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Abstract

Self-supervised learning (SSL) has made significant strides in learning image representa-
tions, yet its principles remain partially understood, particularly in adversarial scenarios.
This work explores the interplay between SSL and adversarial training (AT), focusing on
whether this integration can yield robust representations that balance computational effi-
ciency, clean accuracy, and robustness. A major challenge lies in the inherently high cost of
AT, which combines an inner maximization problem (generating adversarial examples) with
an outer minimization problem (training representations). This challenge is exacerbated
by the extensive training epochs required for SSL convergence, which become even more
demanding in adversarial settings.
Recent advances in SSL, such as Extreme-Multi-Patch Self-Supervised Learning (EMP-
SSL), have demonstrated that increasing the number of patches per image instance can
significantly reduce the number of training epochs. Building on this, we introduce Robust-
EMP-SSL, an extension of EMP-SSL specifically designed for adversarial training scenarios.
Robust-EMP-SSL is a framework that leverages multiple crops per image to enhance data
diversity, integrates invariance terms with regularization to prevent collapse, and optimizes
adversarial training efficiency by reducing the required training epochs. By aligning these
components, Robust-EMP-SSL enables the learning of robust representations while address-
ing the high computational costs and accuracy trade-offs inherent in adversarial training.
This study poses a central question: "How can multiple crops or diverse patches, combined
with adversarial training strategies, achieve trade-offs between computational efficiency,
clean accuracy, and robustness?"
Our empirical results show that Robust-EMP-SSL not only accelerates convergence, but also
achieves a superior balance between clean accuracy and adversarial robustness, outperform-
ing SimCLR, a widely used self-supervised baseline that, like other methods, relies on only
two augmentations. Furthermore, we propose the Cost-Free Adversarial Multi-Crop Self-
Supervised Learning (CF-AMC-SSL) method, which incorporates free adversarial training
into the multi-crop SSL framework. CF-AMC-SSL demonstrates the potential to enhance
both clean accuracy and adversarial robustness under reduced epoch conditions, further
improving efficiency.
These findings highlight the potential of Robust-EMP-SSL and CF-AMC-SSL to make SSL
more practical in adversarial scenarios, paving the way for future empirical explorations and
real-world applications.

1 Introduction

In recent years, progress in self-supervised learning (SSL) (Balestriero et al., 2023) has produced represen-
tations that match or exceed those achieved by supervised learning in classification tasks (Chen et al., 2020;
Grill et al., 2020). For instance, methods such as SimCLR (Chen et al., 2020) and BYOL (Grill et al.,
2020) have demonstrated performance on par with supervised approaches. This advancement has led to
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state-of-the-art performance in various modern AI-enabled applications, including models such as BERT
and GPT-3 (Brown et al., 2020; Devlin et al., 2018).

Despite these remarkable achievements, challenges remain to ensure the robustness and reliability of SSL
methods, particularly when training is used to produce effective representations from unlabeled data. Among
existing SSL approaches, joint-embedding SSL methods aim to produce consistent embeddings for dif-
ferent augmentations of the same image. However, a significant challenge in these methods is avoiding
collapse, where the model produces identical representations regardless of the input, thus losing the ability
to capture meaningful variations in the data.

To address this issue, several strategies have been proposed which can be categorized into the following
approaches: (i) Contrastive Learning: These methods, such as SimCLR (Chen et al., 2020), rely on
distinguishing between similar and dissimilar samples to maintain meaningful and diverse representations.
By incorporating negative samples, they ensure that the embeddings of different inputs are well separated in
the representation space. (ii) Non-Contrastive Methods: Unlike contrastive approaches, methods such
as Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2021) avoid the need for negative samples
by introducing covariance regularization. This approach promotes diversity in embeddings while maintaining
consistency for different augmentations, effectively preventing collapse.

Building on these strategies, multi-crop techniques, as introduced in SwAV (Caron et al., 2020), have
emerged as a promising approach to further enhance SSL performance. SwAV leverages multiple views of an
image at varying resolutions, clustering embeddings to align augmentations while avoiding trivial solutions.
This innovative strategy not only prevents collapse but also improves the quality of learned representations
by encouraging diversity and consistency.

While these advancements have significantly improved the quality and diversity of SSL representations,
another pressing concern is the vulnerability of SSL methods to adversarial attacks (Ghofrani et al., 2023;
Kim et al., 2020; Wahed et al., 2022). Adversarial perturbations can undermine the reliability of SSL models,
compromising their utility in real-world applications. One of the most effective strategies to address this
challenge is adversarial training, which formulates the problem as a Min-Max Optimization (Madry et al.,
2017). Recent research has extended adversarial training to SSL frameworks (Kim et al., 2020; Moshavash
et al., 2021; Wahed et al., 2022), demonstrating its effectiveness in enhancing robustness across methods
such as SimCLR, Momentum Contrast (He et al., 2020), SwAV (Caron et al., 2020), and BYOL (Grill et al.,
2020). However, these approaches face two important challenges: (i) high computational costs and (ii)
trade-offs between clean accuracy and robustness.

To address these limitations, we introduce Robust-EMP-SSL, a framework building on Extreme-Multi-
Patch Self-Supervised Learning (EMP-SSL) (Tong et al., 2023), which reduces training epochs by leveraging
fixed-size image patches instead of traditional multi-scale cropping. Robust-EMP-SSL extends EMP-SSL to
adversarial training scenarios by incorporating multiple crops per image to enhance data diversity, integrating
invariance terms with regularization to prevent collapse, and optimizing training efficiency. Our contributions
focus on the interplay between adversarial training and SSL, investigating key challenges and questions,
including:

1. Can multiple crops or patches compensate for fewer training epochs in self-supervised
adversarial training? We examine whether increasing data diversity through multiple crops or
patches can reduce computational overhead while maintaining performance.

