
Improved Self-Explanatory Graph Learning Method Based on Controlled
Information Compression and Branch Optimization

Anonymous submission

Abstract

Graph Neural Networks have gained widespread application
across various domains and have motivated research into
their explainability. Self-explainable methods consider inher-
ent explanations during prediction and provide insights to re-
veal the decision-making processes. However, the transpar-
ent explainability of these methods often comes at the cost
of predictive performance. One reason is that these methods
suffer from a distribution shift when directly using explana-
tion subgraphs to make predictions. In this work, we propose
Self-explAinable Graph lEarning (SAGE) to improve the per-
formance of self-explainable methods. Specifically, SAGE
learns attention weights for edges to guide message passing,
generating more meaningful and discriminative representa-
tions. In this process, we emphasize label-relevant critical
structures while diminishing the influence of noisy ones. Ad-
ditionally, we control the degree of noisy information com-
pression applied to the subgraphs by establishing a lower
bound for the attention scores of irrelevant noisy structures,
which helps reduce the deviation from the original graph
and mitigates the distribution shift. Furthermore, we intro-
duced an optional strategy called branch optimization, ex-
ploring the optimal GNN state to improve the model’s op-
timization effectiveness. Experimental results on real-world
datasets demonstrate that SAGE can achieve predictive accu-
racy comparable to or even higher than baselines. Compared
to the backbone model, our self-explainable framework at-
tains an average performance improvement of 10.5% across
four datasets.

Introduction
Graph Neural Networks (GNNs) have emerged as power-
ful tools for representation learning of graph-structured data,
such as social networks (Dwivedi et al. 2023), citation net-
works (Kipf and Welling 2016), and chemical molecular
graphs (Jumper et al. 2021). However, their expressivity is
often built upon a highly nonlinear entanglement of irreg-
ular graph features. This leads to the black-box nature of
GNNs that limits their application in critical tasks requir-
ing trust. There have been numerous works proposed for ex-
plaining trained GNNs by extracting salient substructures of
input graphs as explanations in a post-hoc manner (Luo et al.
2020; Ying et al. 2019). Specifically, these methods work
on a pre-trained GNN model and propose different types of
combinatorial search methods to explore the subgraphs of

the input data critical to the GNNs’ predictions. Although
these methods can provide relatively accurate explanations,
they are recognized to be biased or inconsistent in reveal-
ing the actual reasoning process of the original model (Dai
and Wang 2021). In contrast to post-hoc methods, self-
explainable methods can provide explanations while mak-
ing predictions, which ensures the derived explanations are
inherently consistent with the trained model’s architecture.
However, the built-in transparent explanations often come
at the cost of prediction accuracy (Du, Liu, and Hu 2018).
One reason is the distribution shift problem when evaluat-
ing or using the explanation subgraphs. Actually, both types
of methods mentioned above suffer from distribution shift.
For instance, treating the prediction on the subgraph as the
subgraph’s label could potentially affect the model’s per-
formance since it may significantly deviate from the actual
ground truth. In other words, directly using explanatory sub-
graphs for prediction often fails to achieve ideal results. Due
to the significant difference in data distribution between the
explanatory subgraphs and the original graphs, there exists a
distribution shift. Therefore, mere explanatory subgraphs are
not necessarily the optimal graph structures for prediction.
From this perspective, we believe that the noise structures
in the graph should not be completely eliminated, but rather
mitigated to a certain extent, as these components, while not
essential, are useful for prediction.

In this work, we propose SAGE to address this issue.
SAGE controls the degree of distribution shift by properly
compressing noisy information. Specifically, it learns atten-
tion weights for each edge while driving the data distri-
bution of these attention weights to gradually approach an
ideal distribution we set, in which each edge has a certain
sampling probability, such as 70%. This operation sets a
boundary control for attention weights of all edges. Dur-
ing the optimization process, the model gradually allocates
higher attention weights to critical structures relevant to the
label, thereby achieving better classification performance.
Through the above boundary control, we reduce the neg-
ative impact of distribution shift as the compressed sub-
graph retains at least 70% of the information from the orig-
inal graph. With the above configuration, SAGE completes
the subgraph selection. In the subsequent subgraph learn-
ing process, unlike previous methods that directly combine
the attention weight matrix with the original graph, we ap-

ply attention to the message-passing process at each layer
of the GNN, further emphasizing the information of criti-
cal structures. We evaluated the proposed SAGE framework
on graph classification tasks. Experimental results show that
SAGE demonstrates superior subgraph discovery capabili-
ties while achieving classification performance comparable
to or even better than baselines. We summarize our contri-
butions as follows:

