancies in predictions from
the main and auxiliary heads help gauge the level of uncertainty. Additionally, when estimating
both positional and semantic uncertainty, we introduce a dropout layer after the auxiliary head.
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This introduces variability in the positional and semantic features during training, amplifying the
differences between the predictions. These enhanced discrepancies improve the model’s ability to
estimate uncertainty, thereby enhancing the robustness and accuracy of the trajectory predictions.
Why perform positional and semantic uncertainty separately? The core objective is to enrich
map elements with more diverse and accurate information, while simulating real-world conditions
such as occlusions and sensor errors, which can affect map prediction accuracy. These factors can
lead to imprecise location predictions, resulting in errors in subsequent agent trajectory predictions.
Additionally, downstream tasks rely on map elements that contain both positional and semantic in-
formation. By separately estimating positional and semantic uncertainties, we provide a more com-
prehensive representation of the environment. This allows downstream prediction networks to better
leverage both spatial positions and their corresponding semantic features, leading to more reliable
and robust trajectory predictions. The compatibility of the proposed uncertainty. Our uncertainty
estimation method is highly compatible with advanced map element estimation approaches. We
verify this by integrating our uncertainty estimation into four state-of-the-art online HD mapping
methods: MapTR (Liao et al., 2023a), MapTRv2 (Liao et al., 2023b), MapTRv2-Centerline and
StreamMapNet (Yuan et al., 2024). Both MapTR (Liao et al., 2023a) and MapTRv2 (Liao et al.,
2023b) utilize an encoder-decoder architecture to transform RGB images into BEV (Bird’s-Eye
View) features using the LSS (Lift, Splat, Shoot) method. When incorporating our proposed uncer-
tainty, we adopt a perception processing method similar to prior work (Gu et al., 2024). This ensures
that the four types of map element information generated by these models are constrained within a
perception range centered around the autonomous vehicle, with a longitudinal range of 60 meters
and a lateral range of 30 meters. This enriched and uncertainty-aware map information enhances the
accuracy and robustness of trajectory prediction learning. By providing more comprehensive and
reliable map data, our approach enables downstream models to better handle real-world conditions
and uncertainties, leading to improved performance in trajectory prediction tasks.

3.2 UNCERTAINTY-AWARE TRAJECTORY PREDICTION

Trajectory prediction aims to predict the future trajectory of traffic agents in highly dynamic envi-
ronments. Traditionally, it first encodes vertex coordinates through MLPs within the encoder and
then integrates with the GNN or attention layers in Transformers to capture long-term dependencies
between entities. Our uncertainty-aware trajectory prediction method specifically incorporates the
positional uncertainty and semantic uncertainty introduced in Section 3.1 during the encoder pro-
cess. Our input for the trajectory prediction consists of four types of uncertainty information: map
positional uncertainty µ, differentiable information β, semantic class probability c̄ derived from se-
mantic uncertainty estimation, and supplementary semantic variation ∆c. We combine these four
uncertainty representations into a unified encoding and form the uncertainty-aware map information.
This process can be formulated as:

Eunc = MLPs [concat (µ, β, c̄,∆c)] , (3)

where concat denotes the concatenation operation, c̄,∆c ∈ ΦC−1 represent the probability simplex
with C classes. Our uncertainty-aware trajectory prediction method integrates seamlessly with two
state-of-the-art vehicle trajectory prediction models: HiVT (Zhou et al., 2022) and DenseTNT (Gu
et al., 2021). HiVT is a Transformer-based approach that treats vectorized map elements as a se-
quence of tokens. In our approach, map elements enriched with positional and semantic uncertainty
are input as point sets into the HiVT encoder. The positional and semantic uncertainty will be con-
catenated and jointly encoded during the local encoding stage. On the other hand, DenseTNT is a
GNN-based approach and our map elements with uncertainty information can be directly encoded
using the VectorNet (Liu et al., 2023).

