
HYC-LORA: MEMORY EFFICIENT LORA FINE-TUNING WITH HYBRID
ACTIVATION COMPRESSION

Yujin Wang 1 Shunan Dong 1 Zongle Huang 1 Yichen You 1 Liu He 1 Huazhong Yang 1 Yongpan Liu 1

Hongyang Jia 1

ABSTRACT
Large Language Models (LLMs) are widely used in applications like conversation and text summarization. With
the demand for model customization and privacy, lightweight fine-tuning methods for large models have begun to
receive widespread attention. Low-Rank Adaption (LoRA) is one of the most widely used fine-tuning algorithms,
which significantly reduces the tunable weights and associated optimizer memory when transferring pre-trained
LLMs to downstream tasks. However, past works lacked attention to the overhead of buffered activations in
low-rank adaption, leading to suboptimal system memory usage.

To reduce buffered activation memory consumption and further enable the on-device memory-efficient fine-tuning
system, we propose HyC-LoRA, a variant of the LoRA training method using a hybrid compression framework
enabling almost 2-bit buffered activation quantization in all operators. HyC-LoRA observes that the temporarily
buffered activation for backpropagation dominates the memory consumption in the LoRA fine-tuning process, and
those in non-linear modules act as dominant memory consumers, whose quantization is more challenging. Based on
this, HyC-LoRA proposes a hybrid compression mechanism with two tiers: (1) Intra-operator hybrid compression:
HyC-LoRA detects extreme outliers in buffered activation and mitigates the quantization error by structured outlier
storage; (2) Inter-operator hybrid compression: HyC-LoRA utilizes the LoRA adapter to achieve compensation
for quantization errors and selective recomputation, through inter-operator reordering and fusion. Finally, HyC-
LoRA implements a buffered activation compression system and integrates it with the existing machine learning
framework to complete the last mile of lightweight storage for fine-tuning algorithms. Evaluations with multiple
LLMs such as Llama series, in widely-used downstream tasks show the proposed HyC-LoRA framework achieves
up to 3.97× end-to-end memory reduction compared to baseline, with negligible accuracy degradation. The code
is available at https://github.com/thu-ee-acts-lab/HyC-LoRA-release.

1 INTRODUCTION
Large Language Models (LLMs) (Devlin et al., 2018; Liu
et al., 2019; Touvron et al., 2023; Jiang et al., 2023) have
achieved excellent performance in tasks such as text gen-
eration, article understanding, and more importantly, have
shown excellent generalization capabilities. Supervised fine-
tuning on pre-trained LLMs with task-specific data enhances
downstream performance and customization (Wang et al.,
2018; Cobbe et al., 2021). However, the training process
introduces more unique memory components like optimizer
state and buffered activation than the inference stage, and
the high memory requirement increases the difficulty of its
deployment on memory-constrained environments.

1Department of Electronic Engineering, Beijing National Re-
search Center for Information Science and Technology, Tsinghua
University, Beijing 100084, China. Correspondence to: Hongyang
Jia <hjia@tsinghua.edu.cn>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

To reduce the hardware burden of large models, data com-
pression methods such as quantization (Frantar et al., 2022;
Xiao et al., 2023; Dettmers et al., 2022; Wei et al., 2022;
Lin et al., 2023) and pruning (Sun et al., 2023; Frantar &
Alistarh, 2023; Xia et al., 2023) are widely used for model
deployment. Quantization compresses data by equally re-
ducing the bit widths in a tensor, while pruning selectively
retains the critical components. At the same time, a series
of parameter-efficient fine-tuning (PEFT) methods (Ding
et al., 2022) have been proposed to allow large models to ef-
ficiently gain the ability to handle downstream tasks without
destroying their original generalization. LoRA (Hu et al.,
2021) is one of the most preferred solutions for fine-tuning
large models. Based on the assumption that the incremen-
tal update structure of weights is low-ranked after down-
stream fine-tuning, it freezes the backbone weight during
fine-tuning and updates only a pair of low-rank matrices at
the bypass, reducing the computation of backbone weight
gradient and the storage of corresponding optimizer states.
QLoRA (Dettmers et al., 2024) uses a combination of the

https://github.com/thu-ee-acts-lab/HyC-LoRA-release

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

+Low Optimizer Memory
+Low Weight Memory
+Low Activation Memory

HyC-LoRA

+Low Optimizer Memory
Full Fine-tuning LoRA

+Low Optimizer Memory
+Low Weight Memory

QLoRA

weight adapter
optimizer buffered activation

compress

forward

backward

compress

Figure 1. The memory requirements of different components
(weight, optimizer, buffered activation) in different fine-tuning
methods (Hu et al., 2021; Dettmers et al., 2024). HyC-LoRA
achieves lightweight memory usage for all three components.

two methods proposed above to quantize the model back-
bone to 4-bit, further reducing the memory burden of the
fine-tuning system.

However, the buffered activations that must be stored for
backpropagation during the training phase remain a press-
ing problem. Some previous works have made attempts to
compress buffered activation in small networks (Chen et al.,
2021; Liu et al., 2022; Yu et al., 2024) or optimize for a par-
ticular operator (Dao et al., 2022; Zhang et al., 2023; Yang
et al., 2024). Still, there is a lack of work that systematically
explores how to achieve high-ratio buffered activation com-
pression in the LoRA paradigm for large models to facilitate
extreme compression at training time.

To address the above difficulties, we propose HyC-LoRA,
a hybrid buffered activation compression framework for
LoRA training (Figure 1). First, HyC-LoRA performs a
detailed modeling of the buffered activation occupancy dur-
ing LoRA fine-tuning. The modeling results show that the
buffered activation occupancy in the LoRA training sys-
tem does not decrease with the reduction of the tunable
parameters, an important reason being that to maintain the
integrity of the computational graphs, buffered activation
in non-linear operators that are not directly related to up-
datable parameters still need to be stored, and some pre-
experiments show that they are dominant in memory and
more sensitive to compression. Then, HyC-LoRA addresses
the above problems and proposes the following two strate-
gies in different scales to enhance the compression effect of

buffered activation: 1) Intra-operator hybrid compression:
By analyzing the data distribution of buffered activations
in non-linear operators, we detect extreme outliers that are
detrimental to quantization in some circumstances. These
values tend to be distributed in fixed channels, so we pro-
pose a simple but effective structured outlier extraction to
implement separate storage of quantized normal values and
outliers with minimal overhead. 2) Inter-operator hybrid
compression: We observe that the non-linear operator’s
buffered activation is directly connected to the output of
LoRA modules, so we multiplex the LoRA adapter to real-
ize a hybrid data stream in the backpropagation phase and
recompute the relevant modules at almost negligible cost,
which not only reduces the loss of LoRA information due to
compression but also reduces the storage of some buffered
activations. Finally, we implement a buffered activation
management system by integrating per-channel quantiza-
tion with the aforementioned strategies, which achieves a
minimum of 2-bit buffered activation compression in LoRA
fine-tuning.

To demonstrate the effectiveness of our HyC-LoRA method,
we conducted various experiments on different models (e.g.,
Llama (Touvron et al., 2023), Mistral (Jiang et al., 2023)),
tasks (e.g., arithmetic reasoning (Cobbe et al., 2021), long
sequence understanding (Azerbayev et al., 2024)), and
scales (from 110M to 13B). To give a fair indication of
the validity of our method, we compared it with other
lightweight fine-tuning strategies to demonstrate its supe-
riority. We also tested its memory gain and overhead on
real hardware to prove its potential to enable lightweight
fine-tuning. Experiment results show that HyC-LoRA can
reduce buffered activation by up to about 8× and end-to-end
memory by 1.57× to 3.97×, with minimal accuracy degrada-
tion and computation overhead.

In summary, our contributions can be listed as follows:
1. We conduct a comprehensive analysis of buffered acti-

vation source, breakdown, and distribution in the LoRA
training system, pointing out that the buffered activa-
tions of non-linear operators are the bottleneck regard-
ing memory usage and compression difficulty.

2. We propose HyC-LoRA, a lightweight LoRA variant
that combines Intra-operator and Inter-operator hybrid
compression with per-channel quantization to achieve
a high buffered activation compression ratio.

3. We build a low-memory training system, which inte-
grates HyC-LoRA with the existing machine learning
framework and achieves a minimum of 2-bit buffered
activation compression.

4. We evaluate HyC-LoRA at the algorithmic and system
levels, showing that HyC-LoRA can reduce buffered
activation by up to 8× and end-to-end memory by 1.57×
to 3.97× with slight accuracy loss and better than other
existing methods.

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

2 BACKGROUND

2.1 Quantization
Quantization (Nagel et al., 2021) is one of the most common
data compression techniques for neural networks. Quantiza-
tion can convert high bit-width floating point data X to q-bit
integer numbers X̃ . To realize the above transformation, we
need to perform statistics on the data, based on which we
calculate the scaling factor s and zero point1 z:

s =
max(X)−min(X)

2q − 1
, z = −⌊min(X)

s
⌉ − 2q−1. (1)

Then the quantized value can be calculated as follows:

X̃ = clamp(⌊X
s

+ z⌉,−2q−1, 2q−1 − 1). (2)

Notice that: (1) Neural network outputs typically exhibit
consistent distributions across different inputs. Therefore,
quantization parameters like scaling factors can be precom-
puted with a small calibration dataset and reused, eliminat-
ing the need for per-input computation. (2) The presence
of outliers affects the calculation of statistics, making it
challenging to find suitable scaling factors of the data and
causing significant errors in subsequent quantization.

2.2 Fine-tuning Dataflow & Low Rank Adaption
Fine-tuning is a common approach to enhance the effec-
tiveness of a pre-trained model’s performance in specific
domains, involving the computation of backpropagation
and the updating of parameters, as exemplified by the full
parameter fine-tuning of a linear layer:

forward : Y = XW,

backward :
∂L
∂W

= XT ∂L
∂Y

,
∂L
∂X

=
∂L
∂Y

WT ,

update : W← Adam(W,A),

(3)

where W is the weight parameter, X and Y are input/output
activation, A represents corresponding optimizer state used
for updating W (take Adam (Diederik, 2014) optimizer as
example). Compared to inference, fine-tuning: (1) Input
activations X should not be discarded immediately after
forward propagation but should be buffered until the cor-
responding gradient has been computed after backpropa-
gation. (2) Optimizer state A needs to store the gradient’s
first-order moments and second-order moments to achieve
stable updates to the weights. These two components create
an additional memory burden for fine-tuning.

A series of parameter-efficient fine-tuning (PEFT) methods
have been proposed to mitigate the memory overhead of fine-
tuning. Low-Rank Adaption (LoRA) (Hu et al., 2021) is
the most widely used PEFT method for Transformer-based
language models (Ding et al., 2022). Observing that a pair
of low-rank matrices can approximate the change in weights

1for asymmetric quantization only

after fine-tuning, LoRA adds a new tunable pair of adapter
matrices bypassing the main weight:

Y = XW︸ ︷︷ ︸
main weight

+XAB︸ ︷︷ ︸
adapter

, (4)

where W ∈ Rd1×d2 is the main weight with hidden dimen-
sion d1 and d2, and A ∈ Rd1×r,B ∈ Rr×d2 are low rank
adapters with LoRA rank size r. During LoRA fine-tuning,
the main weight W is frozen, and only A and B matrices
are updateable. The method can significantly reduce the
optimizer-state parameters during training and checkpoint
size after training since r << d.

3 OBSERVATIONS OF LORA FINE-TUNING
SYSTEM

In this section, we first analyze the memory components of
the LoRA fine-tuning process and point out that buffered
activation is a critical bottleneck in the training system. We
also note that buffered activation of non-linear operators
has a higher proportion, and direct compression degrades
training accuracy, which poses a challenge to implementing
memory-efficient training systems.

Figure 2(a) shows the breakdown of each component in
QLoRA fine-tuning (Dettmers et al., 2024) under different
training configurations, and it is evident that buffered activa-
tion becomes predominant and exhibits a rapid increase as
sequence length and batch size grow. To explore the source
of buffered activation clearly, we analyzed the backpropaga-
tion dataflow and enumerated all the buffered activations in
Figure 3 Left. Depending on their computational properties,
we classify the buffered activations into two categories:

(1) Buffered activation for linear modules (linear buffered
activation). The backpropagation dataflow of LoRA
adapters can be formulated as follows:

Y = X(W +AB)⇒
∂L
∂A

= XT ∂L
∂Y

BT ,
∂L
∂B

= (XA)
T ∂L
∂Y

,

∂L
∂X

=
∂L
∂Y

(WT +BTAT).