2. How does crop diversity affect the trade-off between clean accuracy and robustness?
By integrating the mechanisms of EMP-SSL with adversarial training, we analyze whether multiple
crops can better balance the trade-off compared to SimCLR, which uses only two crops per image.

3. What is the impact of the augmentation strategy (multi-scale crops vs. fixed-size
patches) on robustness? We investigate how the adoption of diverse cropping strategies affects
the robustness of the model within the EMP-SSL framework.
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4. How do different evaluation strategies perform for adversarially trained models? We
compare robust multi-crop embedded aggregate (averaging embeddings from multiple crops) with
the standard linear classifier applied to a single whole-image embedding.

5. Can free adversarial training improve adversarial SSL? We evaluate whether free adversarial
training (Shafahi et al., 2019), known for its efficiency in supervised learning, can achieve competitive
robustness in SSL under reduced training epochs.

We systematically compare EMP-SSL and SimCLR, a widely-used SSL method requiring hundreds of epochs
to converge, using it as a baseline for its simplicity and ubiquity. Our key findings include:

• Increasing the number of multi-scale crops effectively compensates for fewer training epochs, enabling
faster training without compromising performance (Table 1 row 2 versus rows 3 and 4).

• Robust-EMP-SSL with multi-scale crops achieves a better balance between clean accuracy and ro-
bustness than Robust-SimCLR used as the baseline (Table 1 row 2 versus rows 3).

• Multi-scale crops within the Robust-EMP-SSL framework outperform fixed-size patches in adver-
sarial SSL settings 1 (Table 1 row 2 versus row 1).

• Central cropping outperforms Multi-Crop Embedding Aggregation in terms of training time, clean
accuracy, and robustness.

• Free adversarial training (Shafahi et al., 2019) provides a cost-efficient solution for adversarial SSL,
even under reduced training epochs (Table 1 rows 5, 6 and 7).

By addressing these questions, our work advances adversarial SSL by offering efficient and robust algorithms,
paving the way for real-world applications with reduced computational costs and improved performance
trade-offs.

1Note that robust central crop evaluation is likely to be less effective in terms of accuracy with fixed-scale patch-based
pretraining because the model lacks exposure to the entire image during pretraining. On the other hand, robust multi-patch
evaluation is time-intensive, as it necessitates generating multiple adversarial examples per image for the adversarial training
of the linear classifier.

3



Under review as submission to TMLR

Table 1: CF-AMC-SSL trains efficiently in fewer epochs, thereby reducing overall training time.
By effectively employing multi-crop augmentations during base encoder training, it enhances
both clean accuracy and robustness against PGD attacks. Note that the highest values are indicated
in red, while the second highest values are highlighted in blue.

Models CIFAR-10 CIFAR-100 Time

Base Encoder Clean PGD(4/255) PGD(8/255) Clean PGD(4/255) PGD(8/255) (min)

Patch-based EMP-SSL (baseline)
(16 patches, 5-step PGD, 30 epochs)

61 37.65 16.95 39.26 14.38 4.22 530

Crop-based EMP-SSL
(16 crops, 5-step PGD, 30 epochs)

76.55 53.3 28.49 51.71 33.88 19.35 530

Crop-based SimCLR (baseline)
(2 crops, 5-step PGD, 500 epochs)

72.86 47.98 16.81 44.57 19.84 5.68 934

Patch-based SimCLR
(2 patches, 5-step PGD, 500 epochs)

65.44 41.85 17.19 43.71 21.87 8.33 934

Patch-based EMP-FreeAdv
(16 patches, m=3, 10 epochs)

61.83 42.28 21.53 40.31 23.78 12.13 97

Crop-based SimCLR-FreeAdv
(2 crops, m=3, 167 epochs)

70.25 48.34 24.5 47.64 26.53 11.7 157

Crop-based EMP-FreeAdv (CF-AMC-SSL)
(16 crops, m=3, 10 epochs)

75.88 55.97 33.34 50.74 31.73 17.19 97

2 Methodology

In this study, we focus on evaluating the robustness of Extreme-Multi-Patch Self-Supervised-Learning (EMP-
SSL) (Tong et al., 2023), a method that employs multiple augmentations per image and achieves convergence
in significantly fewer epochs compared to standard SSL methods. We selected SimCLR as a baseline for its
simplicity and its standard SSL design, which uses two augmentations per image and requires hundreds of
epochs for convergence. This makes SimCLR a suitable reference point to assess the efficiency and robustness
of EMP-SSL.

2.1 Overview of SimCLR and EMP-SSL

2.1.1 SimCLR: A Simple Framework for Contrastive Learning

SimCLR is a self-supervised learning framework designed to learn image representations by maximizing
agreement between augmented views of the same image.

Key Components:

• Data Augmentation: Positive pairs are generated through random augmentations such as crop-
ping, color jittering, and Gaussian blur. Each input image x produces two augmented views, x̂1 and
x̂2.

• Feature Extraction: A backbone network f(·), typically a ResNet, maps each augmented view x̂i

to a feature vector hi in a high-dimensional space.

• Projection Head: A multi-layer perceptron (MLP) g(·) projects the feature vector hi into a lower-
dimensional embedding space Zi, where the contrastive loss is applied:

Zi = g(f(x̂i)).

• Contrastive Loss: The loss function encourages embeddings of positive pairs to be similar while
pushing apart embeddings of negative pairs. The contrastive loss is defined as:

l(i,j) = − log exp(sim(Zi, Zj)/τ)∑2N
k=1 1[k ̸=i] exp(sim(Zi, Zk)/τ)

,

Lcontrastive = 1
2N

N∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)]
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(a) The adversarially trained SimCLR vs. free adversarially trained SimCLR framework.
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(b) The adversarially trained crop-based EMP-SSL framework vs. the free adversarially
trained crop-based EMP-SSL (CF-AMC-SSL).