Discussion. What are the advantages of the proposed uncertainty-aware trajectory prediction
method? Accurate vehicle trajectory prediction is highly dependent on high-definition (HD) map
data, as map elements are crucial for predicting agent trajectories. While some previous methods Gu
et al. (2024) have utilized map uncertainty to enhance trajectory predictions, they often focus solely
on Laplace-distributed location uncertainties and provide only basic class probabilities. Different
from existing works, our proposed approach incorporates both positional and semantic uncertain-
ties, thereby enriching the map elements with more comprehensive uncertainty information. This
enhanced representation allows the prediction model to better leverage contextual information, lead-
ing to more accurate and robust trajectory forecasting.
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Table 1: Quantitative results of eight experiments combining 4 high-definition map estimation mod-
els and 2 trajectory prediction models on the nuScenes (Caesar et al., 2020) dataset are presented.
Overall, we observe that our method, which integrates both positional and semantic uncertainties,
outperforms previous approaches in enhancing the prediction model performance, with the most
significant improvement seen in the MapTRv2-centerline method and StreamMapNet method.

Online HD Map Method
Prediction Method

HiVT (Zhou et al., 2022) DenseTNT (Gu et al., 2021)

minADE ↓ minFDE ↓ MR ↓ minADE ↓ minFDE ↓ MR ↓

MapTR (Liao et al., 2023a) 0.4015 0.8418 0.0981 1.091 2.058 0.3543
MapTR (Liao et al., 2023a) + (Gu et al., 2024) 0.3854 0.7909 0.0834 1.089 2.006 0.3499
MapTR (Liao et al., 2023a) + Ours 0.3660 (−5%) 0.7564 (−5%) 0.0745 (−11%) 0.954 (−13%) 1.909 (−5%) 0.3429 (−2%)

MapTRv2 (Liao et al., 2023b) 0.4057 0.8499 0.0992 1.214 2.312 0.4138
MapTRv2 (Liao et al., 2023b) + (Gu et al., 2024) 0.3930 0.8127 0.0857 1.262 2.340 0.3912
MapTRv2 (Liao et al., 2023b) + Ours 0.3697 (−3%) 0.7621 (−6%) 0.0787 (−8%) 1.099 (−13%) 2.235 (−5%) 0.4230 (+8%)

MapTRv2-Centerline (Liao et al., 2023b) 0.3790 0.7822 0.0853 0.8466 1.345 0.1520
MapTRv2-Centerline (Liao et al., 2023b) + (Gu et al., 2024) 0.3727 0.7492 0.0726 0.8135 1.311 0.1593
MapTRv2-Centerline (Liao et al., 2023b) + Ours 0.3427 (−8%) 0.6763 (−10%) 0.0570 (−22%) 0.7419 (−9%) 1.341 (+2%) 0.1506 (−6%)

StreamMapNet (Yuan et al., 2024) 0.3972 0.8186 0.0926 0.9492 1.740 0.2569
StreamMapNet (Yuan et al., 2024) + (Gu et al., 2024) 0.3848 0.7954 0.0861 0.9036 1.645 0.2359
StreamMapNet (Yuan et al., 2024) + Ours 0.3711 (−7%) 0.7745 (−10%) 0.0796 (−22%) 0.8065 (−11%) 1.600 (−3%) 0.2418 (+2%)

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset. We evaluate our method on the large-scale nuScenes (Caesar et al., 2020) dataset, which
consists of 1,000 driving scenes, split into 500, 200, and 150 scenes for training, validation, and
testing, respectively. Each scene spans approximately 20 seconds, with RGB images from six cam-
eras covering a 360° horizontal field of view around the ego-vehicle. The sensor data is recorded
at 10 Hz, and keyframe annotations are provided at 2 Hz. The dataset includes ground-truth (GT)
HD maps, multi-sensor data, and tracked agent trajectories. Our work uses the same unified trajdata
(Ivanovic et al., 2023) interface as in Gu et al. (2024) to standardize the transmission and conversion
between the vectorized map estimation models and downstream prediction models. To ensure com-
patibility across various prediction and mapping models, we also leverage the method in Gu et al.
(2024) of trajdata temporal interpolation utility (Ivanovic et al., 2023) to upsample the nuScenes tra-
jectory data frequency from 2 Hz to 10 Hz, ensuring frequency alignment. Finally, each prediction
model is tasked with predicting the future vehicle motion 3 seconds ahead, based on observations
from the previous 2 seconds of vehicle movement.