(5)

The buffered activation X and (XA) are only relevant for
the current layer’s parameter update and are not involved in
the computation of the previous layer’s gradient.

(2) Buffered activation for non-linear modules (non-linear
buffered activation). The non-linear operators f in-
volved in the Transformer layer include RMSNorm (Zhang
& Sennrich, 2019), Attention (Vaswani et al., 2017),
SiLU (Elfwing et al., 2017), etc., and their backpropagation
dataflow can be represented as:

Y = f(X)⇒ ∂L
∂X

=
∂L
∂Y
⊙ f ′(X). (6)

Even though no updatable parameters exist or are frozen,
the computation of the previous layer’s gradients still relies
on the buffered activation and cannot be dropped.

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

(1, 512) (4, 512) (1, 8192)
(Batch Size, Sequence Length)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

Co
ns

um
pt

io
n

Ra
ti

o

1.20%

53.70%

45.10%

0.50%

22.90%

76.60%

0.10%
6.60%

93.30%

optimizer weight activation

(a)

30.3%

10.7%
14.3%

16.0%

28.7%

Linear
RMSNorm
SiLU

Attention
Hadamard

(b)

Method

q,v only
all

acc.

O

ga
te

up

Q
V

K

do
w

n

Update all LoRA adapters Update Q,V LoRA adapters

High activation memory Less tunable layers
Still high activation memory

O

ga
te

up

Q
V

K

do
w

n

adapter activation

0.52 MB
2.50 MB 78.6 MB

59.0 MB
38.82
34.19

(c)

𝑓𝑓

A B

Quantize L. Activation

quant

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

=
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

(𝑾𝑾𝑻𝑻 + 𝑩𝑩𝑻𝑻𝑨𝑨𝑻𝑻)

W f

No error propagation

𝑓𝑓

Quantize NL. Activation

quant

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

=
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

⊙ 𝒇𝒇′ 𝝏𝝏 + 𝜟𝜟𝝏𝝏

A B

W f

Error propagation

Method

Quant all NL.
Quant all L.

acc.
37.83(0.99↓)
28.20(10.62↓)

(d)
Figure 2. (a) Theoretical (same below) memory breakdown of weight, optimizer and buffered activation of Llama-2-7B in QLoRA
training; (b) Percentage of buffered activations from different operators in Llama-2-7B; (c) Memory of LoRA adapter and buffered
activation in one Llama-2-7B layer, with different fine-tuning strategies; (d) The accuracy degradation caused by compressing non-linear
buffered activation is more pronounced than compressing linear buffered activation.

The presence of buffered activation poses the following
challenges for the design of lightweight algorithms:

(1) Non-linear buffered activation is hard to eliminate. As
shown in Figure 2(b), the percentage of non-linear buffered
activation in Llama-2-7B reaches 69.7%. Figure 2(c) shows
a common approach (Hu et al., 2021) to reduce the tunable
parameters in LoRA, i.e., only performing LoRA fine-tuning
to the Q, V weight matrix, which reduces the tunable pa-
rameters by 79.2%. However, since non-linear buffered
activation must be preserved to maintain the computational
graph’s integrity, the total buffered activation’s reduction is
only 24.9%. Qualitatively speaking, in the LoRA algorithm,
buffered activation memory size is not entirely correlated
with the size of the tunable parameters, the nature of the
computational graph must also be considered.

(2) Non-linear buffered activation is hard to compress. The
above two kinds of buffered activations have different com-
putational properties in backpropagation. As shown in Fig-
ure 2(d), the compression error of linear buffered activation
does not propagate to the preceding module, whereas non-
linear buffered activation passes to the preceding module
and accumulates. The experiment confirms this assumption:
if we quantize all the linear buffered activations to 2-bit,
the drop of accuracy is negligible (38.82% → 37.83%),
while quantizing the non-linear buffered activations causes
a significant drop (38.82%→ 28.20%).

In summary, the compression of buffered activations is a
crucial factor driving further light-weighting of LoRA fine-
tuning, and handling non-linear buffered activations is sig-
nificant. In the following sections, we will show how HyC-
LoRA enables more memory-efficient fine-tuning while
ensuring the accuracy of fine-tuning results.

4 HYC-LORA
In contrast to conventional compression methods that rely
on a single technique, our proposed method, HyC-LoRA,
effectively reconstructs buffered activations using hybrid

compression. We not only incorporate the distributional
characteristics and computational data flow of buffered acti-
vations to reduce the compression error but also implement
the relevant operators efficiently to minimize the additional
overhead.

4.1 Compress Flow Design

Previous works (Xiao et al., 2023; Lin et al., 2023) show
that the activations exhibit per-channel distribution, and
per-tensor quantization causes significant performance drop-
ping. To achieve a balance between compression ratio and
error, we use per-channel quantization for most buffered
activations (marked in black of Figure 3 Right).

Specifically, as shown in Figure 3 Middle, exploiting that
model activation features do not change much during LoRA
fine-tuning, the whole process can be divided into calibra-
tion stage and training stage to reduce statistical overhead.
During the calibration stage, we obtain buffered activations
using several calibration data samples and compute the scal-
ing factor s per channel. These scaling factors reflect the
distributional characteristics of the activation stably, thus
eliminating the need for recalculations in the training stage.
The number of calibration samples is typically small, so the
additional compute overhead introduced is almost negligible.
During the training stage, we directly use the per-channel
scaling factor s to quantize the buffered activations and get
the low bit representation for save in forward propagation
(❶, ❷); then, they are dequantized and participate in subse-
quent backward (❸, ❹).

There are two kinds of exceptional cases: (1) For the atten-
tion map in naive attention (marked in red, not reserved in
FlashAttention (Dao, 2023) implementation), we adopt the
pruning method in (Jiang et al., 2022) because it naturally
has high sparsity, and its sparse pattern is not fixed. (2) For
the small activation chunks (marked in grey), we still leave
them at full precision because their share of total memory
is negligible, and it is also necessary for retaining little but

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐵𝐵 𝐵𝐵 𝐵𝐵

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐵𝐵

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑔𝑔𝑅𝑅𝐴𝐴𝐴𝐴
𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝.

𝑅𝑅𝑝𝑝
𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝.𝐵𝐵 𝐵𝐵

𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅
𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝. 𝐵𝐵

𝐴𝐴

𝐴𝐴 𝐴𝐴 𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑆𝑆𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑆𝑆𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑿𝑿𝒊𝒊𝒊𝒊

𝑿𝑿𝒊𝒊𝒏𝒏

𝑸𝑸 𝑲𝑲 𝑽𝑽

𝑶𝑶

𝑿𝑿𝒎𝒎𝒊𝒊𝒎𝒎

𝑿𝑿𝒊𝒊𝒏𝒏

𝑿𝑿𝑮𝑮

𝑿𝑿𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺 𝑿𝑿𝑺𝑺

𝑿𝑿𝑫𝑫

Buffered Activation
Operator

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑸𝑸) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑲𝑲) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑽𝑽)

(𝑿𝑿𝑶𝑶𝑨𝑨𝑶𝑶)

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑮𝑮) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑺𝑺)

(𝑿𝑿𝑫𝑫𝑨𝑨𝑫𝑫)

Inter-
operator
hybrid

compression

Intra-
operator
hybrid

compression

𝑨𝑨

𝐴𝐴 𝐴𝐴

𝐴𝐴

W
A

B

f
quant

W
A

B

f

W
A

B

f
dequant

W
A

B

f

W
A

f

B

𝒀𝒀𝑾𝑾

(𝑿𝑿𝑨𝑨)

�𝒀𝒀𝑾𝑾

(𝑿𝑿𝑨𝑨) (𝑿𝑿𝑨𝑨) (𝑿𝑿𝑨𝑨)

�𝒀𝒀𝑾𝑾 + 𝒀𝒀𝑨𝑨𝑨𝑨 �𝒀𝒀𝑾𝑾 + 𝒀𝒀𝑨𝑨𝑨𝑨

Inter-operator Hybrid Compression

forward
stage:

backward
stage:

① ②

③ ④ ⑤

forward
backward

𝑞𝑞 𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝. 𝑘𝑘 𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝. 𝑣𝑣 𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝.

Compress Flow Design

forward
backward

W
A

B

quant

dequant

① ②

③

④

𝒔𝒔

𝑿𝑿

per-channel quantization
Operators

Buffered
Activation

Memory
Usage

𝑿𝑿𝒊𝒊𝒏𝒏 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿𝒊𝒊𝒊𝒊)
𝑿𝑿𝒊𝒊𝒊𝒊
𝝈𝝈𝒊𝒊𝒊𝒊𝒏𝒏

𝒃𝒃, 𝒔𝒔,𝒎𝒎
𝒃𝒃, 𝒔𝒔

𝑸𝑸 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑸𝑸 + 𝑨𝑨𝑸𝑸𝑨𝑨𝑸𝑸)
𝑲𝑲 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑲𝑲 + 𝑨𝑨𝑲𝑲𝑨𝑨𝑲𝑲)
𝑽𝑽 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑽𝑽 + 𝑨𝑨𝑽𝑽𝑨𝑨𝑽𝑽)

𝑿𝑿𝒊𝒊𝒏𝒏

𝒔𝒔𝒊𝒊𝒊𝒊

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑸𝑸), (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑲𝑲)
(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑉𝑉)

(𝒃𝒃, 𝒔𝒔,𝒎𝒎)

𝟑𝟑 × 𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑸𝑸 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑸𝑸, 𝒄𝒄𝒄𝒄𝒔𝒔, 𝒔𝒔𝒊𝒊𝒊𝒊)
𝑲𝑲 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑲𝑲, 𝒄𝒄𝒄𝒄𝒔𝒔, 𝒔𝒔𝒊𝒊𝒊𝒊)

𝒄𝒄𝒄𝒄𝒔𝒔
𝒏𝒏 × 𝒔𝒔,𝒎𝒎/𝒉𝒉

𝑺𝑺 = 𝑸𝑸𝑲𝑲𝑻𝑻,𝑨𝑨 = 𝑅𝑅𝑅𝑅𝑆𝑆𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆(𝑺𝑺)
𝑶𝑶 = 𝑨𝑨𝑽𝑽

𝑸𝑸,𝑲𝑲,𝑽𝑽
𝑨𝑨

𝟑𝟑 × (𝒃𝒃, 𝒔𝒔,𝒎𝒎)
(𝒃𝒃,𝒉𝒉, 𝒔𝒔, 𝒔𝒔)

𝑶𝑶 = 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅(𝑸𝑸,𝑲𝑲,𝑽𝑽) 𝑸𝑸,𝑲𝑲,𝑽𝑽 𝟑𝟑 × (𝒃𝒃, 𝒔𝒔,𝒎𝒎)

𝑿𝑿𝒎𝒎𝒊𝒊𝒎𝒎 = 𝑶𝑶(𝑾𝑾𝑶𝑶 + 𝑨𝑨𝑶𝑶𝑨𝑨𝑶𝑶)
𝑶𝑶

(𝑶𝑶𝑨𝑨𝑶𝑶)
(𝒃𝒃, 𝒔𝒔,𝒎𝒎)
𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑿𝑿𝒊𝒊𝒏𝒏 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿𝒎𝒎𝒊𝒊𝒎𝒎) 𝑿𝑿𝒎𝒎𝒊𝒊𝒎𝒎
𝝈𝝈𝒎𝒎𝒊𝒊𝒎𝒎𝒏𝒏

(𝒃𝒃, 𝒔𝒔,𝒎𝒎)
𝒃𝒃, 𝒔𝒔

𝑿𝑿𝐺𝐺 = 𝑿𝑿𝑛𝑛𝒏𝒏(𝑾𝑾𝑮𝑮 + 𝑨𝑨𝑮𝑮𝑨𝑨𝑮𝑮) 𝑿𝑿𝒊𝒊𝒏𝒏 (𝒃𝒃, 𝒔𝒔,𝒎𝒎)
𝒏𝒏 × 𝒃𝒃, 𝒔𝒔, 𝒓𝒓𝑿𝑿𝑺𝑺 = 𝑿𝑿𝑛𝑛𝒏𝒏(𝑾𝑾𝑺𝑺 + 𝑨𝑨𝑺𝑺𝑨𝑨𝑺𝑺) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑮𝑮), (𝑿𝑿𝒊𝒊𝑨𝑨𝑺𝑺)

𝑿𝑿𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺 = 𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆(𝑿𝑿𝑮𝑮) 𝑿𝑿𝑮𝑮 (𝒃𝒃, 𝒔𝒔,𝒎𝒎𝒇𝒇)

𝑿𝑿𝑫𝑫 = 𝑿𝑿𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺 ⊙ 𝑿𝑿𝑈𝑈
𝑿𝑿𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺
𝑿𝑿𝑺𝑺

(𝒃𝒃, 𝒔𝒔,𝒎𝒎𝒇𝒇)
(𝒃𝒃, 𝒔𝒔,𝒎𝒎𝒇𝒇)

𝑿𝑿𝒄𝒄𝒐𝒐𝒐𝒐 = 𝑿𝑿𝑫𝑫(𝑾𝑾𝑫𝑫 + 𝑨𝑨𝑫𝑫𝑨𝑨𝑫𝑫)
𝑿𝑿𝑫𝑫

(𝑿𝑿𝑫𝑫𝑨𝑨𝑫𝑫)
(𝒃𝒃, 𝒔𝒔,𝒎𝒎𝒇𝒇)
𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑬𝑬𝒔𝒔𝒐𝒐𝒊𝒊𝒎𝒎𝑬𝑬𝒐𝒐𝑬𝑬𝒎𝒎 𝑻𝑻𝒄𝒄𝒐𝒐𝑬𝑬𝑻𝑻 𝑺𝑺𝒊𝒊𝑺𝑺𝑬𝑬(𝒃𝒃𝒊𝒊𝒐𝒐)
+𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑅𝑅𝑅𝑅𝐴𝐴𝐻𝑅𝑅𝑅𝑅𝑑𝑑 𝑞𝑞𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴

+𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑅𝑅𝑅𝑅𝐴𝐴𝐻𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅 + 𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅

(𝟖𝟖𝒎𝒎 + 𝟒𝟒𝒎𝒎𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃
(𝟖𝟖𝒎𝒎 + 𝟒𝟒𝒎𝒎𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃𝒒𝒒
(𝟖𝟖𝒎𝒎 + 𝒏𝒏𝒎𝒎𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃𝒒𝒒

w/o FlashAttn

w FlashAttn𝑅𝑅 𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝.