Figure 1: Illustration of workflow comparison.

where:

– sim(Zi, Zj) is the cosine similarity between embeddings Zi and Zj ,
– τ is a temperature parameter, and
– N is the number of images in a mini-batch.

SimCLR’s framework efficiently captures meaningful representations by leveraging this contrastive learning
approach.
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2.1.2 EMP-SSL: Extreme-Multi-Patch Self-Supervised Learning

EMP-SSL extends the self-supervised learning paradigm by incorporating multiple fixed-scale patches per
image and introducing novel loss terms to enhance representation consistency and generalization.

Key Components:

• Multi-Patch Representation Learning: During training, given a batch of b images denoted as
X = [x1, . . . , xb], where xj represents the j-th image in the batch, we first apply the augmentations,
including dividing each image into C fixed-scale patches patches, to obtain X1, . . . , XC , where Xi =
[xi

1, . . . , xi
b]. The augmented image patches are then fed into the encoder to extract features Zi =

F (Xi), which are subsequently concatenated into Z = [Z1, . . . , ZC ].

• Invariance Term: To encourage consistency among embeddings, an invariance term D(Zi, Z̄)
aligns each patch’s embedding Zi with the average embedding Z̄:

Z̄ = 1
C

C∑
i=1

Zi, D(Zi, Z̄) = Tr((Zi)T Z̄).

• Regularization Term: A regularization term R(Zi) penalizes redundancy in feature embeddings
by reducing correlations among dimensions:

R(Z) = 1
2 log det

(
I + d

bϵ2 ZZT

)
,

where ZZT is the covariance matrix of the embeddings, b is the batch size, ϵ is a chosen size of
distortion with ϵ > 0, and d is the dimension of projection vectors.

• Overall Objective Function: EMP-SSL optimizes the sum of the invariance and regularization
terms across all patches:

LEMP-SSL =
C∑

i=1

[
D(Zi, Z̄) + R(Zi)

]
.

Using these innovative loss terms, EMP-SSL fosters stronger invariance and diversity in learned representa-
tions, making it a powerful approach to self-supervised learning.

2.2 Overview of Robust-SimCLR and Robust-EMP-SSL: Extending SimCLR and EMP-SSL with
Adversarial Training

Initially, our analysis in Table 2 reveals that both the baseline EMP-SSL and SimCLR without adversarial
training are vulnerable to adversarial attacks. This finding further underscores the lack of robustness in
SimCLR, consistent with previous research findings (Ghofrani et al., 2023; Kim et al., 2020). We extend
the SimCLR and EMP-SSL frameworks by incorporating adversarial training to improve robustness against
adversarial attacks, as shown in Figure 1. Adversarial training integrates adversarial examples into the
learning process, enabling models to better withstand perturbations. In the following, we describe the
generation of adversarial examples and the modifications to the training objectives for both frameworks.

2.2.1 Robust-SimCLR: Adversarial Contrastive Learning

In the robust version of SimCLR, adversarial training enhances the model’s resilience. For each image in the
mini-batch, adversarial examples are generated using PGD attacks. Both the original augmented view and
its adversarial counterpart are treated as positive pairs. The contrastive loss function is updated to maintain
similarity between these pairs while distinguishing them from negative samples, thereby reinforcing the
model’s ability to generalize under adversarial perturbations.
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Table 2: Comparative results of clean data performance and robustness against PGD attacks:
baseline SimCLR versus EMP-SSL with standard pretraining on CIFAR10 and CIFAR100
datasets.

Models CIFAR-10 CIFAR-100

Linear Classifier Base Encoder Clean PGD(4/255) PGD(8/255) PGD(16/255) Clean PGD(4/255) PGD(8/255) PGD(16/255)

Central Crop
SimCLR 86.65 0.13 0 0 62.5 0.74 0.53 0.45

EMP-SSL 75.02 0 0 0 44.31 0.02 0.02 0.02

32 Crops (Patchs)
SimCLR 86.68 0.02 0 0 65.21 0.18 0.12 0.07

EMP-SSL 92.85 0.04 0.01 0 71.82 0.46 0.15 0.08

64 Crops (Patches)
SimCLR 89.31 0.01 0 0 66.3 0.17 0.12 0.12

EMP-SSL 93.29 0.02 0.03 0.01 72.3 0.5 0.2 0.09

2.2.2 Robust-EMP-SSL: Adversarial Multi-Patch Learning

In robust EMP-SSL, adversarial training is integrated to strengthen the model’s defenses. The representation
for each image is aggregated from multiple crops or patches, and adversarial perturbations are applied
independently to each crop (patch).

Adversarial Perturbation Process:

1. The image is divided into multiple crops or patches.

2. An adversarial perturbation is generated and updated independently for each crop or patch.

3. Each crop is perturbed individually, rather than applying a shared perturbation across all crops.

This independent generation of adversarial examples results in more diverse and challenging perturbations,
boosting the model’s robustness.

Updated Training Objective: The training objective includes:

• Regularization Term R(Zadv,i): Penalizes high correlations among adversarial representations.

• Consistency Term D(Zadv,i, Z̄adv): Promotes consistency among adversarial embeddings.

These terms regularize adversarial representations while maintaining their similarity to the original aug-
mented views, preventing overfitting to adversarial examples.

3 Experiments and Results

Building on our methodology, we investigate the performance of Robust-EMP-SSL under adversarial training
and evaluate its trade-offs between clean accuracy, robustness, and computational efficiency. EMP-SSL
significantly reduces the number of training epochs in self-supervised learning by increasing the number of
fixed image patches augmented per image. This approach diverges from traditional methods like SimCLR,
which rely on extensive training epochs and use only two augmented multi-scale crops per image. Through
a comprehensive analysis of EMP-SSL within an adversarial training framework, we aim to understand the
relationship between training epochs, image crop choices, model robustness, and accuracy.

