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Abstract

Learning self-supervised representations using reconstruction or contrastive losses
improves performance and sample complexity of image-based and multimodal
reinforcement learning (RL). Here, different self-supervised loss functions have
distinct advantages and limitations depending on the information density of the
underlying sensor modality. Reconstruction provides strong learning signals but is
susceptible to distractions and spurious information. While contrastive approaches
can ignore those, they may fail to capture all relevant details and can lead to
representation collapse. For multimodal RL, this suggests that different modalities
should be treated differently based on the amount of distractions in the signal. We
propose Contrastive Reconstructive Aggregated representation Learning (CoRAL),
a unified framework enabling us to choose the most appropriate self-supervised loss
for each sensor modality and allowing the representation to better focus on relevant
aspects. We evaluate CoRAL’s benefits on a wide range of tasks with images
containing distractions or occlusions, a new locomotion suite, and a challenging
manipulation suite with visually realistic distractions. Our results show that learning
a multimodal representation by combining contrastive and reconstruction-based
losses can significantly improve performance and solve tasks that are out of reach
for more naive representation learning approaches and other recent baselines.

1 Introduction

Most representation learning approaches for reinforcement learning (RL) [15, 17, 18, 23, 24, 51,
53, 54, 7] focus on images. Here, the challenge lies in compressing relevant information while
not getting distracted by potentially irrelevant aspects. Yet, most agents in realistic scenarios can
directly observe their internal states using sensors in the actuators, inertial measurement units, and
force and torque sensors. Including this low-dimensional and concise proprioceptive sensing in
representation learning can improve representation quality and downstream RL performance. For
such multimodal representations, State Space Models [28] are a natural choice as they lend themselves
to accumulating information across multiple sensors and time. Previous works suggest using either
reconstruction [16, 17] or contrastive methods [15, 27, 29, 38], both with their individual strengths
and weaknesses. While reconstruction provides an informative learning signal, it may fail to learn
good representations if observations are noisy or contain distracting elements [53, 27, 7]. In such
cases, contrastive methods can ignore irrelevant parts of the observation and still learn valuable
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Figure 1: Contrastive Reconstructive Aggregated representation Learning (CoRAL) learns multi-
modal state space representations of all available sensors using a combination of reconstruction-based
and contrastive objectives. Building on the insight that we can exchange likelihood-based reconstruc-
tion with contrastive approaches using mutual information, allows us to choose an appropriate loss
function for each modality. Motivated by both a variational and predictive coding viewpoint, CORAL
helps model-free and model-based agents to excel in challenging tasks that require information fusion
from sensors with different properties such as images and proprioception.

Environment

representations. However, they are prone to representation collapse and often struggle to learn
accurate dynamics [27]. We argue that the different properties of sensors, such as images and
proprioception, suggest using different self-supervised loss functions for each modality.

We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL) to combine
contrastive and reconstruction-based approaches. CoRAL builds on state space representations and
allows us to select the best-suited loss function for each modality, for example, reconstruction-
based loss functions for concise, low-dimensional proprioception and contrastive losses for images
with distractions. Learning such state space representations can be theoretically motivated using a
variational inference [16, 27] or a predictive coding [32, 29, 38] viewpoint, which results in two
instances of CoRAL. For both paradigms, CoRAL relies on the insight that we can replace likelihood-
based reconstruction terms with contrastive losses based on mutual information, which allows for a
principled combination of the two [15, 27]. Fig. 1 provides an overview of the approach.

We integrate CoRAL into model-free and model-based RL to systematically assess the effects of
learning multimodal representations by selecting appropriate losses. We evaluate on DeepMind
Control (DMC) Suite [41] tasks which we make more difficult by adding Video Backgrounds [53, 29]
and Occlusions. Furthermore, we use a new Locomotion suite where agents must fuse proprioception
and egocentric vision to move while navigating obstacles. Finally, we consider a novel challenging
Manipulation suite consisting of static and mobile manipulation tasks with varying object geometries,
built on ManiSkill2 [11]. Here, the agents must combine proprioception and different visual modali-
ties, such as color and depth, to move, navigate, and interact with varying objects in visually realistic
environments. These experiments show that learning multimodal representations using the best-suited
loss for each modality improves over other methods combining both modalities, such as representation
learning with a single loss and concatenating image representations with proprioception. CoRAL
tends to work better than recent baselines on the Video Background and Occlusion tasks and allows
significant performance gains in the challenging Locomotion and Manipulation tasks. Furthermore,
CoRAL significantly improves model-based approaches with contrastive image representations, which
are known to perform worse than reconstruction-based approaches [15, 27]. Finally, we show the
strengths of both instances of CoRAL. Variational CoRAL excels in tasks where the main challenge is
filtering out irrelevant distractions from images, while Predictive CoRAL performs better in tasks that
require propagating information over many timesteps.

To summarize our contributions: (i) We propose CoRAL, a general framework for multimodal repre-
sentation learning for RL which allows using the best-suited self-supervised loss for each modality
by exploitng the interchangeability of likelihood-based reconstruction and contrastive losses based
on mutual information. (ii) We instantiate two versions of CoRAL using state space representations,
namely Variational-CoRAL and Predictive-CoRAL, which are inspired by variational and contrastive
predictive coding viewpoints, respectively. (iii) We systematically show their effectiveness on 26
tasks, across the Video Backgrounds, Occlusions Locomotion, and Manipulation suites.



2 Related Work

Representations for Reinforcement Learning. Many recent approaches use ideas from genera-
tive [44, 46, 4, 24, 51] and self-supervised representation learning [53, 23, 49, 39, 52] to improve
performance, sample efficiency, and generalization of RL from images. Those based on Recurrent
State Space Models (RSSMs) [16] are particularly relevant for this work. When first introduced, the
RSSM [16] used a generative approach. Its objective is formulated as auto-encoding variational infer-
ence [22], which trains the representation by reconstructing observations. Such reconstruction-based
approaches have limitations with observations containing noise or many task-irrelevant details. As a
remedy, Dreamer [15] used a contrastive alternative based on mutual information and the InfoNCE
estimator [33]. [27] refined this approach and improved results by modifying the policy learning
mechanism. Using a different motivation, namely contrastive predictive coding [32], several authors
proposed alternative contrastive learning objectives for RSSMs [30, 29, 38, 31]. In this work, we
leverage the variational and predictive coding paradigms and show that CoRAL improves perfor-
mance for both. An alternative approach to handling distractions is further factorizing the RSSM’s
latent variable to disentangle task-relevant and task-irrelevant information [9, 45]. However, unlike
contrastive approaches, they explicitly model the task-irrelevant parts instead of ignoring them, which
can impede performance if the distracting elements become too complex to model. [54] proposes
a relaxed variational information bottleneck [2] approach which trains RSSMs solely by predicting
rewards and enforcing posterior predictability using a KL term. Other recent approaches for learning
RSSMs include using prototypical representations [7] or masked reconstruction [35].