𝑸𝑸(𝒀𝒀𝑾𝑾) 𝑸𝑸(𝒀𝒀𝑾𝑾)

𝑸𝑸(𝒀𝒀𝑾𝑾)

small chunk:
full precision

big chunk:
low precision

channel dim

token
dim

Intra-operator Hybrid Compression

RMSNorm

forward
backward

calibration
stage:

training
stage:

channel-wise norm
sensitive channels

(top p%)

𝑿𝑿

�𝑿𝑿

𝑿𝑿𝒒𝒒𝐴𝐴𝑅𝑅𝑆𝑆𝑿𝑿𝒄𝒄𝒐𝒐𝒐𝒐𝑻𝑻𝒊𝒊𝑬𝑬𝒓𝒓

①
②

④extract

dequantinsert

3 1 2

quant

(forward)

(backward)

③

⑤

Figure 3. Left: Overview compute flow of LoRA training (Llama-2-7B Transformer block). The figure also specifies the location of
buffered activation and indicates the scopes of the two hybrid mechanisms. We also show RoBERTa block in Appendix (Figure 10 Left).
Middle: Dataflow of overall compress flow design, intra-operator, and inter-operator hybrid compression. Right: Modeling of buffered
activations during training (take Llama-2-7B as example). We enumerate shape (marked in "()") in related operators. Operators that
do not need buffered activations, like residual connection and reshaping, are not listed for simplicity. Some small chunks of buffered
activation have a negligible share of memory, so we do not compress them and they are marked grey in the table. d: hidden dimension; df :
FFN’s hidden dimension; s: training sequence length; h: head dimension; w: original bit-width of buffered activation; wq: quantization
bit-width.

important activation information.

4.2 Intra-operator Hybrid Compression

Prior studies on LLM inference (Xiao et al., 2023; Lin et al.,
2023; Zhao et al., 2024b) have pointed out that the presence
of outliers is a significant challenge to maintaining quan-
tization accuracy. However, these works focus on solving
the compression problems of linear operators, and there is a
lack of exploration of the relevant properties of non-linear
operators. We analyze the distribution of non-linear buffered
activations as shown in Figure 4. We capture extreme out-
liers in the RMSNorm’s buffered activation, which are only
distributed in very few channels (<1%). In Q buffer and
K buffer of Attention, activation appears to have a regular
pattern of outliers, mainly related to the positional coding
module introduced by the RoPE (Su et al., 2024) module.
In other modules like SiLU, we do not observe a tangible
pattern of outliers.

Although outlier extraction can significantly mitigate the
quantization error, it may involve complex sorting operators
and irregular memory accesses. Luckily, for the RMSNorm
operator, the outliers only appear in specific channels. To
mitigate the overhead of the associated operations, we pro-
pose a two-stage approach called Structured Outlier Ex-

traction to deal with outliers, as shown in Figure 3 Middle.
In the calibration stage, we calculate the buffered activa-
tion’s per-channel norm n ∈ R1×d (❶), then select max
pn% as the sensitive channels and mark their index (❷). In
the training stage, we retrieve and propose these fixed chan-
nels, set them to full precision as Xoutlier ∈ Rs×(d×pn%)

(❸) and quantize the remainder as Xq ∈ Rs×d (❹) in the
forward process, then during backward process, the buffered
activations X̃ ∈ Rs×d are merged from the two parts (❺).
The full computing process is shown in Algorithm 1.

In the training process, our approach significantly reduces
computational overhead by selectively accessing and mod-
ifying only a minimal number of columns, rather than ex-
haustively searching for outliers across the entire buffered
activation, thereby ensuring negligible additional compu-
tational burden. Moreover, the percentage of quantization-
sensitive channels is very low, e.g., the average quantization
bit is only 16× 0.005 + 2 = 2.08 bits under the condition
of selecting 0.5% channels, which can be considered as no
change in compression ratio.

Additionally, for the Q,K buffer in Attention module, to
avoid the corruption of the data distribution, we do not
quantize the post-RoPE value directly; instead, we quantize
the pre-RoPE value during forward propagation, then de-

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

0 1000 2000 3000 4000
Channel Idx

4

3

2

1

0

1
M

ea
n

Va
lu

e

(a) RMSNorm (Xin)

0 1000 2000 3000 4000
Channel Idx

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

M
ea

n
Va

lu
e

(b) Attention-Q (Q)

0 2500 5000 7500 100001250015000
Channel Idx

3

2

1

0

1

2

M
ea

n
Va

lu
e

(c) SiLU (XG)

0 2500 5000 7500 100001250015000
Channel Idx

0.0

0.5

1.0

1.5

2.0

M
ea

n
Va

lu
e

(d) Hadamard (XSiLU)
Figure 4. Mean values per channel of different non-linear buffered activations from Mistral-7B. We detected the presence of extreme
outliers in the buffered activation of the RMSNorm module. We also detected particular distribution patterns in the buffered activation of
attention due to the RoPE operation.

Algorithm 1 Structured Outlier Extraction

Require: input activation X ∈ Rs×d, input gradient ∂L
∂Y ,

RMSNorm/LayerNorm operator XNorm
1: calibration stage:
2: compute per-channel norm: n = ||X:,j ||dj=1

3: select outlier index: id = argmax(n, d× pn%)
4: compute scaling factor: s = scale(X[0,d]\id)
5: training stage (forward):
6: forward: Y = XNorm(X)
7: select outlier part: Xoutlier = X:,j;j∈id

8: compress rest part: Xq = Quant(X−Xoutlier)
9: save: Xq,Xoutlier

10: training stage (backward):
11: load: Xq,Xoutlier

12: decompress: X̃ = Dequant(Xq) +Xoutlier

13: backward: ∂L
∂X = XNorm′(∂L

∂Y , X̃)

quantize it and apply RoPE during backward for follow-up
calculation.
4.3 Inter-operator Hybrid Compression
Although no apparent outlier features are captured in other
non-linear buffered activations, we can still analyze the
sources of their quantization errors at the inter-operator
compute flow level. We observe that the buffered activation
of non-linear operators Y is directly connected to the output
of the linear layer, which information is derived from two
parts: the output YW from the linear backbone, containing
the embedded knowledge of original model, and the output
YAB from the LoRA adapters, containing the knowledge
learned during the fine-tuning process. The buffered activa-
tions of non-linear operators are essentially the aggregate
of these two components, and the direct quantization would
result in the activation information, especially the newly
learned representation in the LoRA adapter, being corrupted
by the compression process.

As shown in Figure 3 Middle, in the LoRA adapter module,
we buffer the output of LoRA-A adapter (XA) ∈ Rs×r to
calculate the gradient of LoRA-B. The LoRA-A adapter per-
forms a low-rank projection of activation (r << d/df),
so the size of (XA) is much smaller than the output

Algorithm 2 LoRA Reorder Computing

Require: backbone weight W ∈ Rd1×d2 , LoRA adapter
weight A ∈ Rd1×r, B ∈ Rr×d2 , input activation
X ∈ Rs×d1 , non-linear operator f , non-linear operator
gradient ∂L

∂O ∈ Rs×d2

1: forward stage:
2: forward: YW = XW,YAB = (XA)B
3: quantize: YW,q ← Quant(YW)
4: save: YW,q, (XA)
5: merge: Y = YW +YAB

6: backward stage:
7: load: YW,q, (XA)

8: dequantize: ỸW ← Dequant(YW,q)

9: recompute: YAB = (XA)B, Ỹ = ỸW +YAB

10: backward: ∂L
∂Y = ∂L

∂O ⊙ f ′(Ỹ)

Y ∈ Rs×d, with negligible memory footprint in the sys-
tem even if saving it in full precision. This heterogeneous
accuracy setting provides an opportunity for non-destructive
reconstruction of the LoRA adapter’s output information.

Inspired by this, we propose LoRA Reorder Computing,
which performs a hybrid rearrangement of the operator’s log-
ical order in the forward and backward-propagation phases.
During the forward stage, only buffered activations from the
main part YW is quantized to YW,Q (❶), while the buffered
activation’s information of the LoRA adapter is retained in
(XA) (❷). During the backward stage, the complete LoRA
representation YAB will be obtained by multiplying (XA)
by B and adding it to the dequantized value of the main
output ỸW as Ỹ (❸, ❹), then the reconstructed value is
used for non-linear operator’s backpropagation (❺). This
method reuses the adapter structure and buffered activation
in LoRA, so no additional memory is required. The compu-
tation flops of its extra operation (XA)B + ỸW is much
smaller than that of full forward and backward propagation
so the additional computation overhead is negligible. The
full computing process is shown in Algorithm 2.

As shown in Figure 5, to take full advantage of inter-operator

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

W

SiLU

W

SiLU

forward stage: backward stage:

A

B

A

B

Kernel Fusion

𝑿𝑿𝒏𝒏𝒏𝒏 𝑿𝑿𝒏𝒏𝒏𝒏

𝑿𝑿𝒏𝒏𝒏𝒏𝑨𝑨𝑮𝑮

𝑿𝑿𝒏𝒏𝒏𝒏𝑾𝑾𝑮𝑮 𝑿𝑿𝒏𝒏𝒏𝒏𝑾𝑾𝑮𝑮 + 𝑿𝑿𝒏𝒏𝒏𝒏𝑨𝑨𝑮𝑮𝑩𝑩𝑮𝑮

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑿𝑿𝒏𝒏𝒏𝒏𝑨𝑨𝑮𝑮

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Kernel Fusion

compress decompress

𝑿𝑿𝑺𝑺
𝑿𝑿𝑫𝑫

hada
mard

𝑿𝑿𝑫𝑫

𝑿𝑿𝑺𝑺hada
mard

(a)

.....

...
inner loop 1 inner loop 2

(XA):
b×s×r

B: r×d

(XW):
b×s×d

q(XW):
b×s×(wqd/8)

O: b×s×d

Copy block
to SRAM

Compute
Block on

SRAM

Output
to HBM

...

(b)
Figure 5. (a) Scope of operator fusion for inter-operator hybrid compression in Llama-2, The XSiLU and XD activation are dropped after
forward propagation, and are recomputed with the fused LoRA compensation module, reducing the buffered activation storage. The case
for RoBERTa is shown in Appendix (Figure 11). (b) Schematic of the operator fusion mechanism (take forward propagation as example),
which significantly reduces data transfer.

optimization, we write kernels to fuse LoRA reorder comput-
ing with compression/decompression process and element-
wise operations (e.g., SiLU and Hadamard product), which
can be used as epilogue operations at almost zero cost. Al-
though the idea of kernel fusion is covered in previous
works (Daniel Han & team, 2023; Ansel et al., 2024; Hong
et al., 2024), in our memory efficient fine-tuning scenario,
there are at least two unique benefits: (1) The element-wise
operator’s buffered activation can be dropped during for-
ward and re-calculated as epilogue result at almost nil cost,
which not only further reduces buffered activation memory
usage but also consequently reduces the overhead of com-
pression/decompression. (2) The fused operator requires
only a single read and write to the off-chip tensor, signif-
icantly reducing the EMA (external memory access) and
offsetting the small additional overhead of LoRA reorder
computing.

