EgoDex: Learning Dexterous Manipulation
from Large-Scale Egocentric Video
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Fig. 1: EgoDex is a large-scale egocentric dataset focusing on human dexterous manipulation.

Abstract—Imitation learning for manipulation has a well-
known data scarcity problem. Unlike natural language and
2D computer vision, there is no Internet-scale corpus of data
for dexterous manipulation. One appealing option is egocentric
human video, a passively scalable data source. However, existing
large-scale datasets such as Ego4D do not have native hand pose
annotations and do not focus on object manipulation. To this end,
we use Apple Vision Pro to collect EgoDex: the largest and most
diverse dataset of dexterous human manipulation to date. EgoDex
has 829 hours of egocentric video with paired 3D hand and finger
tracking data collected at the time of recording, where multiple
calibrated cameras and on-device SLAM can be used to precisely
track the pose of every joint of each hand. The dataset covers
a wide range of diverse manipulation behaviors with everyday
household objects in 194 different tabletop tasks ranging from
tying shoelaces to folding laundry. Furthermore, we train and
systematically evaluate imitation learning policies for hand tra-
jectory prediction on the dataset, introducing metrics and bench-
marks for measuring progress in this increasingly important area.
By releasing this large-scale dataset, we hope to push the frontier
of robotics, computer vision, and foundation models.

I. INTRODUCTION

The “bitter lesson” [36] of recent breakthroughs in large
language models and large vision models is that the simple

recipe of supervised learning with vast amounts of data is far
more effective than competing approaches. Two key challenges
have prevented the application of the bitter lesson to the
longstanding challenge of autonomous robot manipulation:
(1) it is unclear what data should be collected, and (2) it is
unclear how such data can be collected at the requisite scale.

The leading approach to data collection for robot imitation
learning is teleoperation, in which human operators provide
demonstrations by directly controlling robot hardware. Recent
works such as Open X-Embodiment [26] and DROID [16]
pioneer community-wide efforts to pool together hundreds
of hours of robot teleoperation data. While such datasets
can be used effectively for pretraining robot control policies,
teleoperation is bottlenecked by physical robot operation, and
it is unclear how to continue scaling this paradigm beyond
its current size. Other works explore learning visual represen-
tations from existing in-the-wild Internet videos and images
20]]. In this case, while large-scale data is available,
unstructured video data lacks the precise annotation necessary
to learn dexterous manipulation.

We explore a middle path between the two: egocentric
human video with paired 3D hand pose annotations. As sug-



gested by recent work [[15} 30], such an approach is passively
scalable, similar to text and images on the Internet. Effectively
learning from such data is critical in a future where wearable
headsets and smart glasses may be omnipresent. Data is a
crucial component for doing so; before AlexNet [17] must
come ImageNet [34]].

To this end, we introduce EgoDex: a large-scale dataset and
benchmark for learning dexterous manipulation from large-
scale egocentric video. EgoDex consists of 829 hours of 30
FPS video and paired skeletal data with a total of 90 million
frames and 338000 task demonstrations across 194 tabletop
manipulation tasks. To our knowledge, the EgoDex dataset
is the largest and most diverse dataset of dexterous human
manipulation to date.

There are several key properties of the proposed data that
make it more suitable for dexterous manipulation than existing
alternatives:

o EgoDex is passively scalable, unlike robot teleoperation
and other approaches that require deliberate effort for data
collection. EgoDex suggests the human hand as a common
embodiment, unlike teleoperation and other approaches
that collect data that is only compatible with specific robot
hardware platforms.

o EgoDex has 30 FPS 1080p egocentric video with a wide
field of view, capturing much of what a human sees while
manipulating objects. It has precise and highly detailed 3D
pose information for the user’s head, arms, wrists, and each
joint of each finger from on-device SLAM and calibrated
cameras, containing critical dexterous manipulation data
unlike in-the-wild Internet videos and Ego4D [11].

o EgoDex consists of extremely diverse behaviors beyond
simple pick-and-place such as unscrewing a bottle cap,
flipping pages of a book, and plugging a charger into a
socket. It consists entirely of active manipulation, unlike
existing large egocentric video datasets such as Ego4D.