Sensor Fusion in Reinforcement Learning. Many application-driven approaches to visual RL for
robots use proprioception to solve their specific tasks [8, 26, 19, 48, 10]. Yet, they usually do not use
explicit representation learning or concatenate image representations and proprioception. Several
notable exceptions use RSSMs with images and proprioception [38, 47, 5, 14, 18]. However, [47,
5, 14, 18] focus on purely reconstruction-based representation learning, while [38] uses contrastive
predictive coding for all modalities. Opposed to all of these works, we propose combining contrastive
approaches with reconstruction.

3 Combining Contrastive Approaches and Reconstruction for State Space
Represntations

Given trajectories of observations 01.7 = {0 }+—1.7 and actions a;.; = {a; };—1.7 we aim to learn
a state representation that is well suited for RL. We assume the observations stem from K different
Sensors, o; = {ogk) }k=1.x, where the individual ogk) only contain partial information about the state.
Further, even o; may not contain all necessary information for optimal acting, i. e., the environment
is partially observable, and the representation has to accumulate information over time. Our goal
is to learn a concise, low dimensional representation ¢(01.;,a;.;—1) that accumulates all relevant
information until time step ¢t. We provide this representation to a policy 7(a;|¢(01.¢,a1..—1)) which
aims to maximize the expected return in a given RL problem. In this setting, the policy’s final return
and the sample complexity of the entire system determine what constitutes a good representation.

State Space Models (SSMs) [28] naturally lend themselves to sensor fusion and information accu-
mulation problems. We assume a latent state variable, z;, which evolves according to a Markovian
dynamics p(z:41|2z:, a¢) given an action a,. Furthermore, we assume the K observations at each
time step are conditionally independent given the latent state, resulting in an observation model
p(ot|ze) = Hszl p(k) (ogk)|zt). The initial state is distributed according to p(z). Here, the be-
lief over the latent state, taking into account all previous actions as well as previous and current
observations p(z|aj.;_1,01.+) can be used as the representation. Yet, computing p(z¢|aj.+—1,01.¢)
analytically is intractable for models of relevant complexity and we use a variational approximation
@(01:t,a1.t—1)=q(z¢|a1.4—1,01.+). This variational approximation also plays an integral part during
training and is thus readily available as input for the policy.

We instantiate the generative SSM and the variational distribution using a Recurrent State Space Model
(RSSM) [16], which splits the latent state z; into a stochastic and a deterministic part. Following [16,
15], we assume the stochastic part of the RSSM’s latent state to be Gaussian. While the original RSSM
only has a single observation model p(o;|z;), we extend it to K models, one for each observation
modality. The variational distribution takes the deterministic part of the state together with the K



observations o; = {oﬁ’“)}k:m and factorizes as ¢(21.¢|01.¢,21.4-1) = H;le q(2¢|Zt—1,8:-1,0¢).
To account for multiple observations instead of one, we first encode each observation individually
using a set of K encoders, concatenate their outputs, and provide the result to the RSSM. Finally, we
learn a reward model p(r|z;) to predict the reward from the representation. Following the findings
of [38] and [43] we also include reward prediction to learn the representations for model-free agents.

3.1 Learning the State Space Representation

We propose to combine reconstruction-based and contrastive approaches for representation learning.
Training RSSMs can be based on a variational viewpoint [15, 27] or a contrastive predictive coding [32]
viewpoint [29, 38] and we investigate both approaches, as neither decisively outperforms the other.

Originally, [16] proposed leveraging a fully generative approach for RSSMs. Building on the stochastic
variational autoencoding Bayes framework [22, 37], they derive a variational lower-bound objective

T
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where §(-) = q(z¢—1.t|01.t,a1.t)p(01.1, @1.¢), 1. €.,the variational distribution and sub-trajectories
from a replay buffer p(-) = p(o1.7,a;1.7). After inserting our assumption that each observation
factorizes into K independent observations and adding a term for reward prediction, this results in
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Optimizing this bound using the reparameterization trick [22, 34] and stochastic gradient descent
simultaneously trains the variational distribution and all parts of the generative model. While this
approach can be highly effective, reconstructing high-dimensional, noisy observations can also
cause issues. First, it requires introducing large observation models. These observation models
are unessential for the downstream task and are usually discarded after training. Second, the
reconstruction forces the model to capture all details of the observations, which can lead to highly
suboptimal representations if images contain task-irrelevant distractions.

Contrastive Variational Learning (CV) can remedy these problems. To introduce contrastive terms,
we replace the individual reconstruction terms in Equation 1 with mutual information (MI) terms
I(0{") z,) by adding and subtracting log p(0®)) [15, 27]
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Intuitively, the MI measures how informative a given latent state is about the corresponding ob-
servations. Thus, maximizing it leads to similar latent states for similar sequences of observations
and actions. While we cannot analytically compute the MI, we can estimate it using the InfoNCE
bound [32, 33]. Doing so eliminates the need for generative reconstruction. It instead only requires
a discriminative approach based on a score function fék) (ogk), z;) — Ry. This score function
measures the compatibility of pairs of observations and latent states. It shares large parts of its
parameters with the RSSM. We refer to Appendix C for details on the exact parameterization. This
methodology allows the mixing of reconstruction and mutual information terms for the individual
sensors, resulting in a generalization of Equation 1,

0, ', z¢) + B4y [log p(r¢|z:) — KL [q(2¢]Z¢—1,a:-1,0¢) || p(2¢]2e—1,2:1])] . (3)
Here £ is either Egy logp(ogk) \zt)} or I(ogk), z;). As we show in Fig. 4 choosing the terms
corresponding to the properties of the corresponding modality can often improve performance.

Contrastive Predictive Coding (CPC) [32] provides an alternative to the variational approach. The
idea is to maximize the MI between the previous latent variable z;_; and the observation o(k), i.e.,



I (oik)7 z;—1). While this approach seems similar to contrastive variational learning, we use the
previous latent state z;_; instead of the current z, to estimate the MI. Thus, we explicitly predict one
time step ahead to compute the loss. As we use the RSSM’s dynamics model for the prediction, this
formalism provides a training signal to the dynamics model. However, [25, 36, 29] discuss how this
signal alone is insufficient for model-based RL and [38] show that similar ideas also benefit model-
free RL. We follow their approach by regularizing the objective using KL-term from Equation 1
weighted with a small factor 5. Additionally, we can turn individual contrastive MI terms into
reconstruction terms for suitable sensor modalities by reversing the principle of Equation 2. Including
reward prediction this results in the following maximization objective

Zzﬁ(k) (0%, 24) + Eq(y log p(re|z:) — BKL [q(2e|ze—1, a0 -1,0¢) || p(ze]2e—1,201)]],
t=1 k=1
4)

where £,(,k) is either the one-step ahead likelihood Eg.y [log p(ogk) |Z¢—1 )} or an InfoNCE estimate

of T (oﬁk)7 Z;_1) using a score function f,(,k) (oik), Z;_1) — R, . The implementation of the resulting

approach differs only slightly from the variational contrastive one. For CPC approaches, we use
a sample from the RSSM’s dynamics p(z¢|z;—1,a;—1) and for contrastive variational approaches
sample from the variational distribution q(z|z;—1,a:—1, 0;) as input to the score function or decoder.