5 EXPERIMENT

5.1 Setup

Models. To demonstrate the algorithmic effectiveness of
our approach, we conduct experiments on commonly used
decoder-based model families (e.g., Llama (Touvron et al.,
2023), Mistral (Jiang et al., 2023)). To illustrate that our
approach can be extended to different model architectures,
we likewise experimented on the encoder-based models like
RoBERTa (Liu et al., 2019). By default, the LoRA adapters
are enabled in every linear layer in the model except the
classification head. The LoRA rank size r is set to 16 and
the LoRA scaling factor α is set to 1. The model parameters
involved in the experiment are shown in Appendix (Table 7).

Tasks. For decoder-based large language models, we per-
form: (1) Single-task fine-tuning on the GSM8K (Cobbe

et al., 2021) and Wikitext-2 (Merity et al., 2016) datasets
following (Li et al., 2023) to test the fine-tuned model’s capa-
bilities on arithmetic reasoning and text understanding. (2)
General-task fine-tuning on the Math10K (Hu et al., 2023)
dataset following (Liao & Monz, 2024) to test the model’s
ability to generalize after model fine-tuning. (3) Long-
sentence fine-tuning on the Redpajama (Computer, 2023)
dataset following (Chen et al., 2023) to test the model’s
ability on long sequence understanding, whose training sce-
nario particularly highlights the system-level advantages of
our approach, as the memory footprint of buffered activa-
tions becomes more substantial in long-sequence training
contexts. For RoBERTa-Base, we fine-tune and evaluate
the models on General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) following (Hu
et al., 2021) to test natural language understanding ability.
We list some essential training settings of different tasks in
Appendix (Table 8).

Implementation Details. We implemented our algorithm
using PyTorch framework (Paszke et al., 2019) and cus-
tomized the backward algorithm of all the operators in-
volved in the standard Transformer framework with Triton
language (Lang, 2023), some kernels like RoPE (Su et al.,
2024) draw on the implementation in unsloth (Daniel Han &
team, 2023). We freeze all the backbone weights and quan-
tize them to Nfloat4 format as (Dettmers et al., 2024), while
the compute precision is set to bfloat16. The calibration step
is set to 5. The RMSNorm outlier channel ratio pn is set to
0.5%. Scaled dot product attention (Vaswani et al., 2017) is
used in fine-tuning by default, and the attention sparse ratio
pa is set to 5%, while for long-sentence task fine-tuning,
we apply FlashAttention (Dao et al., 2022) for memory and
computation efficiency.

Compared methods. We set QLoRA (Dettmers et al., 2024)

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

as our baseline, and we compare HyC-LoRA with differ-
ent lightweight variants of QLoRA. The consideration for
this setting is that QLoRA has fixed the quantization of
weight to 4-bit, and the additional number of parameters
added by the LoRA adapter and the corresponding opti-
mizer state is negligible in the system, so the difference
in memory consumption will mainly depend on the usage
of buffered activation. We list these methods as follows:
(1) QST (Zhang et al., 2024b): QST adds a small separate
network beside the backbone-quantized network. Since the
backpropagation only needs to go through the small sep-
arate network, its buffered activation can be significantly
reduced. (2) SparseBP (Zhu et al., 2023): SparseBP elimi-
nates the preceding layers’ buffered activations by blocking
the backpropagation graph. To control the memory usage of
the weight and optimizer in line with baseline experiments,
instead of performing the full parameter fine-tuning on the
partial network in the original paper, we perform QLoRA
fine-tuning on partial Transformer layers, and the fine-tuned
linear layers include q, k and v projection layer and gate, up
projection, aligning with the original paper’s experimental
setup for Transformer architectures. (3) BackRazor (Jiang
et al., 2022): BackRazor proposes an asymmetric pruning
strategy in which buffered activations are pruned unstruc-
turally and stored in the sparse form to be recovered in the
backpropagation phase. (4) LoRA-FA (Zhang et al., 2023):
LoRA-FA freezes the LoRA-A adapter and only fine-tunes
the LoRA-B adapter to reduce the linear layer’s buffered ac-
tivation. The theoretical buffered activation reduction ratio
of these methods is shown in Appendix (Table 9 and 10).

Additionally, we have not listed some more lightweight
fine-tuning methods (e.g., bias-tuning (Zaken et al., 2022))
because they do not perform well on large models. We also
do not list previous pure-quantization frameworks for small
models like ActNN (Chen et al., 2021) and GACT (Liu
et al., 2022) because of their incompatibility with large
model training systems. Therefore, we reimplemented the
quantization method and used a customized setup.

5.2 Accuracy Evaluation

Table 1 presents the model’s zero-shot accuracy on
GSM8K and perplexity on Wikitext-2. In HyC-LoRA@4-
bit+intra+inter setting, accuracy loss on GSM8K is minimal
(1.45%, 0.91%, 1.44%, 1.06% across models). For 2-bit
circumstances, HyC-LoRA outperforms the baseline more
significantly; for Llama-2-7B, it achieves a 6.37% relative
improvement (29.49% → 35.86%). The other memory-
efficient methods have a gap in algorithm performance com-
pared to HyC-LoRA, take Wikitext-2 dataset as an example,
compared to SparseBP (1.17 perplexity increase with about
60% activation reduction), HyC-LoRA@4-bit+intra+inter
achieves about 75% reduction with only a 0.02 perplexity
increase.

Table 1. Algorithm performance on GSM8K (Cobbe et al., 2021)
(represented by "G") and WikiText-2 (Merity et al., 2016) (repre-
sented by "W"). We report zero-shot accuracy for GSM8K (the
larger the better) and perplexity (the smaller the better). We mark
"intra" as Intra-operator Hybrid Compression and Inter-operator
Hybrid Compression, the best results under the same compression
ratio are bolded (the same as below).

Method Quant Intra Inter TinyLlama-1.1B Llama-2-7B Llama-2-13B Mistral-7B
Bit G↑ W↓ G↑ W↓ G↑ W↓ G↑ W↓

Baseline 16 - - 15.85 8.24 38.82 5.51 48.75 5.02 53.68 5.33
SparseBP@0.5a 16 - - 8.57 9.28 16.76 7.15 21.00 6.74 36.09 5.71

BackRazor@0.2b 16 - - 13.12 8.42 33.28 5.68 42.46 5.06 44.88 5.39
QST 16 - - 2.12 13.44 7.51 8.98 12.81 10.73 - -

LoRA-FA 16 - - 9.78 8.98 32.52 6.77 43.67 6.02 54.51 5.48

HyC-LoRA

4 % % 14.10 8.28 35.86 5.71 37.53 5.02 52.16 5.36
4 " % 14.40 8.27 37.23 5.58 45.79 5.02 52.62 5.35
4 " " 14.03 8.25 37.91 5.57 47.31 5.01 51.63 5.36
2 % % 11.30 8.39 29.49 5.81 42.38 5.06 45.94 5.46
2 " % 11.90 8.37 34.65 5.76 43.90 5.05 46.02 5.43
2 " " 12.96 8.32 35.86 5.82 44.05 5.04 47.16 5.42

Table 2. Zero-shot accuracy performance on four arithmetic rea-
soning tasks (GSM8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), mawps (Koncel-Kedziorski et al., 2016) and AQuA (Ling
et al., 2017)) after fine-tuning on Math10K (Hu et al., 2023).

Method Quant Bit Intra Inter GSM8K SVAMP mawps AQuA Avg.

TinyLlama-1.1B

Baseline 16 - - 11.45 28.8 67.64 20.08 31.99
SparseBP@0.5 16 - - 5.84 21.8 55.88 23.22 26.68

BackRazor@0.2 16 - - 7.20 26.5 63.02 17.72 28.61
LoRA-FA 16 - - 5.91 20.4 50.42 25.20 25.48

HyC-LoRA

4 % % 8.64 26.1 62.61 22.44 29.94
4 " % 8.04 26.5 65.97 22.44 30.74
4 " " 9.55 27.9 68.06 21.65 31.79
2 % % 8.04 22.6 55.04 20.08 26.44
2 " % 8.19 21.4 57.14 25.98 28.18
2 " " 8.34 24.5 59.24 23.62 28.93

Llama2-7B

Baseline 16 - - 43.21 58.5 84.45 24.80 52.74
SparseBP@0.5 16 - - 19.48 38.9 75.63 20.87 38.72

BackRazor@0.2 16 - - 39.19 55.8 86.14 23.22 51.09
LoRA-FA 16 - - 33.74 51.5 79.83 20.08 46.29

HyC-LoRA

4 % % 39.50 57.3 83.19 21.26 50.31
4 " % 40.94 56.4 84.03 25.98 51.84
4 " " 39.50 56.6 82.35 22.44 50.22
2 % % 37.07 53.7 81.51 25.98 49.57
2 " % 37.07 52.0 81.51 25.20 48.95
2 " " 38.74 54.7 82.77 22.04 49.57

Mistral-7B

Baseline 16 - - 59.89 71.7 89.08 27.95 62.16
SparseBP@0.5 16 - - 48.05 64.7 88.23 28.02 57.25

BackRazor@0.2 16 - - 58.07 70.8 89.50 27.56 61.48
LoRA-FA 16 - - 60.88 71.6 90.34 28.74 62.89

HyC-LoRA

4 % % 58.83 69.6 88.66 27.95 61.26
4 " % 59.74 68.3 88.66 27.56 61.06
4 " " 59.89 72.4 90.33 29.13 62.94
2 % % 55.34 66.7 86.55 25.59 58.55
2 " % 56.94 68.8 86.97 26.38 59.77
2 " " 57.46 67.0 87.82 27.95 60.06

Table 3. Perplexity on proof-pile (Azerbayev et al., 2024) and
PG19-val (Rae et al., 2019) datasets after fine-tuning on Red-
pajama (Computer, 2023) dataset.

Method Quant Intra Inter Llama-2-7B Llama-2-13B
Bit proof-pile PG19-val proof-pile PG19-val

No Fine-tune - - - 4.373 18.060 2.739 8.104
Baseline 16 - - 2.833 8.380 2.616 7.185

HyC-LoRA
4 % % 2.846 8.451 2.626 7.291
4 " % 2.843 8.436 2.624 7.255
4 " " 2.841 8.432 2.622 7.234

a0.5 represents 50% of the total number of Transformer layers
are fine-tuned. Considering some linears are not fine-tuned, the
combined buffered activation reduction rate is 2.46×.

b0.2 represents a sparsity of 20% for buffered activation, and
since the method uses bitmap storage of sparse values, the overall
reduction ratio is 3.81×.

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Table 4. Algorithm performance on GLUE (Wang et al., 2018)
datasets of RoBERTa-Base (Liu et al., 2019) with HyC-LoRA.
We report Matthews correlation for COLA and accuracy for the
rest (all the larger the better). Due to the unstable convergence of
RoBERTa’s fine-tuning, we repeated all the experiments 3 times
and report the mean and error.
Quant Intra Inter RTE COLA MRPC SST2 MNLI QNLI QQP Avg.Bit

16 - - 77.1±0.2 62.8±1.0 89.9±0.5 94.4±0.4 86.6±0.1 92.1±0.0 90.7±0.1 84.8

4 % % 76.5±1.6 61.5±0.6 89.4±1.0 94.6±0.1 84.4±0.5 91.8±0.1 89.8±0.7 84.0
2 % % 59.4±5.2 56.7±0.5 81.1±8.8 94.5±0.2 50.8±22.2 50.5±0.0 63.2±0.0 65.2
2 " % 75.9±1.0 61.1±1.0 89.9±2.0 94.1±0.2 67.8±23.4 88.9±3.5 90.3±0.1 81.1
2 " " 75.8±0.7 61.9±1.5 89.6±0.5 94.2±0.2 85.0±0.1 90.7±1.1 90.2±0.0 83.9

Table 2 shows zero-shot accuracy of four different datasets
after Math10K fine-tuning. HyC-LoRA@4bit+intra+inter’s
average accuracy drop (0.10%) is far lower than SparseBP
(8.07%), BackRazor (1.90%), and LoRA-FA (4.08%), with
similar or even smaller buffered activation consumption.

Table 3 presents the perplexity results for long-sequence
tasks. With HyC-LoRA@4-bit+intra+inter setting, perplex-
ity increases are negligible (0.008, 0.052, 0.005, 0.049),
demonstrating its efficacy as a memory-efficient approach
for fine-tuning on long sequences.