Empirical Study Objective: These evaluation methods provide insights into the model’s capabilities in
terms of accuracy and robustness, incorporating both conventional and novel multi-patch and multi-crop
embedding strategies.

Threat Model: To assess model robustness, we employ a threat model in which the adversary has full
knowledge of the base encoder’s architecture, network parameters, and those of the linear classifier. Adver-
sarial attacks are generated end-to-end using the cross-entropy loss function.
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3.1 Experiment Setup

Our experimental setup follows that of (Tong et al., 2023). We employ a ResNet-18 as the base encoder for
all experiments unless otherwise specified. We train EMP-SSL models for 30 epochs and SimCLR models for
500 epochs, as EMP-SSL converges significantly faster. In all adversarial training scenarios, we use a 5-step
PGD attack under the l∞ norm with a maximum perturbation limit of ϵ = 8/255 unless stated otherwise.
The models are evaluated against 20-step PGD attacks, and results are further validated using Auto-Attack
(Croce & Hein, 2020). We report the top-1 test accuracy across all settings to evaluate robustness. After
sampling the patches and crops, their resolution is adjusted to match the original image size before passing
them through ResNet-18 for embedding. Since our goal is not to evaluate transfer learning (cross-dataset
validation), both the base encoder and the linear classifier are trained on the same dataset in all experiments.
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Comparative Analysis of Robust SimCLR and Robust EMP-SSL with Central Crop Evaluation

Clean PGD(4/255) PGD(8/255) PGD(16/255)

Figure 2: Evaluation of robustness against PGD attacks through adversarial pretraining on
CIFAR-10 and CIFAR-100 datasets. We compare the performance of robust SimCLR and robust
EMP-SSL with central crop evaluation under different training configurations. Our analysis includes the
evaluation of patch-based SimCLR with varying patch sizes and baseline SimCLR, revealing a noticeable
trade-off between clean accuracy and robustness. Larger patch sizes in robust SimCLR improve robustness
but reduce clean accuracy. Additionally, we compare crop-based EMP-SSL (with varying crop sizes) to
baseline EMP-SSL, demonstrating that the crop-based approach significantly enhances robustness. Notably,
Robust EMP-SSL achieves a superior balance between clean accuracy and robustness compared to robust
SimCLR. The variables S and R correspond to the scales and ratios used in the PyTorch framework’s
RandomResizedCrop method.
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3.2 Evaluating Augmentation Strategies for Adversarial Training in Robust-EMP-SSL

To enhance the robustness of EMP-SSL under adversarial training, we analyze two augmentation strategies
and their impact on representation diversity, robustness, and computational efficiency:

1. Crop-Based Method: In this approach, random crops are taken from the augmented image, with
crop sizes ranging from 9× 9 to 32× 32 pixels. This method introduces a greater degree of spatial
variability, requiring the model to learn more robust and generalizable representations. The key
advantages of this method include:

• Enhanced Spatial Generalization: Since crops are sampled from different regions of the
image, the model learns invariant representations that are less dependent on specific spatial
locations.

• Diversity in Adversarial Perturbations: Adversarial examples generated on smaller
cropped regions can vary significantly from those generated on full-image patches, forcing the
model to handle adversarial attacks across multiple spatial scales.

• Improved Feature Learning: The network is trained to extract meaningful features from
both global and local perspectives, benefiting both clean accuracy and robustness.

However, this method comes with added computational costs due to the need to generate multiple
adversarial examples for diverse crops per image.

2. Patch-Based Method: Fixed-scale patches are extracted at predefined scales from the image,
maintaining a structured and consistent learning framework. The benefits of this approach include:

• Simplicity: Since patches are sampled at fixed locations and sizes, the method is simpler and
more predictable during standard training, compared to random cropping.

• Stability in Representation Learning: Fixed patches provide a stable learning process
by reducing randomness. This can improve clean accuracy, especially when combined with
multi-patch embedding aggregation during evaluation.

However, this method may not achieve the same level of robustness as the crop-based approach
because of its limited variability. Since adversarial training benefits from exposure to a wider range
of perturbations, the lack of randomness in patch selection could result in less effective robustness
improvements.

Justification for Evaluating Both Methods: Given the inherent trade-off between diversity and
efficiency, the evaluation of both augmentation strategies helps us determine the optimal balance be-
tween clean accuracy, robustness, and computational cost in adversarial SSL. The crop-based method
offers superior robustness due to increased spatial diversity, whereas the patch-based method im-
proves training simlicity and stability. By comparing these two approaches, we provide insights into
how augmentation strategies impact adversarial training in self-supervised learning.

Our evaluation focuses on linear probing accuracy, considering the following two key evaluation strategies:

1. Standard Central Crop Assessment: This conventional method trains and evaluates a linear
classifier using a single fixed central patch from each image, where the entire image serves as the
central patch.

2. Multi-Patch (Multi-Crop) Embedding Aggregation Evaluation: In contrast to the standard
central crop assessment, this method constructs an image embedding by inputting a specified number
of crops (patches) into the base encoder. These crop (patch) embeddings are then combined by
averaging and fed into the linear classifier. Henceforth, we refer to this evaluation method as the
“n Crops (Patches)” linear classifier. Note that patches (crops) are sampled with the same scale
factor as during the pre-training phase.
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3.3 Both SimCLR and EMP-SSL Are Vulnerable to Adversarial Attacks Under Standard Training

We first examine the vulnerability of standard SimCLR and EMP-SSL training to adversarial attacks. The
goal of this experiment is twofold: (1) to assess whether employing multiple fixed-sized patches in SSL (as
in EMP-SSL) inherently enhances robustness compared to methods like SimCLR, which use only one pair of
differently scaled crops, and (2) to evaluate whether multi-patch (multi-crop) aggregated evaluation improves
robustness over standard central crop evaluation.