Estimating Mutual Information with InfoNCE. We estimate the mutual information (MI) using b
mini-batches of sub-sequences of length [. After computing the latent estimates, we get N = b - [
pairs (0;, z;), i. e., we use both samples from the elements of the batch as well as all the other time
steps within the sequence as negative samples. Using those, the symmetry of MI, the InfoNCE

bound [33], and either f = fék) or f = f,S’“) we can estimate the MI as

Z(oi, >05<Zlog flon2:) +1ogM>_
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3.2 Learning to Act Based on the Representation

Our representations are amenable to both model-free and model-based reinforcement learning. For
the former, we use Soft Actor-Critic (SAC) [13] on top of the representation by providing the
deterministic part of the latent state and the mean of the stochastic part as input to both the actor
and the critic. For the latter, we use latent imagination [15], which propagates gradients through the
learned dynamics model to optimize the actor. In both cases, we alternatingly update the RSSM, actor,
and critic for several steps before collecting a new sequence in the environment. The RSSM uses only
the representation learning loss and gets neither gradients from the actor nor the critic.

4 Experiments

Building on the previously introduced methodology, we build two versions of Contrastive Recon-
structive Aggregated representation Learning (CoRAL) differing in the state space representation
objective. Variational CoRAL (V-CoRAL), using the variational objective (Equation 3) and Predictive
CoRAL (P-CoRAL), using the predictive coding objective (Equation 4). We evaluate the performance
of CoRAL by using it for downstream online RL and assessing the average expected return or success
rate. To show the benefits of combining contrastive and reconstruction-based objectives, we compare
with ablative variants that use the same loss for both modalities (Same-Loss), the naive approach of
concatenating proprioception to image representations (Concat) and using only the image (Img-Only).
We consider the contrastive variational (CV) and the contrastive predictive coding (CPC) paradigm for
each of these approaches. For reference, we also include reconstruction-based (Recon.) approaches
(Equation 1). Furthermore, we use SAC [13] on only the proprioception (ProprioSAC), to show
that proprioception alone is insufficient to solve the tasks. Finally, we consider the model-free DrQ-
v2 [50] and model-based RePo [54] as baselines to demonstrate the competitiveness of our approach.
We extend both to also use proprioception and refer to the resulting approaches as DrQ-v2(I+P) and
RePo(I+P) respectively.

Evaluation Protocol. We run 5 seeds for each task in each suite and build our analysis on the
aggregated results across the entire suite. This process results in 35 runs for each method on Video
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Figure 2: Aggregated performance after 10° environment steps on the 7 tasks from the Video
Background suite (IQM and 95% CIs). For both model-free and model-based RL, V-CoRAL performs
best among all considered methods, with the model-free performance being better than the model-
based one. While some model-free ablations are competitive, they are considerably worse in the
model-based case. From the baselines, only DrQ-v2 with additional proprioception, RePo (with and
without proprioception), and DreamerPro get a final return of over 200. This shows how including
readily available proprioception with appropriate losses for each modality helps to learn accurate
dynamics for model-based RL and provides a simple alternative to more tailored approaches.
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Figure 3: Aggregated performance after 10 environment steps on the 7 tasks from the Occlusion
suite (IQM and 95% CIs). For both, model-free and model-based RL, P-CoRAL performs best
among all considered methods, with the model-free version again outperforming its model-based
counterpart. While all approaches handle Occlusions worse than VideoBackgorund, the performance
drop is generally larger for the ablations and baselines. In particular, the Concat and model-based
Same-Loss ablations suffer and no approach using only a single modality achieves an expected return
of over 200. This indicates the importance of learning a multimodal representation using tailored
losses over naively integrating proprioception.

Background and Occlusions and 30 runs for each method onLocomotion and Manipulation, which we
aggregate using Interquartile Means (IQMs), and 95% Stratified Bootstrapped Confidence Intervals
(CIs) [1]. We indicate the latter with black bars in bar charts or shaded areas in reward curves.
Appendix B provides details for all tasks. Appendix C lists all hyperparameters of our approach
and Appendix D provides further details on the baselines. Appendix E shows learning curves for all
representation learning paradigms on all tasks, performance profiles, and per-environment results.
Code for running CoRAL and ablations on all tasks is available”.

4.1 Modified Deep Mind Control Suite Tasks

We use 7 tasks from the DeepMind Control Suite (DMC) [41] that cover a wide range of
challenges, namely Ball-in-Cup Catch, Cartpole Swingup, Cheetah Run, Reacher Easy,
Walker Walk, Walker Run, and Quadruped Walk. We split their states into proprioceptive and
non-proprioceptive entries, where the proprioception only contains partial information about the
state. The remaining information has to be inferred from images. For example, in Ball-in-Cup
Catch the cup’s state is proprioceptive while the ball’s state is not. Table 1 lists the splits for the
remaining tasks. We create two suites by adding Video Backgrounds or Occlusions for all seven
tasks. For Video Backgrounds, we follow [29, 7] and render videos from the Kinetics400 dataset [20]
behind the agent. For Occlusions, we add slowly moving disks in front of the agent. Appendix A
shows examples. For both suites, the challenge is to learn representations that filter out irrelevant
visual details while focusing on relevant aspects. Occlusions also tests the approaches’ capabilities
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to maintain a consistent representation across time under partial observability, which considerably
increases the task’s difficulty.

For these tasks, we consider the model-free and model-based versions of V-CoRAL, P-CoRAL, and
all ablative variants. Note that the Concat ablations are inapplicable in the model-based setting, as
the proprioception is not available during latent imagination [15]. Besides the DrQ-v2 and RePo
based baselines, we include several other visual RL approaches tailored for images with distractions
to show the competitiveness of CoRAL. Those are the model-based Task Informed Abstractions
(TIA) [9] and DreamerPro [7], the model-free Deep Bisimulation for Control (DBC) [53] approach,
and DenoisedMDP [45], which has both a model-free and model-based variant.

Fig. 2 and Fig. 3 show the results for the Video Background and Occlusion tasks respectively. We
also include results for the Standard Images without any distractors or occlusions for reference and
refer to Appendix E for those results. On Natural Videos V-CoRAL yields the best results among all
approaches. However, the margin to some of the ablations is small with all of them closing in on
the performance of the best approaches on images without background videos (Fig. 9). For model-
based RL the results show clearer benefits of learning a multimodal representation by appropriately
combining multiple losses. This difference is also much more pronounced for the more difficult
Occlusions (Fig. 3) suite. Here, no image-only approach learns reasonable behavior or manages
to outperform ProprioSAC, indicating a higher difficulty for representation learning. Our method
P-CoRAL tends to perform best in this suite, achieving a return of around 750, and closing in on the
best approaches on Standard Images which get around 900. Furthermore, using readily available
proprioception for representation learning in a principled manner provides a simple alternative to the
strong baselines listed above and also tends to outperform the naive Concat ablation that does not
consider proprioception for representation learning but only for RL. We qualitatively investigate some
of the learned representations in Appendix A, which illustrates how CoRAL helps the representation
to focus on relevant aspects and extract all necessary information from an image.