Table 4 presents GLUE benchmark performance. Pure 2-bit
quantization causes severe accuracy degradation or even
training crashes (e.g., RTE: 77.13→ 59.44; QNLI: 92.05
→ 50.54). HyC-LoRA significantly improves accuracy,
closely matching the baseline (avg.: Baseline 84.8 vs. HyC-
LoRA@2-bit+intra+inter 83.9), which indicates that the
fine-tuning of small models such as RoBERTa is particularly
sensitive to outlier effects.

We visualize the relationship between the theoretical
buffered activation reduction ratio and task accuracy in Fig-
ure 6, showing that HyC-LoRA advances the Pareto frontier
of memory-efficient fine-tuning.

5.3 System Evaluation

5.3.1 Memory Consumption Evaluation

In Figure 8, we evaluate the actual memory consumption
in different fine-tuning methods and training settings men-
tioned in Section 5.2. Due to the PyTorch (Paszke et al.,
2019) framework’s coarse-grained memory management,
there is a gap between the theoretical analysis results and
the measured results. Nevertheless, our method still shows
hardware and training platform compatibility. For example,
the buffered activation reduction ratio can reach 7.47× when
batch=1, seq-length=512 for the Llama-2-7B model. If
weight and optimizer are considered simultaneously, the end-
to-end memory consumption gain of HyC-LoRA is 1.57×.
The end-to-end memory gain from compressing buffered
activation will increase with training sequence length and
batch size. For example, under batch=4, seq-length=512

and batch=4, seq-length=1024, the end-to-end memory gain
can be achieved at 2.87× and 3.97×, respectively. In the
extreme case, efficient fine-tuning of the Llama-2-7B model
can be accomplished within a memory capacity of 8 GB.

5.3.2 Throughput Evaluation

In Figure 7, we test the training throughput in different
training scenarios on various computing devices, including
cloud devices such as NVIDIA A800 80GB PCIe, NVIDIA
GeForce RTX 3090, and edge devices like NVIDIA Jetson
AGX Orin and NVIDIA Jetson Orin Nano. HyC-LoRA
yields a throughput boost of about 1.17× to 1.54× com-
pared to traditional memory-efficient methods like gradient
checkpointing (Chen et al., 2016). HyC-LoRA is also faster
than compression methods that involve irregular accesses to
memory (Jiang et al., 2022).

5.4 Discussions
Iteration Speed vs. Convergence Rate: which matters?
HyC-LoRA does not improve the speed of a single iteration
(forward + backward), but can maintain the convergence
rate of training compared to other methods. SparseBP (Zhu
et al., 2023) blocks the backpropagation computation flow
by updating only output-close layers, and QST (Zhang et al.,
2024b) by computing backpropagation only for the small
side network. Both methods not only reduce buffered acti-
vation, but also improve single iteration speed. The effec-
tiveness of the two paradigms has been demonstrated on
small networks and simple tasks, but the situation changes
in complex generative tasks with large models. Figure 6(c)
shows the fine-tuning convergence curves and accuracy gain
for three fine-tuning paradigms, we set the horizontal axis
to normalized time instead of iteration numbers scaling
by their throughput, for a comprehensive view of training
speed and effect. QST, despite improving the iteration speed,
instead requires more computation time when descending
the same loss compared to other methods; SparseBP con-
verges faster in training loss than HyC-LoRA, but has a
weaker accuracy improvement speed on the validation set
than HyC-LoRA as Figure 6(d) shows, which highlights
that guaranteeing the integrity of the computational graph
in backpropagation is still necessary to achieve high perfor-
mance in large model’s fine-tuning.

Whether Intra-operator Hybrid Compression is helpful
for all operators? Figure 9(a) shows the relationship be-
tween the percentage of outlier channels selected and the
quantization error of buffered activation. For buffered ac-
tivations in the RMSNorm layer, storing only a minimal
number of channels in full precision results in a noticeable
reduction in quantization error, but this benefit is limited
for other operators. We simultaneously perform algorithmic
ablation studies on this idea, shown in Table 5(a), further

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

2 4 6 8 10 12
Buffered Activation Reduction Ratio

0

5

10

15

20

25

30

35

40
Ac

c(
%

)
Baseline

HyCLoRA@intra+inter
HyCLoRA@quant only
BackRazor

SparseBP
LoRA-FA

(a)

2 4 6 8 10 12
Buffered Activation Reduction Ratio

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ac
c(

%
)

Baseline

HyCLoRA@intra+inter
HyCLoRA@quant only
BackRazor

SparseBP
LoRA-FA

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

HyCLoRA@2bit+intra+inter
QST
SparseBP@0.5

(c)

0.2 0.4 0.6 0.8 1.0
Normalized Time

0

5

10

15

20

25

30

35

40

Ac
c(

%
)

HyCLoRA@2bit+intra+inter
SparseBP@0.5

(d)
Figure 6. (a)(b): Visualization of buffered activation reduction ratio vs. GSM8K accuracy (Llama2-7B) and arithmetic tasks average
accuracy (Mistral-7B); (c): Training time vs. loss decline on GSM8K dataset; (d): Training time vs. test accuracy on GSM8K dataset.

1 2 4 8 16 32
Batch size

0

1

2

3

4

5

Th
ro

ug
hp

ut
(s

eq
/s

)

2.91

3.88

4.74 4.71

2.38

3.40

4.22

4.69
4.95 5.08 5.07

1.99

3.49

4.42

4.89
5.25 5.36 5.35

1.88

2.40

2.94
3.21

3.43

3.95 4.00

1.90

2.51

3.05

3.62

NVIDIA A800@Llama-2-13B

Baseline
HyCLoRA@2bit
HyCLoRA@2bit+intra+inter
CKPT
BackRazor

1 2 4 8 16
Batch size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
(s

eq
/s

)

2.58

2.99

3.51

2.39

2.87

3.31
3.51

3.73

2.44

2.93

3.36
3.52 3.52

1.58
1.88

2.16
2.34 2.42

NVIDIA RTX 3090@Llama-2-7B

Baseline
HyCLoRA@2bit
HyCLoRA@2bit+intra+inter
CKPT

1 2 4 8 16
Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
ro

ug
hp

ut
(s

eq
/s

)

0.46

0.57

0.63

0.39

0.49

0.55
0.60 0.60

0.40

0.52

0.59
0.64 0.66

0.31

0.38
0.43

0.47 0.48

Jetson AGX Orin@Mistral-7B-v0.1

Baseline
HyCLoRA@2bit
HyCLoRA@2bit+intra+inter
CKPT

1 2 4 8
Batch size

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
(s

eq
/s

)

0.90

1.04

0.68

0.79
0.86

1.00

0.76

0.88
0.95

1.07

0.63

0.73
0.78

0.91

Jetson Orin Nano@TinyLlama-1.1B

Baseline
HyCLoRA@2bit
HyCLoRA@2bit+intra+inter
CKPT

Figure 7. Throughput vs. batch size on different devices, the sequence length is 512. CKPT: gradient checkpointing (Chen et al., 2016).

1.68×

3.21×

4.10×

2.8
1.61.81.7 1.6

7.1

4.5
3.5

2.82.52.2

15.6

8.3
7.3

5.0
4.3 3.8

2.1

4.80×

5.69×

6.34×

(a) TinyLlama-1.1B

1.57×
8.4

7.06.05.85.6

2.87×
19.0

12.9
11.3

8.27.5

37.0

21.8
21.0

12.4
11.0

3.97×

9.3

5.4
6.6

7.28×

8.20×

7.47×

(b) Llama-2-7B
Figure 8. Measured Memory on NVIDIA A800 platform across
different models and training settings. The default weight and
optimizer part are marked grey in the chart.

demonstrating the necessity of inter-operator hybrid com-
pression.

Is the calibration stage a burden? Increasing calibration
steps facilitates more robust modeling of compress param-
eters such as the scaling factor, but leads to a slowdown
in training. We show the training accuracy using different
calibration data sizes in Table 5(b). The experimental results
show that the HyC-LoRA algorithm does not require a large
scale of calibration data, and only a few samples can model
the buffered activation’s distribution.

Is HyC-LoRA compatible with recompute methods? Our
approach provides a new solution that enables flexible trade-
offs between energy consumption, latency, and accuracy in
edge fine-tuning scenarios on top of recomputing methods.
Furthermore, they can also be stacked together to alleviate
peak memory consumption for model fine-tuning. Table 5(c)
shows that in the scenario of long sentence fine-tuning, com-
bining standard recomputation (Chen et al., 2016) with our
HyC-LoRA method yields an additional 25% reduction in
end-to-end memory consumption. In works such as (Kor-
thikanti et al., 2023) use lightweight recomputation to re-

0.2% 0.4% 0.6% 0.8% 1.0%
Channel Extraction Ratio

10 3

10 2

10 1

100
Q

ua
nt

iz
at

io
n

Lo
ss

RMSNorm
SiLU

Hadamard
Attention(Q)

(a)

(4, 512) (4, 1024) (4, 2048)
(Batch Size, Sequence Length)

0

5

10

15

20

25

30

M
em

or
y

(G
B)

10.3

14.3

27.1

9.5
11.1

14.5

HyC-LoRA Memory
+Re. Softmax Memory
HyC-LoRA Throughput
+Re. Softmax Throughput

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (

se
q/

s)

4.42
4.47

2.25
2.36

0.98
1.05

(b)
Figure 9. (a): Trend of 2-bit quantization loss and channel ex-
traction ratio across different buffered activations. The buffered
activations are sampled from Mistral-7B model in GSM8K task
training. (b): End-to-end memory consumption and throughput of
the original HyC-LoRA@2bit+intra+inter method with its variant
that incorporates recompute softmax (Korthikanti et al., 2023),
using the Llama2-13B model on NVIDIA A800 GPU.

duce extra overhead – the sequence parallelism is designed
for large cluster training systems that support distributed
algorithm, while its adaptation to single device is not dis-
cussed; the selective activation recomputation eliminates
the need to store the attention map when naive attention is
used, which can further reduce memory usage while main-
taining throughput and obtain similar accuracy as shown in
Figure 9(b) and Table 5(d).

6 RELATED WORKS

Model compression for LLMs. Model compression has
been widely used for LLM’s deployment. Common model
compression methods can be categorized into quantiza-
tion (Frantar et al., 2022; Xiao et al., 2023; Dettmers et al.,
2022; Wei et al., 2022; Lin et al., 2023; Kang et al., 2024)
and pruning (Sun et al., 2023; Frantar & Alistarh, 2023;
Xia et al., 2023). Some special methods like singular value

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Table 5. (a): Ablation study of accuracy on intra and inter-operator hybrid compression. intra all.: apply intra-operator hybrid compression
to all operators. (b): Calibration dataset size of GSM8K training versus accuracy on Llama-2-7B. The total training steps are 44832, so
the overhead of getting statistics in the calibration stage is negligible. (c): Memory consumption (unit: GB) in long sentence fine-tuning
decreases further when combining HyC-LoRA@4bit+intra+inter and recompute (Chen et al., 2016). (d): Accuracy on GSM8K when use
HyC-LoRA its variant that incorporates recompute softmax.

bit 2 4
Llama2-7B

intra all. 35.10 36.47
intra+inter 35.86 37.91

Mistral-7B
intra all. 45.87 50.80

intra+inter 47.16 51.63
(a)

Calib. Size 1 5 20
Acc. 28.96 35.86 35.71

(b)

seqlen 8192 16384 32768
CKPT 8.36 12.82 21.73

+HyC-LoRA 6.30 9.69 15.50

(c)

bit 2 4
Llama2-7B

HyC-LoRA 35.86 37.91
+re. softmax 34.12 38.13

Llama2-13B
HyC-LoRA 44.05 47.31
+re. softmax 42.91 47.61

(d)

decomposition (SVD) (Wang et al., 2024) and lossless com-
pression (Mao et al., 2024) are also applied in specific sce-
narios. However, most of the compression works target
components in the inference phase, including weights, KV
cache, and temporary activations, and less work targets the
components of the training process. This work focuses
on buffered activation’s memory overhead and optimizes
LoRA’s training memory bottleneck.

LoRA & its variants. Low-Rank Adaption (LoRA) (Hu
et al., 2021) is currently one of the most popular lightweight
fine-tuning methods because of its structural simplicity, no
inference overhead, and high interpretability. Based on this,
a series of variants of LoRA have been proposed, including
different initialization methods (Li et al., 2023; Meng et al.,
2024), different learning methods (Hayou et al., 2024; Tian
et al., 2024), and changes in the form of trainable param-
eters (Kopiczko et al., 2023; Liu et al., 2024; Zhao et al.,
2024a). However, most existing works focus on enhancing
the training effectiveness of LoRA algorithms, or reducing
the number of LoRA parameters that are not bottlenecks in
memory overheads. In contrast, fewer works analyze the
LoRA training process in terms of system overhead. Our
work starts from the training system and further reduces
the storage of all buffered activations, achieving optimized
memory efficiency compared to past works shown in Table 6
above.

