
Bigger, Regularized, Optimistic: scaling for compute
and sample-efficient continuous control

Michal Nauman
Ideas NCBR & University of Warsaw

nauman.mic@gmail.com

Mateusz Ostaszewski
Warsaw University of Technology
mm.ostaszewski@gmail.com

Krzysztof Jankowski
University of Warsaw

kj.jankowski3@student.uw.edu.pl

Piotr Miłoś
Ideas NCBR & University of Warsaw

pmilos@mimuw.edu.pl

Marek Cygan
Nomagic & University of Warsaw

ma.cygan@uw.edu.com

Abstract

Sample efficiency in Reinforcement Learning (RL) has traditionally been driven
by algorithmic enhancements. In this work, we demonstrate that scaling can also
lead to substantial improvements. We conduct a thorough investigation into the
interplay of scaling model capacity and domain-specific RL enhancements. These
empirical findings inform the design choices underlying our proposed BRO (Bigger,
Regularized, Optimistic) algorithm. The key innovation behind BRO is that strong
regularization allows for effective scaling of the critic networks, which, paired with
optimistic exploration, leads to superior performance. BRO achieves state-of-the-
art results, significantly outperforming the leading model-based and model-free
algorithms across 40 complex tasks from the DeepMind Control, MetaWorld,
and MyoSuite benchmarks. BRO is the first model-free algorithm to achieve
near-optimal policies in the notoriously challenging Dog and Humanoid tasks.

1 Introduction

Figure 1: BRO sets new state-of-the-art outperforming model-free (MF) and model-based (MB)
algorithms on 40 complex tasks covering 3 benchmark suites. Y-axes report interquartile mean
calculated on 10 random seeds, with 1.0 representing the best possible performance in a given
benchmark. We use 1M environment steps.

Deep learning has seen remarkable advancements in recent years, driven primarily by the development
of large neural network models (Devlin et al., 2019; Tan & Le, 2019; Dosovitskiy et al., 2020). These

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

Figure 2: We report sample efficiency (left) and wallclock time (right) for BRO and BRO (Fast)
(BRO with reduced replay ratio for increased compute efficiency), as well as baseline algorithms
averaged over 40 tasks listed in Table 2. BRO achieves the best sample efficiency, whereas BRO
(Fast) matches the sample efficiency of model-based TD-MPC2. In terms of wall clock efficiency,
BRO runs approximately 25% faster than TD-MPC2. Remarkably, BRO (Fast) matches the wallclock
efficiency of a standard SAC agent while achieving 400% better performance. The Y-axis reports the
interquartile mean, with 1.0 representing the maximal possible performance.

advancements have significantly benefited fields like natural language processing and computer vision
and have been percolating to RL as well (Padalkar et al., 2023; Zitkovich et al., 2023). Interestingly,
some recent work has shown that the model scaling can be repurposed to achieve sample-efficiency
in discrete control (Schwarzer et al., 2023; Obando-Ceron et al., 2024), but these approaches cannot
be directly translated to continuous action RL. As such, they rely on discrete action representation,
whereas many physical control tasks have continuous, real valued action spaces.

Conventional practice in continuous deep RL has relied on small network architectures (Haarnoja
et al., 2018; Hiraoka et al., 2021; Raffin et al., 2021; D’Oro et al., 2022), with the primary focus on
algorithmic improvements. These enhancements aim to achieve better sample efficiency and address
key challenges such as value overestimation (Fujimoto et al., 2018; Moskovitz et al., 2021; Cetin
& Celiktutan, 2023), exploration (Chen et al., 2017; Ciosek et al., 2019; Nauman & Cygan, 2023),
and increasing the number of gradient steps (Nikishin et al., 2022; D’Oro et al., 2022). Additionally,
evidence suggests that naive model capacity scaling can degrade performance (Andrychowicz et al.,
2021; Bjorck et al., 2021). We challenge this status quo by posing a critical question: Can significant
performance improvements in continuous control be achieved by combining parameter and replay
scaling with existing algorithmic improvements?

In this work, we answer this question affirmatively, identifying components essential to successful
scaling. Our findings are based on a thorough evaluation of a broad range of design choices, which
include batch size (Obando Ceron et al., 2024), distributional Q-values techniques (Bellemare et al.,
2017; Dabney et al., 2018), neural network regularizations (Bjorck et al., 2021; Nauman et al., 2024),
and optimistic exploration (Moskovitz et al., 2021; Nauman & Cygan, 2023). Moreover, we carefully
investigate the benefits and computational costs stemming from scaling along two axes: the number
of parameters and the number of gradient steps. Importantly, we find that the former can lead to
more significant performance gains while being more computationally efficient in parallelized setups.

Our work culminates in developing the BRO (Bigger, Regularized, Optimistic) algorithm, a novel
sample-efficient model-free approach. BRO significantly outperforms existing model-free and model-
based approaches on 40 demanding tasks from the DeepMind Control, MetaWorld, and MyoSuite
benchmarks, as illustrated in Figures 1 and 2. Notably, BRO is the first model-free algorithm to
achieve near-optimal performance in challenging Dog and Humanoid tasks while being 2.5 times
more sample-efficient than the leading model-based algorithm, TD-MPC2. The key BRO innovation
is pairing strong regularization with critic model scaling, which, coupled with optimistic exploration,
leads to superior performance.

We summarize our contributions:

2

• Extensive empirical analysis - we conduct an extensive empirical analysis focusing on critic
model scaling in continuous deep RL. By training over 15, 000 agents, we explore the interplay
between critic capacity, replay ratio, and a comprehensive list of design choices.

• BRO algorithm - we introduce the BRO algorithm, a novel model-free approach that combines
regularized BroNet architecture for critic scaling with domain-specific RL enhancements. BRO
achieves state-of-the-art performance on 40 challenging tasks across diverse domains.

• Scaling & regularization - we offer a number of insights, with the most important being: regu-
larized critic scaling outperforms replay ratio scaling in terms of performance and computational
efficiency; the inductive biases introduced by domain-specific RL improvements can be largely
substituted by critic scaling, leading to simpler algorithms.

2 Bigger, Regularized, Optimistic (BRO) algorithm

This section presents our novel Big, Regularized, Optimistic (BRO) algorithm and its design prin-
ciples. The model-free BRO is a conclusion of extensive experimentation presented in Section 3,
and significantly outperforms existing state-of-the-art methods on continuous control tasks from
proprioceptive states (Figure 1).

2.1 Experimental setup

We compare BRO against a variety of baseline algorithms. Firstly, we consider TD-MPC2 (Hansen
et al., 2023), a model-based state-of-the-art that was shown to reliably solve the complex dog domains.
Secondly, we consider SR-SAC (D’Oro et al., 2022), a sample-efficient SAC implementation that uses
a large replay ratio of 32 and full-parameter resets. For completeness, we also consider CrossQ (Bhatt
et al., 2023), a compute-efficient method that was shown to outperform ensemble approaches, as
well as standard SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018). We run all algorithms
with 10 random seeds, except for TD-MPC2, for which we use the results provided by the original
manuscript (Hansen et al., 2023). We describe the process of hyperparameter selection for all
considered algorithms in Appendix E, and share BRO pseudocode in Appendix (Pseudocode 1).
We implement BRO based on the JaxRL (Kostrikov, 2021) and make the code available under the
following link:

Environments We consider a wide range of control tasks, encompassing a total of 40 diverse,
complex continuous control tasks spanning three simulation domains: DeepMind Control (Tassa
et al., 2018), MetaWorld (Yu et al., 2020), and MyoSuite (Caggiano et al., 2022) (a detailed list of
environments can be found in Appendix B.2). These tasks include high-dimensional state and action
spaces (with |S| and |A| reaching 223 and 39 dimensions), sparse rewards, complex locomotion
tasks, and physiologically accurate musculoskeletal motor control. We run the algorithms for 1M
environment steps and report the final performance unless explicitly stated otherwise. We calculate
the interquartile means and confidence intervals using the RLiable package (Agarwal et al., 2021).

2.2 BRO outline and design choices

The BRO algorithm is based on the well-established Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
(see also Appendix A) and is composed of the following key components:

• Bigger – BRO uses a scaled critic network with the default of ≈ 5M parameters, which is
approximately 7 times larger than the average size of SAC models (Haarnoja et al., 2018); as well
as scaled training density with a default replay ratio1 of RR = 10, and RR = 2 for the BRO (Fast)
version.