Variational vs. Predictive Approaches. Variational approaches tend to work better than predictive
ones on VideoBackgrounds, where the challenge is to focus on the relevant aspects while ignoring
distractions. Yet, the predictive approaches work better on Occlusions, where information has to be
propagated over time. As the underlying tasks are identical, this highlights the benefits of considering
both paradigms, depending on the perception challenges.

Model Quality and Model-Based Approaches. While model-free and model-based agents perform
similarly well for approaches that reconstruct images, model-based agents perform worse than their
model-free counterparts for contrastive image losses (Fig. 2, Fig. 3, Fig. 9, Fig. 10). In line with
previous findings [15, 27], this shows how contrastive approaches struggle to learn suitable long-
term dynamics for model-based RL. However, this gap is larger for the Same-Loss and Img-Only
ablations than for CoRAL, which almost closes the gap between model-free and model-based for
V-CoRAL(Fig. 2, Fig. 3). This result demonstrates how CoRAL allows learning more precise long-term
dynamics that enable more successful model-based RL.

4.2 Locomotion Suite

Building on the DeepMind Control Suite [42], we introduce a novel Locomotion suite consisting
of six tasks: Hurdle-Cheetah Run, Hurdle-Walker Walk, Hurdle-Walker Run, Ant-Empty,
Ant-Walls and Quadruped Escape. All tasks include obstacles that have to be localized through
egocentric vision to be avoided. As the agents cannot observe themselves from the egocentric
perspective, they additionally need proprioception. The left side of Fig. 4 provides some examples
and Appendix B.2 provides further illustrations and specifications of all tasks. These tasks test the
representations’ ability to combine information from both sources to enable successful navigation and
movement. For this more challenging suite, we focus on model-free RL for all representations due
to the known performance gap for model-based RL with contrastive image losses [15, 27], (Fig. 2,
Fig. 3). We include the model-based RePo for reference.

The results on the right side of Fig. 4 show that P-CoRAL excels in the Locomotion suite and has a
significant edge over reconstruction or the pure CPC-based approach while V-CoRAL outperforms
the related variational approaches. While highly relevant to the task, the obstacles appear at random
and have random colors for some tasks, which makes reconstruction harder. The contrastive methods’
advantage is pronounced in tasks with random colored obstacles (Fig. 21).
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Figure 4: Left: Exemplary egocentric (upper row) and external example images (lower row) for the
Hurdle Cheetah Run, Hurdle Walker Run, Ants Walls, and Quadruped Escape tasks of the
Locomotion suite. Only the egocentric images are given to the agents, while the external images are
solely for visualization of the tasks. Right: Aggregated performance on model-free agents and RePo
after 10® environment steps on the 6 tasks of the Locomotion suite (IQM and 95% Cls). P-CoRAL
significantly outperforms all ablative variants and baselines, highlighting how combining contrastive
methods and reconstruction can form effective multimodal representations. It also outperforms purely
reconstruction-based approaches, even with no distraction in the images.

4.3 Manipulation Suite

For the Manipulation suite, we design 6 tasks based on ManiSkill2 [11], i.e., LiftCube,
PushCube, TurnFaucet, OpenCabinetDrawer(RGB), OpenCanbinetDrawer (Depth), and
OpenCabinetDoor (RGBD). The first three are static manipulation tasks where the target object
has to be localized (cube) or identified (faucet) for successful manipulation. The latter three are
mobile manipulation tasks where the robot navigates to a cabinet and interacts with it using egocentric
vision and proprioception. They also use different visual modalities, i.e., standard RGB images, depth
only, or RGBD. For all tasks, we add visually realistic backgrounds using diverse scenes from the
ReplicaCAD Dataset [40] and randomize the ambient lighting. The task’s complexity stems from the
visual realism of the background and the diverse geometry of the target objects, which require that the
representations allow identification and precise localization. The left side of Fig. 5 provides example
images showing the tasks’ visual diversity and Appendix B.3 further examples and specifications for
all tasks. We again focus on model-free RL and RePo.

The right sight of Fig. 5 shows the results. The Manipulation suite is the hardest set of tasks we
consider and here the benefits of CoRAL are most obvious. Here, most of the considered baselines
fail while only V-CoRAL and P-CoRAL achieve over 50% success rate, averaged over all tasks,
with V-CoRAL giving the best result of 68%. In particular, the corresponding contrastive same-loss
approaches fail almost completely, which puts additional emphasis on the importance of using
appropriate losses for each modality. Using different image types for the 3 mobile manipulation
tasks shows how CoRAL is beneficial across different visual modalities. Using depth images,
OpenCabinetDrawer (Depth) effectively removes the lighting variations for this task which allows
several approaches to achieve higher performance but has only minor effects on the ranking.

4.4 Discussion

Considering all task suites and the full results presented in Appendix E, we see the benefits of CoRAL
compared to the ablations and a large selection of model-free and model-based baselines. Especially
for the harder tasks, i.e., Occlusions (Fig. 3), Locomotion (Fig. 4), and Manipulation (Fig. 5), CORAL
can significantly outperform other methods working on the same observations, which shows that
different modalities require distinct self-supervised loss functions while simply using the additional
proprioception by concatenation or using the same self-supervised loss is often insufficient.

Variational vs. Predictive Approaches. While either V-CoRAL or P-CoRAL generally provides
the best results on the considered tasks and both outperform the corresponding ablations, neither
consistently outperforms the other across all task suites. While this prevents conclusive decisions
about whether variational or predictive methods work generally better, we can observe a trend. The
variational approaches appear more suited for tasks requiring the filtering out of visual distractions,
such as in Video Background and Manipulation scenarios, while predictive approaches perform better
in tasks needing information to be carried over time, like Occlusions and Locomotion.
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Figure 5: Left: Exemplary images of the LiftCube, TurnFaucet, OpenCabinetDrawer (Depth),
and OpenCabinetDoor (RGBD) tasks. For the last one, we only show the RGB part of the image and
we provide two images per task to showcase the visual diversity and different geometries of the target
objects. Right: Aggregated performance on model-free agents and RePo after 2 x 10 environment
steps on the Manipulation suite (IQM and 95% CIs). Overall, V-CoRAL achieves the best average
success rate by a significant margin, followed by P-CoRAL. While they achieve about 68% and
58% success respectively, no ablation gets over 42%. In particular, both fully contrastive Same-Loss
ablations fail to succeed, which again highlights the importance of choosing an appropriate loss for
each modality. While both RePo and DrQ-v2 can utilize the additional proprioception, they are not
competitive with CoRAL or even SAC trained solely on the proprioception.