• We control the degree of compression applied to noisy
information by setting lower bounds on the attention
weights for edges. This approach can mitigate the dis-
tribution shift problem and the learned attention will be
used to guide neighborhood aggregation for final embed-
dings.

• The unified self-explainable GNN framework can make
predictions and provide edge-level explanations in an
end-to-end manner. By learning proper attention weights,
we can obtain more meaningful embeddings which can
effectively enhance the performance of the backbone
model.

• To further enhance the performance based on the frame-
work, we introduce an optional optimization strategy
called Branch optimization. This strategy explores bet-
ter GNN states in a branch-like manner without affecting
the original optimization process.

• Compared with classic GNNs and self-explainable meth-
ods, experimental results on real-world datasets demon-
strate the effectiveness of our framework in graph classi-
fication tasks. The visualization results also demonstrate
that SAGE can provide accurate explanations.

Related Work
Some self-explainable methods employ the Graph Informa-
tion Bottleneck(GIB) principle to identify informative sub-
graphs for explanation. These methods impose constraints
on the information of subgraphs. IB-subgraph (Yu et al.
2020) proposes a GIB objective and adopts a bi-level op-
timization strategy. Specifically, in the inner optimization
loop, the IB-subgraph first utilizes a GNN to obtain repre-
sentations of both the original graph and the subgraph. It
then trains a parameter network to estimate the mutual in-
formation between the original graph and the subgraph at
the current epoch. Subsequently, IB-subgraph optimizes the
subgraph to minimize the mutual information in the outer
optimization loop. Since this bi-level optimization process
is inefficient and unstable, another method VGIB (Yu, Cao,
and He 2022) proposes a new framework. It reformulates
the subgraph identification problem into two steps: graph
perturbation and subgraph selection. Noise is injected into
node representations according to a learned probability to
suppress information in the original graph. If informative
subgraphs are injected with noise, the classification loss will
increase. The VGIB objective is given a tractable variational
upper bound, resulting in superior empirical performance
and theoretical properties. Consequently, driven by the loss
function, VGIB further obtains the desired subgraph by fil-
tering out noise from the perturbed graph. As VGIB only

learns node-level scores and directly reads out graph embed-
dings, which may adversely affect the quality of graph repre-
sentations. GSAT (Miao, Liu, and Li 2022) injects random-
ness when learning attention to disrupt spurious correlations
in the data. It samples random attention from a Bernoulli dis-
tribution based on logits computed by an MLP. GSAT uses
this random attention to extract explanatory subgraphs and
make predictions. It also incorporates a reasonable regular-
ization term to control randomness, which is equivalent to
controlling information from an information theory perspec-
tive. This random attention mechanism endows GSAT with
excellent robustness and generalization capabilities.

Preliminaries
Graph Neural Network
We denote a graph by G = (V,E) where V is the node set
and E is the edge set. Let X ∈ R|V |×F denote the node fea-
ture matrix where F is the input feature dimension of nodes
and the i-th row of X is the feature vector xi of node vi.
The graph structure can be described by an adjacency ma-
trix A ∈ {0, 1}|V |×|V |, where A[i, j] = 1 if edge (vi, vj)
exists, otherwise A[i, j] = 0.

A GNN takes a graph G as input and learns node rep-
resentations which can be used in downstream tasks. Typi-
cally, initial node representations are node feature matrix X
and GNN updates them by employing the message-passing
mechanism to propagate and aggregate information from
neighbors. For an L-layer GNN, the representation of a tar-
get node is jointly determined by its L-hop neighbors. Dif-
ferent GNNs may adopt various aggregation and updation
strategies. Formally speaking, for a given GNN, the hidden
state h

(l)
i of node vi at layer l can be represented as:

h
(l)
i = UPDATE(l)

{
h
(l−1)
i , AGG(l)

({
h
(l−1)
j , ∀vj ∈ Ni

})}
,

whereNi is the set of neighbors of node vi. UPDATE(l)(·)
is an update function such as ADD or a linear transforma-
tion after concatenation, while AGG(l)(·) is a function ag-
gregating representations of neighbor nodes, such as taking
the average or using a multi-head attention mechanism.