• Regularized – the BroNet architecture, intrinsic to the BRO approach, incorporates strategies
for regularization and stability enhancement, including the utilization of Layer Normalization
(Ba et al., 2016) after each dense layer, alongside weight decay (Loshchilov & Hutter, 2017) and
full-parameter resets (Nikishin et al., 2022).

1The replay ratio refers to the number of gradient updates per one environment step.

3

0.55 1.05 2.83 4.92 26.31
Parameters (M)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

BroNet + BRO
Vanilla + BRO
Spectral + BRO

0.34 0.79 2.47 4.56 25.74
Parameters (M)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

BroNet + SAC
Vanilla + SAC
Spectral + SAC

Figure 3: Scaling the critic parameter count for vanilla dense (Fujimoto et al., 2018), spectral
normalization ResNet (Bjorck et al., 2021), and our BroNet for BRO (left), and SAC (right). We
conclude that to achieve the best performance, we need both the right architecture (BroNet) and the
correct algorithmic enhancements encapsulated in BRO. We report interquartile mean performance
after 1M environment steps in tasks listed in Table 3, with error bars indicating 95% CI from 10
seeds. On the X-axis, we report the approximate parameter count of each configuration.

• Optimistic – BRO uses dual policy optimistic exploration (Nauman & Cygan, 2023) and non-
pessimistic (Nauman et al., 2024) quantile Q-value approximation (Dabney et al., 2018; Moskovitz
et al., 2021) for balancing exploration and exploitation.

The full details of the algorithm, along with the pseudo-code, are provided in Appendix B.1. Figure 6
summarizes the impact of removing components of BRO. We observe the biggest impact of scaling the
critic capacity (scale) and replay ratio (RR), as well as using non-pessimistic Q-value, i.e. removing
Clipped Double Q-learning (CDQ).

Figure 4: BroNet architecture employed for actor and
critic. Each fully connected layer is augmented with
Layer Norm, which is essential to unlocking scaling. We
use ≈ 5M parameters and N = 2 in the default setting.

Scaling critic network and BroNet architec-
ture The key contribution of this paper is
showing how to enable scaling the critic network.
We recall that naively increasing the critic ca-
pacity does not necessarily lead to performance
improvements and that successful scaling de-
pends on a carefully chosen suite of regular-
ization techniques (Bjorck et al., 2021). Fig-
ure 4 shows our BroNet architecture, which, up
to our knowledge, did not exist previously in
the literature. The architecture begins with a
dense layer followed by Layer Norm (Ba et al.,
2016) and ReLU activation. Subsequently, the
network comprises ResNet blocks, each consist-
ing of two dense layers regularized with Layer
Norm. Consequently, the ResNet resembles the
FFN sub-layer utilized in modern LLM archi-
tectures (Xiong et al., 2020), differing primarily
in the placement of the Layer Norms. Crucially,
we find that BroNet scales more effectively than
other architectures (Figure 3 (left)). However,
the right choice of architecture and scaling is
not a silver bullet. Figure 3 (right) shows that
when these are plugged into the standard SAC
algorithm naively, the performance is weak. The
important elements are additional regularization
(weight decay and network resets) and optimistic exploration (see below). Interestingly, we did not
find benefits from scaling the actor networks, further discussed in Section 3.

4

1 2 5 10 15
Replay Ratio

0.4

0.5

0.6

0.7

0.8

0.9

IQ
M

0.55 M
1.05 M
2.83 M
4.92 M
26.31 M

5k 10k 20k 40k 80k
Wallclock Time (Seconds)

0.4

0.5

0.6

0.7

0.8

0.9

IQ
M

RR=1
RR=2
RR=5
RR=10
RR=15

Figure 5: In order to account for sample efficiency, we report the performance averaged at 250k,
500k, 750k, and 1M environment steps across different 5 replay ratios and 5 critic model sizes. All
agents were evaluated in tasks listed in Table 3, and 10 random seeds per variant. The left figure
shows performance scaling with increasing replay ratios (shapes) and model sizes (colors). The right
figure examines the tradeoff between performance and computational cost when scaling replay ratios
versus critic model sizes. Increasing model size leads to substantial performance improvements at
lower compute costs compared to increasing the replay ratio. We present more scaling results in
Appendix D, including description of model sizes in Table 5.

Scaling replay ratio and relation to model scaling Increasing replay ratio (D’Oro et al., 2022)
is another axis of scaling. We investigate mutual interactions by measuring the performance across
different model scales (from 0.55M to 26M) and RR settings (from RR = 1 to RR = 15). Figure 5
reveals that the model scaling has a much stronger impact plateauing at≈ 5M parameters. Increasing
the replay ratio also leads to noticeable benefits. For example, a 26M model with RR = 1 achieves
significantly better performance than a small model with RR = 15, even though the 26M model
requires three times less wallclock time. Importantly, model scaling and increasing replay ratio work
well in tandem and are interchangeable to some degree. We additionally note that the replay ratio has
a bigger impact on wallclock time than the model size. This stems from the fact that scaling replay
ratio leads to inherently sequential calculations, whereas scaling model size leads to calculations that
can be parallelized. For these reasons, BRO (Fast) with RR = 2 and 5M network offers an attractive
trade-off, being already very sample efficient and fast at the same time.

Optimistic exploration and Q-values BRO utilizes two mechanisms to increase optimism. We
observe significant improvements stemming from these techniques in both BRO and BRO (Fast)
agents (Figure 6). They are particularly pronounced in the early stages of the training and for smaller
models (Figure 8a).

The initial mechanism involves deactivating Clipped Double Q-learning (CDQ) (Fujimoto et al.,
2018), a commonly employed technique in reinforcement learning aimed at mitigating Q-value
overestimation. For further clarification, refer to Appendix B.1.6, particularly Eq. 8 where we take
the ensemble mean instead of minimum for Q-value calculation. This is surprising, perhaps, as it goes
against conventional wisdom. However, some recent work has already suggested that regularization
might effectively combat the overestimation (Nauman et al., 2024). We observe a much stronger effect.
In Figures 6 & 8a, we compare the performance of BRO with BRO that uses CDQ. This analysis
indicates that using risk-neutral Q-value approximation in the presence of network regularization
unlocks significant performance improvements without value overestimation (Table 1).

The second mechanism is optimistic exploration. We implement the dual actor setup (Nauman &
Cygan, 2023), which employs separate policies for exploration and temporal difference updates. The
exploration policy follows an optimistic upper-bound Q-value approximation, which has been shown
to improve the sample efficiency of SAC-based agents (Ciosek et al., 2019; Moskovitz et al., 2021;
Nauman & Cygan, 2023). In particular, we optimize the optimistic actor towards a KL-regularized
Q-value upper-bound (Nauman & Cygan, 2023), with Q-value upper-bound calculated with respect
to epistemic uncertainty calculated according to the methodology presented in Moskovitz et al.
(2021). As shown in Figure 6, using dual actor optimistic exploration yields around 10% performance
improvement in BRO model.

5

Figure 6: Impact of removing various BRO components on its performance. We report the percentage
of the final performance for BRO (left) and BRO (Fast) (right). The y-axis shows the components
that are ablated: -Scale denotes using a standard-sized network, +CDQ denotes using pessimistic
Clipped Double Q-learning (which is removed by default in BRO), +RR=1 uses the standard replay
ratio, -Dual π removes optimistic exploration, and -Quantile and -WD stand for removing quantile
Q-values and weight decay, respectively. We report the interquartile mean and 95% CIs for tasks in
Table 3, with 10 random seeds. The results indicate that the Scale, CDQ, and RR=1 components
are the most impactful for BRO. Since BRO (Fast) has RR=2 by default, reducing it to one does not
significantly affect its performance.

Others We mention two other design choices. First, we use a smaller batch size of 128 than the
typical one of 256. This is computationally beneficial while having a marginal impact on performance,
which we show in Figure 10. Secondly, we use quantile Q-values (Bellemare et al., 2017; Dabney
et al., 2018). We find that quantile critic representation improves performance (Figure 6), particularly
for smaller networks. This improvement, however, diminishes for over-parameterized agents (Figure
8a). On top of the performance improvements, the distribution setup allows us to estimate epistemic
uncertainties, which we leverage in the optimistic exploration according to the methodology presented
in Moskovitz et al. (2021).

3 Analysis

This section summarizes the results of 15,000 experiments, detailed in Table 4, which led us to
develop the BRO algorithms. These experiments also provided numerous insights that we believe
will be of interest to the community. We adhered to the experimental setup described in Section 2.1.