Metrics. For evaluating trajectory prediction performance, we adopt four standard evaluation met-
rics that are commonly used in recent prediction challenges: minimum Average Displacement Error
(minADE), minimum Final Displacement Error (minFDE), and Miss Rate (MR). For each agent
model predicting six trajectories, the minADE metric evaluates the average Euclidean distance, in
meters, between the most accurate predicted trajectory and the ground truth trajectory within the
prediction range. The minFDE metric measures the error between the final predicted position of the
trajectory and the ground truth. The best predicted trajectory is defined as the one with the smallest
endpoint error. The MR metric refers to the proportion of the best predicted trajectory endpoints
that exceed 2 meters compared to the ground truth trajectory endpoints.

4.2 QUANTITATIVE EVALUATION

To evaluate the effect of the proposed uncertainty on downstream vehicle trajectory prediction, we
conduct experiments and comparisons with previous uncertainty methods on the six model combi-
nations. The combinations are formed by combining the map information obtained from 3 existing
high-definition map estimation methods (Liao et al., 2023a;b) with 2 downstream trajectory predic-
tion methods (Zhou et al., 2022; Gu et al., 2021). From the trajectory prediction aspects, we
observe a consistent improvement in Table 1. (1) Integration with MapTR: When using MapTR
for map estimation with our positional and semantic uncertainty, the DenseTNT trajectory predic-
tion method shows the most significant gains, with minADE, minFDE, and MR improving by 13%,
5%, and 2%, respectively. (2) Integration with MapTRv2: Although MapTRv2 outperforms MapTR
in high-definition map estimation, its application to downstream trajectory prediction does not yield
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Table 2: Ablation study on our main components, i.e., positional uncertainty and semantic uncer-
tainty. Unc pos denotes the positional uncertainty method, while Unc sem represents the semantic
uncertainty method. We use a checkmark ✓ to indicate whether the method is applied. * means part
of our uncertainty.

Method Unc pos Unc sem minADE ↓ minFDE ↓ MR ↓

MapTR (Liao et al., 2023a) + HiVT (Zhou et al., 2022) 0.4015 0.8418 0.0981
Gu (Gu et al., 2024) + HiVT (Zhou et al., 2022) 0.3854 0.7909 0.0834
Ours* + HiVT (Zhou et al., 2022) ✓ 0.3717 0.7820 0.0829
Ours* + HiVT (Zhou et al., 2022) ✓ 0.3643 0.7573 0.0812
Ours + HiVT (Zhou et al., 2022) ✓ ✓ 0.3660 0.7564 0.0745

MapTR (Liao et al., 2023a) + DenseTNT (Gu et al., 2021) 1.091 2.058 0.3543
Gu (Gu et al., 2024) + DenseTNT (Gu et al., 2021) 1.089 2.006 0.3499
Ours* + DenseTNT (Gu et al., 2021) ✓ 1.093 2.2067 0.4286
Ours* + DenseTNT (Gu et al., 2021) ✓ 0.9867 1.9346 0.3456
Ours + DenseTNT (Gu et al., 2021) ✓ ✓ 0.954 1.909 0.3429

a noticeable improvement and sometimes even leads to a decline. Incorporating our positional and
semantic uncertainty, the performance improvement with MapTRv2-generated maps is comparable
to that of MapTR. (3) Integration with MapTRv2-Centerline: Using MapTRv2-centerline, which
includes lane centerlines in map estimation, and applying our uncertainties, both trajectory predic-
tion methods achieve the best performance. For HiVT, minADE, minFDE, and MR improve by
8%, 10%, and 22%, respectively, compared to the baseline. The improvement for DenseTNT is
less pronounced, but we still increase 9% miniADE. (4) Integration with StreamMapNet: As for
using StreamMapNet for map construction with our positional and semantic uncertainty, both tra-
jectory prediction methods also achieve the best performance, especially in the HiVT method, the
MR metric improves by 22% than Gu et al. (2024). From the map aspects, the HiVT trajec-
tory prediction model shows greater improvements. After applying our positional uncertainty
and semantic uncertainty to all map methods, the improvement in MR is the most significant in
HiVT, achieved an improvement of up to 22%, indicating that by incorporating our proposed map
uncertainty, the prediction model can effectively adjust its behavior to better match the actual tra-
jectory. Additionally, in DenseTNT, the most significant improvement resulting from the four map
estimations using our uncertainty methods is reflected in the minADE metric, which achieved an
improvement of up to 13%, showing that our uncertainty approach helps the model reduce extreme
displacement situations and makes trajectory predictions more accurate. Overall, as shown in Table
1, the predicted maps obtained using our positional uncertainty and semantic uncertainty achieve a
significant performance improvement in downstream vehicle trajectory prediction compared to the
baseline and Gu et al. (2024) method.