In this work, we focus on the graph classification task.
The READOUT function aggregates node representations
from the final layer to obtain the entire graph’s represen-
tation.

hG = READOUT ({hv | v ∈ V }) ,
where the READOUT function can be a simple summation
or other more sophisticated graph-level pooling operations.
Given a set of input graphs {G1, ..., GN} and their labels
{y1, ..., yN}, graph classification aims to learn a represen-
tation vector hG to predict the label of the entire graph,
ŷi = f(hGi).

Problem Formulation
We follow previous works(Miao, Liu, and Li 2022; Sui et al.
2022) and provide attention scores for edges as edge-level
explanations. This paper aims to develop a self-explainable
GNN framework including a GNN encoder fθ, an explana-
tion extractor gϕ. Given a graph G and node features X ,

Input graph G

GNN

𝑓θ

Node Embeddings

MLP

Sigmoid

𝑝𝑢𝑣

concat

𝛼𝑢𝑣 = 𝐵𝑒𝑟𝑛 𝑝𝑢𝑣

GNN

𝑓θ

readout

+

FC-Layer

Output

Graph Classification

Figure 1: Illustration of the proposed SAGE framework. fθ encodes the edges of the input graph. Through MLP and Gumbel-
softmax, it obtains the attention score distribution for edges in order to guide the aggregation.

the framework is able to provide faithful explanations us-
ing Gs = gϕ(G,X) and accurate predictions with ŷ =
Classify(fθ(Gs, X)).

Methodology
Framework Overview
As shown in Fig.1, we adopt a simple framework including
a GNN encoder fθ and a feature extractor gϕ. Firstly, the
fθ is pre-trained and encodes the input graph G into a set
of node representations {hv|v ∈ V }. For each edge (u, v),
we consider the concatenation [hu, hv] as its representation.
Then the extractor gϕ, an MLP layer plus sigmoid, maps the
concatenation into puv ∈ [0, 1], which can be considered as
a form of attention score.

puv = Sigmoid (Extractor gϕ(concat[hu, hv])) , (1)

The sampling operation based on puv is not differentiable.
In our implementation, we use the Gumbel-softmax trick to
reparameterize this step.

αuv ∼ Bern (puv) , (2)

With αuv for all the edges, we obtain α representing the
learned attention weights and we apply α to each layer of
the fθ to guide the message-passing process. Finally, we ob-
tain a more meaningful graph representation and make pre-
dictions.

ŷ = Classify (GNNfθ (A,X,α)) . (3)

Branch optimization
Typically, the extractor module and the GNN encoder are
updated simultaneously. However, this approach may not al-
low the GNN to fully adapt to the changes in the extractor,
potentially limiting the model’s performance. Based on this
intuition, we propose a training strategy called Branch op-
timization to further enhance the performance of the self-
explainable pipeline mentioned above. During the training

process, we save the current checkpoint after backpropaga-
tion and parameter updates. Then, we freeze the parameters
of the extractor gϕ and continue to optimize the GNNfθ’s
parameters several times according to the hyperparameter
‘inner-epoch’. During this optimization process, if better
GNN states are obtained, they are recorded and saved. After
this, we load the checkpoint and restore the original state,
ensuring that the optimization process in each epoch func-
tions like a branch, without affecting the original training
process. Considering the increased computational cost asso-
ciated with the additional optimization process, we perform
branch optimization every few epochs or when the saved
best metric updates. The entire process is illustrated in Al-
gorithm 1.

Algorithm 1: branch optimization
Input: GNNfθ, G = (V,E,X, Y).