Scaling model-free critic allows superior performance We recall that the most important finding
is that skillful critic model scaling combined with simple algorithmic improvements can lead to
extremely sample-efficient performance and the ability to solve the most challenging environments.
We deepen these observations in experiments depicted in Figure 7. Namely, we let the other algo-
rithms, including state-of-the-art model-based TD-MPC2, run for 3M steps on the most challenging
tasks in the DMC suite (Dog Stand, Dog Walk, Dog Trot, Dog Run, Humanoid Stand, Humanoid
Walk, and Humanoid Run). TD-MPC2 eventually achieves BRO performance levels, but it requires
approximately 2.5 more environment steps.

Algorithmic improvements matter less as the scale increases The impact of algorithmic im-
provements varies with the size of the critic model. As shown in Figure 8a, while techniques like
smaller batch sizes, quantile Q-values, and optimistic exploration enhance performance for 1.05M
and 4.92M models, they do not improve performance for the largest 26.3M models. We hypoth-
esize this reflects a tradeoff between the inductive bias of domain-specific RL techniques and the
overparameterization of large neural networks. Despite this, these techniques still offer performance
gains with lower computing costs. Notably, full-parameter resets (Nikishin et al., 2022; D’Oro et al.,
2022) are beneficial; the largest model without resets nearly matches the performance of the BRO
with resets.

6

Figure 7: IQM return learning curves for four Dog and three Humanoid environments from the DMC
benchmark, plotted against the number of environment steps. Notably, the model-based approach
(TD-MPC2) requires approximately 2.5 times more steps to match BRO performance.

Scaling actor is not effective Previous works underscore the relative importance of critic and actor
networks in off-policy algorithms like SAC (Fujimoto et al., 2018; D’Oro et al., 2022; Li et al., 2022).
For instance, Nikishin et al. (2022) found that critic regularization is significantly more important
than actor regularization. We confirm this result by showing that, for off-policy continuous control
actor-critic algorithms, increasing critic capacity leads to much better results than increasing the actor
model size, which in some cases might be even detrimental (Figure 8a). As such, practitioners can
achieve performance improvements by prioritizing critic capacity over actor capacity while adhering
to memory limitations.

Target networks yield small but noticeable performance benefits Using target networks doubles
the memory costs (Bhatt et al., 2023; Schwarzer et al., 2020), which can be a significant burden for
large models. In Figure 8b, we compare the performance of standard BRO and BRO (Fast) agents
against their versions without target networks. Consistent with established understanding, we find that
using target networks yields a small but significant performance improvement. However, we observe
substantial variation in these effects among benchmarks and specific environments (Figure 8b &
Figure 17). For example, the majority of performance improvements in DMC and MS environments
are attributable to specific tasks.

Table 1: Comparison of BroNet, Spectral (Bjorck et al.,
2021), and Vanilla MLP architectures in notriously hard Dog
environments. All metrics except return are averaged over
time steps. All architectures are combined with BRO.

BroNet Spectral Vanilla

Final return 763.5 73.5 167.
||∇||2 35.5 88. 9.61E+04
Mean Q-values 58.06 153.85 1.20E+05
TD-error 0.38 4.31E+04 6.03E+07

Architecture matters (especially in
complex environments) By break-
ing down the results from Figure 3
into individual environments, the
BroNet architecture achieves better
performance in all of them, but the
differences are most pronounced in
the Dog environments. Therefore,
we deepened our analysis with extra
metrics to understand these discrepan-
cies better. Table 1 demonstrates that
BroNet outperforms the other architectures regarding final performance. The Vanilla MLP exhibits
instabilities across all measured metrics, including gradient norm, overestimation, and TD error.
While using the Spectral architecture maintains moderate gradient norms and overestimation, it
struggles significantly with minimizing the TD error.

In Nauman et al. (2024), the authors indicate that the gradient norm and overestimation are strong
indicators of poor performance in Dog environments. However, these results suggest that identifying
a single cause for the challenges in training a reinforcement learning agent is difficult, highlighting
the complexity of these systems and the multifaceted nature of their performance issues.

What did not work? While researching BRO, we tested a variety of techniques that were found
to improve the performance of different RL agents; however, they did not work in our evaluations.
Firstly, we found that using N -step returns (Sutton & Barto, 2018; Schwarzer et al., 2023) does not

7

(a) Design Choices (b) Target Networks

Figure 8: (Left) We analyze the importance of BRO components dependent on the critic model size.
Interestingly, most components become less important as the critic capacity grows. (Right) We report
the performance of BRO variants with and without a target network. All algorithm variants are run
with 10 random seeds.

improve the performance in the tested environments. We conjecture that the difference between N -
step effectiveness in Atari and continuous control benchmarks stems from the sparser reward density
in the former. Furthermore, we evaluated categorical RL (Bellemare et al., 2017) and HLGauss (Imani
& White, 2018; Farebrother et al., 2024) Q-value representations, but found that these techniques are
not directly transferable to a deterministic policy gradient setup and introduce training instabilities
when applied naively, resulting in a significant amount of seeds not finishing their training. Finally,
we tested a variety of scheduling mechanisms considered by Schwarzer et al. (2023) but found that
the performance benefits are marginal and highly task-dependent while introducing much more
complexity associated with hyperparameter tuning. A complete list of tested techniques is presented
in Appendix B.3.

Are current benchmarks enough? As illustrated in Figure 9, even complex tasks like Dog Walk
or Dog Trot can be reliably solved by combining existing algorithmic improvements with critic
model scaling within 1 million environment steps. However, some tasks remain unsolved within
this limit (e.g., Humanoid Run or Acrobot Swingup). Tailoring algorithms to single tasks risks
overfitting to specific issues. Therefore, we advocate for standardized benchmarks that reflect the
sample efficiency of modern algorithms. This standardization would facilitate consistent comparison
of approaches, accelerate advancements by focusing on a common set of challenging tasks, and
promote the development of more robust and generalizable RL algorithms. On that note, in Appendix
G, we report BRO performance at earlier stages of the training.

4 Related Work

Sample efficiency through algorithmic improvements A significant effort in RL has focused
on algorithmic improvements. One recurring theme is controlling value overestimation (Fujimoto
et al., 2018; Moskovitz et al., 2021; Cetin & Celiktutan, 2023). For instance, Fujimoto et al. (2018)
proposed Clipped Double Q-learning (CDQ), which updates policy and value networks using a
lower-bound Q-value approximation. However, since a pessimistic lower-bound can slow down the
learning, Moskovitz et al. (2021) introduced approach that tunes pessimism online. Recently, Nauman
et al. (2024) showed that layer normalization can improve performance without value overestimation,
eliminating the need for pessimistic Q-learning. A notable effort has also focused on optimistic
exploration (Wang et al., 2020; Moskovitz et al., 2021). Various methods have been developed to
increase sample efficiency via exploration that is greedy with respect to a Q-value upper bound.
These include closed-form transformations of the pessimistic policy (Ciosek et al., 2019) or using a
dual actor network dedicated to exploration (Nauman & Cygan, 2023).

Sample efficiency through scaling Recent studies demonstrated the benefits of model scaling
when pre-training on large datasets (Driess et al., 2023; Schubert et al., 2023; Taiga et al., 2023) or in
pure offline RL setups (Kumar et al., 2023). Additionally, model scaling has proven advantageous for
model-based online RL (Hafner et al., 2023; Hansen et al., 2023; Wang et al., 2024). However, in
these approaches, most of the model scale is dedicated to world models, leaving the value network

8

Figure 9: Our experiments cover 40 of the hardest tasks from DMC (locomotion), MW (manipulation),
and MS (physiologically accurate musculoskeletal control) considered in previous work (Hansen
et al., 2023). In those tasks, the state-of-the-art model-free SR-SAC (D’Oro et al., 2022) achieves
more than 80% of maximal performance in 18 out of 40 tasks, whereas our proposed BRO in 33 out
of 40 tasks. BRO makes significant progress in the most complex tasks of the benchmarks.

relatively small. Notably, Schwarzer et al. (2023) found that increasing the scale of the encoder
network improves performance for DQN agents, but did not study increasing the capacity of the
value network. Various studies indicate that naive scaling of the value model leads to performance
deterioration (Bjorck et al., 2021; Obando-Ceron et al., 2024; Farebrother et al., 2024). For example,
Bjorck et al. (2021) demonstrated that spectral normalization enables stable training with relatively
large ResNet architectures, yielding performance improvements. In addition to model size scaling,
the community has investigated the effectiveness of replay ratio scaling (i.e., increasing the number
of gradient steps for every environment step) (Hiraoka et al., 2021; Nikishin et al., 2022; Li et al.,
2022). Recent works have shown that a high replay ratio can improve performance across various
algorithms, provided the neural networks are regularized (Li et al., 2022; D’Oro et al., 2022). In this
context, layer normalization and full-parameter resets have been particularly effective (Schwarzer
et al., 2023; Lyle et al., 2024; Nauman et al., 2024).