Memory efficient training algorithm & system. Previous
works have revealed the curse of massive memory con-
sumption in model training and attempted to compress the
optimizer states (Dettmers et al., 2021; Li et al., 2024) or
buffered activations (Cai et al., 2020; Chen et al., 2021;
Liu et al., 2022; Jiang et al., 2022) in the training stages.
Still, few focus on the large language model’s fine-tuning
scenario. There are also some works on designing more
memory-efficient model structures (Sung et al., 2022; Zhang
et al., 2024a; Liao et al., 2024) and algorithm-system co-
designing (Chen et al., 2016; Ren et al., 2021; Lin et al.,
2022; Zhu et al., 2023) to achieve higher memory efficiency.
However, these methods are not all designed for edge-side

Table 6. Comparison of training paradigms (above) and buffered
activation reduction (below) techniques.

Method Weight Optimizer Checkpoint Buffered Activation

Full Fine-tuning Large Large Large Large
GaLore (Zhao et al., 2024a) Large Small Large Large

LoRA (Hu et al., 2021) Large Small Small Large
SparseBP (Zhu et al., 2023) Large Medium Medium Medium

QLoRA (Dettmers et al., 2024) Small Small Small Large
HyC-LoRA Small Small Small Small

Method All Iteration Convergence Compress No Inference
Operators Speed Rate Ratio Overhead

LoRA-FA (Zhang et al., 2023) No Medium Bad Low Yes
MS-BP (Yang et al., 2024) No Medium Good Low Yes

BackRazor (Jiang et al., 2022) Yes Slow Bad High Yes
SparseBP (Zhu et al., 2023) Yes Fast Bad Low Yes
QST (Zhang et al., 2024b) Yes Fast Bad High No
CKPT (Chen et al., 2016) Yes Slow Good High Yes

HyC-LoRA Yes Medium Good High Yes

single-device scenarios and may decrease convergence rate
and training effectiveness. Our approach performs better
than past work on memory optimization for buffered activa-
tion, as shown in Table 6 below.

7 CONCLUSION

We present HyC-LoRA, a hybrid compression framework
for buffered activations in LoRA training. To reduce the
buffered activation’s memory consumption, we introduce
two hybrid compression mechanisms: intra-operator hybrid
compression and inter-operator hybrid compression, and
integrate them with a quantization-based buffered activation
compression system for further lightweighting of LoRA
training. Experiments show that HyC-LoRA can achieve
up to 2-bit buffered activation quantization and up to 3.97×
end-to-end memory reduction compared to baseline, with
negligible accuracy degradation.

8 ACKNOWLEDGMENT

This work is supported in part by the National Science
and Technology Major Project (2021ZD0114402), and the
National Natural Science Foundation of China under Grant
92267203, 62374101.

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

REFERENCES

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-
nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y.,
Luk, C. K., Maher, B., Pan, Y., Puhrsch, C., Reso, M.,
Saroufim, M., Siraichi, M. Y., Suk, H., Zhang, S., Suo, M.,
Tillet, P., Zhao, X., Wang, E., Zhou, K., Zou, R., Wang,
X., Mathews, A., Wen, W., Chanan, G., Wu, P., and
Chintala, S. Pytorch 2: Faster machine learning through
dynamic python bytecode transformation and graph com-
pilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’24, pp. 929–947, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703850.
doi: 10.1145/3620665.3640366. URL https://doi.
org/10.1145/3620665.3640366.

Azerbayev, Z., Ayers, E., and Piotrowski, B. Proof-pile.
https://github.com/zhangir-azerbayev/
proof-pile, 2024. Accessed on 1 March 2024.

Cai, H., Gan, C., Zhu, L., and Han, S. Tinytl: Reduce
memory, not parameters for efficient on-device learning.
Advances in Neural Information Processing Systems, 33:
11285–11297, 2020.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M., and Gonzalez, J. Actnn: Reducing training memory
footprint via 2-bit activation compressed training. In
International Conference on Machine Learning, pp. 1803–
1813. PMLR, 2021.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Computer, T. Redpajama: An open source recipe to repro-
duce llama training dataset, April 2023.

Daniel Han, M. H. and team, U. Unsloth, 2023. URL
http://github.com/unslothai/unsloth.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L. 8-
bit optimizers via block-wise quantization. arXiv preprint
arXiv:2110.02861, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Diederik, P. K. Adam: A method for stochastic optimization.
(No Title), 2014.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y.,
Hu, S., Chen, Y., Chan, C.-M., Chen, W., et al. Delta
tuning: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv preprint
arXiv:2203.06904, 2022.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. CoRR, abs/1702.03118, 2017.
URL http://arxiv.org/abs/1702.03118.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Hayou, S., Ghosh, N., and Yu, B. Lora+: Efficient
low rank adaptation of large models. arXiv preprint
arXiv:2402.12354, 2024.

Hong, K., Dai, G., Xu, J., Mao, Q., Li, X., Liu, J., Chen,
K., Dong, Y., and Wang, Y. Flashdecoding++: Faster
large language model inference on gpus, 2024. URL
https://arxiv.org/abs/2311.01282.

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://github.com/zhangir-azerbayev/proof-pile
https://github.com/zhangir-azerbayev/proof-pile
http://github.com/unslothai/unsloth
http://arxiv.org/abs/1702.03118
https://arxiv.org/abs/2311.01282

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Hu, Z., Wang, L., Lan, Y., Xu, W., Lim, E.-P., Bing, L., Xu,
X., Poria, S., and Lee, R. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large language
models. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5254–5276,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.
emnlp-main.319.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, Z., Chen, X., Huang, X., Du, X., Zhou, D., and
Wang, Z. Back razor: Memory-efficient transfer learning
by self-sparsified backpropagation. Advances in Neural
Information Processing Systems, 35:29248–29261, 2022.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipe for near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N.,
and Hajishirzi, H. MAWPS: A math word problem repos-
itory. In Knight, K., Nenkova, A., and Rambow, O. (eds.),
Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 1152–1157,
San Diego, California, June 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/N16-1136. URL
https://aclanthology.org/N16-1136.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation. arXiv preprint
arXiv:2310.11454, 2023.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Ander-
sch, M., Shoeybi, M., and Catanzaro, B. Reducing activa-
tion recomputation in large transformer models. Proceed-
ings of Machine Learning and Systems, 5, 2023.

Lang, T. Triton: Development repository for the tri-
ton language and compiler. https://github.com/
triton-lang/triton, 2023. Accessed: [Insert
Date].

Li, B., Chen, J., and Zhu, J. Memory efficient optimiz-
ers with 4-bit states. Advances in Neural Information
Processing Systems, 36, 2024.

Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N.,
Chen, W., and Zhao, T. Loftq: Lora-fine-tuning-aware
quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Liao, B. and Monz, C. Apiq: Finetuning of 2-bit quantized
large language model. arXiv preprint arXiv:2402.05147,
2024.

Liao, B., Tan, S., and Monz, C. Make pre-trained model re-
versible: From parameter to memory efficient fine-tuning.
Advances in Neural Information Processing Systems, 36,
2024.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and
Han, S. On-device training under 256kb memory. Ad-
vances in Neural Information Processing Systems, 35:
22941–22954, 2022.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Pro-
gram induction by rationale generation: Learning to
solve and explain algebraic word problems. In Barzi-
lay, R. and Kan, M.-Y. (eds.), Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 158–167, Van-
couver, Canada, July 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P17-1015. URL
https://aclanthology.org/P17-1015.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora:
Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Liu, X., Zheng, L., Wang, D., Cen, Y., Chen, W., Han, X.,
Chen, J., Liu, Z., Tang, J., Gonzalez, J., et al. Gact:
Activation compressed training for generic network ar-
chitectures. In International Conference on Machine
Learning, pp. 14139–14152. PMLR, 2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Mao, Y., Wang, W., Du, H., Guan, N., and Xue, C. J. On
the compressibility of quantized large language models.
arXiv preprint arXiv:2403.01384, 2024.

Meng, F., Wang, Z., and Zhang, M. Pissa: Principal singular
values and singular vectors adaptation of large language
models. arXiv preprint arXiv:2404.02948, 2024.

https://aclanthology.org/2023.emnlp-main.319
https://aclanthology.org/2023.emnlp-main.319
https://aclanthology.org/N16-1136
https://github.com/triton-lang/triton
https://github.com/triton-lang/triton
https://aclanthology.org/P17-1015

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., van Baalen, M., and Blankevoort, T. A white paper
on neural network quantization, 2021. URL https:
//arxiv.org/abs/2106.08295.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Patel, A., Bhattamishra, S., and Goyal, N. Are NLP
models really able to solve simple math word prob-
lems? In Toutanova, K., Rumshisky, A., Zettlemoyer,
L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell,
R., Chakraborty, T., and Zhou, Y. (eds.), Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 2080–2094, Online, June
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.168. URL https://
aclanthology.org/2021.naacl-main.168.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap,
T. P. Compressive transformers for long-range sequence
modelling. arXiv preprint arXiv:1911.05507, 2019.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551–564, 2021.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Sung, Y.-L., Cho, J., and Bansal, M. Lst: Ladder side-tuning
for parameter and memory efficient transfer learning. Ad-
vances in Neural Information Processing Systems, 35:
12991–13005, 2022.

Tian, C., Shi, Z., Guo, Z., Li, L., and Xu, C. Hydralora:
An asymmetric lora architecture for efficient fine-tuning.
arXiv preprint arXiv:2404.19245, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, X., Zheng, Y., Wan, Z., and Zhang, M. Svd-
llm: Truncation-aware singular value decomposition
for large language model compression. arXiv preprint
arXiv:2403.07378, 2024.

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang,
Q., Yu, F., and Liu, X. Outlier suppression: Pushing the
limit of low-bit transformer language models. Advances
in Neural Information Processing Systems, 35:17402–
17414, 2022.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yang, Y., Shi, Y., Wang, C., Zhen, X., Shi, Y., and Xu, J.
Reducing fine-tuning memory overhead by approximate
and memory-sharing backpropagation. arXiv preprint
arXiv:2406.16282, 2024.

Yu, Z., Shen, L., Ding, L., Tian, X., Chen, Y., and Tao,
D. Sheared backpropagation for fine-tuning foundation
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5883–
5892, 2024.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models, 2022. URL https:
//arxiv.org/abs/2106.10199.

https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Zhang, B. and Sennrich, R. Root mean square layer
normalization. CoRR, abs/1910.07467, 2019. URL
http://arxiv.org/abs/1910.07467.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Zhang, Z., Zhao, D., Miao, X., Oliaro, G., Li, Q., Jiang,
Y., and Jia, Z. Quantized side tuning: Fast and memory-
efficient tuning of quantized large language models. arXiv
preprint arXiv:2401.07159, 2024a.

Zhang, Z., Zhao, D., Miao, X., Oliaro, G., Li, Q., Jiang,
Y., and Jia, Z. Quantized side tuning: Fast and
memory-efficient tuning of quantized large language mod-
els, 2024b. URL https://arxiv.org/abs/2401.
07159.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems,
6:196–209, 2024b.

Zhu, L., Hu, L., Lin, J., Chen, W.-M., Wang, W.-C., Gan, C.,
and Han, S. Pockengine: Sparse and efficient fine-tuning
in a pocket. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 1381–
1394, 2023.

A EXPERIMENT SETTINGS

See Table 7 and Table 8.

Table 7. Model Configurations

Model Hidden dim. FFN Hidden dim. Layers Heads

RoBERTa-Base 768 3072 12 12
TinyLlama-v1.1 2048 5632 22 32

Llama-2-7B 4096 11008 32 32
Llama-2-13B 5120 13824 40 40
Mistral-7B 4096 14336 32 32

Table 8. Training Configurations

Task GLUE GSM8K Wikitext-2 Arithmetic Long Sequence
Reasoning Understanding

Learning Rate 3e-4 3e-4 3e-4 3e-4 2e-5
Max Seq. Length 128 512 1024 512 8192

Batch Size 32 4 4 4 1
Gradient Accu. Steps 1 4 4 4 8

Epochs 10 6 3 12 3

B COMPUTE FLOW OF ROBERTA-BASE

The transformer block architecture in RoBERTa differs
slightly from large language models such as Llama series.
To illustrate the compatibility of the HyC-LoRA approach,
we provide the fine-tuning computational flow of RoBERTa
and the modeling of buffered activation in Figure 10. We
also follow the approach of inter-operator hybrid compres-
sion to perform operator fusion for RoBERTa’s FFN layer
to reduce the buffered activation, as shown in Figure 11.

