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Abstract

Reinforcement Learning from Human Feedback (RLHF) has been crucial to the1

recent success of Large Language Models (LLMs), however, it is often a complex2

and brittle process. In the classical RLHF framework, a reward model is first trained3

to represent human preferences, which is in turn used by an online reinforcement4

learning (RL) algorithm to optimize the LLM. A prominent issue with such meth-5

ods is reward over-optimization or reward hacking, where performance as measured6

by the learned proxy reward model increases, but true quality plateaus or even dete-7

riorates. Direct Alignment Algorithms (DDAs) like Direct Preference Optimization8

have emerged as alternatives to the classical RLHF pipeline by circumventing9

the reward modeling phase. However, although DAAs do not use separate proxy10

reward model, they still commonly deteriorate from over-optimization. While11

the so-called reward hacking phenomenon is not well-defined for DAAs, we still12

uncover similar trends: at higher KL-budgets, DAA algorithms exhibit similar13

degradation patterns to their classic RLHF counterparts. In particular, we find that14

DAA methods deteriorate not only across a wide range of KL-budgets, but also15

often before even a single epoch of the dataset is completed. Through extensive16

empirical experimentation, this work formulates and formalizes the reward over-17

optimization or hacking problem for DAAs and explores its consequences across18

objectives, training regimes, and model scales.19

1 Introduction20

Recent advancements in Large Language Models (LLMs) have broadened their capabilities signifi-21

cantly, enabling applications in code generation, mathematical reasoning, tool use, and interactive22

communication. These improvements have popularized LLMs across various domains. Reinforce-23

ment Learning from Human Feedback (RLHF) has been instrumental in these advances and is now24

integral to sophisticated LLM training regimes [10, 55]. Before alignment, LLMs, trained on vast text25

corpses to predict subsequent tokens [45, 8] are often unwieldy and hard to use. Today, leading LLMs26

incorporate variants of the RLHF framework [14, 68, 36] to align them with human intent, which27

generally involves a multi-stage process. Specifically, users evaluate model responses to assorted28

prompts in order to train a reward model that encapsulates human preferences [10, 55, 71, 5, 61].29

Then, the refined LLM maximizes the expected learned reward function using a reinforcement learn-30

ing (RL) algorithm [50, 1, 64]. Despite its efficacy, this procedure is complex and computationally31

intensive, particularly in its latter stages.32

Goodhart’s Law [25, 11], that “when a measure becomes a target, it ceases to be a good measure”,33

has often been cited as a core shortcoming of RLHF. Standard RLHF methods optimize a learned, but34

imperfect reward function which ends up amplifying the reward model’s shortcomings. Empirically,35

this phenomena was first extensively characterized by Gao et al. [21], who coined the term “reward36
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over-optimization”, and has been seen consistently in recent findings [61, 16, 14]. While reward37

over-optimization has been studied in the context of the aforementioned RLHF procedure, recent38

contemporary methods for aligning LLMs circumvent the reward learning procedure, necessitating a39

new characterization of the over-optimization phenomena.40

This new broad class of algorithms, which we refer to as Direct Alignment Algorithms (DAAs),41

bypass the traditional RLHF pipeline by re-parameterizing the reward model directly through the42

optimal policy derived during the reinforcement learning phase. DAA methods, like Direct Preference43

Optimization [46], have gained popularity [14, 28] as they often reduce computational demands. Yet,44

despite not fitting a reward function, DAAs still exhibit over-optimization trends similar to those of45

traditional RLHF methods using a learned reward function. In some sense, this is puzzling: DAAs46

can be viewed as simply learning a reward function with supervised learning from which the optimal47

policy is deterministically mapped, however more seems to be at play than simple supervised learning.48

In this work we investigate the over-fitting phenomena present in DAA algorithms through extensive49

experimentation. First, we unify a number of different recent methods [46, 67, 4] under the DAA50

framework. Then, across different model scales and hyper-parameters, we show that DAAs exhibit a51

type of reward over-optimization consistent with that previously observed in RLHF [21]. Specifically,52

we find that at different KL-divergence budgets DAAs exhibit degradation patterns similar to those53

found in RLHF. Interestingly, we also find that performance within a single epoch is not always54

consistent as expected for DAAs. Finally, we explain why this happens by appealing to the under-55

constrainted nature of the optimization problem used in DAAs.56

2 Preliminaries57

In this section, we first outline the core components of the standard RLHF pipeline [71, 55, 5, 41]).58

Then, we examine prior literature to characterize the reward over-optimization exhibited by standard59