Baselines. Contrary to the results presented in the respective original works, DBC [53], TIA [9],
DenoisedMDP [45] and RePo [54] underperform on the Video Backgrounds task. The discrepancy in
performance is due to us using a more difficult experimental setup proposed by [7], which features
colored videos of greater diversity. We detail the differences and their effects in Appendix D.
Furthermore, RePo fails in the Manipulation suite which seems to contradict results presented by [54]
on three static manipulation tasks, similar to those in that suite. Again there are subtle differences in
the task specification: While [54] only randomize the visual background we randomize both the visual
background and the task’s initial condition (cube position or faucet model) creating considerably
more challenging scenarios.

Consistency Across Tasks. The additional result visualizations in Appendix E show that the
aggregated performance underlying our analysis is mostly representative of the per-task performance,
i.e., if an approach outperforms another when considering the aggregated performance, it generally
also does so on a large majority of the individual tasks and runs. Furthermore, performance is
consistent across the different observation types for the DMC tasks, i.e., Occlusions are more difficult
than Video Background, which are more difficult than Standard Images (Fig. 9, Fig. 10).

5 Conclusion

We consider the problem of Reinforcement Learning (RL) from multiple sensors, in particular images
and proprioception. We propose Contrastive reconstructive Aggregated Representation Learning
(CoRAL), an approach to learning multimodal state space representations for RL by combining
contrastive and reconstruction losses. CoRAL builds on the insight that we can replace likelihood-
based reconstruction terms with contrastive mutual information terms and vice-versa and is applicable
for variational and predictive coding paradigms. We evaluate on modified versions of the DeepMind
Control Suite and novel Locomotion and Manipulation suites. Our results show a consistent benefit
of CoRAL due to the combination of contrastive approaches for images with reconstruction for
low-dimensional, concise signals. These benefits are most pronounced for the hardest tasks we
consider, i.e., the Manipulation suite, where CoRAL, allows us to solve complex tasks with realistic
background scenes and varying target object geometries.

Limitations. Depending on the task, either V-CoRAL or P-CoRAL performs better. While our
evaluation provides some insights about when to use either, further research into understanding their
advantages and disadvantages and finding a unified approach that excels in all tasks is required.
Additionally, even with CoRAL, model-free agents outperform their model-based counterparts when
using contrastive image losses. We thus believe that contrastive learning of state space representations
can be further improved, especially with regard to learning accurate system dynamics.
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Table 1: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
DeepMind Control Suite environments.

Environment Proprioceptive Non-Proprioceptive

Ball In Cup cup position and velocity ball position and velocity

Cartpole cart position and velocity pole angle and velocity

Cheetah joint positions and velocities global pose and velocity

Reacher reacher position and velocity distance to target

Quadruped joint positions and velocities global pose + velocity, forces

Walker orientations and velocities of links  global pose and velocity, height above ground

Table 2: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
Locomotion Suite. Some of the agents (Cheetah, Walker, Quadruped) require more proprioceptive
information for the locomotion tasks with an egocentric vision than for the standard tasks with images
from an external perspective.

Environment Proprioceptive Non-Proprioceptive
Ant joint position and velocity wall positions
global velocities global position
Hurdle Cheetah joint positions and velocities hurdle positions and heights
global velocity global position
Hurdle Walker orientations and velocities of links  hurdle positions and height
global position and velocity
Quadruped (Escape) joint positions and velocities, Information about terrain

torso orientation and velocity,
imu, forces, and torques at joints

A Qualitative Visualization

H H I

Figure 6: Left: Saliency Maps showing on which pixels the respective representation learning
approaches focus in an example from Video Prediction. V-CoRAL focuses better on the task-relevant
cheetah, while the corresponding contrastive variational Immg-Only approach is more distracted by
the video background. Right: For this Occlusion task, we train a separate decoder to reconstruct the
occlusion-free ground truth from the (detached) latent representation. For Cartpole Swingup only
the cart position is part of the proprioception. Still, P-CoRAL can capture both cart position and pole
angle, while the contrastive predictive Img-Only approach fails to do so.

B Environments

B.1 DeepMind Control Suite Tasks
Table 1 states how we split the states of the original DeepMind Control Suite (DMC) [41] tasks

into proprioceptive and non-proprioceptive parts. For the model-based agents, we followed common
practice [15, 9, 45, 7] and use an action repeat of 2 for all environments. We do the same for the
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Figure 7: The environments in the Locomotion Suite are (from left to right) Hurdle Cheetah Run,
Hurdle Walker Walk / Run, Ant Empty, Ant Walls, and Quadruped Escape. Upper Row:
Egocentric vision provided to the agent. Lower Row: External image for visualization.

model-free agents except for: Ball In Cup Catch (4), Cartpole Swingup (8), Cheetah Run
(4) and Reacher Easy (4). All environments in the locomotion suite also use an action repeat of
2, this includes Hurdle Cheetah Run which requires more fine-grained control than the normal
version to avoid the hurdles.

Natural Background. Following [53, 9, 29, 7, 45, 54] we render videos from the driving car
class of the Kinetics400 dataset [20] behind the agents to add a natural video background. However,
previous works implement this idea in two distinct ways. [29] and [7] use color images as background
and pick a random sub-sequence of a random video for each environment rollout. They adhere
to the train-validation split of the Kinetcs400 dataset, using training videos for representation and
policy learning and validation videos during evaluation. [53, 9, 45, 54], according to the official
implementations, instead work with gray-scale images and sample a single background video for the
train set once during initialization of the environment. They do not sample a new video during the
environment reset, thus all training sequences have the same background video.

We follow the first approach, as we believe it mimics a more realistic scenario of always changing
and colored natural background.

Occlusions. Following [5], we render slow-moving disks over the original observations to occlude
parts of the observation. The speed of the disks makes memory necessary, as they can occlude
relevant aspects for multiple consecutive timesteps.

B.2 Locomotion Suite

The 6 tasks in the locomotion suite are Ant Empty, Ant Walls, Hurdle Cheetah Run, Hurdle
Walker Walk, Hurdle Walker Run, and Quadruped Escape. Table 2 shows the splits into pro-
prioceptive and non-proprioceptive parts. Fig. 7 displays all environments in the suite.

Both Ant tasks build on the locomotion functionality introduced into the DeepMind Control suite
by [42]. For Ant Empty, we only use an empty corridor, which makes this the easiest task in our
locomotion suite. For Ant Walls, we randomly generate walls inside the corridor, and the agent has
to avoid those to achieve its goal, i.e., running through the corridor as fast as possible.

For the Hurdle Cheetah and Hurdle Walker tasks we modified the standard Cheetah Run, Walker
Walk, and Walker Run tasks by introducing "hurdles" over which the agent has to step to move
forward. The hurdles’ positions, heights, and colors are reset randomly for each episode, and the
agent has to perceive them using egocentric vision. For this vision, we added a camera in the head of
the Cheetah and Walker. Note that the hurdle color is not relevant to avoid them and thus introduces
irrelevant information that needs to be captured by reconstruction-based approaches.