5 Limitations and Future Work

BRO’s larger model size compared to traditional baselines like SAC or TD3 results in higher memory
requirements, potentially posing challenges for real-time inference in high-frequency control tasks.
Future research could explore techniques such as quantization or distillation to improve inference
speed. While BRO is designed for continuous control problems, its effectiveness in discrete settings
remains unexplored.

Further investigation is needed to assess the applicability and performance of BRO’s components in
discrete action MDPs. Additionally, our experimentation primarily focuses on continuous control
tasks using proprioceptive state representations. Future research could investigate the tradeoff between
scaling the critic and the state encoder in image-based continuous control scenarios.

6 Conclusions

Our study underscores the efficacy of scaling a regularized critic model in conjunction with existing
algorithmic enhancements, resulting in sample-efficient methods for continuous-action RL. The
proposed BRO algorithm achieves markedly superior performance within 1 million environment steps
compared to the state-of-the-art model-based TD-MPC2 and other model-free baselines. Notably, it
achieves over 90% success rates in MetaWorld and MyoSuite benchmarks, as well as over 85% of
maximal returns in the DeepMind Control Suite, and near-optimal policies in the challenging Dog
and Humanoid locomotion tasks.

While some tasks remain unsolved within 1 million environment steps, our findings underscore the
need for new standardized benchmarks focusing on sample efficiency to drive consistent progress
in the field. The BRO algorithm establishes a new standard for sample efficiency, providing a solid
foundation for future research to build upon and develop even more robust RL algorithms.

9

Acknowledgements

We thank the Polish high-performance computing infrastructure PLGrid (HPC Center: ACK
Cyfronet AGH) for providing computer facilities and support within computational grant no.
PLG/2023/016783. Marek Cygan was partially supported by an NCBiR grant POIR.01.01.01-
00-0433/20. Mateusz Ostaszewski was funded by the National Science Center Poland under the grant
agreement 2020/39/B/ST6/01511.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. Deep reinforcement

learning at the edge of the statistical precipice. Advances in neural information processing systems,
34:29304–29320, 2021.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L., Geist,
M., Pietquin, O., Michalski, M., et al. What matters in on-policy reinforcement learning? a large-
scale empirical study. In ICLR 2021-Ninth International Conference on Learning Representations,
2021.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Bellemare, M. G., Dabney, W., and Munos, R. A distributional perspective on reinforcement learning.
In International conference on machine learning, pp. 449–458. PMLR, 2017.

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., and Peters, J. Cross q:
Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity.
In The Twelfth International Conference on Learning Representations, 2023.

Bjorck, N., Gomes, C. P., and Weinberger, K. Q. Towards deeper deep reinforcement learning with
spectral normalization. Advances in neural information processing systems, 34:8242–8255, 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
Openai gym, 2016.

Caggiano, V., Wang, H., Durandau, G., Sartori, M., and Kumar, V. Myosuite–a contact-rich simulation
suite for musculoskeletal motor control. arXiv preprint arXiv:2205.13600, 2022.

Cetin, E. and Celiktutan, O. Learning pessimism for reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 6971–6979, 2023.

Chen, R. Y., Sidor, S., Abbeel, P., and Schulman, J. Ucb exploration via q-ensembles. arXiv preprint
arXiv:1706.01502, 2017.

Ciosek, K. and Whiteson, S. Expected policy gradients for reinforcement learning. Journal of
Machine Learning Research, 21(2020), 2020.

Ciosek, K., Vuong, Q., Loftin, R., and Hofmann, K. Better exploration with optimistic actor critic.
Advances in Neural Information Processing Systems, 32, 2019.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Implicit quantile networks for distributional
reinforcement learning. In International conference on machine learning, pp. 1096–1105. PMLR,
2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. North American Chapter of the Association for Computational
Linguistics, 2019. doi: 10.18653/v1/N19-1423.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Bellemare, M. G., and Courville, A. Sample-
efficient reinforcement learning by breaking the replay ratio barrier. In The Eleventh International
Conference on Learning Representations, 2022.

10

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth
16x16 words: Transformers for image recognition at scale. International Conference on Learning
Representations, 2020.

Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A., Tompson, J.,
Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duckworth, D., Levine, S., Vanhoucke,
V., Hausman, K., Toussaint, M., Greff, K., Zeng, A., Mordatch, I., and Florence, P. Palm-e: An
embodied multimodal language model. arXiv preprint arXiv: 2303.03378, 2023.

Farebrother, J., Orbay, J., Vuong, Q., Taïga, A. A., Chebotar, Y., Xiao, T., Irpan, A., Levine, S., Castro,
P. S., Faust, A., et al. Stop regressing: Training value functions via classification for scalable deep
rl. arXiv preprint arXiv:2403.03950, 2024.

François-Lavet, V., Fonteneau, R., and Ernst, D. How to discount deep reinforcement learning:
Towards new dynamic strategies. arXiv preprint arXiv: 1512.02011, 2015.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P., et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023.

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable, robust world models for continuous control.
arXiv preprint arXiv: 2310.16828, 2023.

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and Tsuruoka, Y. Dropout q-functions for doubly
efficient reinforcement learning. In International Conference on Learning Representations, 2021.

Imani, E. and White, M. Improving regression performance with distributional losses. In Dy, J.
and Krause, A. (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2157–2166. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/imani18a.html.

Ji, T., Luo, Y., Sun, F., Zhan, X., Zhang, J., and Xu, H. Seizing serendipity: Exploiting the value of
past success in off-policy actor-critic. arXiv preprint arXiv:2306.02865, 2023.

Kearns, M. and Singh, S. Bias-variance error bounds for temporal difference updates. In Annual
Conference Computational Learning Theory, 2000. URL https://api.semanticscholar.
org/CorpusID:5053575.

Kostrikov, I. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021. URL
https://github.com/ikostrikov/jaxrl.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine, S. Offline q-learning on diverse multi-
task data both scales and generalizes. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=4-k7kUavAj.

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. Efficient deep reinforcement learning requires
regulating overfitting. In The Eleventh International Conference on Learning Representations,
2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. International Conference on
Learning Representations, 2017.

Lyle, C., Zheng, Z., Khetarpal, K., van Hasselt, H., Pascanu, R., Martens, J., and Dabney, W.
Disentangling the causes of plasticity loss in neural networks. arXiv preprint arXiv: 2402.18762,
2024.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative
adversarial networks. International Conference on Learning Representations, 2018.

11

https://proceedings.mlr.press/v80/imani18a.html
https://api.semanticscholar.org/CorpusID:5053575
https://api.semanticscholar.org/CorpusID:5053575
https://github.com/ikostrikov/jaxrl
https://openreview.net/forum?id=4-k7kUavAj

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

Moskovitz, T., Parker-Holder, J., Pacchiano, A., Arbel, M., and Jordan, M. Tactical optimism and
pessimism for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:12849–12863, 2021.

Nauman, M. and Cygan, M. On the theory of risk-aware agents: Bridging actor-critic and economics.
arXiv preprint arXiv:2310.19527, 2023.

Nauman, M., Bortkiewicz, M., Ostaszewski, M., Miłoś, P., Trzcinski, T., and Cygan, M. Over-
estimation, overfitting, and plasticity in actor-critic: the bitter lesson of reinforcement learning.
2024.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and Courville, A. The primacy bias in deep
reinforcement learning. In International conference on machine learning, pp. 16828–16847.
PMLR, 2022.

Obando Ceron, J., Bellemare, M., and Castro, P. S. Small batch deep reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Obando-Ceron, J., Sokar, G., Willi, T., Lyle, C., Farebrother, J., Foerster, J., Dziugaite, G. K., Precup,
D., and Castro, P. S. Mixtures of experts unlock parameter scaling for deep rl. arXiv preprint
arXiv:2402.08609, 2024.

Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Singh,
A., Brohan, A., et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv
preprint arXiv:2310.08864, 2023.