We systematically evaluate imitation learning policies for
hand trajectory prediction to assess the state of the art and
identify challenges for future research. We hope that EgoDex
will not only accelerate progress in robot manipulation but
also be useful more broadly in applications such as augmented
reality, computer vision, assistive prosthetics, and human-
computer interaction.

II. RELATED WORK
A. Large-Scale Manipulation Datasets

Several prior works introduce large-scale open-source robot
teleoperation datasets including RoboTurk [21], BridgeData
[38]], RT-X [26], and DROID [16]. While such datasets contain
up to hundreds of hours of valuable manipulation data, it is
not clear how to scale the paradigm further than its present
scale. Robot teleoperation is extremely labor-intensive and
resource-constrained, requiring an operational physical robot
and a human teleoperator actively controlling the robot to
perform each desired task. Furthermore, it is not clear to what
degree such datasets can generalize beyond the set of hardware

embodiments and camera viewpoints with which they were
collected, even when the datasets consist of samples collected
across multiple different embodiments.

Other large-scale datasets such as Ego4D [11] and EPIC-
KITCHENS [8]] consist of egocentric video recording humans
perform various activities. While such datasets are more scal-
able and not limited to particular hardware platforms, they
typically do not focus on manipulation and do not have paired
3D annotations for dexterous manipulation.

There is also a large body of work that considers hand-
object interaction [19, 2, 4)]. While these datasets often do
have 3D hand pose annotations, they are orders of magnitude
smaller than EgoDex due to manual annotation processes.
Moreover, their emphasis is primarily on grasping rather than
diverse and long-horizon manipulation tasks.

B. Scalable Methods for Robot Data Collection

Recent work identifies the data scarcity problem in robot
imitation learning and proposes innovative techniques for
scalable data collection. Chi et al. [7] propose the “universal
manipulation interface”: handheld grippers that enable human
teachers to provide demonstrations without physical robots.
Wang et al. [39]] introduce a portable data collection sys-
tem with motion capture gloves. Others propose collecting
robot-free demonstrations by simulating robot hardware in
augmented reality [6, 27} 23]

These approaches all face a similar pitfall: they require
active data collection. While they may make it easier to collect
data than teleoperation, human demonstrators must still be
incentivized to intentionally collect the data. Such approaches
face a significant uphill battle in approaching the scale of
Internet datasets, where text and images are not deliberately
collected but rather a passive byproduct of human interaction
with the Internet.

C. Learning from Human Video

Video data is abundant on the Internet. Prior work explores
representation learning on unstructured large-scale image and
video data for pretraining visual encoders [32, 20]] and grasp
affordances [1l] for downstream manipulation. However, raw
unstructured video data faces a prohibitively large gap between
its image distribution and that of a dexterous manipulation
task. Moreover, such videos are not labeled with corresponding
motor actions with which to train a policy.

One option is to postprocess the unstructured video data
with 3D hand prediction networks such as HaMeR [28],
recently explored by Ren et al. [33]. However, the prediction
quality of these networks can suffer without multiple view-
points and detailed knowledge of the camera extrinsics at all
times, usually unavailable with raw Internet video. In contrast,
the EgoDex dataset includes 3D head and hand tracking at the
time of collection, where multiple cameras on the Vision Pro,
known intrinsics and extrinsics, and a production-grade hand
prediction network all contribute to precise annotation.

Most similar to our work is EgoMimic [15]], which proposes
the collection of egocentric video and paired 3D hand tracking.



Dataset # Traj. # Tasks # Frames Lang. Annot. Cam. Calib. Dexterous Annot. Collection Method
RoboTurk [21] 2k 3 12M X X X teleoperation
RoboNet [9] 162k n/a 15M X X X scripted
BridgeData V2 [38] 60k 13 2M v X X teleop+scripted
DROID ([16] 76k 86 19M v v X teleoperation
EgoMimic [15] 2k 3 0.4M X v X egocentric video
EPIC-KITCHENS [8] 40k 125 12M v X X egocentric video
HOI4D [19] 4k 54 2M X X v egocentric video
Ego4D (HOI) [11] 89k n/a 21M v X X egocentric video
EgoDex (ours) 338k 194 IOM v v v egocentric video

TABLE I: Comparison of different robot manipulation datasets (above middle line) and human manipulation datasets (below
middle line). Ego4D (HOI) considers the subset of Ego4D that involves hand-object interaction. EgoDex has the largest amount
of trajectories, tasks, and frames by a large margin and has language annotation, camera calibration, and dexterous annotation.
“Dexterous annotation” is defined here as labels for multi-finger hand poses, which does not include lower fidelity pose data

like parallel jaw robot grippers or wrist-only tracking.