The Quadruped Escape task is readily available in the DeepMind Control Suite. For the egocentric
vision, we removed the range-finding sensors from the original observation and added an egocentric
camera.
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Figure 8: 4 Example images for each of the environments in the Manipulation Suite, show-
ing the visual and geometric diversity within each task. The tasks are, from left to right,
LiftCube, PushCube, TurnFaucet, OpenCabinetDrawer (RGB), OpenCabinetDrawer (Depth),
OpenCabinetDoor (RGBD). For the last, we visualize only the RGB part of the image.

B.3 Manipulation Suite

The Manipulation Suite builds on Maniskill2 [11] and comprises 6 tasks, i.e., LiftCube,
PushCube, TurnFaucet, OpenCabinetDrawer (RGB), OpenCabinetDrawer (Depth) and
OpenCabinetDoor (RGBD). The first three involve table-top manipulation and are harder varia-
tions of some tasks considered by [54]. The latter three are mobile manipulation tasks using different
image modalities. For all tasks, we use scenes from the Replica Dataset [40] (specifically: Repli-
caCAD_baked_lighting®) to place the robot in a visually realistic scene. At the beginning of each
episode, we randomly pick one of 80 curated scenes and randomly sample the ambient lighting to
place the task in a varying and visually realistic scenery.

We use delta joint position control, no action repeat, and dense normalized rewards for all tasks. For
the depth images we use the depth camera functionality provided by ManiSkill2 and clip to values
between 0 and 4 meters. Figure Fig. 8 shows example images for all environments.

LiftCube builds on Maniskill2’s LiftCube task and involves picking up a cube and lifting it to a fixed
target position. The proprioception includes the robot’s joint positions, velocities, and end-effector
pose, while the cube has to be localized and tracked via an image of an external camera. Opposed to
[54] we randomize the initial cube position, requiring the agents to first localize the cube based on
the representation, which makes the task considerably more difficult.

PushCube builds on the PushCube task introduced by [54], but we again randomize the initial cube
position. Like in LiftCube, the proprioception includes the robot’s joint positions, velocities, and
end-effector pose, while the cube has to be localized and tracked via an image of an external camera.

TurnFaucet extends Maniskill2’s TurnFaucet task and involves opening various faucets by turning
the handle. The proprioception includes the robot’s joint positions, velocities, and end-effector pose,
while all information regarding the faucet has to be inferred from an image of an external camera.
We sample one out of 15 different faucets at the beginning of each episode. As their geometry and
opening mechanism vary any representation needs to capture detailed information about the faucet
and allow the policy to identify it. This makes our task considerably more difficult than that proposed
by [54], who use the same faucet model for all episodes.

*https://huggingface.co/datasets/ai-habitat/ReplicaCAD_baked_lighting/

15


https://huggingface.co/datasets/ai-habitat/ReplicaCAD_baked_lighting/

OpenCabinetDrawer(RGB) is based on the mobile manipulation OpenCabinetDrawer task from
ManiSkill2, where a mobile robot with a single arm has to navigate towards and then open a drawer
one of 25 cabinets. We disable the rotation of the robot base, which prevents the robot from turning
away from the cabinet during initial exploration and significantly speeds up learning for all considered
approaches. This results in a 10 dimensional action space, consisting of the x and y velocities of the
base, desired changes for the 7 robot joints, and the gripper. Images are egocentric from the top of
the robot base and the proprioception includes the entries from the ManiSkill2 "state dict".

OpenCabinetDrawer(Depth) is equivalent to OpenCabientDrawer(RGB) but the agent only receives
an egocentric depth image instead of a color image. This effectively removes the variation in lighting
from the environment.

For OpenCabinetDoor(RGBD) we build on the Maniskill2 task of the same name, use 25 different
cabinet models, and the same action space as for OpenCabientDrawer(RGB). The sensory obser-
vations are also equivalent to the Drawer tasks, but we provide both color and depth information.
While conceptually similar to the Drawer tasks opening the Door is considerably harder, as it requires
coordination with the base not just to reach the handle, but also to pull back on it.

C Architecture Details and Training

We use the same hyperparameters for all experiments based on the DeepMind Control Suite (DMC),
i.e., the standard tasks with the different observation types (Video Background, Occlusions and also
Standard Images) as well as, the Locomotion Suite. For the ManiSkill2-based Manipulation Suite,
we use a larger model and a more conservative update scheme for actors and critics. We use the ELU
activation function unless otherwise mentioned.

C.1 Recurrent State Space Model

We denote the deterministic part of the RSSM’s state by h, and the stochastic part by s;. The

base-RSSM model without parts specific to the objective consists of:

* Encoders: w(()]ss) (0¢), where s is the convolutional architecture proposed by [12] and
used by [16, 15] for image observations. For the low-dimensional proprioception, we used
3 x 400 fully connected layers for the DMC tasks and 4 x 512 fully connected layers
Manipulation Suite.

* Deterministic Path: h; = g(z;_1,a:—1,h; 1) = GRU(Yget(Z¢—1,a¢—-1), hy—1) [6], where
Yaer 18 @ 2 x 400 fully connected NN and the GRU has a memory size of 200 for the DMC
tasks. For the Manipulation Suite 14e; has 2 X 512 units and the GRU a memory size of 400

* Dynamics Model: p(z;1|2¢, a¢) = tayn(hy), where t)gyn is a 2 x 400 units fully connected
NN for the DMC tasks and a 2 x 512 units fully connected NN for the Manipulation Suite.
The network learns the mean and standard deviation of the distribution.

* Variational Distribution ¢(z:|z;_1,a;_1,0;) = ¥y, (ht, Concat ({wélgs)(ogk))}kzu()),
where 1)y, is a 2 x 400 units fully connected NN for the DMC tasks and a 2 x 512 units

fully connected NN for the Manipulation Suite. Again, the network learns the mean and
standard deviation of the distribution.

* Reward Predictor p(7¢|z:): 2x 128 units fully connected NN for model-free agents. 3 x 300
units fully connected NN with ELU activation for model-based agents. The network only
learns the mean of the distribution. The standard deviation is fixed at 1. The model-based
agents use a larger reward predictor as they rely on it for learning the policy and the value
function. Model-free agents use the reward predictor only for representation learning and
work with the ground truth rewards from the replay buffer to learn the critic.

C.2 Objectives
Image Inputs and Augmentation. Whenever we use a contrastive image loss, we randomly crop

a 64 x 64 pixel image from the original image of size 76 x 76 pixels during training. Cropping is
temporally consistent, i.e., the same crop is used for all time steps in a sub-sequence. For evaluation,
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Table 3: Hyperparameters used for policy learning with the Soft Actor-Critic.