1 Save checkpoint.;
2 Fix parameters of extractor gϕ.;
3 for each inner-epoch do
4 Z ← GNNfθ(G,X);
5 Calculate attention weights matrix α.;
6 Ŷ ← GNNfθ(G,X,α);
7 Compute loss and update parameters normally. ;
8 Test the model and record the results.;
9 end

10 Load checkpoint.;

Information compression mechanism
Firstly, we choose the GIN as our backbone model to obtain
high-quality node embeddings. Since the learned attention
scores are nondifferentiable, we employed the commonly
used Gumbel-softmax as a reparameterization trick which
also introduces randomness to the model and enhances its

Algorithm 2: Training SAGE for graph classifica-
tion

Input: The input graph G = (V,E), node features
X , node labels Y , GNN encoder GNNfθ,
feature extractor gϕ.

1 for each epoch do
2 Z ← GNNfθ(G,X).
3 Obtain edge embeddings via concatenating.
4 α← Calculate attention weights matrix.
5 Ŷ ← GNNfθ(G,X,α).

// α works as attention in each
layer.

6 Compute loss with Eq.4.
7 Update parameters with backpropagation.
8 Start branch optimization every few epochs.
9 end

Output: Prediction Y, edge importance α for
explanation.

robustness. Unlike previous methods that directly combine
the attention weight matrix α and the original graph G,
our approach, we applied the attention scores to each layer
of the GNN to guide the message aggregation of neighbor
nodes. This process further differentiates the contributions
of key structures and the remaining parts to the final graph
embedding. The overall pipeline of SAGE is depicted in
Algorithm2.

Our loss function consists of two components: the first
component is the cross-entropy representing the classifica-
tion loss, and the second component is the Kullback-Leibler
(KL) divergence between the learned attention score distri-
bution and a predefined ideal distribution:

min
θ,ϕ
−E [logPθ(Y |GS)] + βE [KL(Pϕ(GS |G)||Q(GS))] ,

(4)
where Q(GS) is a Bernoulli distribution in which the sam-
pling probability of each edge approaches r and r ∈ [0, 1] is
a hyperparameter. The overall pipeline of SAGE is depicted
in Algorithm2.

As shown in Fig.2, the KL divergence component encour-
ages the learned attention weights for each edge to approach
r, such as 0.7, while the cross-entropy component drives the
weights of structures critical to prediction towards 1. Driven
by the loss function, the attention weights of structures irrel-
evant to the prediction are compressed to r, and the contri-
butions of critical structures are further highlighted through
a message-passing process. The model optimizes the alloca-
tion of attention scores and gradually improves classification
accuracy. As we only reduce the weights of task-irrelevant
structures, this approach does not significantly alter the data
distribution of the original graph, thereby controlling the im-
pact of distribution shift on the model. Through this method,
we compressed task-irrelevant noise information.

Figure 2: Illustration of the expected compression results of
the objective function

Table 1: Statistics of datasets.

Dataset Graphs Nodes Edges Classes
MUTAG 188 17.93 19.79 2
NCI1 4110 29.87 92.3 2
PROTEINS 1113 39.06 72.82 2
IMDB-BINARY 1000 19.77 96.53 2
MNIST 70000 70.57 564.66 10
BA-2motifs 1000 25 51.39 2

Experiments
Datasets and Baselines
We select real-world datasets such as TUDataset (Morris
et al. 2020) and Superpixel graphs (Knyazev, Taylor, and
Amer 2019) to evaluate the prediction performance of our
model. For TUDataset, We use three biological datasets
(MUTAG, NCI1, PROTEINS) and a social networks dataset
(IMDB-B), which are commonly used in graph classification
tasks. For explainability performance, we select BA-2motifs
and MUTAG since they provide ground truth motif. Their
statistics are presented in Table.1.

For datasets from the TUDataset, we adopt a random split
of 80% for training and 10% each for validation and testing.
In Mutag, we use mutagen molecules with -NO2 or -NH2 to
evaluate or visualize explanations (because only these sam-
ples have explanation labels). For MNIST-75sp, we use the
default splits following (Knyazev et al., 2019); due to its
large scale in the graph setting, we also reduce the number
of training samples to speed up training.

We compare prediction performance with three
classic GNN models GCN(Kipf and Welling 2016),
GAT(Veličković et al. 2018), and GIN(Xu et al. 2019), and
three inherently interpretable models IB-subgraph(Yu et al.
2020), VIB-GSL(Sun et al. 2021), and GSAT(Miao, Liu,
and Li 2022).