The primary difference is scale: while EgoMimic collects
around 4 hours of data, we collect 829 hours with a much
broader data and task distribution. We also collect more
dexterous annotations, critical for downstream manipulation:
3D positions and orientations for the upper body including the
head, shoulders, arms, and 25 joints in each hand, whereas
EgoMimic collects only the wrist positions. Lastly, a preview
of EgoDex appeared in Qiu et al. [30]], which used a 3% subset
of EgoDex for successful human-to-robot transfer.

III. EGODEX DATASET

A. Overview

The EgoDex dataset contains 829 hours of 1080p, 30 Hz
egocentric video with 338000 episodes across 194 tasks. This
is a total of 90 million frames (i.e., data samples). The
full dataset takes 2.0 TB of storage on disk. We compare
EgoDex to existing manipulation datasets in Table [l EgoDex
has almost an order of magnitude more data than the next
largest dataset as well as higher task diversity. It also has
language annotations, camera extrinsics, and dexterous anno-
tations (Section [[II-C).

B. Data Collection

All data is collected with Apple Vision Pro running vi-
sionOS 2. The high-resolution and high-frequency passthrough
and wide field of view enable intuitive egocentric data collec-
tion, where the collector can observe the environment unob-
structed as if with their own eyes, and the camera data records
precisely what the collector sees without any pose offsets (un-
like, for instance, a head-mounted camera). Production-grade
pose tracking software enables natural demonstration with bare
hands and without any additional hardware apparatus. Video
data is saved with AVFoundation and pose data is tracked by
ARKit. The data was collected by 10 operators in tabletop
environments.

To streamline data collection, data is recorded in sessions:
approximately 10-15 minute segments that consist of many
individual episodes, where episode boundaries are indicated
by a “pause” and subsequent “resume” of recording from the
data collection app. Raw video is compressed to facilitate data
transfer, upload, download, and storage. Without the use of
modern video compression algorithms, the raw data would
take over 500 TB of disk space, about 250x its current
size. At training time, data is loaded efficiently with PyTorch
torchcodec [37], which only decodes the desired frames in the
sampled batch of data.

C. Modalities

The data consists of the following: 1) Egocentric RGB video
with 1920 x 1080 resolution at 30 Hz frequency. 2) Camera
intrinsics and extrinsics at 30 Hz. 3) Position and orientation
of all upper body joints (including 25 joints for each hand) at
30 Hz. 4) Confidence values for pose predictions at 30 Hz. 5)
Natural language annotation of the manipulation.

The metadata annotated by data collectors includes the task
name, a brief task description in natural language, details
about the environment, and details about the object(s) that
are manipulated. Since the metadata can be noisy, these fields
are provided as input to GPT-4 [25]], which combines this
information into a single natural language description.

Confidence values are scalars between 0 and 1 indicating the
ARKit prediction confidence per skeletal joint. A confidence
of zero indicates that the joint is fully occluded from view.
See Appendix [B|for a comprehensive list of all the joints and
more information.

D. Task Types

EgoDex consists of 3 types of tasks:

o Reversible tasks are pairs of tasks that are the inverse of
each other. The distribution of final states for one task is
within the distribution of initial states for its inverse. For
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Fig. 3: Distribution of EgoDex dataset. Top: Distribution of distinct verbs, sorted by frequency. The horizontal axis are verbs
of EgoDex. The orange plot is taken from DROID [16]. While many verbs in DROID are below the 10! mark, most verbs in
EgoDex are above the 10° mark. Bottom: Distribution of distinct objects. The clustering is suggested by GPT-4.

example, connecting a charger to a device and removing a
charger from the device.

o Reset-free tasks are tasks with a final state distribution that
falls within its own initial state distribution. For example,
throwing a ball in the air and catching it (where gravity
acts as the reset).

o Reset tasks are tasks in which the environment must be re-
set to the initial state distribution after each demonstration.