C VISUALIZATION OF TRAINING LOSS
ACROSS DIFFERENT HYC-LORA
TRAINING SETTINGS

We visualize the training loss curve of different experiment
settings in Figure 12. During LoRA training using quan-
tized buffered activation, the loss curve shifts significantly
upward, causing the model to converge more slowly. With
the addition of our proposed method, the loss curve shifts
downward, proving its effectiveness in facilitating model
learning.

D THEORETICAL COMPARISON OF
DIFFERENT MEMORY-EFFICIENT
METHODS

We briefly list and compare the theoretical buffered activa-
tion reduction ratio of the methods mentioned in the pre-
vious section in Table 9 and Table 10. To simplify the
estimation model, we have not considered small pieces of
buffered activations that are negligible in the system, such
as the scaling factor required for quantization computing,
and the parts marked in grey in Figure 3 Right.

http://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2401.07159
https://arxiv.org/abs/2401.07159

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐵𝐵 𝐵𝐵 𝐵𝐵

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐵𝐵

𝐿𝐿𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿

𝑅𝑅𝑢𝑢
𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝. 𝐵𝐵

𝑅𝑅𝐴𝐴𝑑𝑑𝐴𝐴
𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝. 𝐵𝐵

𝐴𝐴

𝐴𝐴 𝐴𝐴 𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑀𝑀𝐿𝐿𝑀𝑀 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑿𝑿𝒊𝒊𝒊𝒊

𝑸𝑸 𝑲𝑲 𝑽𝑽

𝑶𝑶

𝑿𝑿𝒊𝒊𝒏𝒏

𝑿𝑿𝑼𝑼

𝑿𝑿𝑫𝑫

Buffered Activation
Operator

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑸𝑸) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑲𝑲) (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑽𝑽)

(𝑿𝑿𝑶𝑶𝑨𝑨𝑶𝑶)

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑼𝑼)

(𝑿𝑿𝑫𝑫𝑨𝑨𝑫𝑫)

𝑨𝑨

𝐴𝐴

𝐴𝐴

𝑞𝑞 𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝. 𝑘𝑘 𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝. 𝑣𝑣 𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝.

𝐴𝐴 𝑢𝑢𝐿𝐿𝐴𝐴𝑝𝑝.

𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺

𝐿𝐿𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿

𝑿𝑿𝒊𝒊𝒏𝒏
𝑀𝑀𝐿𝐿𝑀𝑀 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Intra-
operator
hybrid

compressionInter-
operator
hybrid

compression

Operators Buffered
Activation

Memory
Usage

𝑿𝑿𝑼𝑼 = 𝐿𝐿𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿(𝑿𝑿𝒊𝒊𝒏𝒏)
𝑿𝑿𝒊𝒊𝒏𝒏

𝝈𝝈𝒊𝒊𝒏𝒏𝒏𝒏 ,𝜸𝜸𝒊𝒊𝒏𝒏
𝒃𝒃, 𝒔𝒔,𝒅𝒅

𝒏𝒏 × 𝒃𝒃, 𝒔𝒔

𝑸𝑸 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑸𝑸 + 𝑨𝑨𝑸𝑸𝑩𝑩𝑸𝑸)
𝑲𝑲 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑲𝑲 + 𝑨𝑨𝑲𝑲𝑩𝑩𝑲𝑲)
𝑽𝑽 = 𝑿𝑿𝒊𝒊𝒏𝒏(𝑾𝑾𝑽𝑽 + 𝑨𝑨𝑽𝑽𝑩𝑩𝑽𝑽)

𝑿𝑿𝒊𝒊𝒏𝒏
(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑸𝑸), (𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑲𝑲)

(𝑿𝑿𝒊𝒊𝒏𝒏𝑨𝑨𝑉𝑉)

(𝒃𝒃, 𝒔𝒔,𝒅𝒅)

𝟑𝟑 × 𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑺𝑺 = 𝑸𝑸𝑲𝑲𝑻𝑻,𝑨𝑨 = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐿𝐿𝑅𝑅𝑆𝑆(𝑺𝑺)
𝑶𝑶 = 𝑨𝑨𝑽𝑽

𝑸𝑸,𝑲𝑲,𝑽𝑽
𝑨𝑨

𝟑𝟑 × (𝒃𝒃, 𝒔𝒔,𝒅𝒅)
(𝒃𝒃,𝒉𝒉, 𝒔𝒔, 𝒔𝒔)

𝑶𝑶 = 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑸𝑸,𝑲𝑲,𝑽𝑽) 𝑸𝑸,𝑲𝑲,𝑽𝑽 𝟑𝟑 × (𝒃𝒃, 𝒔𝒔,𝒅𝒅)

𝑿𝑿𝒊𝒊𝒏𝒏 = 𝑶𝑶(𝑾𝑾𝑶𝑶 + 𝑨𝑨𝑶𝑶𝑩𝑩𝑶𝑶) 𝑶𝑶
(𝑶𝑶𝑨𝑨𝑶𝑶)

(𝒃𝒃, 𝒔𝒔,𝒅𝒅)
𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑿𝑿𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑿𝑿𝑼𝑼(𝑾𝑾𝑼𝑼 + 𝑨𝑨𝑼𝑼𝑩𝑩𝑼𝑼)
𝑿𝑿𝑼𝑼

(𝑿𝑿𝑼𝑼𝑨𝑨𝑼𝑼)

𝑿𝑿𝑫𝑫 = 𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺(𝑿𝑿𝑮𝑮) 𝑿𝑿𝑮𝑮 (𝒃𝒃, 𝒔𝒔,𝒅𝒅𝒇𝒇)

𝑿𝑿𝒊𝒊𝒏𝒏 = 𝑿𝑿𝑫𝑫(𝑾𝑾𝑫𝑫 + 𝑨𝑨𝑫𝑫𝑩𝑩𝑫𝑫) 𝑿𝑿𝑫𝑫
(𝑿𝑿𝑫𝑫𝑨𝑨𝑫𝑫)

(𝒃𝒃, 𝒔𝒔,𝒅𝒅𝒇𝒇)
𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑬𝑬𝒔𝒔𝑬𝑬𝒊𝒊𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒅𝒅 𝑻𝑻𝑻𝑻𝑬𝑬𝑬𝑬𝑻𝑻 𝑺𝑺𝒊𝒊𝑺𝑺𝑬𝑬(𝒃𝒃𝒊𝒊𝑬𝑬)
+𝐻𝐻𝐿𝐿𝐻𝐻𝐿𝐿𝐴𝐴𝑅𝑅𝐴𝐴𝐻𝐿𝐿𝑅𝑅𝑑𝑑 𝑞𝑞𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴

+𝐻𝐻𝐿𝐿𝐻𝐻𝐿𝐿𝐴𝐴𝑅𝑅𝐴𝐴𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝑅𝑅

(𝟖𝟖𝒅𝒅 + 𝒏𝒏𝒅𝒅𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃
(𝟖𝟖𝒅𝒅 + 𝒏𝒏𝒅𝒅𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃𝒒𝒒
(𝟖𝟖𝒅𝒅 + 𝒅𝒅𝒇𝒇)𝒃𝒃𝒔𝒔𝒃𝒃𝒒𝒒

w/o FlashAttn

w FlashAttn

(𝒃𝒃, 𝒔𝒔,𝒅𝒅)
𝒃𝒃, 𝒔𝒔, 𝒓𝒓

𝑿𝑿𝑻𝑻𝒐𝒐𝑬𝑬 = 𝐿𝐿𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿(𝑿𝑿𝒊𝒊𝒏𝒏) 𝝈𝝈𝒊𝒊𝒏𝒏𝒏𝒏 ,𝜸𝜸𝒊𝒊𝒏𝒏
𝒃𝒃, 𝒔𝒔,𝒅𝒅

𝒏𝒏 × 𝒃𝒃, 𝒔𝒔
𝑿𝑿𝒊𝒊𝒏𝒏

Figure 10. Left: Overview computation flow of LoRA training (use RoBERTa transformer block). The figure also specifies the location of
buffered activation and indicates the scopes of the two hybrid mechanisms. Right: Modeling of buffered activations during training (take
RoBERTa-Base as an example). We enumerate shape (marked in "()") and bit-width (marked in "[]") of related operators. Operators
that do not need buffered activations like residual connection and reshaping are not listed for simplicity. Some small chunks of buffered
activation have a negligible share of memory, so we do not compress them and they are marked gray in the table. d: hidden dimension; df :
FFN’s hidden dimension; s: training sequence length; h: head dimension; w: original bit-width of buffered activation; wq: quantization
bit-width.

W

GELU

W

GELU

forward stage: backward stage:

A

B

A

B

Kernel Fusion

𝑿𝑿𝑼𝑼 𝑿𝑿𝑼𝑼

𝑿𝑿𝑼𝑼𝑨𝑨𝑼𝑼

𝑿𝑿𝑼𝑼𝑾𝑾𝑼𝑼 𝑿𝑿𝑼𝑼𝑾𝑾𝑼𝑼 + 𝑿𝑿𝑼𝑼𝑨𝑨𝑼𝑼𝑩𝑩𝑼𝑼

𝑿𝑿𝑫𝑫

𝑿𝑿𝑼𝑼𝑨𝑨𝑼𝑼

𝑿𝑿𝑫𝑫

Kernel Fusion

compress decompress

Figure 11. Operator fusion of FFN layer in RoBERTa.

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

Baseline
HyC-LoRA@2bit
HyC-LoRA@2bit+intra+inter
HyC-LoRA@4bit
HyC-LoRA@4bit+intra+inter

Figure 12. Loss convergence speed under different settings of
TinyLlama-v1.1’s fine-tuning on GSM8K.

HyC-LoRA: Memory Efficient LoRA Fine-tuning with Hybrid Activation Compression

Table 9. Theoretical buffered activation memory consumption of different training methods. d: hidden dimension; df : FFN’s hidden
dimension; s: training sequence length; h: head dimension; w: original bit-width of buffered activation; wq: quantization bit-width; x%:
Fine-tuned transformer layer ratio for SparseBP method and sparsity ratio for BackRazor method. We freeze the o proj, down proj for
SparseBP method. We save a 1-bit bitmap additionally for BackRazor method.

Method RoBERTa arch. Llama-2 arch.

Baseline(QLoRA) (Dettmers et al., 2024) (8d+ 2df)bsw (8d+ 4df)bsw
LoRA-FA (Zhang et al., 2023) (5d+ df)bsw (5d+ 3df)bsw

SparseBP@x% (Zhu et al., 2023) (7d+ df)bsw × x% (7d+ 3df)bsw × x%
BackRazor@x% (Jiang et al., 2022) (8d+ 2df)bs(w × x%+ 1) (8d+ 4df)bs(w × x%+ 1)

HyC-LoRA@wqbit (8d+ 2df)bswq (8d+ 4df)bsw
HyC-LoRA@wqbit+intra+inter (8d+ df)bswq (8d+ 2df)bsw

Table 10. Theoretical buffered activation memory reduction ratio of different models and training configurations. The compressed ratio is
calculated using the model parameters in Table 7 and the formula in Table 9.

Method RoBERTa-Base Llama-2-7B

Baseline(QLoRA) (Dettmers et al., 2024) 1.00× 1.00×
LoRA-FA (Zhang et al., 2023) 1.78× 1.43×

SparseBP@50% (Zhu et al., 2023) 2.91× 2.49×
SparseBP@25% (Zhu et al., 2023) 5.82× 4.98×

BackRazor@20% (Jiang et al., 2022) 3.81× 3.81×
BackRazor@10% (Jiang et al., 2022) 6.15× 6.15×

HyC-LoRA@4-bit 4.00× 4.00×
HyC-LoRA@4-bit+intra+inter 5.33× 5.61×

HyC-LoRA@2-bit 8.00× 8.00×
HyC-LoRA@2-bit+intra+inter 10.67× 11.21×

A. Artifact Appendix
A.1 Abstract
The artifact appendix provides the dataset, code, proce-
dure, hyper-parameter settings, etc. needed to reproduce
the HyC-LoRA project. The overall training framework is
implemented by PyTorch, some of the operators are imple-
mented by OpenAI Triton, and can be run on the Linux
operating system with NVIDIA GPU support. This arti-
fact appendix evaluates the HyC-LoRA project’s code avail-
ability, algorithmic effectiveness, and system performance.
Github project: https: // github. com/ Ther-nullptr/
HyC-LoRA-release

A.2 Artifact check-list (meta-information)
• Program: Python 3.10+
• Models: Checkpoints from huggingface: llama-2-7b (https:
//huggingface.co/meta-llama/Llama-2-7b-hf), llama-
2-13b (https://huggingface.co/meta-llama/Llama-2-13b-hf),
mistral-7b (https://huggingface.co/mistralai/Mistral-7B-v0.
1), roberta-base (https://huggingface.co/FacebookAI/
roberta-base)

• Dataset: Auto download from huggingface: GSM8K, Wikitext-
2, GLUE; Download use script: Math10K, SVAMP, mawps,
AQuA; Download from google drive: redpajama, proof-pile,
PG-19. The download path can be seen in Github project.