Detailed results for clean accuracy and adversarial robustness under PGD attacks are presented in Table 2
for CIFAR-10 and CIFAR-100.

The findings highlight that while multi-patch aggregated evaluation enhances performance on clean
data, both SimCLR and EMP-SSL remain highly vulnerable to adversarial attacks, indicating the
necessity of adversarial training.

Table 3: Evaluation of Robust EMP-SSL and Robust SimCLR across different adversarial
training scenarios on CIFAR-10 and CIFAR-100 datasets: The findings imply that boosting the
robustness of the linear classifier contributes to enhancing the overall robustness of both the robust SimCLR
and EMP-SSL.

Models CIFAR-10 CIFAR-100

Linear Classifier Base Encoder Clean PGD(4/255) PGD(8/255) PGD(16/255) Clean PGD(4/255) PGD(8/255) PGD(16/255)

Central Crop
Robust SimCLR 84.24 25.68 1.97 0.07 55.91 3.58 0.18 0

Robust EMP-SSL
Crop-based(16) 80.72 33.62 8.95 0.92 51.83 19.3 6.85 1.73

Robust Central Crop (r-LE)
Robust SimCLR 72.86 47.98 16.81 0.33 44.57 19.84 5.68 0.26

Robust EMP-SSL
Crop-based(16) 76.55 53.3 28.49 3.96 51.71 33.88 19.35 4.92

3.4 Robust Crop-Based EMP-SSL Improves Both Clean Accuracy and Robustness Compared to
Robust SimCLR

We next apply adversarial training to both SimCLR and EMP-SSL, evaluating their performance primarily
through central cropping, which balances computational efficiency with accuracy. Figure 2 presents results
across different training configurations, highlighting the following key findings:

• Training SimCLR with only two augmentations per image results in a significant trade-off between
clean accuracy and robustness.

• Crop-based EMP-SSL exhibits higher robustness against adversarial attacks, whereas patch-based
EMP-SSL achieves superior clean accuracy under multi-patch aggregation evaluation (detailed in
the Appendix A.1).

• Central cropping provides an efficient evaluation method while maintaining strong clean accuracy
and robustness (detailed in the Appendix A.1).

To further understand these trade-offs, we conducted additional ablation studies, examining the effects of
different numbers of crops and patches on model performance. Detailed findings are provided in the Appendix
A.2, which show that

Increasing the number of patches generally enhances clean accuracy under multi-patch aggregation
evaluation, while a well-calibrated number of crops balances robustness and accuracy effectively.
These insights reinforce the effectiveness of crop-based EMP-SSL in adversarial settings while also
highlighting the practical considerations of augmentation strategies in robust self-supervised learning.
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Table 4: Evaluation of CF-AMC-SSL and SimCLR-FreeAdv algorithms: The results show that CF-
AMC-SSL trains efficiently in fewer epochs, reducing the overall training time. Additionally, employing multi-
crop augmentations in CF-AMC-SSL during base encoder training effectively improves both accuracy and
robustness. Note that the topmost and the second-highest values are indicated in red and blue, respectively.

Models CIFAR-10 CIFAR-100 Time ImageNet-100

Linear
Classifier

Base Encoder
ResNet-18 Clean PGD

4/255
PGD
8/255

PGD
16/255 Clean PGD

4/255
PGD
8/255

PGD
16/255 (min) Clean PGD

4/255
PGD
8/255

PGD
16/255

Robust
Central
Crop

Crop-based EMP-SSL
(16 crops, 5-step PGD, 30 epochs)

76.55 53.3 28.49 3.96 51.71 33.88 19.35 4.92 530 – – – –

CF-AMC-SSL
(16 crops, m=3, 10 epochs)

75.78 55.97 33.34 6.24 50.74 31.73 17.19 3.49 97 – – – –

CF-AMC-SSL
(16 crops, m=5, 6 epochs)

71.89 54.2 34.94 8.55 45.84 30.1 17.84 5.15 97 34.38 18.82 8.22 1.2

CF-AMC-SSL
(16 crops, m=5, 10 epochs)

- - - - - - - - - 46.26 27.86 13.94 2.16

Crop-based SimCLR
(5-step PGD, 500 epochs)

72.86 47.98 16.81 3.3 44.58 19.84 5.68 0.26 934 – – – –

SimCLR-FreeAdv
(m=3, 167 epochs)

70.25 48.34 24.5 2 47.64 26.53 11.7 1.26 157 30.26 16.14 6.06 0.25

SimCLR-FreeAdv
(m=5, 100 epochs)

69.97 51.36 30.84 5.7 45.69 29.43 16.15 3.1 157 25.26 14.12 5.88 0.7

CF-AMC-SSL
(16 crops, m=5, 18 epochs)

76.28 58.06 37.5 9.39 52.01 33.3 19.34 5.06 291 – – – –

CF-AMC-SSL
(16 crops, m=12, 10 epochs)

55.84 43 30.84 12.4 31.33 21.86 14.62 6.14 388 – – – –

Supervised-FreeAdv
(m=3, 300 epochs)

82.63 47.12 16.27 1.3 52.07 20.2 6.34 0.92 155 – – – –

Supervised-FreeAdv
(m=7, 300 epochs)

74.63 48.56 23.75 2.87 39.88 19.97 8.14 1.12 360 – – – –

Table 5: Evaluation of Different Learning Algorithms Using ResNet-50 as the Base Encoder:
This experiment demonstrates the generalizability of our findings when employing a larger base encoder,
such as ResNet-50. Additionally, it highlights that increasing the number of iterations for PGD enhances
the model’s robustness against larger perturbations.