Reversible and reset-free tasks enable a higher yield from
data collection as they eliminate costly resets, which are not
included in the recorded data.

E. Diversity

Prior work [16, [26] identify several potential axes of
demonstration diversity: viewpoint diversity, task diversity,
scene diversity, object diversity, and more. In EgoDex, the
emphasis is diversity in dexterous manipulation behaviors.
Tasks and objects vary such that the required dexterity ranges
far beyond pick-and-place, the primary behavior in most robot
teleoperation datasets. For example, tasks include tightening a
screw, tying shoelaces, dealing cards, flipping pages, catching
tennis balls, and slotting batteries. The task distribution covers
a wide range of everyday household manipulation tasks that
can be performed on a tabletop surface. There is also a
significant amount of basic pick-and-place with diverse objects
as well as the benchmark tasks from the FurnitureBench
assembly benchmark [13]]. The full list of 194 tasks provided
in Appendix [A]

To get a sense of the spread of the task distribution, as
in prior work we plot the distribution of de-duplicated verbs

in Figure 3] We observe that the distribution is much wider
than prior works such as DROID [[16]], where a large fraction
of verbs have less than 10' demonstrations and sometimes
only a single demonstration; in contrast, most of the verbs in
EgoDex have more than 10% demonstrations.

Still, the verb distribution does not capture the full diversity
of manipulation behaviors or tasks. For example, “assemble”
can involve radically different behaviors in the context of
different objects and tasks. See Figure [ for examples of
different dexterous manipulation behaviors captured in the
dataset.

While the scene diversity in EgoDex is limited to tabletop
environments, the Cartesian product of scene and behavior
is not the focus of our work, which focuses on behavioral
diversity. Scene diversity can be introduced with modern visual
data augmentation methods such as image-to-image generative

models [42], 3.

F. Access

The full dataset has been made publicly available for down-
load, but the hosting site breaks anonymity for the double-
blind reviews. Data will be provided after reviews conclude.
The dataset is licensed under CC-by-NC-ND terms.

IV. EGODEX BENCHMARKS

A. Action Representation

Given the full set of skeletal joints in the EgoDex dataset,
many action representations are possible: wrist positions, wrist
orientation, positions of fingertips, and so on. Since we focus
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Fig. 4: Left: Joints captured by EgoDex. Right: Examples of dexterous manipulation behaviors. Tracked fingertips are
highlighted in distinct colors and show 0.5 seconds of motion before the current frame. From left to right, top to bottom,
the tasks are: unzipping a ziploc bag, removing a book from a bookshelf, removing a screw from a fixture, folding a t-shirt,
decluttering, opening a case, unscrewing a bottle cap, tying shoelaces, and washing a cup.

on dexterous manipulation, we choose a representation that
both captures sufficient bimanual dexterity. Specifically, the
action ay at time ¢ is represented as the 3D position of each
wrist, the 6D orientation of each wrist (where the 6 values
are the first two columns of the rotation matrix), and the
3D position of each fingertip. Thus, each action has a total
dimensionality of 2 hands x (3 + 6 + (3 x 5 fingertips)) =
48. In practice, actions are predicted in chunks over a fixed
time horizon. All poses are represented in the camera frame.

B. Benchmarks

We propose two benchmark tasks for EgoDex. The first is
trajectory prediction: from the egocentric image observations,
skeletal joint poses, and natural language description, the task
is to predict the trajectories of the hands for a given time
horizon following the observations. Specifically, we seek to
train the following estimator:

fe (00..15» S0..t5 l) = é-t:t+H

where 0g_; are the egocentric image observations up to and
including time ¢, sq. ; are skeletal pose observations up to and
including time ¢, [ is a natural language description, &;.;4 7 iS
the predicted action chunk, and H is the prediction horizon.

Since multimodality can be very severe in natural human
motion, the second benchmark is inverse dynamics: from the
image observations and skeletal poses up to time ¢ as well
as a goal image observation at the end of the time horizon,
the task is to predict the trajectories of the hands in between
the start and end observations. In this case, we train the
following estimator, which can be interpreted as a visually
goal-conditioned policy:

f6(00..t,50..t, 0141, 1) = &gty

Each of these benchmarks are parameterized by prediction
horizon H. For example, a short-horizon trajectory prediction

task may set H = 30 (1 second), while a more difficult long-
horizon task may set H = 90 (3 seconds).