Setup
Here, we introduce the detailed experimental setup: (1)
Batch size. For MNIST-75sp, we use a batch size of 256

model year MUTAG NCI1 PROTEINS MNIST IMDB-B

GCN 2016 74.50±7.9 73.16±3.5 72.83±4.2 90.49 70.70±3.7
GIN 2019 80.50±7.9 75.04±2.1 70.30±4.8 95.74±0.4 73.20±4.8
GAT 2018 73.50±7.4 66.05±1.0 71.35±4.8 95.53 71.30±4.2
IB-subgraph 2020 83.90±6.4 64.65±6.8 74.90±5.1 93.10±1.3 73.70±7.0
VIB-GSL 2021 81.00±6.6 63.75±3.4 73.66±3.3 - 77.10±1.4
GSAT 2022 95.80±4.2 68.13±2.6 71.10±3.7 96.24 ± 0.2 75.40±2.9

SAGE (Ours) 97.10±1.5 78.50±2.1 71.60±3.0 96.50±0.1 77.00±3.3
Average impro (%) 20.0 ↑ 15.2 ↑ - 2.5 ↑ 4.8 ↑

Table 2: Graph Classification Performance. We report the mean and standard deviation of the testing accuracy. The bold results
are the overall best performances and the underlining results are the second-best performances. Some data come from (Sui et al.
2022; Seo, Kim, and Park 2024).

to speed up training due to its large scale; all other datasets
use a batch size of 128. (2) Epoch. Except for MNIST-
75sp training for 200 epochs, all other datasets are trained
for 100 epochs and we report the metric of the epoch that
achieves the best validation performance. During the pre-
train process, we employ the same strategy of using the mod-
els that achieve such best performance on the validation set
as the pre-trained model. (3) Learning Rates. We employ
the Adam optimizer configured with a learning rate of 1e-3
to update the parameters of the network, including GIN and
MLP. In branch optimization, We use another Adam opti-
mizer with a learning rate of 5e-4 to update the parameters
of GIN temporarily. (4) Backbone. We use a two-layer GIN
with 64 hidden dimensions and a 0.3 dropout ratio to en-
code the input graph. For graph classification, we employ
a global-add-pool from Pytorch to obtain the embedding of
the entire graph. (5) Hyperparameters. We set the inner-
epoch to 3 since we only intend to slightly adjust the param-
eters of the GIN; We set the β and r to 1, 0.7 for all datasets
respectively.

To accelerate training, the classification results on
MNIST-75sp are averaged over 5 runs and all other experi-
ment results are averaged over 10 times tests with different
random seeds.

Graph Classification
To evaluate the effectiveness of the SAGE on graph classifi-
cation, we compare our model with classic GNNs and self-
explainable models. We report the classification accuracy in
Table 2. As shown in Table 2, SAGE outperforms baselines
on the MUTAG, NCI1, and MNIST-75SP, while achiev-
ing suboptimal results on the IMDB-B. Our model also
achieved comparable results on the PROTEINS. Notably,
while most explainable baseline models perform poorly on
NCI1, our model, in contrast, achieves an average improve-
ment of 12%. The experimental results indicate that SAGE
can achieve better predictive performance by compressing
the noise information from the original graph.

SAGE learns edge attention weights to guide the message-
passing process to obtain more meaningful representations
while providing key substructures as explanations. Our
framework can enhance the performance of the backbone

model GIN in all the datasets, which means that the atten-
tion learned by SAGE is effective.

Explanation Visualization
Although our primary goal is to achieve better classifica-
tion by compressing noisy graph information, we can still
provide edge attention scores as explanations. To verify the
quality of the explanation, we choose two instances from
each dataset and present the visualization of explanations in
Fig.3. We determine the thickness of edges based on their
attention scores. Considering that in our model, the scores
of important substructures do not differ greatly from the re-
maining parts, we apply a normalization to amplify the dif-
ference between the scores of the two parts. Naturally, the
edges within the motifs identified by the model as most rele-
vant to the prediction are represented by thick black lines. As
shown in the figure, SAGE can correctly identify the house-
structured and five-node cycle in BA-2motifs, as well as the
NO2 and NH2 groups in MUTAG. Notably, there are mul-
tiple motifs in the instances from the MUTAG, SAGE can
identify almost all of them.