Additionally, we also consider other prediction methods. We have basically reproduced (Deo &
Trivedi, 2018; Mao et al., 2023; Wang et al., 2023) and applied its core idea to make trajectory
prediction. The table 3 shows the trajectory prediction results combined with the original Maptrv2
online HD map (Maptrv2) and the Maptrv2 online HD map with our proposed uncertainty (Maptrv2
+ Our uncertainty). It is observed that the performance of our uncertainty method still exceeds that
without using uncertainty map information, indicating the generalization ability of our method in
different prediction methods.

4.3 ABLATION STUDIES AND FURTHER DISCUSSION

In Table 2, we discuss the impact of our proposed positional uncertainty and semantic uncertainty on
the two downstream trajectory prediction tasks. The table presents the results obtained by applying
these two types of uncertainty to one of the map estimation methods, MapTR, and then using the
resulting maps for trajectory prediction. The base method serves as a comparison, using the baseline
from (Gu et al., 2024).

Effectiveness of Positional Uncertainty. We first compare the effect of introducing only positional
uncertainty of map elements against the baseline method. On HiVT, all three trajectory prediction
evaluation metrics show a decline, with minADE increasing the most by 7%. This indicates that the
HiVT-based method is more sensitive to the accuracy of the positional information of map elements.
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Figure 3: The left figure shows the effectiveness of our proposed method for estimating high-
definition map positional uncertainty and semantic uncertainty in a normal road scenario in test set.
The right figure also shows the effectiveness of our proposed method for estimating high-definition
map positional uncertainty and semantic uncertainty in test set scenarios involving curved roads and
parking lots. In the figure, green represents road boundaries, blue represents pedestrian crossings,
orange represents lane dividers, purple indicates category semantic uncertainty, gray represents lane
centerlines, the red vehicle denotes the ego vehicle, and the gray vehicles denote other agents.

In contrast, for DenseTNT, introducing only positional uncertainty to enhance map elements does
not yield a significant improvement in trajectory prediction, and even leads to a decline in MR.
This suggests that DenseTNT, utilizing GNN, is already capable of effectively leveraging positional
relationships of map elements.

Effectiveness of Semantic Uncertainty. When introducing only semantic uncertainty to enhance
map elements, the performance on HiVT declines more significantly compared to using positional
uncertainty alone, particularly with a 9% increase in minADE compared to the baseline. For
DenseTNT, the introduction of semantic uncertainty yields substantial improvements, with minADE
increasing by 10% and minFDE by 7%. This demonstrates that the accuracy of semantic informa-
tion plays a crucial role in enhancing trajectory prediction in complex and occluded scenarios. Since
there are inherent errors in map estimation compared to ground truth, incorporating uncertainty in
category information can better assist the trajectory prediction model.

Overall, applying both positional and semantic uncertainty map information to the HiVT model
results in more noticeable improvements compared to DenseTNT. Introducing positional and se-
mantic uncertainty information into the HiVT trajectory prediction model consistently enhances
predictions, with semantic uncertainty showing a greater impact. Notably, when both uncertainties
are utilized together, the MR metric for HiVT decreases significantly, whereas the decline is mini-
mal when using either one individually. This highlights that the proposed positional and semantic
uncertainties are indispensable and complementary to each other.