RLHF methods. Finally, we provide a unifying view of direct alignment algorithms (DAAs) which60

will guide our analysis of their training dynamics in the next section.61

2.1 Reinforcement Learning From Human Feedback62

The standard RLHF pipeline consists of three distinct stages with the goal of aligning the LLM with63

human preferences.64

Supervised Fine Tuning (SFT): First, a dataset of prompts x and high-quality answers y are used to65

train an LLM for instruction following via maximum likelihood estimation over next-tokens. We66

refer to the resultant model as πSFT(y|x) and consider the entire prompt and answer strings to be67

single variables.68

Reward Modeling: Second, the SFT model πSFT(y|x) is used to learn a reward function over human69

preferences. Specifically, the SFT model is queried to produce pairs of answers (y1, y2) ∼ πSFT(y|x),70

for every prompt x in a dataset. Then, users select their preferred answers, resulting in ranking71

yw ≻ yl | x where yw and yl are the preferred and dispreferred answers respectively. Typically, user72

rankings are assumed to be distributed according to the Bradley-Terry (BT) model [7]73

p(y1 ≻ y2 | x) = exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y2))
= σ(r(x, y1)− r(x, y2)) (1)

where the preference distribution p results from an unobserved latent reward r(x, y), and σ is the74

logistic function. Given this model and a dataset of rankings, denoted D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
, we75

can train a parameterized model rϕ(x, y) to predict the unobserved reward using maximum likelihood76

estimation. This yields the following loss function,77

Lrew(rϕ) = −E(x,yw,yl)∼D
[
log σ(rϕ(x, yw)− rϕ(x, yl))

]
. (2)

Reinforcement Learning (RL): The final stage of the standard RLHF pipeline uses the learned reward78

model rϕ(x, y) to update the LLM πθ with an on-policy RL algorithm like PPO [50], optimizing the79

model to provide responses more preferred by human raters. The most common objective is80

max
πθ

Ex∼D,y∼πθ(.|x)
[
rϕ(x, y)

]
− βDKL

[
πθ(y | x) || πref(y|x)

]
(3)
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which enforces a Kullback-Leibler (KL) divergence penalty with a reference distribution πref(y|x)81

(usually taken to be πSFT(y|x)) to prevent the LLM πθ from straying too far from its initialization.82

Thus, the hyper-parameter β directly trades off exploiting the reward function and deviating from83

πref(y|x).84

2.2 Reward Exploitation in RLHF85

Unfortunately, repeating the above procedure without careful tuning of the RL phase can lead to86

disastrous performance. This is because in the context of RLHF the LLM policy is optimizing the87

surrogate reward estimate rϕ(x, y) and not the true reward function as is often the case in other88

domains. Thus, prior works have observed that while the LLM’s expected reward according to89

eq. (3) increases the actual quality of the model’s outputs can decrease [54, 43, 9, 34]. This particular90

instantiation of the reward exploitation or hacking problem [3] is often referred to as reward “over-91

optimization” in RLHF literature and has been studied empirically in both controlled experiments92

[21] and user studies [14]. There are two prevailing explanations for why this phenomena occurs.93

1. OOD Robustness: In the classical RLHF pipeline, the RL objective (eq. (3)) is optimized using94

on-policy samples from πθ. This means that the reward function is continuously queried using unseen95

model samples which are potentially out-of-distribution. Beyond the support of the reward modeling96

distribution, rϕ may assign high reward to sub-par responses, leading the policy to believe it is doing97

well when it may not be. While the KL-regularization term is designed to prevent the model from drift-98

ing too far out of distribution, this term alone has proven inadequate to prevent reward hacking [21].99

2. Reward Mis-specification. Learned reward functions may exhibit spurious correlations that cause100

them to prefer unintended behaviors. While this issue is not at the forefront of LLM research, it is101

known to be pervasive in RL [43, 34]. Most efforts to address these problems exist at the intersection102

of robustness and offline RL literature [13, 66, 16] and use measures of epistemic uncertainty to103

penalize the predicted reward.104

2.3 Direct Alignment Algorithms105

Due to its complex multi-step nature, recent works have sought alternatives to the classic RLHF106

pipeline. A new class of algorithms, which we broadly classify as Direct Alignment Algorithms107

(DAAs), directly update the LLM’s policy πθ using user feedback instead of fitting a reward function108

to it and then employing an RL algorithm. Perhaps the most known example is Direct Preference Op-109

timization (DPO). DPO as well as other DAAs are derived using the closed form solution to the RLHF110

objective in eq. (3) [70], π∗(y|x) ∝ πref(y|x)er(x,y)/β , where r(x, y) is the ground-truth reward.111

By isolating r(x, y) in this relationship and substituting it into the reward optimization objective in112

eq. (2), we arrive at a general objective that allows us to train the LLM directly using feedback data:113

LDAA (πθ;πref) = E(x,yw,yl)∼D

[
g
(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
(4)

where g is a convex loss function. Using g(x) = − log σ(x) coincides with the standard114

Bradley-Terry model and the original DPO objective. Other methods choose different loss functions:115

IPO [4] uses the quadratic objective g(x) = (x − 1)2 and SLiC-HF [67, 38] uses the hinge loss116

g(x) = max(0, 1 − x). Additional objectives were also considered in [59], but due to limited117

computational resources, we focus on the three objectives outlined above.118

Crucially, the DAA approach allows us to recover the optimal policy using a straightforward classifi-119

cation loss without the need for learning a reward function, on-policy sampling, or RL, which can be120

notoriously difficult to tune and computationally expensive. Because of this, DAAs have emerged as121

a popular alternative. However, just like classical RLHF methods, DAAs exhibit strong over-fitting122

and even reward-hacking like behaviors. For example, Park et al. [44] show that LLMs trained with123