Models CIFAR-10 CIFAR-100

Linear
Classifier

Base Encoder
ResNet-50 Clean PGD(4/255) PGD(8/255) PGD(16/255) Clean PGD(4/255) PGD(8/255) PGD(16/255)

Robust
Central
Crop

CF-AMC-SSL
(16 crops, m=7, 9 epochs)

73.43 56.81 38.31 11.03 47.4 32.19 19.9 6.21

CF-AMC-SSL
(16 crops, m=3, 10 epochs)

75.89 57.61 35.19 6.51 53.34 33.08 18.15 3.72

SimCLR-FreeAdv
(m=7, 150 epochs)

49.49 39.09 28.88 12.76 25.49 18.36 12.51 5.51

SimCLR-FreeAdv
(m=3, 150 epochs)

66.89 47.52 26.9 3.68 38.95 24.14 12.17 1.61

3.5 Robust Crop-Based EMP-SSL with Robust Linear Evaluation

While robust crop-based EMP-SSL demonstrates improved robustness in standard evaluation, it is crucial to
further scrutinize its adversarial resilience in downstream applications. To this end, we employ an additional
assessment known as robust linear evaluation (r-LE) (Kim et al., 2020). This evaluation aligns with the
broader objectives of our study, as it provides deeper insights into the transferability of adversarial robustness
learned during self-supervised training and its impact on downstream tasks.

The r-LE approach consists of two stages: (1) pretraining the base encoder using the robust crop-based EMP-
SSL algorithm and (2) freezing the base encoder while separately adversarially training a linear classifier
on top of it. This setup allows us to decouple the robustness contributions of the encoder and the linear
classifier, revealing whether adversarial robustness can be preserved and enhanced in a transfer learning
setting.

The results, presented in Table 3, highlight the following key observations:
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Table 6: Evaluation of different learning algorithms against AutoAttack (AA): The Autoattack
evaluation confirms that using multi-crop augmentations in CF-AMC-SSL during base encoder training
improves both accuracy and robustness effectively. Note that the topmost and the second-highest values are
indicated in red and blue, respectively.

Models CIFAR-10 CIFAR-100

Linear
Classifier

Base Encoder
ResNet-18 Clean AA(4/255) AA(8/255) AA(16/255) Clean AA(4/255) AA(8/255) AA(16/255)

Robust
Central
Crop

Crop-based EMP-SSL
(16 crops, 5-step PGD, 30 epochs)

76.55 23.93 26.57 7.81 51.71 33.88 19.35 4.92

CF-AMC-SSL
(16 crops, m=3, 10 epochs)

75.78 51.52 27.74 6.59 50.74 27.05 15.35 5.23

CF-AMC-SSL
(16 crops, m=5, 6 epochs)

71.89 50.76 30.14 8.44 45.84 26.99 16.3 5.83

Crop-based SimCLR
(5-step PGD, 500 epochs)

72.86 16.66 12.57 10.5 44.58 8.81 6.21 5.29

SimCLR-FreeAdv
(m=3, 167 epochs)

70.25 46.62 22.31 4.76 47.64 23.35 13.6 3.93

SimCLR-FreeAdv
(m=5, 100 epochs)

69.97 48.91 27.51 6.32 45.69 25.39 14.28 5.12

Algorithm 1: CF-AMC-SSL learning algorithm for Nep epochs, given some radius ϵ, m minibatch
replays, C number of crops, and a dataset of size D for an encoder fθ and a projector gθ

Initialize: δ ← 0
1 //Iterate Nep/m times to account for minibatch replays and run for Nep total epochs
2 for epoch = 1 to Nep/m do
3 for i = 1 to D do
4 //Augment data for CF-AMC-SSL learning:
5 for k = 1 to C do
6 Draw augmentation function tk;
7 x̂i,k = tk(xi);
8 end
9 for j = 1 to m do

10 //Compute gradients for perturbation and model weights simultaneously:
11 ∇δ,∇θ = ∇LEMP−SSL(f ◦ gθ(x̂i,k + δ))
12 δ = δ + ϵ · sign(∇δ) //Update δ with the gradients calculated
13 δ = max(min(δ, ϵ),−ϵ)
14 θ = θ −∇θ // Update model weights with some optimizer
15 end
16 end
17 end

• Adversarially training the linear classifier improves overall robustness, demonstrating that robust
features learned via EMP-SSL can be further refined to withstand stronger attacks.

• Robust crop-based EMP-SSL maintains a superior balance between clean accuracy and robustness
compared to robust SimCLR, reinforcing its effectiveness in adversarial self-supervised learning.

• The effectiveness of r-LE suggests that adversarial robustness in self-supervised representations is
not solely determined by the base encoder but can also be enhanced at the linear classifier stage,
improving overall robustness.

By incorporating r-LE into our evaluation framework, we establish a more comprehensive understanding of
the adversarial robustness of self-supervised representations and validate the effectiveness of robust crop-
based EMP-SSL in both feature learning and transferability.
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3.6 Cost-Free Adversarial Multi-Crop Self-Supervised Learning Evaluation

Inspired by our findings on robust EMP-SSL, we introduce a novel adversarial self-supervised learning method
that achieves convergence in fewer than 10 epochs. We apply free adversarial training (Shafahi et al., 2019) to
the crop-based EMP-SSL framework (see Figure 1), referring to it as Cost-Free Adversarial Multi-Crop
Self-Supervised Learning (CF-AMC-SSL). This approach significantly reduces the computational bur-
den of adversarial SSL training, decreasing the required epochs by nearly two orders of magnitude (Algorithm
1).

Our method employs an iterative adversarial training strategy that integrates multi-crop augmentations.
Specifically, it repeats each training iteration m times within a minibatch, reusing gradient information
from previous updates. This enables efficient adversarial example generation before progressing to the next
iteration. Experimental results for various values of m are presented in Table 4, alongside comparisons to the
conventional 5-step PGD adversarially trained crop-based EMP-SSL model, which requires approximately
five times the training time of CF-AMC-SSL variants.