This result aligns with the design of SAGE: 1) critical
structures get high attention scores close to 1, allowing them
to be effectively retained and highlighted in the compressed
graph representation. 2) Noisy structures have their attention
scores pushed towards the lower bound r, which compresses
and downgrades their influence without completely remov-
ing them. By differentiating between key and noisy com-
ponents in this manner during the prediction process, SAGE
can generate compressed graph representations that preserve
the most salient information for the downstream task while
mitigating noise and irrelevant components. The hyperpa-
rameter r provides control over how aggressively noise is
suppressed.

Ablation Studies
In this section, we conduct ablation studies from three per-
spectives. First, the effect of branch optimization where
we obtain the variant “w/o opt” by removing branch opti-
mization. Second, the importance of edge-level explanations
where we learn attention scores for nodes and lift node-level
attention to edge-level to adapt the following aggregation

BA-2motifs Mutag

N

H H

N

O O

Motifs: Motifs:

Figure 3: Visualizing graphs compressed by SAGE for Ba-2Motifs and Mutag. Edges colored black are critical structures.

0.5 0.6 0.7 0.8 0.9
r

0.92

0.93

0.94

0.95

0.96

0.97

ac
c

(a) Accuracy.

0.5 0.6 0.7 0.8 0.9
r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

ila
rit

y

(b) Cosine similarity.

0.5 0.6 0.7 0.8 0.9
r

5

10

15

20

25

30

35

40

45

Eu
cli

de
an

 d
ist

an
ce

(c) Euclidean distance.

Figure 4: The impact of the hyperparameter r on the final graph embedding. (a) The effect of r on classification accuracy. (b)(c)
represent the cosine similarity and Euclidean distance between the final graph embedding and the original graph embedding,
respectively.

process. This variant is named “w/o edge”. Third, we eval-
uate the effect of attention-guided aggregation. In this case,
we obtain the compact graph embedding by a weighted sum
of all node embeddings based on node-level attention scores.
This variant is named “w/o agg”.

We test the classification accuracy of SAGE and its three
variants on the MUTAG and NCI1. As shown in Table 3, The
performance of all three variants has decreased compared to
the complete model. When branch optimization is not em-

Table 3: Ablation studies on SAGE.

MUTAG NCI1

w/o opt 95.80±2.0 76.6±1.4
w/o edge 95.80±1.3 74.3±1.5
w/o agg 93.40±2.8 77.7±1.9
with all 97.10±1.5 78.50±2.1

ployed, performance declines on both datasets, which vali-
dates the effectiveness of branch optimization. The results of
the “w/o edge” variant indicate that encoding edge features
generates more meaningful attention weights compared with
node-level explanation. Furthermore, the performance of the
“w/o agg” variant should significantly decrease compared
to the complete model which is confirmed by its results on
MUTAG. However, the performance drop on NCI1 is mini-
mal, which we attribute to the specific characteristics of this
dataset. Each step of our model is designed to optimize the
compression of the noise information of the input graph.
This ensures that every step contributes to the model’s per-
formance, which can be verified from the results of our ab-
lation studies.

The hyperparameter r controls the threshold for attention
scores assigned to label-irrelevant structures. It regulates the
degree of compression for noisy information and, conse-
quently, the extent of distribution shift between the com-
pressed graph structure and the original graph. To validate
the effect of r, we tested the model’s performance with r val-
ues in the set 0.5, 0.6, 0.7, 0.8, 0.9. The evaluation metrics
used are classification accuracy, cosine similarity, and Eu-
clidean distance. The cosine similarity and Euclidean dis-
tance between the final graph embedding and the original
graph embedding serve as approximations of the similari-
ties between graph distributions. The results are presented
in Fig.4. The results show that as the value of r increases,
the cosine similarity increases while the Euclidean distance
decreases. This indicates that the value of r can, to some ex-
tent, control the data distribution of the compressed graph,
thereby further reducing the negative impact of the distribu-
tion shift. Additionally, the classification accuracy reaches
its peak when r is 0.7. This can be interpreted as follows:
when r is relatively high, the compression of noisy informa-
tion is insufficient; conversely, when r is relatively low, the
degree of distribution shift is more significant, which also
impairs classification performance.