Puterman, M. L. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Schubert, I., Zhang, J., Bruce, J., Bechtle, S., Parisotto, E., Riedmiller, M., Springenberg, J. T.,
Byravan, A., Hasenclever, L., and Heess, N. A generalist dynamics model for control. arXiv
preprint arXiv: 2305.10912, 2023.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A., and Bachman, P. Data-efficient rein-
forcement learning with self-predictive representations. In International Conference on Learning
Representations, 2020.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare, M. G., Agarwal, R., and Castro, P. S.
Bigger, better, faster: Human-level atari with human-level efficiency. In International Conference
on Machine Learning, pp. 30365–30380. PMLR, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.

Tai, J. J., Towers, M., and Tower, E. Shimmy: Gymnasium and PettingZoo Wrappers for Commonly
Used Environments. URL https://github.com/Farama-Foundation/shimmy.

Taiga, A. A., Agarwal, R., Farebrother, J., Courville, A., and Bellemare, M. G. Investigating
multi-task pretraining and generalization in reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
sSt9fROSZRO.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks.
International Conference on Machine Learning, 2019.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

12

http://jmlr.org/papers/v22/20-1364.html
https://github.com/Farama-Foundation/shimmy
https://openreview.net/forum?id=sSt9fROSZRO
https://openreview.net/forum?id=sSt9fROSZRO

Van Seijen, H., Van Hasselt, H., Whiteson, S., and Wiering, M. A theoretical and empirical analysis
of expected sarsa. In 2009 ieee symposium on adaptive dynamic programming and reinforcement
learning, pp. 177–184. IEEE, 2009.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Wang, S., Liu, S., Ye, W., You, J., and Gao, Y. Efficientzero v2: Mastering discrete and continuous
control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy, A. Optimism in reinforcement learning with gen-
eralized linear function approximation. In International Conference on Learning Representations,
2020.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L., and Liu,
T.-Y. On layer normalization in the transformer architecture. International Conference on Machine
Learning, 2020.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on robot
learning, pp. 1094–1100. PMLR, 2020.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker, S., Wahid, A., et al.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Conference on
Robot Learning, pp. 2165–2183. PMLR, 2023.

13

Broader Impact

The work presented in this study, while academic and based on simulated benchmarks, advances the
development of more capable autonomous agents. Although our contributions do not directly cause
any negative societal impacts, we encourage the community to remain mindful of such potential
consequences when extending our research.

A Background

We consider an infinite-horizon Markov Decision Process (MDP) (Puterman, 2014) which is described
with a tuple (S,A, r, p, γ), where states S and actions A are continuous, r(s′, s, a) is the transition
reward, p(s′|s, a) is the transition kernel and γ ∈ (0, 1] is the discount factor.

The policy π(a|s) is a state-conditioned action distribution with its entropy denoted as H(π(s)).
Soft Value (Haarnoja et al., 2018) is the sum of expected discounted return and state entropies from
following the policy at a given state

V π(s) = Ea∼π,s′∼p [r(s
′, s, a) + αH(π(s)) + γV π(s′)] , (1)

with α denoting the entropy temperature parameter. Q-value is the expected discounted return from
performing an action and following the policy thereafter.

Qπ(s, a) = Es′∼p [r(s
′, s, a) + γV π(s′)] (2)

A policy is said to be optimal if it maximizes the expected value of the possible starting states s0,
such that π̇ = argmaxπ∈Π Es0∼pV

π(s0), with π̇ denoting the optimal policy and Π denoting the
considered set of policies (e.g., Gaussian). Soft values and soft Q-values are related through the
following equation:

V π(s) = Ea∼π [Q
π(s, a)− log π(a|s)] (3)

This relation is often approximated via a single action sampled according to the policy a ∼ π(s). In
off-policy actor-critic, there is continuous gradient-based learning of both Q-values (critic) and the
policy (actor). The critic parameters θ are updated by minimizing SARSA temporal-difference on
transitions T = (s, a, r, s′), with T being sampled from a replay buffer of transitions (Fujimoto et al.,
2018; Haarnoja et al., 2018) according to:

θ = argmin
θ

ET∼D
(
Qθ(s, a)− r(s′, s, a)− γVθ̄(s)

)
, (4)

Vθ̄(s) = Qθ̄(s
′, a′)− α log πϕ(a

′|s′)), (5)

with a′ ∼ πϕ. In this setup, Qθ is the critic network, Qθ̄ is the value target network, and D is the
replay buffer (Mnih et al., 2015). Qθ is trained to approximate the Q-value under the policy from
which the bootstrap is sampled (Van Seijen et al., 2009; Sutton & Barto, 2018). The policy parameters
ϕ are updated to seek locally optimal values approximated by the critic (Ciosek & Whiteson, 2020)
according to

ϕ = argmax
ϕ

Es∼D (Qθ(s, a)− α log πϕ(a|s)) (6)

where a ∼ πϕ.

B Experimental details

B.1 BRO details

B.1.1 Base agent

BRO uses the well-established Soft Actor-Critic (SAC) (Haarnoja et al., 2018) as its base. SAC is a
stochastic policy, maximum entropy algorithm (see Eq. 1) that employs online entropy temperature
adjustment and an ensemble of two critic networks. SAC models the policy via a Tanh-transformed
Gaussian distribution whose parameters are modeled by the actor-network.

14

B.1.2 Architecture details

In the proposed architecture, we adopt the transformer feedforward blueprint from Vaswani et al.
(2017) with a novel layer normalization configuration, as shown in Figure 4. Dropout is omitted.
All Dense layers in the BRO have a default width of 512 units, with a linear layer at both the input
and output stages. To increase the model’s depth, we add new residual blocks exclusively. While
a similar transformer backbone has been used in previous work (Bjorck et al., 2021), our design
choices, detailed in Section C.2, led us to use layer normalization instead of spectral normalization.

B.1.3 Scaling

In Figure 3, we examine the scaling capabilities of SAC and BRO agents using a vanilla dense network
(Fujimoto et al., 2018; Haarnoja et al., 2018; Moskovitz et al., 2021), a spectral normalization ResNet
(Bjorck et al., 2021; Cetin & Celiktutan, 2023), and a layer normalization ResNet inspired by previous
work (Nauman et al., 2024). As shown in Figure 3, increasing the model capacity of a vanilla-dense
agent can lead to performance degradation beyond a certain model size. However, for the regularized
architectures, we observe behavior similar to the empirically observed scaling properties of supervised
models, where increasing model size leads to diminishing returns in performance improvements.
Furthermore, we find that the layer normalization ResNet achieves better-scaling properties than
the spectral normalization architecture. Interestingly, the BRO agent consistently outperforms the
baseline SAC across all architectures and network sizes, suggesting an interaction between parameter
scaling and other algorithmic design choices. The highest performing SAC agent achieves around
25% of maximal performance, whereas our proposed BRO agent achieves more than 90%. Given that
the BRO agent performs similarly at 4.92 million and 26.31 million parameters, we use the smaller
model to reduce the computational burden.

B.1.4 Scaling replay ratio

Replay Ratio (RR) scaling in small models leads to diminishing performance increases as RR values
rise, eventually plateauing at higher RRs (Nikishin et al., 2022; D’Oro et al., 2022). Unfortunately,
increasing RR also results in linear increases in computing costs, as each gradient step must be
calculated sequentially. This naturally becomes a burden as the model sizes increase. In Figure 5,
we investigate the performance of the BRO agent across different model scales (from 0.55 million
to 26.31 million parameters) and RR settings (from RR=1 to RR=15), measuring both performance
and wall-clock efficiency. We find that with the BRO regularized critic architecture, critic scaling
leads to performance and sample efficiency gains that match those of scaled RR. Scaling both RR
and model size produces the best-performing agents. Interestingly, scaling the model size can lead to
significant performance improvements even if RR is low while being more computationally efficient
due to parallelized workloads (Figure 5). For example, a 5 million parameter BRO model with RR=1
outperforms a 1 million parameter BRO agent with RR=15 despite being five times faster in terms of
wall-clock time. This observation challenges the notion that a sample-efficient RL algorithm must
use high replay settings.

B.1.5 Batch Size

Inspired by recent findings that reducing the batch size can result in significant performance gains
for discrete action RL (Obando Ceron et al., 2024), we reduce the number of transitions used for
gradient calculation from 256 to 128. As shown in Figures 8a & 10, this batch size reduction leads
to a marginal improvement in aggregate performance and decreased memory requirements of the
algorithm. Interestingly, we find that batch size significantly affects performance, with no single
value performing best across all tasks.