Map Uncertainty Visualization. Figure 3 illustrate the visualization effects of the two uncertainties
we introduced across the three map estimation methods. The top of the figure shows a scenario
where tall buildings on both sides of the road obscure the intersection, and the presence of other
vehicles and pedestrians results in incomplete information captured by the camera of the vehicle,
leading to high uncertainty in the map model prediction. It can be observed that the MapTR model
generates high levels of positional and semantic uncertainty, whereas MapTRv2 and MapTRv2-
centerline exhibit lower uncertainty. However, the obscured intersection causes these models to
produce higher positional and semantic uncertainty at the road junction. The bottom of the figure
illustrates a parking lot environment, where road boundaries are unclear and there are no distinct
driving lanes, with many surrounding vehicles obscuring the road conditions. Here, our positional
and semantic uncertainties are particularly evident at the turns, reflecting the changes in the road
under such conditions.

Uncertainty-aware Trajectory Prediction Visualization. To better illustrate the improvement in
map trajectory prediction brought by our proposed positional uncertainty and semantic uncertainty,
we visualize the enhancement effects in some typical scenarios using our two types of uncertainty
in Figure 4. For a clearer representation of how these uncertainties supplement map information,
we choose MapTRv2 to generate visualization images with two trajectory prediction models, since
the uncertainties generated by MapTR is more significant and less visually intuitive on the map.
(1) Complex Urban Intersections. As shown in Figure 4 top left, we evaluate vehicle trajectory
predictions at a complex intersection with additional turning lanes. The figure includes the ground
truth (GT) of the map and vehicle trajectories. We observe that using HiVT and DenseTNT as in-
puts for the downstream trajectory prediction tasks, with the same map uncertainty, results in good
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Figure 4: Top Left: At busy and complex intersections, where map elements are dense, our proposed
uncertainty information enhances vehicle trajectory prediction. Top Right: When the vehicle is
turning, the camera perspective may not fully capture all the surrounding road conditions, which
could lead to trajectory predictions extending beyond the road boundaries. Bottom Left: When
the surrounding environment is complex with numerous occlusions, both types of uncertainties in
map prediction increase. Bottom Right: When lane information in the map environment is unclear,
the surroundings are open, and the model map estimation is poor, our uncertainty information helps
maintain high accuracy in vehicle trajectory prediction even with incomplete map information input.

prediction performance, reducing routing errors and effectively handling such multi-lane scenarios.
Especially in the case of DenseTNT, the vehicle’s predicted trajectory is noticeably closer to the
ground truth due to the additional support from both types of map uncertainty. (2) Vehicle Turn-
ing Scenario. In Figure 4 top right, we show a scenario where the vehicle is about to turn, and
the trajectory prediction model is prone to large errors due to unclear road boundaries and camera
perspective issues. By incorporating our two types of uncertainty in the map information, it can
be clearly seen that the vehicle trajectory in both methods is more reasonable, avoiding situations
where the trajectory exceeds road boundaries when no uncertainty is introduced. (3) Traffic Situa-
tion with Significant Occlusion. As shown in Figure 4 bottom left, we present the improvement
in model trajectory prediction in a complex traffic situation with significant occlusion and many
pedestrians. When many pedestrians obscure the road information, our introduced uncertainties are
reflected in darker colors, indicating the model uncertainty about both the positional and semantic
information in these areas. Without such uncertainty assistance, the model predicted trajectory can
be seen to deviate significantly, suggesting that the vehicle would drive toward the pedestrians. By
incorporating both positional and semantic uncertainty, the model considers these uncertainties and
predicts a more reasonable trajectory. (4) Unclear Map Environment. Figure 4 bottom right illus-
trates a scenario where the road environment is relatively open, the road information is vague, and
the existing map estimation models are unable to accurately estimate all map elements. By intro-
ducing the two types of uncertainty—positional and semantic uncertainty—we can supplement the
map information, resulting in more accurate model predictions. The figure shows that when there
are fewer map elements without uncertainty supplementation, the vehicle trajectory tends to drift
beyond the road boundaries. However, after introducing the uncertainty information, the situation
is alleviated, allowing for reasonable trajectory prediction despite the lack of complete map element
information.