Unlike typical robot hardware experiments that can vary
across physical environments, the EgoDex benchmarks are
fully reproducible with a fixed training and test set. We set
aside 1% of the EgoDex dataset as a fixed held-out test set
for evaluations, where the remaining 99% can be split across
training and validation as desired.

C. Evaluation Metrics

Since trajectory prediction for natural human motion is
inherently multimodal, evaluating a single predicted trajectory
against the ground truth sample may be insufficient for measur-
ing correctness. For example, for the simple task of placing a
fruit in a basket, it could be placed at variable locations within
the basket, moved at variable speeds, and moved in different
but equally valid arcs from the initial position to the basket.

Thus, for each benchmark task we evaluate performance
with a “best of K metric. For each data point in the full test
set, we sample the trained model K times to capture different
possible modes. We then compute the distance between the
ground truth trajectory and the trajectory closest to it out of
the K samples, where “distance” is calculated as the Euclidean
distance between predicted 3D keypoint positions and their
ground truth 3D counterparts, averaged over each timestep
in the predicted chunk and each of the 12 keypoints (i.e.,
the wrist and fingertips of each hand). Intuitively, this value
can be interpreted as the average positional error in 3D space
between ground truth and prediction in meters. The final value
is averaged over the full test set. For deterministic models, the
value is the same regardless of K; for stochastic models, the
value improves as K increases, as the model gets more chances
to sample the ground truth mode.



Avg Distance (m) Final Distance (m)
Model K=1 K=5 K=10| K=1 K=5 K=10
Dec + BC 0.045 0.045 0.045 0.062 0.062 0.062
Dec + DDPM 0.053 0.044 0.041 0.071 0.050 0.044
Dec + FM 0.052 0.042 0.040 0.071 0.049 0.043
EncDec + BC 0.044 0.044 0.044 0.060 0.060 0.060
EncDec + DDPM 0.052 0.042 0.039 0.071 0.048 0.043
EncDec + FM 0.051 0.041 0.038 0.070 0.047 0.041

TABLE II: Evaluations for different models on trajectory prediction with a 2 second horizon.

Avg Distance (m)

Model H =30 (s) H=60(2s)

H =90 (3s) ‘ H =30 (ls)

Final Distance (m)

H =60 2s) H =90 Q(3s)

Dec + BC | 0.031 0.045

0.053 |

0.049 0.062 0.069

TABLE III: Results for models trained and evaluated with different prediction horizons. As expected, accuracy falls as the
prediction horizon increases. H = 60 values are repeated from Table [II| for convenience.
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Fig. 5: Distance metrics w.r.t. training dataset size, where size
is plotted on a log-scale. Performance improves as the dataset
gets larger.

V. EXPERIMENTS

We train and evaluate state-of-the-art imitation learning
policies from the X-IL framework [14] on the benchmarks
from Section[[V] Specifically, we train two Transformer model
architectures (encoder-decoder and decoder-only) and three
policy representations (behavior cloning, denoising diffusion,
and flow matching). We also run experiments to evaluate the
effect of prediction horizon, visual goal-conditioning, dataset
size, and model size. In total we train and evaluate 14 different
models. We train all models for 50,000 gradient steps with

Model | Avg Distance (m) | Final Distance (m)
Dec + BC 0.045 0.062
Dec + BC w/ goal image 0.035 0.029

TABLE IV: Visual goal-conditioning results. Training a model
with visual goal conditioning reduces average distance by 22%
and final distance by 53%.

a batch size of 2048 parallelized across 8 NVIDIA A100
GPUs. Additional training and model details are provided in
Appendix [C] The results are presented in Tables and
Figure [5] and summarized below.

Encoder-decoder architectures outperform decoder-only.
In Table [II] we observe that all encoder-decoder (“EncDec”)
models consistently outperform their decoder-only (“Dec”)
counterparts by a small margin.

Different policy representations excel in different set-
tings. In Table [lI] we observe that the encoder-decoder flow
matching (“FM”) model outperforms the other models for
K = 5 and K = 10 by up to 34%. As expected, denois-
ing diffusion (“DDPM”) and FM evaluations improve as K
increases, while behavior cloning (“BC”) remains the same
independent of K as it is deterministic. Note however that
for the K = 1 setting, BC outperforms both diffusion and
flow-matching by about 15%. This suggests that the average
prediction of BC is better than DDPM and FM, while the
best prediction of DDPM and FM is better than BC’s single
prediction.