B.1.6 Risk-Neutral Temporal Difference

Using a pessimistic lower-bound Q-value approximation for actor-critic updates, known as Clipped
Double Q-learning (CDQ) (Fujimoto et al., 2018; Haarnoja et al., 2018), is a popular method to
counteract Q-value overestimation, though it introduces bias. Formally, it modifies the value estimate
in Eq. 5 to a lower-bound estimation

V lbθ(s) ≈ Qlbθ(s, a)− α log πϕ(a|s), a ∼ πϕ(s), (7)

15

where Qlbθ(s, a) is a lower-bound Q-value estimation derived from a critic ensemble, often using
two networks (Fujimoto et al., 2018; Haarnoja et al., 2018)

Qlbθ(s, a) = min(Q1θ(s, a), Q2θ(s, a)). (8)

Recent studies have shown that techniques like layer normalization or full-parameter resets can
be more effective at combating overestimation than pessimistic Q-value approximation (Nauman
et al., 2024). Since our critic architecture leverages multiple regularization techniques, we disable
CDQ and use the ensemble mean instead of the minimum to calculate the targets for actor and critic
updates. In Figures 6 & 8a, we compare the performance of the baseline BRO to a BRO agent
that uses CDQ. Our findings indicate that using risk-neutral Q-value approximation in the presence
of network regularization unlocks significant performance improvements without increasing value
overestimation.

B.1.7 Optimistic Exploration

Optimism is an algorithmic design principle that balances exploration and exploitation (Ciosek et al.,
2019; Moskovitz et al., 2021). The dual actor setup (Nauman & Cygan, 2023) employs separate
policies for exploration and temporal difference updates, with the exploration policy pursuing an
optimistic upper-bound Q-value approximation. This approach has been shown to improve the sample
efficiency of SAC-based agents (Nauman & Cygan, 2023). We implement the optimistic policy
such that the Q-value upper bound is calculated based on the epistemic uncertainty estimated via the
quantile critic ensemble (Moskovitz et al., 2021). Figure 6 shows that using a dual policy setup leads
to performance improvements. We observe that these results are particularly pronounced in the early
training stages and for smaller networks (Figure 8a).

B.2 Tested Environments

We tested BRO on a variety of 40 tasks from DeepMind Control Suite (Tassa et al., 2018), MyoSuite
(Caggiano et al., 2022) and MetaWorld (Yu et al., 2020). Selected tasks cover various challenges, from
simple to hard, in locomotion and manipulation. Table 2 presents the environments with specified
dimensions of states and actions. BRO is a versatile agent that can successfully perform tasks of
different difficulty and various action and state spaces. Our selection of 40 tasks focuses on the most
challenging tasks from the DeepMind Control Suite (DMC), MetaWorld (MW), and MyoSuite (MS)
benchmarks, as identified in previous studies (Hansen et al., 2023). We chose these hard tasks because
many tasks from these benchmarks can be solved by modern algorithms within 100k environment
steps (Hansen et al., 2023; Wang et al., 2024). To address this, previous works have often combined
tasks from different benchmarks arbitrarily (Ji et al., 2023; Hansen et al., 2023; Nauman & Cygan,
2023), leading to a lack of standardized benchmarks and slowing progress in the field.

B.3 Approaches Examined During the Development of BRO

Examined approaches are listed in Table 4. Methods incorporated into BRO include regulariza-
tion techniques (LayerNorm, Weight Decay, removing CDQL), optimistic exploration, quantile
distributional RL, resets and increased replay ratio.

C Further Analysis

C.1 Batch Sizes

Ablation of the minibatch size impact on BRO and BRO (Fast) performance across different bench-
marks is depicted in Figure 10. The figure shows that using half or even a quarter of the original
minibatch size (256) does not significantly hurt BRO’s performance.

C.2 Various architecture designs

We examine various architectural blueprints on 5 DMC and 5 MetaWorld environments (see Table 3),
each with over 10 seeds per task.

16

Algorithm 2 Pseudo-code shows BRO training step, where changes with respect to standard SAC are
colored red.

1: Input: πp
ϕ - pessimistic actor; πo

η - optimistic actor; Qk
θ,i - kth quantile of ith critic; Qk

θ̄,i
- kth

quantile of ith target critic; α - temperature; βo - optimism; τ - KL weight;
2: Hyperparameters: KL∗ - target KL; K - number of quantiles

3: Sample action from the optimistic actor
s′, r = ENV.STEP(a) a ∼ πo

η
4: Add transition to the replay buffer

BUFFER.ADD(s, a, r, s′)
5: for i = 1 to ReplayRatio do
6: Sample batch of transitions

s, a, r, s′ ∼ BUFFER.SAMPLE
7: Calculate critic target value without CDQ

Qµ

θ̄
(s′, a′) = 1

2K

∑K
i=1(Q

k
θ̄,1

(s′, a′) +Qk
θ̄,2

(s′, a′)) with a′ ∼ πp
ϕ(s

′)

8: Update critic using pessimistic actor
θ ← θ −∇θ

(
Qθ(s, a)− (r + γQµ

θ̄
(s′, a′)− α log πp

ϕ(a
′|s′)

)2
9: Calculate pessimistic actor value without CDQL

Qµ
θ (s, a) =

1
2K

∑K
i=1(Q

k
θ,1(s, a) +Qk

θ,2(s, a)) with a ∼ πp
ϕ(s)

10: Update pessimistic actor
ϕ← ϕ+∇ϕ

(
Qµ

θ (s, a)− α log πp
ϕ(a|s)

)
11: Calculate optimistic actor value

Qo
θ(s, a) =

1
2K

∑K
i=1(Q

k
θ,1(s, a)+Qk

θ,2(s, a)+βo|Qk
θ,1(s, a)−Qk

θ,2(s, a)|) with a ∼ πp
ϕ(s)

12: Update optimistic actor
η ← η +∇η

(
Qµ

θ (s, a) + βoQσ
θ (s, a)− τKL

(
πp
ϕ(s)|πo

η(s)
))

with a ∼ πo
η(s)

13: Update entropy temperature
α← α−∇αα

(
H∗ −H(s)

)
14: Update optimism

βo ← βo −∇βo(βo − βp)(1
|A|KL(πp

ϕ|πo
η)−KL

∗)

15: Update KL weight
τ ← τ +∇ττ(

1
|A|KL(πp

ϕ|πo
η)−KL

∗)

16: Update target network
θ̄ ← POLYAK(θ, θ̄)

17: end for

Figure 10: Performance of BRO and BRO (Fast) with different minibatch sizes across various
benchmarks: D&H (Dogs and Humanoid), DMC (all tested DeepMind Control environments), MW
(MetaWorld), and MS (MyoSuite).

Our starting point was the transformer-based design by Bjorck et al. (2021), termed Spectral. This
architecture incorporates recent transformer advancements, moving Layer Norm to the beginning of
the residual block to prevent vanishing gradients in deep networks.

17

Table 2: List of tasks from DeepMind Control, MetaWorld, and MyoSuite on which the agents were
tested. The table also contains the dimensions of action and observation space.

Task Observation dimension Action dimension
DEEPMIND CONTROL

Acrobot-Swingup 6 1
Cheetah-Run 17 6
Dog-Run 223 38
Dog-Trot 223 38
Dog-Stand 223 38
Dog-Walk 223 38
Finger-Turn-Hard 12 2
Fish-Swim 24 5
Hopper-Hop 15 4
Humanoid-Run 67 24
Humanoid-Stand 67 24
Humanoid-Walk 67 24
Pendulum-Swingup 3 1
Quadruped-Run 78 12
Walker-Run 24 6

METAWORLD

Basketball 39 4
Assembly 39 4
Button-Press 39 4
Coffee-Pull 39 4
Coffee-Push 39 4
Disassemble 39 4
Hammer 39 4
Hand-Insert 39 4
Push 39 4
Reach 39 4
Stick-Pull 39 4
Sweep 39 4
Lever-Pull 39 4
Pick-Place 39 4
Push-Back 39 4

MYOSUITE

Key-Turn 93 39
Key-Turn-Hard 93 39
Obj-Hold 91 39
Obj-Hold-Hard 91 39
Pen-Twirl 83 39
Pen-Twirl-Hard 83 39
Pose 108 39
Pose-Hard 108 39
Reach 115 39
Reach-Hard 115 39

As shown in Figure 12, while Spectral performs well overall, its performance on the DMC
benchmark, particularly the Dog environment, is weaker. This aligns with findings from Nauman
et al. (2024), indicating that Layer Norm is crucial for stability in such complex tasks.

To address this, we replaced spectral norms with Layer Norms in the residual blocks, resulting in the
BRO wo first LN architecture (Figure 11). This modification improves performance but still lags
behind the full BRO architecture.