DPO generate responses with increasing length throughout the course of training, but do not improve124

in ground-truth win-rate after a certain point. Since DAAs do not explicitly learn a reward function, it125

is unclear how “reward-overoptimization” fits into the picture. In this work, we aim to shed some126

light on this phenomena in DAAs.127
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Figure 1: Results on over-optimization in Direct Alignment Algorithms for DPO, IPO and SLiC.
Results shows model win-rates over the dataset summary on an evaluation set of prompts as judged
by GPT-4. The top row shows final performance after 1 epoch of training, while the second row also
includes 4 intermediate checkpoints as well. The fitted dotted curves utilize scaling laws from [21]
applied to direct alignment, with GPT4 winrates taking the place of the gold reward model score.

3 Empirical Analysis of Overoptimization in DAAs128

First, we examine the over-optimization problem in DAAs and compare it to those observed in129

traditional RLHF methods. All our experiments are carried using the Reddit TL;DR summarization130

dataset [55] and the Pythia family of Large Language Models [6].131

3.1 Evaluating Model-Overoptimization132

In our first set of experiments we evaluate the reward model over-optimization phenomenon. We133

evaluate three training objectives DPO, IPO and SLiC using seven β parameters, representing different134

KL budgets at three model size - 1B, 2.8B and 6.9B. Our main results are shown in Fig. 1 which135

presents results for different configurations after 1 epoch of training (row 1) and including 4 uniform136

intermediate checkpoints (row 2). We include additional results on the training dynamics in Fig. 2,137

which shows win rates and KL bounds for intra-epoch training. We present our findings below.138

Model Over-Optimization: We see clear over-optimization for all objectives as performance exhibits139

a hump-shaped pattern, where an additional increase in the KL budget leads to decreasing model140

performance. Moreover in Fig. 2 we observe similar intra-epoch training dynamics patterns as141

configurations with wider KL budgets achieve their best performance after training on only 25% of142

the data, after which performance starts decreasing in conjunction with increasing KL divergence143

metrics.144

Effect of Training Objective: In the IPO work [4] the authors present theoretical arguments that145

due to the monotone sigmoid objective in the DPO formulation, the KL constraint is not effectively146

enforced and propose the quadratic fixed-margin loss as an alternative. Across all objectives, there147

are clear dependencies between the β parameter and the corresponding KL achieved at the end of148

training. While DPO and SLiC exhibit similar performance, IPO indeed seems to be less prone to149

over-optimization and in general achieve lower KLs under the same constraint. Our observations150

with IPO also align with prior works in preference-based RL and imitation learning where imposing151

a fixed margin led to more stable and performant methods [48, 51].152

Effect of Model Size: The results also show strong parameter count scaling effect. The Pythia 1B153

model achieves low performance under the same set of constraints it reaches much higher KL values,154

while almost immediately exhibiting signs of over-optimization. This behavior holds under all three155
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Figure 2: Results on intra-epoch optimization dynamics. The top row shows win-rates against fraction
of an epoch so far, while the bottom row shows the corresponding KL values. Under a lower KL
constraint most experiments reach their best performance in the first 25% of the epoch and degrade
over the remaining of training, while the model deviates from the reference under increasing KL. All
models are 6.9B and vary across DPO, SLiC, and IPO loss formulations.

objectives. At larger scales, the 6.9B Pythia model tends to exhibit more win-rate - KL trade-offs and156

be less prone to over-optimization, with both models significantly outperforming the 1B model. In157

the case of the IPO objective, the 6.9B also exhibits significantly better control over the KL objective158

and shows little to no over-optimization behavior.159

3.2 Scaling Law Fits160

Given we have established a framework for evaluating over-optimization in DAAs and empirically161

validated it (section 3.1), we now develop scaling laws for this phenomenon. Previous work in162

classical RLHF have established such scaling laws for reward model scores as a function of the KL163

divergence between initial and optimized policies [21]. The relevant functional of the reward R(d) is164

R(d) = d(α− β log d) (5)

where α, β are constants dependent on the size of the reward model dataset and parameter count,165

and d =
√
DKL(π||πref). As DAAs do not train a proxy reward model, we treat GPT4 winrates over166

dataset completions as a proxy for gold reward. Somewhat surprisingly, we find that this scaling law167

accurately relates d and winrates for DAAs. Compared to a quadratic fit between DKL(π||πref) and168

winrates, this scaling law halves the RMSE. It is worth noting, however, that a quadratic fit between169

d and winrates yields similar error compared to Equation 5.170

3.3 Length Correlations171

Prior work [44] has shown that the DPO algorithm is prone to length exploitation as it amplifies172

verbosity biases in preference datasets. Here we show that length is not the only dimension on which173

exploitation can occur. Our experimental results are shown in Fig. 3. On the left we show results174

for the 2.8B Pythia model with standard training plus the length-regularization approach from [44].175