Performance degrades as the prediction horizon in-
creases. In the remaining experiments we vary different prop-
erties while fixing the model to the simplest policy: decoder-
only behavior cloning. In Table we see that reducing the
horizon from 2 seconds to 1 second improves average and
final distance by 31% and 21% respectively, while increasing
the horizon from 2 to 3 seconds worsens average and final
distance by 18% and 11% respectively. Intuitively, accurate
prediction becomes more challenging as the horizon increases
as the model must predict 48-dimensional dexterous actions
farther into the future.

Visual goal-conditioning significantly improves perfor-
mance. In Table [[V] we observe that visual goal-conditioning
reduces average distance by 22% and final distance by 53%.
Intuitively, a visual goal provides a visual “anchor” to ground
the endpoint of the predicted trajectory and mitigate multi-
modality. This yields a baseline score for the inverse dynamics
benchmark specified in Section

Medium-size model capacity is sufficient for the current
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Fig. 6: Model prediction visualizations for Dec + BC on test set images with a 2 second horizon. Blue trajectories are ground
truth and red trajectories are predictions, where darker colors and closer to the current frame and lighter colors are further in
the future. The points shown are the wrist and fingertip positions projected into the camera frame.

dataset size. We train and evaluate a larger Dec+BC model
with 500 million parameters as opposed to the default 200
million parameters. The larger model attains average distance
0.045 and final distance 0.062, exactly the same as the default
200 million parameter model. This may increase accessibil-
ity for the EgoDex benchmarks, as medium-size models fit
comfortably on commodity GPU hardware.

Performance scales with dataset size. In Figure [5] we
observe that average and final distance improve as dataset size
increases. Results suggest that performance scales with data,
motivating the collection of large-scale egocentric datasets like
EgoDex.

VI. RESEARCH USE CASES

a) Robotics: Given a robot embodiment that mimics the
visual appearance, kinematics, and dynamics of human arms
and hands, a control policy mapping egocentric video to 3D
arm and hand pose deltas such as those trained in Section [V]
would be deployable zero-shot without any additional data or
fine-tuning. Such an embodiment would lie within the training
data distribution, both visually and dynamically.

While significant progress has been made in the develop-
ment of robot hardware with humanoid morphologies and
dexterous hands, there remains a prohibitive embodiment
gap between humans and today’s robots. Some options for
bridging the embodiment gap include 1) co-training with a
small-scale robot dataset, as demonstrated by [15, 30]; 2)
pretraining with large-scale human data and supervised fine-
tuning with smaller-scale robot data, similar to the training
recipe for large language models; 3) training a visual encoder
on the human data for more data-efficient imitation learning

downstream, similar to R3M [22]]; 4) learning robot manip-
ulation priors from the human-object interaction trajectories
and then fine-tuning with reinforcement learning or imitation

learning [33], [10].

b) Perception: EgoDex can be used for learning
tasks such as action recognition and human-object interac-
tion detection from egocentric videos. Datasets like EPIC-
KITCHENS [8] has demonstrated the value of egocentric
video for recognizing and anticipating daily actions, and chal-
lenges have expanded to tasks like detecting active objects and
predicting state changes from egocentric video. Researchers
can also study which objects are involved in each action and
how. For example, modeling the contact points, grasps, and
trajectories when using a tool (screwdriver, scissors, etc.). A
related task is learning object affordances, i.e., understanding
what actions each object supports.

c) Video Generation and World Models: Recent ad-
vances in large-scale diffusion models have significantly en-
hanced the capabilities of language-conditioned video genera-
tion, producing temporally coherent and semantically precise
visual narratives from natural language inputs [18] 24].
These generative frameworks have demonstrated potential
not only in creating realistic and detailed video content but
also as world models for decision-making tasks, supporting
reinforcement learning agents by simulating future outcomes
based on predicted visual dynamics [40, [3| [41] [12]]. Despite
these impressive advancements, there remains a substantial
research gap in video generation and world modeling from an
egocentric viewpoint. Egocentric perspectives present unique
challenges, including managing significant viewpoint variabil-
ity, maintaining temporal and spatial coherence amid frequent



camera movements, and accurately reflecting agent-centric in-
teractions and intentions. Since EgoDex provides annotations
for 3D poses and language, it enables the possibility of training
an egocentric foundation world model.