18

Table 3: List of tasks from DeepMind Control and MetaWorld on which the agents were ablated. The
table also contains the dimensions of action and observation space.

Task Observation dimension Action dimension
DEEPMIND CONTROL

Acrobot-Swingup 6 1
Dog-Trot 223 38
Hopper-Hop 15 4
Humanoid-Run 67 24
Humanoid-Walk 67 24

METAWORLD

Assembly 39 4
Coffee-Push 39 4
Hand-Insert 39 4
Push 39 4
Stick-Pull 39 4

Table 4: Approaches examined during BRO development. Methods incorporated into BRO are
highlighted in bold.

Methods Goup Specific Method Source

Exploration DAC (Nauman & Cygan, 2023)

Value Regularization CDQL (removed) (Fujimoto et al., 2018)
N-Step Returns (Sutton & Barto, 2018)

Network Regularization
LayerNorm (Ba et al., 2016)

Weight Decay (Loshchilov & Hutter, 2017)
Spectral Norm (Miyato et al., 2018)

Scheduling

N-Step Schedule (Kearns & Singh, 2000)
Discount Schedule (François-Lavet et al., 2015)

Pessimism Schedule
Entropy Schedule

Learning Rate Schedule (Andrychowicz et al., 2021)

Distributional RL
HL Gauss (Imani & White, 2018)

Categorical (Bellemare et al., 2017)
Quantile (Dabney et al., 2018)

Plasticity Regularization Resets (Nikishin et al., 2022; D’Oro et al., 2022)

Learning Replay Ratio (Nikishin et al., 2022; D’Oro et al., 2022)

Our final experiment examines a simple MLP architecture with Layer Norm before each activation
function. Since BRO consists of two residual blocks, we compare it with a 5-layer model, (Dense +
LN) x 5. Figure 12 shows that Layer Norm after each Dense layer is effective, and in aggregated
IQM, this model is comparable to BRO. However, skip connections in BRO are beneficial for
managing complex environments like Dog. In conclusion, BroNet architecture uses Layer Norm and
residual blocks for superior robustness and performance in challenging tasks.

D Additional Scaling and Time Results

In this section, we provide more details about the time benchmark. The execution time was measured
for all agents for each of the 40 tasks averaged over 2 random seeds. We ran each agent for 105k
steps with initial 5k exploration steps, 100k training steps, and 1 evaluation.

19

Figure 11: Comparison of architectural backbones: The left diagram shows the backbone of the
architecture proposed in this article, while the right diagram displays the backbone of the architecture
proposed in (Bjorck et al., 2021). In both models, increasing depth is achieved by adding new residual
blocks.

Experiments were conducted on an NVIDIA A100 GPU with 10GB of RAM and 8 CPU cores of
AMD EPYC 7742 processor. All tasks were run separately so the agents could use all resources
independently.

We benchmarked all 25 variants of BRO with 5 different model sizes and 5 values of replay ratio.
Figure 13 shows how BRO achieves superior performance at lower execution time compared to
popular baselines. BRO (Fast) is an attractive alternative, strongly surpassing TD3, CrossQ, and SAC
in comparable time, whereas BRO outperforms SR-SAC and TD-MPC2 and, therefore, is a great
alternative.

Thanks to different variants of BRO, users have a versatile choice in terms of memory, time, and
performance and can use the best agents depending on current constraints. In order to decide between
memory, time, and performance tradeoffs, we provide more visualizations of different variants of
BRO in Figure 14.

As can be seen in Figure 14 and stated previously, increasing the model size and replay ratio both
improve the performance. However, the former is much more efficient in terms of execution time
thanks to efficient GPU parallelism. For example, the largest BRO variant (26.31M parameters) with
replay ratio 5 has almost the same execution time as the smallest model (0.55M parameters) with
replay ratio 15, but the performance is much greater.

In some scenarios where GPU memory is limited, good performance can still be achieved by scaling
the replay ratio with a time tradeoff.

E Hyperparameters

Hyperparameters of BRO and other baselines are listed in Table 6. BRO (Fast) shares the same
parameters as BRO except replay ratio 2 which significantly speeds the algorithm without sacrificing
performance that much. BRO features the BRONet architecture and resets of all parameters done
every 250k steps until 1M steps with additional resets at steps 15k and 50k.

20

Figure 12: Comparison of five architecture designs across different environments: The top plot shows
results on 5 DMC and 5 MetaWorld environments, the middle plot focuses on the 5 DMC environ-
ments, and the bottom plot highlights the Dog Trot environment. BRO and Spectral architectures each
consist of 2 residual blocks, as depicted in Figure 11 (left for BRO and right for Spectral). (Dense +
LN) x 5 represents standard MLP networks with 5 hidden layers, each incorporating Layer Norm
before activation. Lastly, BRO wo first LN refers to the BRO architecture without Layer Norm in
the first Dense block, before the residual connection.

The selection of hyperparameters for BRO was based on the values reported in the main building
blocks of BRO and extensive experimentation coupled with ablations studies. We discuss hyperpa-
rameter selection for baselines in Appendix G.

F Baselines Details

We compare BRO against official and widely used implementations of CrossQ, SAC, SR-SAC, TD3
and TD-MPC2 with open source repositories listed in Table 7. As the official results do not cover
all 40 benchmarking tasks, we ran the baselines independently (except TD-MPC2, where all official
results were available).

SAC and TD3 are commonly used baselines; therefore, their hyperparameters vary across different
implementations. In order to account for this fact, we ran 2 versions of these baselines: tuned and
original. If not specified otherwise, we report the results of the tuned versions with hyperparameters
in Table 6. The original versions of SAC and TD3 both feature a replay ratio of 1 and in the case of
SAC, target entropy (H∗) equal to the action space dimension |A|. The performance of both variants
of the implementations can be observed in Figure 22.

21

0.0 0.2 0.4 0.6 0.8 1.0
Normalized execution time

0.0

0.2

0.4

0.6

0.8

IQ
M

 p
er

fo
rm

an
ce

BRO
BRO-Fast TD-MPC2

SR-SAC

SAC
TD3
CrossQ

Wallclock time and performance of agents

Figure 13: Scatterplot of the performance of agents plotted against normalized execution time. 25
variants of the BRO with different model sizes and replay ratios dominate the baselines on 40 tasks in
terms of performance and time.

1 2 5 10 15
Replay ratio

26.31M

4.92M

2.83M

1.05M

0.55M

M
od

el
 s

iz
e

Mean execution time across 40 tasks

1 2 5 10 15
Replay ratio

26.31M

4.92M

2.83M

1.05M

0.55M

M
od

el
 s

iz
e

IQM Performance across 40 tasks

Figure 14: Heatmaps of mean execution time and IQM performance across 40 tasks of 25 variants of
BRO with various model sizes and replay ratio values. Black lines connect the same interpolated
values.

As other baselines were developed and tested on only a subset of our 40 selected tasks, we observed
that achieving similar performance on new tasks was challenging. This can be especially observed
in the case of CrossQ, which is a state-of-the-art algorithm on selected tasks from OpenAI Gym
(Brockman et al., 2016), but as it was tested only on a fraction of DeepMind Control Suite tasks, its
performance does not transfer to our selection of tasks.

The RL research community also needs to be careful as changes in environment tasks wrappers
can have significant effects on the performance. Originally, CrossQ authors tested their agent on
DeepMind Control Suite using Shimmy (Tai et al.) contrary to other agents that use the original
codebase (Tassa et al., 2018). If not stated otherwise, all CrossQ results presented in this paper were
run using DMC wrappers, but in order to test BRO thoroughly, we also ran CrossQ on 10 DMC tasks
using Shimmy and present the results in Figure 15 (the remaining 5 tasks crashed, due to a bug in the
official codebase which is also a warning to researchers benchmarking the agents on a very small
fraction of a benchmark).

G Experimental Results

We present the aggregated performance of BRO compared to other baselines at Dog & Humanoid
tasks, DeepMind Control Suite, Metaworld and MyoSuite in Figure 18 together with summarized

22

Table 5: Description of the considered model sizes.

Size Number of block Hidden Size
0.55M 1 BroNet block hidden size of 128
1.05M 1 BroNet block hidden size of 256
2.83M 1 BroNet block hidden size of 512
4.92M 2 BroNet blocks hidden size of 512
26.31M 3 BroNet blocks hidden size of 1024

Table 6: Hyperparameter values for actor-critic agents used in the experiments. We did not rerun
TD-MPC2 (Hansen et al., 2023) and report the official results.