Both approaches suffer from over-optimization, but the dynamics differ depending on the KL budget.176

Moreover, even though the regularized model achieves higher win rates on a length-correct basis,177

it under-performs the model trained with the standard objective in the lower KL constraint region.178

Recent work [27] has also shown that DAAs prioritize features of the data based on their complexity179

and prevalence (with length a clear example of human datasets). [44] further showed that models180

trained with the DPO algorithm extrapolate significantly based on length. We extend this analysis in181
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Figure 3: Left: KL budget versus win-rates (over dataset human answer) with and without length-
regularization [44]. While including a length-correction in the optimization objective changes the
KL-win-rate Pareto Frontier, it does not alleviate reward over-optimization and might even exacerbate
it. Right: Scaling behaviour for length extrapolation - smaller capacity models (either by size or KL
budget) extrapolate more strongly on simpler features such as length.

Figure 4: Top: We plot the DAA implicit reward accuracy in preference classification versus win
rates. Bottom: DAA optimization loss versus checkpoint win rates. Model training statistics, do not
exhibit strong relationship with downstream performance.

Fig, 3 (right). We consider a linear regression of the form182

log
πθ(y

(i)|x(i))

πref (y(i)|x(i))
= γ̂|y(i)|+ ϵ(i) (6)

where x(i) are held-out prompts and y(i) are samples from the corresponding model between the183

DPO implicit reward and length. We fit a different regression for each model size and checkpoint184

and plot the corresponding R2 values. We observe two main effects; first there is a clear scaling185

law behaviour. Weaker models extrapolate across the simple length feature to a much higher degree186

than stronger ones. This is especially clear comparing the behaviour of the Pythia 1B versus the187

2.8B and 6.9B models. Second, we see significant effects based on the KL budget - under a smaller188

budget all model sizes exhibit higher extrapolation behaviour. Based on these results we formulate189

the hypothesis that under limited capacity, either from model capability or limited KL budgets the190

model will extrapolate more strongly based on simpler features, which can lead to OOD issues.191

3.4 Reward Metrics Correlations192

Prior works have measured reward model quality in ranking settings by classification accuracy. We193

evaluate the relationship between the DAA implicit reward model accuracy and policy performance194
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Figure 5: Over-optimization results for
√

Forward KL vs. winrates. The top row shows final
performance after 1 epoch of training, while the second row also includes 4 intermediate checkpoints.
The fitted dotted curves are scaling laws from [21] applied to DAAs, with GPT4 winrates taking the
place of the gold reward model score.

in Figure 4. The DPO and SLiC algorithms exhibit little to no correlation between reward model195

accuracy and downstream model performance. The IPO model shows a weak positive relationship,196

but upon further examinations, this is entirely due to model size scaling - stronger models both197

fit the data better and produce better generations as well, however within each particular model198

size, there is no discernible relationship between the DAA implicit reward accuracy and the actual199

policy performance. Similar observations hold when comparing the empirical DAA loss with model200

performance, which is contrary to observations in supervised pre-training and instruction tuning [30].201

3.5 Decreasing Likelihoods and Model Performance202

A number of recent works have observed that the implicit DAA rewards of both preferred and203

dis-preffered responses decrease doing training, which may be counter-intuitive. In [47] the authors204

make a counter-point that in offline training of DAAs πref is usually pre-trained with SFT on the205

preferred response and thus206

EpD(yw|x)

[
log

πθ(yw|x)
πref(yw|x)

]
≈ Eπref(yw|x)

[
log

πθ(yw|x)
πref(yw|x)

]
= −DKL

[
πref(y|x) || πθ(y | x)

]
(7)

where pD(y
w|x) is the dataset distribution of preferred answers. That is the expected implicit reward207

represent a forward KL divergence between the reference policy and the optimisation policy, thus it208

is expected to be negative and decrease with training as the optimisation model moves away from209

the reference. In this section we study whether this empirical phenomenon presents a challenge for210

DAA learning. Similar to Fig. 1 we plot the win rates against the square-root-transformed (negative)211

expected implicit reward of the preferred response (evaluated on a held-out evaluation dataset), which212

as stated above approximates the (square-root-transformed) forward KL DKL
[
πref(y|x) || πθ(y | x).213

Results are included in Fig. 5, which follow closely the pattern in Fig. 1 with performance initially214

increasing before it starts dipping down after a certain threshold. This indicates that under the215

standard DAA training pipeline decreasing likelihoods are not necessary an issue for performance,216

and are even necessary for improvement, but exhibit a non-linear over-optimization dynamics.217

4 Reward Exploitation in Direct Alignment Algorithms218

While the phenomena observed in the previous section echo those observed in classical RLHF, their219

underlying causes may be distinct. Reward over-optimization in classical RLHF is largely attributed to220

querying a proxy reward function that is potentially OOD, while DAAs do not train a separate reward221
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model. Instead, DAAs are generally understood as fitting an “implicit” reward model to preference222

data with the parameterization rθ(x, y) = β log πθ(y|x)
πref(y|x) using the objective in eq. (2). Therefore, the223