• Run-time environment: Ubuntu 20.04 LTS, CUDA Version
12.0+, PyTorch version 2.0+

• Hardware: CPU: x86 architecture; GPU: NVIDIA GPU (Am-
pere arch. is recommend) with 16GB+ memory.

• Execution: See the README.md in attachments provided
• Metrics: loss, accuracy, memory consumption, throughput
• Output: training log, task accuracy/perplexity, checkpoints
• Experiments: See A.5 Experiment workflow, Evaluation

and expected result part.
• How much disk space required (approximately)?: 200GB+
• How much time is needed to prepare workflow (approxi-

mately)?: Download the checkpoints/datasets: 30min; Build
the Python environment: 10min.

• How much time is needed to complete experiments (approx-
imately)?: Full experiment: about 2-3 days. Demo experiment:
about 2h.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License 2.0
• Data licenses (if publicly available)?: MIT license
• Workflow framework used?: No

A.3 Description
A.3.1 How delivered
The artifact is distributed as an environment configuration man-
ual. A companion GitHub repository https://github.com/

Ther-nullptr/HyC-LoRA-release contains:
• Source code
• Detailed descriptions of scripts
• Links of models and datasets

A.3.2 Hardware dependencies
• CPU: x86 architecture. Since the computation in this project

mainly relies on the GPU, there is no special requirement for
CPU performance. It is worth noting that although some of our
experiments were conducted on devices with arm architecture
(e.g., NVIDIA Jetson Orin series), the open-source repository
code is mainly compatible with x86 architecture.

• GPU: Proved GPUs: NVIDIA A800 80GB PCIe, NVIDIA
RTX 6000 Ada, NVIDIA GeForce RTX 3090. Other GPUs
were not tested, but might work if meeting the following con-
ditions: ❶ HBM: 16GB+ is recommended, more specific min-
imum memory requirements can be obtained from Figure 8 in
the original paper. ❷: Arch: Ampere or Hopper architecture for
bf16/tf32 tensor core support.

• Disk: 200GB+: models (about 70GB), datasets (about 50GB)
and rest for generated checkpoints.

A.3.3 Software dependencies
See Quick Start part in README.md of Github Project.

A.3.4 Datasets
• GSM8K: experiments for Table 3
• Wikitext2: experiments for Table 3
• Math10K, SVAMP, mawps, AQuA: experiments for Table 4
• redpajama, proof-pile, PG-19: experiments for Table 5
• GLUE: experiments for Table 6

A.4 Installation
See Quick Start part in README.md of Github Project. One possi-
ble organization of the directory tree is as follows:

Listing 1. dir tree
.
|-- figures # Thesis illustration
| |-- main -intra -inter.jpg
| |-- main -intra -inter.pdf
|-- models # Model structure implementation
| |-- llama
| |-- llama_flash_attn
| |-- mistral
| |-- roberta
| |-- utils
| |-- compute_utils.py
|-- operators # Triton kernels for certain operator
| |-- compress_function_kernel.py
.. ..
| |--

triton_fuse_lora_silu_hadamard_forward_kernels.py
|-- ckpt # Needs to be created on your own , for

placing models checkpoints (e.g. llama -2-7b)
|-- README.md
|-- requirements.txt # Dependency libraries required

by the project
|-- download_dataset.sh # Download the datasets for ‘

run_multitask.sh‘
|-- run_glue.py
|-- run_glue.sh
|-- run_gsm8k.py # main process of gsm8k experiment
|-- run_gsm8k.sh # script for running gsm8k

experiment
|-- run_longseq.py
|-- run_longseq.sh
|-- run_multitask.py
|-- run_multitask.sh
|-- run_wikitext2.py
|-- run_wikitext2.sh

1

https://github.com/Ther-nullptr/HyC-LoRA-release
https://github.com/Ther-nullptr/HyC-LoRA-release
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://github.com/Ther-nullptr/HyC-LoRA-release
https://github.com/Ther-nullptr/HyC-LoRA-release

|-- utils # utils functions
|-- accuracy
|-- glue
|-- longseq
|-- math_10k

A.5 Experiment workflow, Evaluation and expected
result

Full experiments require a lot of arithmetic and time. If the device
has less arithmetic or limited time, try demo experiments.

(E1) Basic Algorithm Experiments – demo [5 min human-
time and about 10 min compute-time]

• Preparation: ❶ Setup the environment following Quick Start
part in README.md. ❷ Download the models on huggingface,
e.g., llama-2-7b (https://huggingface.co/meta-llama/
Llama-2-7b-hf), and put the model dir to a certain position
e.g., ckpt/. ❸ Change the model name and model dir config
in run gsm8k.sh to your own path like:
model_name=<your model name >
model_dir=<your model dir >
model_name_full=${model_dir }/${model_name}

• Execution: Run bash run gsm8k.sh

• Results:
❶ After launch, the configuration of the core parameters will
be printed on the terminal in green color:
********** HycLora Configuration **********
[INFO] HycLora type: intra_inter
[INFO] Iteration Threshold: 5
[INFO] Softmax Outlier Ratio: 0.05
[INFO] Layernorm Outlier Ratio: 0.005
[INFO] Quantization Bit: 2

❷ After a few minutes, a progress bar recording the training
process and degrading model loss record will appear on the
terminal, proving that the model is training properly (then the
program can be canceled manually):

{’loss ’: 1.0592 , ’grad_norm ’:

0.158203125 , ’learning_rate ’:

3.529411764705882e-05, ’epoch ’:

0.02}

{’loss ’: 0.9622 , ’grad_norm ’: 0.234375 ,

’learning_rate ’: 7.058823529411764e

-05, ’epoch ’: 0.04}

{’loss ’: 0.682 , ’grad_norm ’: 0.375 , ’

learning_rate ’:

0.00010588235294117647 , ’epoch ’:

0.06}

{’loss ’: 0.5484 , ’grad_norm ’:

0.1689453125 , ’learning_rate ’:

0.00014117647058823528 , ’epoch ’:

0.09}

2%|-- |

49/2802 [02:48 <1:19:14 , 1.73s/it]

• Notes: The first time you start the programme, it will automat-
ically download the required datasets, which may take a few
minutes, so please ensure you have a good internet connection.
The program may display the following error if your network
encounters an issue. In this case, please check your network
connection:

Traceback (most recent call last):
File "/home/abc/HyC -LoRA -release/run_gsm8k.py",

line 569, in <module >
train_and_eval ()

...
File "/home/abc/anaconda3/envs/hyclora/lib/

python3 .10/site -packages/datasets/load.py",
line 1780, in dataset_module_factory

raise ConnectionError(f"Couldn ’t reach ’{path
}’ on the Hub ({type(e).__name__ })")

ConnectionError: Couldn ’t reach ’gsm8k ’ on the Hub
(SSLError)

(E2) Basic Algorithm Experiments – full [5 min human-time
and about 1.5 h compute-time on A800 / about 3 h compute-time
on 3090]

• Preparation: Same as E1.

• Execution: Same as E1.

• Results:
❶ When the model has been trained, the terminal will display a
summary of the training phase:

{’loss ’: 0.145 , ’grad_norm ’: 0.296875 , ’

learning_rate ’: 4.8529260605706386e

-08, ’epoch ’: 5.95}

{’loss ’: 0.1338 , ’grad_norm ’:

0.27734375 , ’learning_rate ’:

1.4439004654120956e-08, ’epoch ’:

5.97}

{’loss ’: 0.1266 , ’grad_norm ’:

0.30859375 , ’learning_rate ’:

4.0108971875452144e-10, ’epoch ’:

5.99}

{’train_runtime ’: 4772.7021 , ’

train_samples_per_second ’: 9.395, ’

train_steps_per_second ’: 0.587 , ’

train_loss ’: 0.28048270989706653 , ’

epoch ’: 6.0}

❷ After that, the script will step into evaluation stage. Final
evaluation result will be displayed on the terminal:

prediction [18.0 , 3.0, ..., 11.0]

ground truth [18.0, 3.0, ..., 14.0]

adapter: None | GSM8K test accuracy:

29.42% | full precision: False

❸ A .log file will be generated in exp results gsm8k/,
recording the configuration of the experiment, the training pro-
cess and the evaluation process.

• Corresponding Content: Table 3: Algorithm performance ...
(the same as below) in original paper.

• Notes: If you want to complete the flow of the full experiment
while saving time, you can modify the num train epochs

config in run gsm8k.sh.

(E3) Reset Configurations – demo/full [time consumptions
same as E1]

• Preparation: Same as E1.

• Execution:
❶ Modify the core HyC-LoRA hyper-parameters in run gsm8k.sh

script:

2

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf

use_hyclora=True

layer_type=intra_inter

iteration_threshold =5

softmax_outlier_ratio =0.05

layernorm_outlier_ratio =0.005

q_bit=2

The exact meaning of the hyper-parameters can be found in the
Configuration Guide part in README.md.
❷ Rerun bash run gsm8k.sh

• Result:
Same as E1 and E2. The training and evaluation logs change
with configuration changes.

• Corresponding Content: Table 3: Algorithm performance ...
(the same as below) in original paper.

(E4) Memory Consumption Evaluation [5 min human-time
and about 5 min compute-time]

• Preparation: Same as E1 (for run memory throughput.sh).

• Execution:
❶ Modify the evaluation config and the core HyC-LoRA hyper-
parameters in run memory throughput.sh script:

#! evaluation config

evaluation sequence length

seq_len =512

evaluation batch size

per_device_train_batch_size =4

whether to evaluate memory or

throughput

evaluate_memory=True

evaluate_throughput=False

#! HyCLoRA core parameters

use_hyclora=True

layer_type=intra_inter

iteration_threshold =5

softmax_outlier_ratio =0.05

layernorm_outlier_ratio =0.005

q_bit=2

❷ Run bash run memory throughput.sh

• Result:
The profiled memory consumption should be printed in the
terminal:

0%| | 0/2802 [00:00<?,

?it/s]

torch.cuda.memory_allocated (static):

4327.07 MiB

torch.cuda.memory_allocated: 6045.48 MiB

torch.cuda.memory_allocated: 6134.20 MiB

The program will automatically stop after two iterations.

• Corresponding Content: Figure 8: Measured Memory... in
original paper.

• Notes: The ”(static)” part means the static memory alloca-
tion during training, including the weight and optimizer state;

The subsequent data represent the dynamic peak memory al-
location after considering the buffered activation memory con-
sumption. The two above can be subtracted to get the buffered
activation memory usage.

(E5) Throughput Evaluation [5 min human-time and about 10
min compute-time]

• Preparation: Same as E1.

• Execution: Modify the evaluation config and the core HyC-
LoRA hyper-parameters in run memory throughput.sh script:

whether to evaluate memory or

throughput

evaluate_memory=False

evaluate_throughput=True

• Result: The training throughput data can be read from the right
side of the progress bar:

1%|- |20/2802[02:06 <1:56:26 ,2.51s/it]

1%|- |30/2802[02:31 <1:55:34 ,2.50s/it]

1%|-- |40/2802[02:56 <1:54:51 ,2.50s/it]

2%|-- |49/2802[03:18 <1:54:23 ,2.49s/it]

In the original paper’s setting, per iteration has 16 sequences
(per device train batch size=4 and gradient accu steps=4),
so the sequence per second can be calculated as: 16

second per iteration
.

After the data has been read, the program can be canceled man-
ually.

• Corresponding Content: Figure 7: Throughput... in original
paper.

• Notes: Due to the cold start and short calibration phase of the
machine, we strongly recommend reading the throughput data
after the operation has stabilized (after about 20-30 iterations).

A.6 Experiment customization
None.

A.7 Notes
None.

A.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-badging

3

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging

	mlsys_2024_arxiv_new__appendix_
	MLSys_25_AE_Yujin
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow, Evaluation and expected result
	Experiment customization
	Notes
	Methodology