For a broader comparison, we extend free adversarial training to SimCLR and its supervised counterpart
(termed SimCLR-FreeAdv and Supervised-FreeAdv, respectively), with results summarized in Table 4. All
experiments were conducted on a single ARTX A6000 GPU, and runtime evaluations were performed on
CIFAR-10 and CIFAR-100 datasets. Although multi-crop augmentations in joint-embedding SSL may ini-
tially appear computationally expensive, our findings reveal significant efficiency gains.

Robust EMP-SSL converges in 30 epochs—significantly fewer than the 500 epochs required for robust Sim-
CLR—and achieves faster runtime (530 minutes vs. 934 minutes). CF-AMC-SSL further improves efficiency,
leveraging free adversarial training (Shafahi et al., 2019) to reduce runtime to just 97 minutes—over five
times faster than robust EMP-SSL—while maintaining comparable performance. Additionally, CF-AMC-
SSL achieves a superior trade-off between clean accuracy and adversarial robustness, outperforming both
robust SimCLR and its supervised variant even when label information is available.

To assess generalizability, we extended our experiments to higher values of m and additional training epochs.
Increasing m improves robustness against stronger perturbations (e.g., ϵ = 16/255). We also evaluated CF-
AMC-SSL on the ImageNet-100 dataset, where results exhibited a similar trend, reinforcing the robustness
and efficiency of our method. Furthermore, we tested our approach using ResNet-50 as the base encoder
(Table 5), validating that employing a larger network and higher PGD iterations enhances robustness,
particularly against larger perturbations.

In summary, our framework provides two significant advantages:

1. Efficient training: CF-AMC-SSL dramatically reduces training time, enabling adversarial self-
supervised learning with far fewer epochs.

2. Enhanced accuracy and robustness: Multi-crop augmentations during base encoder training
significantly improve both clean accuracy and adversarial robustness.

Finally, to further validate our approach, we evaluated CF-AMC-SSL against Auto-Attack (Table 6), con-
firming the reliability of our findings.

4 Discussion

The empirical evaluation of CF-AMC-SSL provides key insights into its effectiveness in improving adversarial
self-supervised learning. Our results demonstrate that CF-AMC-SSL successfully enhances robustness while
maintaining competitive clean accuracy, significantly outperforming robust SimCLR in terms of efficiency
and adversarial resilience. By integrating free adversarial training with crop-based EMP-SSL, we enable
substantial reductions in training time while preserving the ability to learn robust representations.

Our evaluation results indicate that leveraging a moderate number of augmentations per image during
training enhances adversarial robustness, as the model encounters a broader range of perturbed images.
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This allows it to learn representations that emphasize content over style variations (e.g., color, textures,
and background), ultimately leading to improved robustness. The empirical findings further highlight the
impact of augmentation diversity, confirming that CF-AMC-SSL effectively balances robustness and efficiency
through multi-crop self-supervised learning.

Similar to prior studies (Chen et al., 2022; Li et al., 2022), our method defines the representation of an
image x as the average of embeddings h1, . . . , hn across all its crops (a bag-of-words approach). Our results
show that these learned representations are more robust than traditional representations based on full-image
embeddings. Furthermore, selecting n greater than two accelerates the learning of co-occurrence patterns
across crops, reinforcing the efficiency of CF-AMC-SSL in adversarial settings.

Additionally, we demonstrate that free adversarial training can be successfully integrated into self-supervised
learning, independent of the specific loss function used. Even with significantly fewer training epochs, free
adversarial training preserves robustness, establishing CF-AMC-SSL as a scalable and efficient adversarial
SSL method.

From an adversarial robustness perspective, CF-AMC-SSL employs a comprehensive training objective that
includes both a regularization term R(Zadv

i ) and an invariance term D(Zadv
i , Z̄adv). The regularization term

enforces constraints on adversarial representations to enhance robustness, while the invariance term ensures
that adversarial perturbations remain consistent with their average representation Z̄adv. This clustering effect
mitigates extreme adversarial distortions, resulting in more stable and generalizable feature representations.
Consequently, CF-AMC-SSL achieves a strong balance between robustness and clean accuracy, maintaining
performance on clean data while enhancing resistance to adversarial perturbations.

4.1 Empirical Observations and Insights

Our empirical analysis yields the following key insights:

• Trade-Off Between Clean Accuracy and Robustness: Increasing the number of crops enhances
robustness, but excessive cropping can lead to diminishing returns and slight reductions in clean
accuracy. The ablation studies in the appendices further confirm optimal crop configurations for
maintaining this trade-off.

• Impact of Augmentation Strategy: Multi-crop augmentation improves generalization under
adversarial attacks compared to traditional contrastive methods. However, our findings reveal that
crop-based EMP-SSL is particularly effective in preserving adversarial robustness, while patch-based
EMP-SSL achieves superior clean accuracy under multi-patch aggregation evaluation.

• Efficiency of Free Adversarial Training: Our results validate that integrating free adversarial
training into crop-based EMP-SSL significantly accelerates training without sacrificing robustness.
This makes it an ideal solution for large-scale self-supervised learning tasks.

• Generalization to Different Architectures and Datasets: The results on ImageNet-100 and
ResNet-50 confirm that CF-AMC-SSL extends effectively beyond CIFAR datasets, demonstrating
its scalability across different model architectures and data distributions.

• Evaluation Under Stronger Attacks: Our results against Auto-Attack show that CF-AMC-
SSL maintains robustness under stronger adversarial scenarios, confirming its reliability in more
challenging adversarial settings.

These observations provide a deeper understanding of the efficiency, robustness, and applicability of CF-
AMC-SSL, further validating its potential for real-world adversarial self-supervised learning tasks.