OOD behavior of the policy is inextricably linked to the OOD behavior of the implicit reward model.224

Here we demonstrate that the reward modeling objective used is heavily under-constrained, allowing225

for a potentially large number of solutions that can place weight on OOD responses. This is especially226

problematic for DAAs which deterministically map the optimal policy from the “implicit” reward.227

Rank Deficiency with Finite Preferences. In DAAs, the language modeling problem is treated228

as contextual bandit. However, the space of possible prompts x ∈ X and answers y ∈ Y are both229

exponentially large in sequence length. However, as highlighted by Tang et al. [59], DAAs often230

assume full support of the reference distribution when mapping from the implicit reward to the optimal231

policy π by eq. (10). However, in practice such coverage is impossible. Instead, preference datasets232

cover a minuscule portion of the prompt-response space. Unfortunately, as DAA objectives are not233

strictly convex, this means that many optima of eq. (4) can place a high weight on OOD responses.234

We can demonstrate this using the regression interpretation from Hejna et al. [23]. Consider re-235

writing the DAA objective from eq. (4) in terms of preference query vectors q which select the win236

response pair (x, yw) and the loss response pair (x, yl) from the prompt-response space. Each vector237

q represents both the preferred and dis-preferred responses, with the entree corresponding to (x, yw)238

being +1 and the entree corresponding to (x, yl) being -1. We can then write the generalized DAA239

loss function with finite preference data as240

LDAA(πθ,D) =
∑|D|

i=1 g
(
βq⊤i (log π(y|x)− log πref(y|x))

)
, where qi[x, y] =


1 if (x(i), y

(i)
w ) = (x, y)

−1 if (x(i), y
(i)
l ) = (x, y)

0 otherwise

where the policy π is a single vector of size |X × Y|. In practice, the distributional constraint of π241

also applies. Choosing g to be the negative log sigmoid above recovers DPO with finite preferences,242

but also logistic regression with a data matrix Q of shape |D| by |X × Y| constructed by stacking243

the aforementioned query vectors q. As |X × Y| >> |D|, this matrix is likely to have a non-trivial244

null-space, making the problem not strictly convex. Thus, there are many possible policies π that245

can thus achieve the same optima, some of which can place a high weight on out-of-distribution246

responses [23, 69]. For more details and constructions, we defer to Hejna et al. [23].247

Understanding OOD behavior for DAA algorithms with a Toy MDP: To illustrate that DAA248

algorithms, in general and not an artifact of training LLM’s, end up placing probability mass on249

OOD sequences during training we design a simple Tree MDP (shown in Figure 6) to mimic the250

token-level MDP in LLMs. We use a dataset containing a single preference between two trajectories251

and follow the standard procedure of running SFT on preferred responses before updating an RNN252

policy using a DAA. Figure 7 shows that even in this simple setup, popular DAAs (DPO/IPO/SLiC)253

end up extrapolating incorrectly out of distribution revealing a fundamental shortcoming. Unlike in254

standard RLHF, the non-strict convexity of the reward function in DAAs ends up directly affecting255

the policy. Detailed experimental details can be found in Appendix E.256

5 Related Work257

Broadly, over-optimization has been a widely studied phenomena across different settings [60, 18].258

Over-fitting can be characterized as over-optimization in the supervised learning setting [39, 32],259

which can harm generalization [19, 12, 24] or lead to susceptibility to adversarial attacks [56, 37, 15].260

Reward hacking in reinforcement learning (RL) [54], where an agent maximizes its reward through261

behavior that deviates from the intended goal, can be viewed as a different type of over-optimization,262

commonly observed in prior work [43, 3, 22].263

We study over-optimization in the context of aligning LLMs with human feedback, for which the264

most common approach is RLHF as outlined in section 2.1. Similar RLHF techniques were originally265

pioneered for control [31, 2, 10]. Standard RLHF methods suffer from both potential over-fitting266

of the reward function and reward exploitation by the RL algorithm. Several works have considered267

how to reduce over-fitting or increase the robustness of learned reward functions using ensembles268

[13, 66, 16] or data smoothing [69]. Other approaches, like Moskovitz et al. [40] consider how269

reward exploitation can be reduced by using different optimization techniques in the RL stage. Much270
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Figure 7: (Top row) Probability of OOD trajectories. DAA algorithms end up placing a substantial
probability mass of some of the OOD trajectories during training. (Bottom row) Probability of
in-distribution (preference-pair) trajectories decrease during training.