Table 4: The influence of hyperparameter β on graph em-
beddings

Accuracy Cosine
similarity ↑

Euclidean
distance ↓

β = 0 95.1 0.333 57.207
β = 0.5 96.0 0.630 26.276
β = 1 96.2 0.637 24.224

On the other hand, we also conducted a study on the hy-
perparameter β in Eq.4 to evaluate the effectiveness of the
second term in Eq.4 that controls the distribution boundary.
The results are shown in Table.4 . When β=0, there are sig-
nificant changes in cosine similarity and Euclidean distance,
indicating that using only cross-entropy classification as the
objective function may impair model performance due to
significant distribution shifts. When β=0.5 or 1, all metrics
of the model improved, demonstrating the effectiveness of
controlling the distribution boundary.

Conlusion
In this paper, we attempt to improve the performance of
self-explainable graph learning by setting boundaries for
the learned attention scores of edges. We propose SAGE
learning an attention score for each edge in the graph and
utilize these scores to guide the message-passing process.
Driven by the loss function, the attention scores of all edges
are pushed towards the predefined lower bound, while the
scores of critical structures gradually approach 1, thereby
weakening label-irrelevant structures and emphasizing cru-
cial ones. Additionally, we introduce an optional branch op-
timization strategy that can further enhance the optimization
quality of SAGE to a certain extent. Extensive experiments
on real-world datasets demonstrate that SAGE alleviates the
distribution shift problem and improves the performance of
GNNs. In the future, we aim to extend the model’s applica-
bility to more complex graph learning scenarios.

References
Dai, E.; and Wang, S. 2021. Towards Self-Explainable
Graph Neural Network. Proceedings of the 30th ACM In-
ternational Conference on Information & Knowledge Man-
agement.
Du, M.; Liu, N.; and Hu, X. 2018. Techniques for inter-
pretable machine learning. Communications of the ACM,
63: 68 – 77.
Dwivedi, V. P.; Joshi, C. K.; Laurent, T.; Bengio, Y.; and
Bresson, X. 2023. Benchmarking Graph Neural Networks.
J. Mach. Learn. Res., 24: 43:1–43:48.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov,
M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, T.;
Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.;
Kavukcuoglu, K.; Kohli, P.; and Hassabis, D. 2021. Highly
accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873): 583–589.
Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Classi-
fication with Graph Convolutional Networks. arXiv preprint
arXiv:1609.02907.
Knyazev, B.; Taylor, G. W.; and Amer, M. R. 2019. Un-
derstanding Attention and Generalization in Graph Neural
Networks. In Neural Information Processing Systems.
Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.; and
Zhang, X. 2020. Parameterized Explainer for Graph Neural
Network. Advances in Neural Information Processing Sys-
tems, 33.
Miao, S.; Liu, M.; and Li, P. 2022. Interpretable and Gen-
eralizable Graph Learning via Stochastic Attention Mecha-
nism. arXiv:2201.12987.
Morris, C.; Kriege, N. M.; Bause, F.; Kersting, K.; Mutzel,
P.; and Neumann, M. 2020. TUDataset: A collection
of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663.
Seo, S.; Kim, S.; and Park, C. 2024. Interpretable Prototype-
Based Graph Information Bottleneck. arXiv:2310.19906.
Sui, Y.; Wang, X.; Wu, J.; Lin, M.; He, X.; and Chua, T.-
S. 2022. Causal Attention for Interpretable and Generaliz-
able Graph Classification. In Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data
Mining, 1696–1705.
Sun, Q.; Li, J.; Peng, H.; Wu, J.; Fu, X.; Ji, C.; and Yu, P. S.
2021. Graph Structure Learning with Variational Informa-
tion Bottleneck. arXiv:2112.08903.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018. Graph Attention Networks.
arXiv:1710.10903.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful Are Graph Neural Networks? arXiv:1810.00826.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. GNNExplainer: Generating Explanations for Graph
Neural Networks. arXiv:1903.03894.
Yu, J.; Cao, J.; and He, R. 2022. Improving Subgraph
Recognition with Variational Graph Information Bottleneck.
In 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 19374–19383. New Orleans, LA,
USA: IEEE. ISBN 978-1-66546-946-3.
Yu, J.; Xu, T.; Rong, Y.; Bian, Y.; Huang, J.; and He, R.
2020. Graph Information Bottleneck for Subgraph Recogni-
tion. arXiv:2010.05563.