5 Conclusion

In this work, we conducted a comprehensive study on the adversarial robustness of Extreme-Multi-Patch Self-
Supervised Learning (EMP-SSL) and proposed Cost-Free Adversarial Multi-Crop Self-Supervised Learning
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(CF-AMC-SSL) as an efficient solution for adversarial self-supervised learning. Our empirical evaluations
demonstrated that increasing the number of multi-scale crops in adversarial training enhances model ro-
bustness while maintaining competitive clean accuracy. Unlike robust SimCLR, which relies on only a pair
of crops per image and requires extensive training epochs, robust EMP-SSL achieves a superior balance
between accuracy and robustness with significantly fewer training iterations.

Furthermore, we explored the integration of free adversarial training into self-supervised learning, leading
to the development of CF-AMC-SSL. This method dramatically reduces the number of required training
epochs—by nearly two orders of magnitude—without compromising performance. Our findings validate
that free adversarial training is not only applicable to supervised learning but also highly effective in self-
supervised settings, significantly improving training efficiency and model resilience to adversarial perturba-
tions.

The empirical analysis highlighted several key insights: multi-crop augmentation enhances robustness, crop-
based EMP-SSL performs better in adversarial settings compared to patch-based EMP-SSL, and CF-AMC-
SSL achieves a strong balance between computational efficiency, clean accuracy, and robustness. Additionally,
we demonstrated that CF-AMC-SSL generalizes effectively to different architectures and datasets, reinforcing
its practical applicability.

Overall, our study contributes to the advancement of adversarial self-supervised learning by providing a
scalable and efficient training strategy. The insights derived from this work pave the way for future research
in optimizing adversarial self-supervised learning methodologies, making them more suitable for real-world
deployment in security-critical applications.
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A Appendix

A.1 Evaluation with 32- and 64-Patch Aggregation

In addition to central cropping, we evaluated the robust base encoders using multi-patch aggregation with
32 and 64 patches. These methods involve aggregating embeddings from multiple fixed-size patches during
evaluation. While this approach provides insights into the robustness of the learned representations, it is
computationally more intensive than central cropping.

Key observation from the results (Figures 3 and 4) is as follows:

• Multi-patch aggregation enhances clean accuracy, especially when a larger number of patches (e.g.,
64) is used. However, the computational cost increases significantly, making central cropping more
practical for resource-constrained settings.

A.2 Ablation Study of Robust EMP-SSL

The ablation study analyzed the impact of varying the number of patches (crops) used for adversarial training
in the EMP-SSL framework. The results for CIFAR10 and CIFAR100 are shown in Figure 5.

Findings include:
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Figure 3: Evaluating the robustness against PGD attacks through adversarial pretraining on
CIFAR-10 and CIFAR-100 datasets, we compare the performance of patch-based SimCLR
(with various patch sizes) to that of baseline SimCLR. Our findings reveal a noticeable trade-off
between clean accuracy and robustness. In addition, central cropping (first column) demonstrates higher
efficiency in terms of overall complexity, clean accuracy, and robustness. Moreover, increasing patch sizes
reduces clean accuracy but improves model robustness. Note that the variables S and R correspond to the
scales and ratios employed in the PyTorch framework’s RandomResizedCrop method.
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• Increasing the number of patches during evaluation consistently improves clean accuracy in patch-
based EMP-SSL.

• Moderate numbers of crops (e.g., 16) with crop-based EMP-SSL preserve a better trade-off between
clean accuracy and robustness when evaluated using central cropping.
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Figure 4: Evaluating the robustness against PGD attacks through adversarial pretraining on
CIFAR-10 and CIFAR-100 datasets, we compare the performance of crop-based EMP-SSL
(with various crop sizes) to that of baseline EMP-SSL. Our analysis reveals that the crop-based
approach in EMP-SSL demonstrates enhanced robustness. Compared to the results presented in Figure
3, it is clear that Robust EMP-SSL achieves a superior balance between clean accuracy and robustness,
in contrast to robust SimCLR. Here, the variables s and r denote the scales and ratios utilized for the
RandomResizedCrop method within the PyTorch framework.
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Figure 5: Evaluation of robust EMP-SSL across different patch (crop) sizes on CIFAR-10 and
CIFAR-100 datasets: Our results emphasize that, when employing the patch-based EMP-SSL method
with multi-patch aggregation during evaluation, a significant augmentation in the number of patches leads
to a noticeable enhancement in clean accuracy. Furthermore, when using crop-based EMP-SSL with central-
crop assessment, a more equitable balance between clean accuracy and model robustness can be established,
especially evident with a moderate number of crops, such as 16. Note that "Crop-based (4)" means aug-
mentation with scales (S) of (0.08, 1.0) and ratios (R) of (0.75, 1.3), with (4) denoting the number of crops.
Similarly, "Patch-based (4)" involves scales (S) of (0.25, 0.25) and ratios (R) of (1.0, 1.0), with (4) represent-
ing the number of patches.

19


	Introduction
	Methodology
	Overview of SimCLR and EMP-SSL
	SimCLR: A Simple Framework for Contrastive Learning
	EMP-SSL: Extreme-Multi-Patch Self-Supervised Learning

	Overview of Robust-SimCLR and Robust-EMP-SSL: Extending SimCLR and EMP-SSL with Adversarial Training
	Robust-SimCLR: Adversarial Contrastive Learning
	Robust-EMP-SSL: Adversarial Multi-Patch Learning


	Experiments and Results
	Experiment Setup
	Evaluating Augmentation Strategies for Adversarial Training in Robust-EMP-SSL
	Both SimCLR and EMP-SSL Are Vulnerable to Adversarial Attacks Under Standard Training
	Robust Crop-Based EMP-SSL Improves Both Clean Accuracy and Robustness Compared to Robust SimCLR
	Robust Crop-Based EMP-SSL with Robust Linear Evaluation
	Cost-Free Adversarial Multi-Crop Self-Supervised Learning Evaluation

	Discussion
	Empirical Observations and Insights

	Conclusion
	Appendix
	Evaluation with 32- and 64-Patch Aggregation
	Ablation Study of Robust EMP-SSL