.

of this work is motivated by Gao et al. [21], which first characterized and provided scaling laws271

for over-optimization in RLHF.272

Figure 6: An illustration of the Tree MDP. At each
state, we can choose one of 3 actions (a0, a1, a2),
which deterministically maps to the next state. Fur-
thermore, all the leaf nodes in this tree MDP, transi-
tion to the terminal absorbing state s∞, irrespective
of the chosen action

Unlike Gao et al. [21], we consider the over-273

optimization problem in DAAs, which differ274

significantly from the standard RLHF pipeline.275

Different DAAs have been derived theoretically276

[47, 46, 67, 4, 63], and applied to problems be-277

yond language modeling like image generation278

[62] and control [23]. In all of these scenarios,279

over-optimization problems have persisted. Park280

et al. [44] show that DAAs commonly over-fit to281

length and the expense of performance, which282

has been linked to inherent bias in training data283

[53, 29]. Other works have tried to allow DAAs284

to use more types of data like demonstrations285

[49] or ratings [17] to get better performance.286

Recently, incorporating online data has proven287

critical to improving performance [65, 26, 57].288

Concurrent to our work, Tang et al. [58] study289

the differences between offline DAAs and stan-290

dard RLHF methods. Unlike us, they focus on291

comparisons with online sampling whereas we292

focus on the purely offline setting.293

6 Conclusion294

In this work we present an analysis of the over-optimization problem in Direct Alignment Algorithms.295

Through extensive experimentation on different algorithms (DPO, IPO, SLIC) and at different model296

scales (1B, 2.8B, 6.9B), we observe consistent over-optimization trends at different KL-divergence297

budgets. While our analysis is a first step, it is not a complete picture of understanding the over-298

optimization phenomena. More work can be done characterizing this effect at larger model scales,299

which we were unable to do due to computational limitations. Nevertheless, we believe our work300

sheds light on important problems in Direct Alignment Algorithms that can spur future research.301
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A Limitations and Societal Impacts492

Our discussion highlights a number of issues with direct alignment algorithms used widely as means493

to align to human values. This work has mostly focused on pointing out those issues along with a494

theoretical underpinning of the issue, but does not provide a way to resolve these issues. We still495

assume an underlying model of human preferences, which is an ongoing research area as no model is496

perfect in explaining the ways humans give preferences. Our work aims to drive the push towards497

better alignment algorithms that do not overoptimize and generate models that safe to be deployed in498

our society. We believe only through understanding and demonstrating the shortcomings of current499

methods we can develop better alignment methods.500

B Experiment Details501

We largely follow the DPO setup unless otherwise mentioned and build on their code502

(https://github.com/eric-mitchell/direct-preference-optimization) without changing any hyperparame-503

ters unless otherwise mentioned.504

For all DAA experiments, we used the curated OpenAI TL;DR dataset with 92K preferred-dispreferred505

summary completions [55]. Each prompt is a Reddit post belonging to one of several topic forums,506

with title/post metadata included. 256 prompts sampled from the held-out set are used for all507

evaluations (e.g. loss, accuracy, KL, winrates, length), with temperature 1.0 and max length 512.508

Model sizes include 1B, 2.8B, and 6.9B and were initialized from the base Pythia pre-trained weights.509

All models underwent supervised fine-tuning on TL;DR prior to direct alignment. Across all SFT510

and DAA runs, we used a batch size of 128 (8 gradient accumulation steps), and RMSProp with a511

learning rate of 0.5× 10−6 (linear warmup for 150 steps) for 1 epoch. 1B models were trained on 2512

NVIDIA A40 GPUs, 2.8B models were trained on 4 NVIDIA A40 GPUs, and 6.9B models were513

trained on 4 NVIDIA A100 GPUs. All evaluations were computed with "gpt-4-turbo-2024-04-09" as514

judge, with random positional flips to avoid known bias.515

C Appendix A: Complete Intra-Epoch Training Dynamics516

This appendix contains similar intra-epoch KL divergence and winrate evolution results as in Fig. 2,517

across all model sizes.518
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Figure 8: KL divergence and GPT4 winrate evolution for 2.8B and 1B models across DPO, SLiC, and
IPO losses. Similar to the 6.9B models, performance tends to degrade after the first quarter epoch,
particularly under a low KL budget, while KL increases almost monotonically.
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D Overoptimization from the lens of Implicit Bootstrapping519

Reward over-optimization is well understood in the classical RLHF setting, with a consensus that520

is driven by two main components - using a proxy reward function that is trained on limited data521

and continuous querying with new, potentially OOD samples during PPO training. At first glance522

none of these conditions hold in DAAs as we do not train a separate proxy reward model or generate523

new data during training. Therefore, understanding reward over-optimization in DAAs requires a524

new theory. We will base our analysis on [47] using the token-level MDP and corresponding (soft)525

Q-learning formulation. Consider the class of dense per-token reward functions rθ(x, y≤i), where526

y≤i denotes the first i tokens of y, with sequence level-reward rθ(x, y) =
∑|y|

i=1 rθ(x, y≤i). This527

is a strictly more general class than the sparse reward function which returns a single score at the528

end of the sequence, since we can set all intermediate rewards as 0. Within the framework of [47]529

given a DAA-trained policy πθ, there exists a dense per-token reward rθ, that minimizes the reward530

modelling objective in Eq. 2 and satisfy the below.531

The (soft) Bellman Equation holds:532

Q∗(yi, (x, y<i)) =

{
r(x, y≤i) + β log πref(yi|(x, y<i)) + V ∗((x, y≤i)), if yi is not EOS
r(x, y≤i) + β log πref(yi|(x, y<i)), if yi is EOS