VII. CONCLUSION

We introduce EgoDex, a massive dataset of egocentric video
paired with 3D pose annotations in a wide range of dexterous
manipulation tasks. We train and evaluate imitation learning
policies for hand trajectory prediction on this data.

While EgoDex has significant diversity across tasks and
manipulation behaviors, it is limited in background and scene
diversity. The dexterous annotations can also be imperfect,
especially during heavy occlusion (e.g., towel folding) or very
high speed motions, as they are themselves model predictions.
Future work involves procedural background randomization on
the existing data [42]] as well as data collection in more diverse
environments.
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APPENDIX
A. Complete List of Tasks

We provide a complete list of task names here, labeled as
they appear in the dataset and separated by task type (re-
versible, reset-free, or reset, with definitions in Section .
Recall that each reversible task is actually a pair of two tasks.
There are a total of 194 tasks. See Figure [7] for a visual of a
subset of the objects used in the various manipulation tasks.

Reversible (76 x 2 total tasks):

e braid_unbraid

e charge_uncharge_airpods

e deal_gather_cards

e fry bread

e assemble_disassemble_furniture_bench_
chair

e assemble_disassemble_furniture_bench_
drawer

e assemble_disassemble_furniture_bench__
square_table

e fold unfold_paper_basic

e insert_remove_furniture_bench_ cabinet

e gather_roll_dice

e insert_remove_airpods

e insert_remove_drawer

e insert_remove_shirt_in_tube

e insert_remove_usb

e load_dispense_ice

e Open_close_insert_remove_tupperware

e pick_up_and_put_down_case_or_bag

e put_away_set_up_board_game

e screw_unscrew_fingers_fixture

e sleeve_unsleeve_cards

e stack_unstack_cups

e thread_unthread_bead_necklace

e tie_and_untie_shoelace

e insert_remove_tennis_ball

e Open_close_insert_remove_case

e pick_place_food

e put_in_take_out_glasses

e screw_unscrew_allen_fixture

e set_up_clean_up_chessboard

e slot_batteries

e stack_unstack_bowls

e stack_unstack_tupperware

e throw_collect_objects

e vertical_ pick_place

e wash_put_away_dishes

e add_remove_1lid

e arrange_topple_dominoes

e assemble_disassemble_legos

e assemble_disassemble_soft_legos

e assemble_disassemble_structures

e assemble_disassemble_tiles

e boil_ serve_egg

e build_unstack_lego
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charge_uncharge_device
clip_unclip_papers
crumple_flatten_paper

fry_egg
assemble_disassemble_furniture_
bench_desk
assemble_disassemble_furniture_
bench_lamp
assemble_disassemble_furniture_
bench_stool
fold_stack_unstack_unfold_cloths
fold_unfold_paper_origami
insert_remove_furniture_bench_
round_table
insert_remove_bagging
insert_remove_cups_from_rack
insert_remove_plug_socket
insert_remove_utensils
lock_unlock_key
open_close_insert_remove_box
scoop_dump_1ice
screw_unscrew_pottle_cap
setup_cleanup_table
stock_unstock_fridge
stack_unstack_plates
throw_and_catch_ball
tie_untie_rubberband
wrap_unwrap_food

zip_unzip_bag

zip_unzip_case

assemble_disassemble_jigsaw_ puzzle

stack_unstack_tetra_board
stack_remove_jenga
insert_dump_blocks
rake_smooth_zen_garden
play_reset_connect_four
insert_remove_bookshelf

Reset-free (28 total tasks):

color
fidget_magnetic_spinner_rings
measure_objects
staple_paper
use_rubiks_cube
wash_kitchen_dishes
wipe_screen
knead_slime
point_and_click_remote
type_keyboard
clean_surface
dry_hands

play_mancala

flip_coin

flip_pages
paint_clean_brush
play_piano

Fig. 7: Some of the objects used in the various manipulation
tasks.