Hyperparameter DMC and Locomotion Manipulation
Actor Hidden Layers 3 x 1,024 Units 3 x 1,024 Units
Actor Activation ELU ELU + LayerNorm
Critic Hidden Layers 3 x 1,024 Units 3 x 1,024 Units
Critic Activation Tanh ELU + LayerNorm
Discount 0.99 0.85

Actor Learning Rate 0.001 0.0003
Actor Gradient Clip Norm 10 10

Critic Learning Rate 0.001 0.0003
Critic Gradient Clip Norm 100 100

Target Critic Decay 0.995 0.995
Target Critic Update Interval 1 1

« learning rate 0.001 0.0003
initial « 0.1 1.0

target entropy - action dim - action dim

we corp at the center. For the ablations that reconstruct images, we downsize them directly to 64 x 64
pixels.

KL. For the KL terms in Equation 1 and Equation 3 we follow [18] and combine the KL-Balancing
technique introduced in [17] with the free-nats regularization used in [16, 15]. Following [17] we
use a balancing factor of 0.8. We give the algorithm 1 free nat for the DMC Tasks and 3 for the
Manipulation Suite.

Contrastive Variational Objective. The score function for the contrastive variational objective is
given as

1 T
HO0 ) = xp (50 (2008) o).

where ¢£§s) is the RSSM’s encoder and A is a learnable inverse temperature parameter. p, and p, are
projections that project the embedded observation and latent state to the same dimension, i.e., 50. p,
is only a single linear layer while p, is a 2 x 256 fully connected NN. Both use LayerNorm [3] at the

output.

Contrastive Predictive Objective. The score function of the contrastive predictive objective looks
similar to the one of the contrastive variational objective. The only difference is that the latent state
is forwarded in time using the RSSM:s transition model to account for the predictive nature of the
objective,

N, (K 1 YRONE
1900 312) = exo (0 (89061 - omnlatar 1))
We use the same projections as in the contrastive variational case.

Following [38] we scale the KL term using a factor of 5 = 0.001.

Reconstruction Objectives. Whenever we reconstruct images we use the up-convolutional architec-
ture proposed by [12] and used by [16, 15]. For low-dimensional observations, we use 3 x 400 units
fully connected NN for the DMC tasks and a 4 x 512 Units fully connected NN for the Manipulation
Suite. In all cases, only the mean is learned. We use a fixed variance of 1 for all image losses
and the proprioception for the DMC tasks. For the Manipulation Suite, we set the variance for the
proprioception to 0.04.

Optimizer. We used Adam [21] with o = 3 x 1074, 31 = 0.99, 82 = 0.9 and ¢ = 1072 for all
losses. We clip gradients if the norm exceeds 10.

C.3 Soft Actor Critic

Table 3 lists the hyperparameters used for model-free RL with SAC [13].
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Table 4: Hyperparameters used for policy learning with Latent Imagination.

Hyperparameter Value
Actor Hidden Layers 3 % 300 Units
Actor Activation ELU
Critic Hidden Layers 3 % 300 Units
Critic Activation ELU
Discount 0.99
Actor Learning Rate 8x 1075
Actor Gradient Clip Norm 100
Value Function Learning Rate 8 x 1075
Value Gradient Clip Norm 100
Slow Value Decay 0.98
Slow Value Update Interval 1

Slow Value Regularizer 1
Imagination Horizon 15
Return lambda 0.95

We collected 5, 000 initial steps at random. During training, we update the RSSM, critic, and actor in
an alternating fashion for d steps before collecting a new sequence by directly sampling from the
maximum entropy policy. Here, d is set to be half of the environment steps collected per sequence
(after accounting for potential action repeats). Each step uses 32 subsequences of length 32, uniformly
sampled from all prior experience.

C.4 Latent Imagination

Table 4 lists the hyperparameters used for model-based RL with latent imagination. They follow to a
large extent those used in [15, 17].

We again collect 5, 000 initial steps at random. During training, we update the RSSM, value function,
and actor in an alternating fashion for 100 steps before collecting new sequences. Each step uses 50
subsequences of length 50, uniformly sampled from all prior experience. For collecting new data, we
use constant Gaussian exploration noise with o = 0.3.

D Details on Baselines and Ablations.

For Dreamer-v3 [18] we use the raw reward curve data provided with the official implementation®.
For DreamerPro 1), Task Informed Abstractions [91°, Deep Bisumlation for Control [53]7, De-
noisedMDP [45]® and DrQ-v2 [50]° we use the official implementations provided by the respective
authors.

DrQ-(I+P) builds on the official implementation and uses a separate encoder for the proprioception
whose output is concatenated to the image encoder’s output and trained using the critics’ gradients.

We implemented RePo and RePo(I+P) in our framework, reused the Hyperparameters form [54], and
ensured the results of our implementation match the official implementation’s'” result on the DMC
tasks with standard images. RePo(I+P) encodes the proprioception using a separate encoder and both
the embedded image and proprioception are given to the RSSM.

*https://github.com/danijar/dreamerv3/blob/main/scores/data/dmcvision_dreamerv3.
json.gz

Shttps://github.com/fdeng18/dreamer-pro

*https://github.com/kyonofx/tia/

"https://github. com/facebookresearch/deep_bisimdcontrol/

$https://github.com/facebookresearch/denoised_mdp

‘https://github.com/facebookresearch/drqv2

""https://github.com/zchuning/repo
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Ablations that are Similar to related Approaches. Some of our ablations are very similar to
related approaches. The model-based Img-Only ablation with reconstruction loss, is very similar to
Dreamer-vI[15]. It differs from the Dreamer-v1 [15] in using the KL-balancing introduced in [17]
and in regularizing the value function towards its own exponential moving average, as introduced
in [18].

However, there are considerable differences between the contrastive version of Dreamer-v1[15] and
the contrastive variational Img-Only ablation. In particular, those regard the exact form of mutual
information estimation and the use of image augmentations.

The model-free contrastive predictive Img-Only and Same-Loss ablations are similar to the approach of
[38]. The main difference is that [38] includes the critic’s gradients when updating the representation
while in our setting no gradients flow from the actor or the critic to the representation. Furthermore,
we did not include the inverse dynamics objective used by [38] as we did not find it to be helpful.
Additionally, we adapted some hyperparameters to match those of our other approaches.

D.1 Hyperparameters of Abltions and Baselines.

Ablations. All Same-Loss, Concat, and Img-Only use the hyperparameters listed in Appendix C.
They are merely missing certain parts of the model or use a different loss for one or both modalities.
For the Concat baseline, we project the proprioception to the RSSMs latent state size (stochastic +
deterministic) using a single linear layer before concatenation.

ProprioSAC uses the hyperparameters listed in Table 3, except for the learning rates. We reduced
those to the SAC default values of 0.0003 for all environments, as we found the more aggressive
updates used for CoRAL on Video Background, Occlusions and Locomotion can lead to instabilities
when training directly on the proprioception.