(8)

where V ∗ is the corresponding soft-value function:533

V ∗((x, y<i)) = β log
∑
y∈|V |

eQ
∗(y,(x,y<i))/β (9)

then the DAA policy πθ satisfies:534

πθ(yi|(x, y<i)) = exp(
1

β
Q∗(yi, (x, y<i))− V ∗((x, y<i))) (10)

in this interpretation, the LLM logits lθ[i] = Q∗(yi, (x, y<i))/β represent Q-values. With a direct535

substitution we then have536

Q∗(yi, (x, y<i)) = r(x, y≤i) + β log πref(yi|(x, y<i)) + β log
∑

yi∈|V |

eQ
∗(y,(x,y<i))/β

︸ ︷︷ ︸
OOD bootstrapping

(11)

That is in this framework DAAs may suffer from the classical OOD bootstrapping issue in offline537

RL [20, 35, 33, 52]. In this case even though the objective is trained fully offline we still effectively538

query the model on the values of unseen tokens. This interpretation also provides further insight into539

the effect of the β coefficient and the training dynamics. For small values of beta the estimate540

β log
∑

yi∈|V |

eQ
∗(y,(x,y<i))/β ≈ max

y∈|V |
Q∗(y, (x, y<i)) (12)

that is smaller parameter values yield a more optimistic estimate, which results in higher level of541

OOD bootstrapping. This interpretation would also explain the somewhat counter-intuitive results of542

section 3.4. While the implicit reward function can adequately fit and model the data, the resulting543

LLM might behave sub-optimally, due to OOD bootstrapping in the corresponding Q-value estimate.544
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E Understanding Behavior of DAAs on OOD sequences545

We have established that common DAA objectives allow for placing a high-likelihood on OOD546

data. In practice, while one might expect the likelihood of preferred responses to increase during547

training, it has been observed that algorithms like DPO decrease the likelihood of both the preferred548

and dis-preferred responses [42]. In fact, this is expected from a max-entropy RL perspective [47].549

Since the total probability mass must sum to one, the probability of OOD responses must increase550

during the course of training. A small amount of extrapolation may be necessary to reach the optimal551

policy, however, too much is potentially detrimental to performance. Because they are not adequately552

constrained to the reference distribution, current DAA objectives allow this to happen.553

To understand how DAAs allocate probability mass out of distribution, we use a toy Markov Decision554

Process (MDP), that mimics the LLM setting. The MDP is modeled as a tree, originating from a555

single start state, featuring deterministic transitions. The Toy MDP is illustrated in fig. 6.556

E.1 Designing a toy LLM MDP557

The MDP is modeled as a tree, originating from a single start state. This configuration mirrors the558

token-level MDP in Direct Preference Optimization (DPO) [47], or the scenario where both preferred559

and dispreferred responses are conditioned on the same prompt in the broader Large Language Model560

alignment context. Each leaf node in the MDP transitions deterministically to a terminal absorbing561

state, regardless of the action taken. The deterministic transitions resemble the LLM setting, where562

the current state is represented by the sequence of encountered tokens (s1, s2, ..., si), and the action563

corresponds to predicting the next word si+1 from the vocabulary, given the context. In this simplified564

MDP, the deterministic transition is akin to a concatenation function, advancing the state to the next565

step (s1, s2, ..., si, si+1). Employing a toy MDP enables us to systematically evaluate the trajectory566

probabilities for all feasible paths within the MDP, shedding light on the allocation of probability567

mass by Direct Alignment Algorithms (DAAs) towards out-of-distribution (OOD) trajectories.568

The Experimental Setup. We adhere to the standard direct alignment protocol [46][41], encompass-569

ing two key stages:570

1. Supervised Fine-tuning (SFT) / Behavioral Cloning (BC): This phase involves fine-571

tuning the policy based on a limited number of trajectories. Specifically, we utilize572

three demonstrations for SFT: (s1, a0, s2, a0, s5, a0, s∞), (s1, a1, s3, a1, s9, a0, s∞), and573

(s1, a2, s4, a2, s13, a2, s∞).574

2. Alignment with Preferences: In this stage, preferences extracted from trajectories575

are employed to align the policy. Notably, we have only one preference available:576

(s1, a1, s3, a1, s9, a0, s∞) ≻ (s1, a0, s2, a0, s5, a0, s∞). This deliberate constraint exag-577

gerates a scenario with limited data, enabling us to gauge the probability mass allocated578

to out-of-distribution (OOD) trajectories under such conditions. Insights garnered from579

this exaggerated low-data scenario hold relevance for Large Language Model (LLM) set-580

tings where preference datasets are notably smaller compared to the scale of LLM models581

deployed.582

We utilize a Recurrent Neural Network (RNN) policy to navigate through the MDP, facilitating a583

closer resemblance to real-world language modeling scenarios.584

Subsequently, we explore three distinct direct alignment loss functions: Direct Preference Optimiza-585

tion (DPO) [46], Identity Preference Optimization (IPO) [4], and Sequence Likelihood Calibration586