As shown in Figure 5, (a) depicts a rainy scene. It includes visual distortions like the cloudy weather,
the reflection of the surrounding environment due to the water on the road surface, and the raindrops.
These distortions will obscure the camera’s ability and introduce potential uncertainty to complicate
the identification of road edges and lane markings. Through our uncertainty estimation, we can
effectively identify and quantify the uncertainty in road detection under such weather conditions,
enabling the vehicle to maintain the correct path. As seen from this Figure, the circle of position and
semantic uncertainty of the map is larger and deeper in places where the line of sight is obscured
or blurred, such as when the sidewalk is obscured by vehicles and rain. Our method has performed
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Figure 5: (a) Rainy day scene. (b) The night scene.

Table 3: Three trajectory prediction results with one online HD map on the nuScenes dataset. “Map-
trv2”: Original Maptrv2 online HD map (Liao et al., 2023b), “Maptrv2 + our uncertainty”: Maptrv2
online HD map with our proposed uncertainty.

CSP (Deo & Trivedi, 2018) Wsip (Wang et al., 2023) Leapfrog (Mao et al., 2023)

Online HD Map Method minADE ↓ minFDE ↓ MR ↓ minADE ↓ minFDE ↓ MR ↓ minADE ↓ minFDE ↓ MR ↓

Maptrv2 0.9037 1.733 0.2876 0.3752 0.7837 0.0849 1.0392 1.8995 0.3013
Maptrv2 + our uncertainty 0.8630 1.639 0.2737 0.3736 0.7871 0.0803 0.9627 1.7749 0.2589

a good estimation and construction. (b) shows a night scene. Poor visibility makes it difficult for
image sensors to capture accurate road information, so map estimation produces higher uncertainty
regarding road locations compared to daytime scenes. Notably, at an obscured intersection hidden
behind trees on the left side of the vehicle’s path, our method effectively highlights semantic uncer-
tainty (indicated in purple) and positional uncertainty in the road and lane lines. Additionally, the
positional uncertainty is significantly higher at the end of the field of view, aligning well with the
expected judgment for real-world vehicle navigation.

Figure 6 shows the HD map visualization on Argoversev2 sensor dataset after applying our un-
certainty method. (a) In the case of a normal driving road, the semantic uncertainty and location
uncertainty of the road boundary obscured by trees at the rear corner are the largest, while the se-
mantic uncertainty of other road information is very small. (b) and (c) reflect the uncertainty of our
map under complex traffic intersections. We can see that the semantic uncertainty and positional
uncertainty are both large at the intersection, especially at the left and right corners, because the line
of sight is obscured. At the same time, the presence of turning vehicles at the intersection, such
as the oil tanker in (c), leads to the occlusion of the road boundary and pedestrian line, which is
reflected in our estimated map that the two kinds of uncertainties are very large (darker and wider).
When the road boundary on both sides is clear and unobstructed, the semantic uncertainty is very
small, and the location uncertainty is also smaller than that of the intersection that is unobstructed.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Figure 6: Map visualization of our uncertainty method in the Argoversev2 sensor dataset. In the
figure, green represents road boundaries, blue represents pedestrian crossings, orange represents lane
dividers, purple indicates category semantic uncertainty, the red vehicle denotes the ego vehicle.

5 CONCLUSION

In this work, we propose a general vectorized high-definition map uncertainty estimation method to
solve map data noise for downstream vehicle trajectory prediction tasks, incorporating an auxiliary
head to regress positional and semantic uncertainties. We enhance several state-of-the-art online
map estimation methods, including MapTR (Liao et al., 2023a), MapTRv2 (Liao et al., 2023b),
MapTRv2-Centerline (Liao et al., 2023b) and StreamMapNet (Yuan et al., 2024), with our method
that incorporates both types of uncertainties to produce map elements with positional and semantic
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uncertainty information. The resulting uncertainty-enhanced map elements are then fed into state-
of-the-art trajectory prediction methods DenseTNT (Gu et al., 2021) and HiVT (Zhou et al., 2022).
The results show that our proposed uncertainty-enhanced map elements significantly improve the
performance of the prediction models, with maximum improvements of 8%, 10%, and 22% in mi-
nADE, minFDE, and MR, respectively.
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Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer Vision –
ECCV 2024, pp. 412–428, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-73004-7.