Baselines. All our baselines were originally evaluated on standard DeepMind Control Suite tasks,
modified DeepMind Control Suite tasks, or both. They were designed for problems very similar to
Occlusions and, in particular, Video Background and we thus reuse the Hyperparameters originally
proposed by the respective authors. For baselines using an RSSM, (TIA, DreamerPro, DenoisedMDP,
and RePo) these are generally very similar and follow [15, 17].

For the Locomotion suite all approaches, including CoRAL and the ablations, use the same Hyperpa-
rameters as they use for Video Backgrounds and Occlusions.

For the Manipiluation suite we increased the model sizes of RePo following those of CoRAL. For
both the DrQ-v2-based and the RePo-based baselines we tried a discount factor of 0.85 and 0.99 to
ensure the performance differences to CoRAL is not an artifact of the low discount of 0.85. However,
the lower discount worked better for all methods.

D.2  On the Performance of Some Baselines in our Setting.

As described in Section B.1, there are distinct ways how to select and use the Kinetics400 videos
in the existing literature. [29], which first introduced the more challenging setting we use, already
found DBC [53] to struggle in this setting and our results align with those findings.

TIA [9] and DenoisedMDP [45] factorize the latent variable into 2 distinct parts and formulate
loss functions that force one part to focus on task-relevant aspects and the other on task-irrelevant
aspects. However, the part responsible for the task-irrelevant aspects still has to model those explicitly.
In the more complicated setting with randomly sampled, colored background videos, the TIA and
DenoisedMDP world models underfit and thus fail to learn a good representation or policy. Contrastive
approaches, such as our approach and DreamerPro [7], do not struggle with this issue, as they do not
have to model task-irrelevant aspects but can learn to ignore them.

RePo [54] was also evaluated on the simpler setting and [54] report an improved performance over
TIA and DenoisedMDP. In the more challenging setting, this improvement persists and RePo performs
similarly to DreamerPro (Fig. 2).

Furthermore, [54] presents results on ManiSkill2 environments similar to LiftCube, PushCube,
and TurnFaucet of our Manipulation Suite. However, as detailed in Appendix B.3 our Manipula-
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tion Suite tasks randomize initial conditions (i.e., cube position or faucet model) which results in
significantly more challenging tasks, in which RePo seems to struggle.

E Complete Results

The following pages list the aggregated results and performance profiles for all tasks, representation-
learning approaches, and both model-free and model-based RL. We compute inter-quartile means
and stratified bootstrapped confidence intervals, as well as the performance profiles according to the
recommendations of [1] using the provided library''. For each task in the suites, we ran 5 seeds per
method, i.e., the results for Standard Images, Video Backgrounds, and Occlusions are aggregated over
35 runs, and those for Locomotion over 30 runs. For OpenCabinetDrawer we run 20 seeds per method.
Fig. 9 lists the aggregated results for all model-free agents on the DeepMind Control (DMC) Suite
tasks and Fig. 11 lists the corresponding performance profiles. Fig. 10 lists the aggregated results
for all model-based agents on the DeepMind Control Suite tasks and Fig. 12 lists the corresponding
performance profiles. Fig. 13 shows aggregated results and performance profiles for the Locomotion
suite. Fig. 14 shows aggregated results and performance profiles for the Manipulation suite. We also
list the per-task results for all task suits:

* Fig. 15: Model-free agents on DMC tasks with Standard Images

* Fig. 16: Model-free agents on DMC tasks with Video Background.

* Fig. 17: Model-free agents on DMC tasks with Occlusions.

* Fig. 18: Model-based agents on DMC tasks with Standard Images.
* Fig. 19: Model-based agents on DMC tasks with Video Background.
* Fig. 20: Model-based agents on DMC tasks with Occlusions.

* Fig. 21: Per Environment Results for the Locomotion suite.

* Fig. 22: Per Environment Results for the Manipulation suite.

"https://github.com/google-research/rliable
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Figure 9: Aggregated results for all model-free agents on the DeepMind Control Suite environments
with Standard Images, Video Background, and Occlusions. As expected, reconstruction-based
approaches do not work on Video Background and Occlusions. Out of all considered approaches
V-CoRAL achieves the highest performance on Video Background and P-CoRAL achieves the highest
performance on Occlusions.
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Contrastive Variational Representations
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Figure 10: Aggregated results for all model-based agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. Compared to their model-free
counterparts (Fig. 9), model-based agents perform worse, except if a reconstruction-based represen-
tation is used. Yet, the performance gap is larger for image-only and fully contrastive approaches.
Especially V-CoRAL still achieves high performance on Video Background, almost matching the
performance of Dreamer-v3 on Standard Images. This further highlights the benefits of using CoRAL,
which can significantly improve over tailored approaches such as DreamerPro or RePo.
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Contrastive Variational Representations
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Figure 11: Performance profiles for all model-free agents on the DeepMind Control Suite tasks
with Standard Images, Video Background, and Occlusions. They show that performance is largely
consistent across the tasjs. The sole exception is V-CoRAL and the contrastive variational approach
with the same loss for both modalities on Occlusions. Here, the former fails for Ball-in-Cup
Catch and Cartpole Swingup, while the latter underperforms for Cheetah Run (Fig. 17).
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Contrastive Variational Representations
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Performance profiles for all model-based agents on the DeepMind Control Suite environ-

ments with Standard Images, Video Background, and Occlusions. They indicate that performance is
largely consistent across the environments.
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Contrastive Variational Representations
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Figure 13: Aggregated results and performance profiles for the Locomotion suite. Both V-CoRAL
and P-CoRAL outperform reconstruction and P-CoRAL gives the best results of all approaches
by a significant margin Fig. 21 shows that the performance difference is larger in environments
with randomly colored obstacles (Hurdle Cheetah Run, Hurdle Walker Walk,Hurdle Walker
Run. The color is not relevant to avoid the obstacles but seems to hinder reconstruction.
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Contrastive Variational Representations
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Figure 14: Aggregated results and performance profiles for the Manipulation Suite. V-CoRAL
performs best by a significant margin, followed by P-CoRAL No approach that uses solely images,
i.e., Img Only-ablations, RePo and DrQ-v2, or uses both modalities but has a fully constrastive
objective achieves any notable success.
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Contrastive Variational Representations
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Figure 15: Per environment results for model-free agents on the DeepMind Control Suite with

Standard Images.
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Contrastive Variational Representations
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Figure 16: Per environment results for model-free agents on the DeepMind Control Suite with Video
Background.
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Figure 17: Per environment results for model-free agents on the DeepMind Control Suite with
Occlusions.
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Figure 18: Per environment results for model-based agents on the DeepMind Control Suite with
Standard Images.
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Figure 19: Per environment results for model-based agents on the DeepMind Control Suite with
Video Background.
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Figure 20: Per environment results for model-based agents on the DeepMind Control Suite with
Occlusions.
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Figure 21: Per environment results for the Locomotion suite.
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Figure 22: Per environment results for the Manipulation suite.
Reconstruction-Based Representation
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