(SLiC) [67]. Additionally, we investigate how the selection of the KL penalty coefficient β influences587

the distribution of probability mass on OOD trajectories. This exploration encompasses three values588

of β: (0.01, 0.1, 0.5).589

In general, the plots illustrate that Direct Alignment Algorithms (DAAs) tend to allocate a significant590

proportion of the probability mass to out-of-distribution (OOD) trajectories during the alignment591

process. While Figure ?? may suggest that Direct Preference Optimization (DPO) can retain a592

substantial amount of probability mass on the selected trajectory in the preference dataset, it’s593

noteworthy that the plots for DPO exhibit considerable noise. To provide further insight, Figure 18594

displays the plots resulting from three additional repetitions of the DPO experiment. This elucidates595

the unconstrained nature of the DPO problem: multiple solutions exist for the DPO loss, each596
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distributing varying amounts of probability mass to OOD trajectories. In the experiments with IPO597

and SLiC, it’s observed that the probability mass allocated to in-distribution trajectories diminishes598

substantially over the course of training. Notably, the probability mass becomes concentrated on a599

select few out-of-distribution trajectories. Moreover, consistent trends are discernible across various600

values of β. All our experiments with Toy-MDP can be found in the following figures 12, 9, 15, 13,601

10, 16, 14, 11, 17.602
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Figure 9: Trajectory probabilities throughout DPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training

.
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Figure 10: Trajectory probabilities throughout IPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 11: Trajectory probabilities throughout SLiC training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 12: Trajectory probabilities throughout DPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training

.
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Figure 13: Trajectory probabilities throughout IPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 14: Trajectory probabilities throughout SLiC training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 15: Trajectory probabilities throughout DPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training

.
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Figure 16: Trajectory probabilities throughout IPO training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 17: Trajectory probabilities throughout SLiC training. The top plot shows how the probability
mass of different OOD trajectories, changes throughout training. The bottom plot shows how the
probability mass of the trajectories in our preference dataset (size 1) changes over training
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Figure 18: Trajectory probabilities throughout DPO training, over multiple runs
.
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1. Claims604

Question: Do the main claims made in the abstract and introduction accurately reflect the605

paper’s contributions and scope?606

Answer: [Yes]607

Justification: The paper faithfully adheres to the claims and motivation in the abstract and608

provides proof and detailed empirical studies in support.609

2. Limitations610

Question: Does the paper discuss the limitations of the work performed by the authors?611

Answer: [Yes]612
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beginning of the appendix.614
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• The answer NA means that the paper has no limitation while the answer No means that616

the paper has limitations, but those are not discussed in the paper.617
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• The paper should point out any strong assumptions and how robust the results are to619

violations of these assumptions (e.g., independence assumptions, noiseless settings,620

model well-specification, asymptotic approximations only holding locally). The authors621
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• The authors should reflect on the scope of the claims made, e.g., if the approach was624

only tested on a few datasets or with a few runs. In general, empirical results often625
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• The authors should reflect on the factors that influence the performance of the approach.627
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is low or images are taken in low lighting. Or a speech-to-text system might not be629

used reliably to provide closed captions for online lectures because it fails to handle630

technical jargon.631

• The authors should discuss the computational efficiency of the proposed algorithms632

and how they scale with dataset size.633
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tant role in developing norms that preserve the integrity of the community. Reviewers640

will be specifically instructed to not penalize honesty concerning limitations.641
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Answer: [Yes]645
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-649

referenced.650
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Answer: [Yes]662

Justification: We provide detailed guidance on reproducibility by specifying all datasets,663
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Guidelines:665
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to reproduce that algorithm.685
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versions (if applicable).721
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the726

results?727

Answer: [Yes]728

Justification: We list detailed information about the training and test details in Section ??.729

Our experiments use open-source datasets and models.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The experimental setting should be presented in the core of the paper to a level of detail733

that is necessary to appreciate the results and make sense of them.734

• The full details can be provided either with the code, in appendix, or as supplemental735

material.736

7. Experiment Statistical Significance737

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the paper report error bars suitably and correctly defined or other appropriate738
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Answer: [No]740
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error rates).764
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Question: For each experiment, does the paper provide sufficient information on the com-768

puter resources (type of compute workers, memory, time of execution) needed to reproduce769

the experiments?770

Answer: [Yes]771

Justification: We provide information on compute resources in the experimental details772

section B in the appendix.773
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• The answer NA means that the paper does not include experiments.775

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,776
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• The paper should provide the amount of compute required for each of the individual778

experimental runs as well as estimate the total compute.779

• The paper should disclose whether the full research project required more compute780

than the experiments reported in the paper (e.g., preliminary or failed experiments that781

didn’t make it into the paper).782

9. Code Of Ethics783
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Answer: [Yes]786

Justification: We abide by the code of ethics in every respect.787
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• If the authors answer No, they should explain the special circumstances that require a790
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-792

eration due to laws or regulations in their jurisdiction).793
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