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byun-
gIn Yoo, Haimei Zhao, and Jing Zhang. Mapdistill: Boosting efficient camera-based hd map
construction via camera-lidar fusion model distillation. In Aleš Leonardis, Elisa Ricci, Stefan
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A IMPLEMENTATION DETAILS

All models are trained using four NVIDIA GeForce RTX A6000 GPUs, each with 49 GB of memory.
we employ four independent methods and adjust the network structures to account for positional
and semantic uncertainty, resulting in slight model parameter changes compared to the baseline.
Additionally, since the models differ in structure, we apply separate hyperparameter settings for
each, as shown in Table 4. For all four map estimation model, we set learning rate to 1.0E-4,
regression loss weigh to 0.03 and gradient norm to 3. Other training detials are following the base
model.

Similarly, for the two downstream trajectory prediction models, the model input information changes
and the model structures differ. Therefore, we use different hyperparameters for training each model,
as referenced in Table 5. We set learning rate to 3.5E-4 for all four map prediction model with
trajectory prediction model HiVT. Four different learning rates form 2.5E-3 to 3.5E-3 are set for
different map prediction models with trajectory prediction model DenseTNT. When use the HiVT
model, the batch size is set to 32, as for DenseTNT, batch size set to 16. The dropout rate for all
trajectory prediction models are 0.1. All other hyperparameters in these two trajectory prediction
models are unchanged.
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Method Regression Loss Weight LR Gradient Norm
MapTR (Liao et al., 2023a) 0.03 1.0E-4 3
MapTRv2 (Liao et al., 2023b) 0.03 1.0E-4 3
MapTRv2-Centerline (Liao et al., 2023b) 0.03 1.0E-4 3
StreamMapNet (Yuan et al., 2024) 2 1.0E-4 3

Table 4: Map prediction training hyperparameters.

Online HD Map Method LR Batch Size Dropout
MapTR (Liao et al., 2023a) + HiVT (Zhou et al., 2022) 3.5E-4 32 0.1
MapTR (Liao et al., 2023a) + DenseTNT (Gu et al., 2021) 3.0E-3 16 0.1

MapTRv2 (Liao et al., 2023b) + HiVT (Zhou et al., 2022) 3.5E-4 32 0.1
MapTRv2 (Liao et al., 2023b) + DenseTNT (Gu et al., 2021) 2.0E-3 16 0.1

MapTRv2-Centerline (Liao et al., 2023b) + HiVT (Zhou et al., 2022) 3.5E-4 32 0.1
MapTRv2-Centerline (Liao et al., 2023b) + DenseTNT (Gu et al., 2021) 3.5E-3 16 0.1

StreamMapNet (Yuan et al., 2024) + HiVT (Zhou et al., 2022) 3.5E-4 32 0.1
StreamMapNet (Yuan et al., 2024) + DenseTNT (Gu et al., 2021) 1E-3 16 0.1

Table 5: Hyperparameters chosen for different trajectory prediction methods.

B MATHEMATICAL PROOF OF USING PREDICTION DIFFERENCES BETWEEN
MAIN AND AUXILIARY CLASSIFIERS AS A MEASURE OF MODEL
UNCERTAINTY

B.1 DEFINITIONS AND ASSUMPTIONS

1. Model Structure: The deep learning model M includes a main head Cmain and an auxiliary head
Caux. For an input sample x, the prediction output of the main head is pmain = Cmain(x), and the
prediction output of the auxiliary head is paux = Caux(x).

2. Uncertainty: We focus on the model’s Epistemic Uncertainty, which is the uncertainty in the
model parameters. Assume the model parameters θ are random variables with a prior distribution
P (θ).

3. Prediction Difference: Define the prediction difference D(x) as:

D(x) = ∥pmain − paux∥,
where ∥ · ∥ denotes a norm (e.g., L2 norm).

B.2 MATHEMATICAL DERIVATION

Model’s Predictive Distribution. Assume the model’s output is a probability distribution P (y|x, θ),
where y is the class label, x is the input sample, and θ are the model parameters.