e push_pop_toy

e put_toothpaste_on_toothbrush
e wash_fruit

e Wwipe_kitchen_surfaces
e stamp_paper

e blowdry_hair

e knit_scarf

¢ makeup

e Write

e Clean_cups

e roll_ball

Reset (14 total tasks):

e clean_tableware
e declutter_desk

e basic_pick_place
e stack

e make_sandwich

e peel_place_sticker
e sweep_dustpan

e Wrap

e assemble_jenga

e basic_fold

e pour

e sort_beads

e use_chopsticks

e play_reversi

B. Complete List of Skeletal Joints

The annotations consist of SE(3) poses (represented as 4
x4 homogeneous transformation matrices) for each of the
following joints, labeled by their names as they appear in the
dataset:

Upper Body:

hip, spinel, spine2, spine3, spine4,
spine5, spine6, spine7, neckl, neck2,
neck3, neck4, leftShoulder, leftArm,
leftForearm, leftHand, rightShoulder,
rightArm, rightForearm, rightHand

Left Hand:



leftIndexFingerIntermediateBase,
leftIndexFingerIntermediateTip,
leftIndexFingerKnuckle,
leftIndexFingerMetacarpal,
leftIndexFingerTip,
leftlLittleFingerIntermediateBase,
leftlLittleFingerIntermediateTip,
leftlLittleFingerKnuckle,
leftLittleFingerMetacarpal,
leftLittleFingerTip,
leftMiddleFingerIntermediateBase,
leftMiddleFingerIntermediateTip,
leftMiddleFingerKnuckle,
leftMiddleFingerMetacarpal,
leftMiddleFingerTip,
leftRingFingerIntermediateBase,
leftRingFingerIntermediateTip,
leftRingFingerKnuckle,
leftRingFingerMetacarpal,
leftRingFingerTip,
leftThumbIntermediateBase,
leftThumbIntermediateTip,
leftThumbKnuckle, leftThumbTip

Right Hand:

rightIndexFingerIntermediateBase,
rightIndexFingerIntermediateTip,
rightIndexFingerKnuckle,
rightIndexFingerMetacarpal,
rightIndexFingerTip,
rightLittleFingerIntermediateBase,
rightLittleFingerIntermediateTip,
rightLittleFingerKnuckle,
rightLittleFingerMetacarpal,
rightLittleFingerTip,
rightMiddleFingerIntermediateBase,
rightMiddleFingerIntermediateTip,
rightMiddleFingerKnuckle,
rightMiddleFingerMetacarpal,
rightMiddleFingerTip,
rightRingFingerIntermediateBase,
rightRingFingerIntermediateTip,
rightRingFingerKnuckle,
rightRingFingerMetacarpal,
rightRingFingerTip,
rightThumbIntermediateBase,
rightThumbIntermediateTip,
rightThumbKnuckle, rightThumbTip

Note that leftHand and rightHand refer to the wrists.
Note also that the joint confidence values in the data behave
differently for the wrists and the hands. Wrist confidence
values (for leftHand and rightHand) indicate whether
each hand is detected as a whole, while finger joint confidence
values indicate confidence relative to the wrist. If, for instance,
the left index fingertip has high confidence but the left wrist
has low confidence, it is unlikely that the left index fingertip
is reliable.
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Fig. 8: Model architectures.

C. Training Details

In the experiments section we train and evaluate 14 different
models: 6 combinations of architectures and policy optimiza-
tion methods, 4 additional models with different training
dataset sizes, 2 additional models with different prediction
horizons, 1 model with a larger model size, and 1 model
with visual goal-conditioning. See Figure [§] for intuition on
the model architecture.

Each model is trained and evaluated on a single node with
96 logical CPUs (48 physical CPUs) and 8 NVIDIA A100
GPUs each with 80GB RAM. Training is run for 50,000
gradient steps with a batch size of 2048 (256 per GPU with
data parallelism), at which point training and validation loss
plateau. The full training run takes approximately 72 hours.
The models are optimized with Adam and a learning rate
of le-4. Decoder-only Image observations are resized to 224
x 224 and sent through a pretrained ResNet encoder, while
language annotations are passed through a frozen CLIP [31]]
encoder. DDPM and FM models are trained and evaluated with
16 sampling steps. All other hyperparameters are the defaults
from the X-IL codebase [14].
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