Parameter BRO SAC TD3 SR-SAC CrossQ

Batch size (B) 128 256

Replay ratio 10 2 32 1

Critic hidden depth RESIDUAL 2 2 2

Critic hidden size 512 256 2048

Actor depth RESIDUAL 2 2 2

Actor size 256

Num quantiles 100 N/A

KL target 0.05 N/A

Initial optimism 1.0 N/A

Std multiplier 0.75 N/A

Actor learning rate 3e-4 1e-3

Critic learning rate 3e-4 1e-3

Temperature learning rate 3e-4 N/A 3e-4

Optimizer ADAMW ADAM

Discount (γ) 0.99

Initial temperature (α0) 1.0 N/A 1.0

Exploratory steps 2,500 10,000 25,000 10,000 5,000

Target entropy (H∗) |A|/2 N/A |A|/2 |A|
Polyak weight (τ) 0.005 N/A

performance results at 100k, 200k, 500k and 1M steps in Table 8. The performance on each of the
40 individual tasks in shown in Figures 19, 20, 21.

H Comparison between variants of SAC and TD3

Comparison between 2 variants of SAC and TD3 (Original and Tuned) is present in Figure 22. Tuned
versions feature a higher value of replay ratio (2 instead of 1) than original and lower target entropy
in case of SAC (|A|/2 instead of |A|). BRO greatly outperforms both variants of these baselines.

23

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

acrobot_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

re
w

ar
d

dog_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

re
w

ar
d

dog_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_trot

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

fish_swim

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

humanoid_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

pendulum_swingup

Figure 15: Results of 10 tasks from DeepMind Control Suite for BRO and CrossQ that was run using
Shimmy or DMC wrappers. Remaining 5 tasks are not present as the official CrossQ code crashes
due to bugs. We contacted the authors regarding this issue. Regardless of the used environment
variants, BRO outperforms CrossQ.

Baseline Source code link
CrossQ (Bhatt et al., 2023) github.com/adityab/CrossQ
SAC (Haarnoja et al., 2018) github.com/denisyarats/pytorch_sac
SAC (tuned version) github.com/ikostrikov/jaxrl
SR-SAC (D’Oro et al., 2022) github.com/proceduralia/high_replay_ratio_continuous_control
TD3 (Fujimoto et al., 2018) github.com/sfujim/TD3
TD3 (tuned version) github.com/ikostrikov/jaxrl
TD-MPC2 (Hansen et al., 2023) github.com/nicklashansen/tdmpc2

Table 7: Links to the repositories of the used baselines. All repositories are distributed under MIT
license.

(a) DeepMind Control (DMC) (b) MetaWorld (MW) (c) MyoSuite (MS)

Figure 16: We consider a total of 40 tasks from DeepMind Control (DMC), MetaWorld (MW),
and MyoSuite (MS). In particular, we chose the tasks with the biggest optimality gap according to
previous evaluations (Hansen et al., 2023). We list all considered tasks in Table 2.

24

github.com/adityab/CrossQ
github.com/denisyarats/pytorch_sac
github.com/ikostrikov/jaxrl
github.com/proceduralia/high_replay_ratio_continuous_control
github.com/sfujim/TD3
github.com/ikostrikov/jaxrl
github.com/nicklashansen/tdmpc2

Figure 17: We compare BRO against BRO without target network. 10 seeds per task, 1M environment
steps.

images/aggregate_training_curves/Dog_and_Humanoid.pngimages/aggregate_training_curves/DeepMind_Control.png

Figure 18: BRO aggregated performance over 1M steps on 40 tasks from DeepMind Control Suite,
MetaWorld and MyoSuite. Y -axis represents the IQM of normalized rewards.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

acrobot_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

re
w

ar
d

dog_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

re
w

ar
d

dog_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_trot

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

re
w

ar
d

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

fish_swim

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250

300

350

re
w

ar
d

humanoid_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

humanoid_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

humanoid_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

walker_run

Figure 19: Results of 15 tasks from DeepMind Control Suite for BRO and other baselines run for
1M steps. We present the IQM of rewards and 95% confidence intervals.

25

Table 8: Summary of IQM results of BRO and other agents evaluated on 40 tasks from DeepMind
Control Suite, Metaworld and MyoSuite achieved at 100k, 200k, 500k and 1M steps. BRO achieves
better results than other state-of-the art agents (both model-based and model-free) while featuring
great sample efficiency.

Step BRO BRO (Fast) TD-MPC2 SR-SAC SAC TD3 CrossQ
AGGREGATED 40 TASKS

100k 0.254 0.113 0.204 0.046 0.007 0.008 0.004
200k 0.560 0.384 0.519 0.083 0.043 0.054 0.009
500k 0.862 0.772 0.745 0.373 0.167 0.157 0.037
1M 0.945 0.878 0.842 0.595 0.316 0.294 0.042

DEEPMIND CONTROL SUITE

100k 0.230 0.123 0.128 0.089 0.030 0.046 0.031
200k 0.442 0.282 0.332 0.195 0.088 0.091 0.038
500k 0.726 0.613 0.532 0.412 0.259 0.261 0.092
1M 0.836 0.794 0.673 0.487 0.391 0.381 0.106

METAWORLD

100k 0.247 0.113 0.452 0.046 0.000 0.000 0.000
200k 0.642 0.571 0.835 0.062 0.018 0.047 0.000
500k 0.984 0.929 0.952 0.421 0.108 0.084 0.000
1M 1.000 0.976 0.978 0.769 0.303 0.250 0.000

MYOSUITE

100k 0.392 0.124 0.088 0.000 0.000 0.000 0.020
200k 0.748 0.400 0.394 0.015 0.024 0.008 0.140
500k 0.888 0.776 0.688 0.285 0.140 0.120 0.354
1M 0.980 0.876 0.775 0.538 0.276 0.256 0.474

DOG & HUMANOID

100k 0.038 0.008 0.014 0.007 0.006 0.013 0.011
200k 0.238 0.056 0.058 0.024 0.015 0.040 0.013
500k 0.661 0.469 0.302 0.107 0.080 0.133 0.025
1M 0.864 0.772 0.527 0.099 0.155 0.221 0.040

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-key-turn

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-key-turn-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-obj-hold

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s

myo-obj-hold-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pen-twirl

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pen-twirl-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pose

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.00

0.05

0.10

0.15

0.20

0.25

su
cc

es
s

myo-pose-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-reach

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-reach-hard

Figure 20: Results of 10 tasks from MyoSuite for BRO and other baselines run for 1M steps. We
present the IQM of success rate and 95% confidence intervals.

26

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

basketball-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

button-press-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

coffee-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

coffee-push-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

disassemble-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

hammer-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

hand-insert-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

lever-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

pick-place-wall-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

push-back-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

push-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

reach-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

stick-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

sweep-v2

Figure 21: Results of 15 tasks from MetaWorld for BRO and other baselines run for 1M steps. We
present the IQM of success rate and 95% confidence intervals.

27

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

acrobot_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

re
w

ar
d

dog_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

re
w

ar
d

dog_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_trot

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

dog_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

re
w

ar
d

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

fish_swim

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

600

re
w

ar
d

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250

300

350

re
w

ar
d

humanoid_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

humanoid_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

humanoid_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

re
w

ar
d

walker_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

basketball-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

button-press-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

coffee-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

coffee-push-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

disassemble-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

hammer-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

hand-insert-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

lever-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

pick-place-wall-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

push-back-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

push-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

reach-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

stick-pull-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

sweep-v2

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-key-turn

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-key-turn-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-obj-hold

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s

myo-obj-hold-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pen-twirl

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pen-twirl-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-pose

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.00

0.05

0.10

0.15

0.20

0.25

su
cc

es
s

myo-pose-hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-reach

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

myo-reach-hard

40 Tasks from DeepMind Control Suite, MetaWorld and MyoSuite

Figure 22: Results of different variants of SAC and TD3 on 40 tasks.

28

	Introduction
	Bigger, Regularized, Optimistic (BRO) algorithm
	Experimental setup
	BRO outline and design choices

	Analysis
	Related Work
	Limitations and Future Work
	Conclusions
	Background
	Experimental details
	BRO details
	Base agent
	Architecture details
	Scaling
	Scaling replay ratio
	Batch Size
	Risk-Neutral Temporal Difference
	Optimistic Exploration

	Tested Environments
	Approaches Examined During the Development of BRO

	Further Analysis
	Batch Sizes
	Various architecture designs

	Additional Scaling and Time Results
	Hyperparameters
	Baselines Details
	Experimental Results
	Comparison between variants of SAC and TD3