Posterior Predictive Distribution. According to Bayes’ theorem, the posterior predictive distribu-
tion of the model can be expressed as:

P (y|x) =
∫

P (y|x, θ)P (θ|x)dθ,

where P (θ|x) is the posterior distribution of the model parameters.

Parameter Uncertainty. The uncertainty in the parameters can be measured by the variance of the
posterior distribution:

Var(θ|x) = Eθ|x[(θ − Eθ|x[θ])
2] = Eθ|x[θ

2]− (Eθ|x[θ])
2.

Prediction Difference and Parameter Uncertainty. To relate the prediction difference D(x) to
parameter uncertainty, we need to consider the predictions of the main and auxiliary heads. Assume
the parameters of the main head and auxiliary head are θmain and θaux, respectively, and they have
the same prior distribution, i.e., P (θmain) = P (θaux).
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The predictions of the main and auxiliary heads can be expressed as:

pmain = Eθmain|x[P (y|x, θmain)].

paux = Eθaux|x[P (y|x, θaux)].

Expression for Prediction Difference. Assume the difference in predictions can be approximated
by First-order Taylor Expansion:

pmain − paux ≈ Eθ|x[∇θP (y|x, θ) · (θmain − θaux)]

where ∇θP (y|x, θ) is the gradient of P (y|x, θ) with respect to θ.

Thus, the prediction difference D(x) can be expressed as:

D(x) = ∥pmain − paux∥ ≈ ∥Eθ|x[∇θP (y|x, θ) · (θmain − θaux)]∥

Relationship Between Prediction Difference and Parameter Uncertainty

To simplify the analysis, assume θmain and θaux are independently and identically distributed (i.i.d.).
Then:

Eθ|x[∥∇θP (y|x, θ) · (θmain − θaux)∥2] ≈ Eθ|x[∥∇θP (y|x, θ)∥2] · Eθ|x[(θmain − θaux)
2]

Noting that Eθ|x[(θmain − θaux)
2] = 2(Eθ|x[θ

2]− (Eθ|x[θ])
2) = 2 · Var(θ|x), we have:

Eθ|x[∥∇θP (y|x, θ) · (θmain − θaux)∥2] ≈ 2 · Eθ|x[∥∇θP (y|x, θ)∥2] · Var(θ|x)

Assuming k = Eθ|x[∥∇θP (y|x, θ)∥2], which is positive, we get:

Eθ|x[∥∇θP (y|x, θ) · (θmain − θaux)∥2] ≈ 2k · Var(θ|x)

Thus, the prediction difference D(x) can be expressed as:

D(x) ≈
√

2k · Var(θ|x)

Simplifying further, we obtain:
D(x) ∝

√
Var(θ|x)

B.3 CONCLUSION

From the above derivation, we have shown that the prediction difference D(x) is proportional to the
square root of the model’s uncertainty

√
Var(θ|x). Therefore, the prediction difference D(x) can

serve as a measure of the model’s uncertainty for a given sample.

The prediction difference D(x) is proportional to the square root of the model’s uncertainty
√

Var(θ|x).

B.4 COMPARISON BETWEEN GU ET AL. AND OURS

1. Gu et al. (2024) using Class Probability as Uncertainty

Definition of class probability P (y|x, θ): The probability that input x belongs to class y given model
parameters θ.

Uncertainty measure: The uncertainty is quantified directly using P (y|x, θ) itself.
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2. Ours using Prediction Difference Between Two Heads.

Two independent heads: The main head with parameters θmain and the auxiliary head with parameters
θaux.

Uncertainty measure: The difference D(x) = ∥pmain−paux∥ quantifies uncertainty due to variability
in θ.

3. Comparison.

(1) For a given θ, P (y|x, θ) is fixed and does not account for uncertainty in θ.

(2) Our prediction difference D(x):

D(x) = ∥pmain − paux∥ ∝
√

Var(θ|x).

Thus, D(x) captures how sensitive the predictions are to changes in θ and is directly related to
parameter uncertainty Var(θ|x). Larger variance in parameters leads to larger D(x), indicating
higher uncertainty.
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