Appendix
Datasets
We select real-world datasets such as TUDataset (Mor-
ris et al. 2020) and Superpixel graphs (Knyazev, Taylor,
and Amer 2019) to evaluate prediction performance of our
model. For TUDataset, We use three biological datasets
(MUTAG, NCI1, PROTEINS) and a social networks dataset
(IMDB-B), which are commonly used in graph classification
tasks. For explainability performance, we select BA-2motifs
and MUTAG since they provide ground truth motif.
• Based on Barabasi-Albert (BA) model, Each base graph

in BA-2Motifs is attached with a house-like motif or a
five-node cycle motif. House motifs and cycle motifs cor-
respond to class labels and thus are regarded as ground-
truth explanations for the two classes respectively.

• MUTAG is a molecular property prediction dataset,
where nodes are atoms and edges are chemical bonds.
Each graph represents a chemical compound and is asso-
ciated with a binary label based on its mutagenic effect.
Following (Luo et al., 2020), -NO2 and -NH2 in mutagen
graphs are labeled as ground-truth explanations.

• Similar to MUTAG, NCI1 is relative to anti-cancer
screens where the chemicals are assessed as positive or
negative for cell lung cancer.

• PROTEINS includes proteins that are classified as en-
zymes or non-enzymes. Nodes represent the amino acids
and two nodes are connected by an edge if they are less
than 6 Angstroms apart.

• IMDB-BINARY derives from movie collaboration. In
each graph, nodes represent actors/actresses, and there is
an edge between them if they appear in the same movie.
These graphs are derived from the Action and Romance
genres and each graph is associated with a binary label
based on its type.

• MNIST-75sp is an image classification dataset, where
each image in MNIST is converted to a superpixel graph.
Each node in the graph represents a superpixel and edges
are formed based on spatial distance between superpixel
centers. Node features are the coordinates of their cen-
ters of masses. Nodes with nonzero pixel values provide
ground-truth explanations. Note that the subgraphs that
provide explanations are of different sizes in this dataset.

For datasets from the TUDataset, we adopt a random split
of 80% for training and 10% each for validation and testing.
In Mutag, we use mutagen molecules with -NO2 or -NH2 to
evaluate or visualize explanations (because only these sam-
ples have explanation labels). For MNIST-75sp, we use the
default splits following (Knyazev et al., 2019); due to its
large scale in the graph setting, we also reduce the number
of training samples to speed up training.

Baselines
We compare prediction performance with three classic GNN
models GCN, GAT, and GIN, and three inherently inter-
pretable models IB-subgraph, VIB-GSL, and GSAT.

• GCN (Kipf and Welling 2016) captures local struc-
tural information and update embeddings by aggregating
neighboring node features; GAT (Veličković et al. 2018)
introduces an attention mechanism to assign different
weights to neighbors during aggregation; GIN (Xu et al.
2019) is probably the most expressive among the class
of GNNs and is as powerful as the Weisfeiler-Lehman
graph isomorphism test.

• IB-subgraph (Yu et al. 2020) derives an optimizable ob-
jective from a mutual information estimator for irregu-
lar graph data and proposes the graph information bot-
tleneck (GIB) framework for discovering a critical sub-
structure.

• VIB-GSL (Sun et al. 2021) advances the Information
Bottleneck (IB) principle for graph structure learning and
proposes a new variational IB-guided framework which
jointly optimizes the graph structure and graph represen-
tations.

• GSAT (Miao, Liu, and Li 2022) injects stochasticity to
edges and leverages the reduction of stochasticity to se-
lect important edges under the guidance of the informa-
tion bottleneck principle.

