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Abstract

We present a Bayesian value-iteration framework for contextual multi-armed bandit
problems that treats the agents posterior distribution for the pay-off as the state of
the Markov Decision Process. We apply finite-dimensional priors on the unknown
reward parameters, and the exogenous context transition kernel. Value iteration on
the belief-MDP yields an optimal policy. We illustrate the approach in an airline
seat-pricing simulation. To address the curse of dimensionality, we approximate
the value function with a dual-stream deep learning network and benchmark our
deep value iteration algorithm on a standard contextual bandit instance.

1 Introduction and background

The multi-armed bandit (MAB) problem, first posed by [2], captures the tension between learning
and earning when decisions must be taken sequentially. In the classical, context-free formulation,
index-based optimal solutions exist. Real applications, however, are rarely independent over arms
and context-free. Once such coupling between arms or context is present, the separate-index trick
breaks down. To still find an optimal policy, we treat all uncertainty arm payoffs and exogenous
context dynamics in a fully Bayesian manner, so the agents belief becomes the state; learning then
reduces to an MDP solved by value iteration. We next formalize the belief-MDP and show how value
iteration and its deep approximation are implemented. All code and configuration files to reproduce
the experiments and figures are available at [17] (commit and configurations).

1.1 Background

Classical approaches - such as ε-greedy ([6]), Upper Confidence Bound (UCB, starting from [5],
then described more specifically in [7]), and Thompson Sampling (TS, [1]) - use heuristic rules to
balance exploration and exploitation and are computationally efficient, but typically do not guarantee
optimal performance. Optimal policies can be obtained using methods like the Gittins index ([3,
4, 8]), which can be computationally fast, but only works for context-free MAB problems. The
literature on contextual MAB spans a diverse range of approaches with many contributions in recent
years, including comprehensive overviews and benchmarks of deep learning bandit algorithms ([9]),
algorithms that adapt TS to the context and add optimistic bonuses ([16] and [13]), adversarial
linear contextual bandits ([14]), reductions to linear bandits to achieve competitive regret bounds

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.



([12]), frequentist uncertainty measures combined with deep learning ([10]), Kalman filtering with
low-dimensional parameter subspaces ([11]), and tree ensembles to incorporate context alongside
UCB/TS-style exploration ([15]).

1.2 Our contribution

1. Belief-MDP formulation including pay-off parameters and an exogenous context kernel.

2. Contextual Value Iteration (CVI): exact value iteration on a smaller belief grid.

3. Deep Value Iteration (DVI): a dual-stream deep value approximation to scale to larger
problems.

2 Methodology

2.1 Value iteration in the contextual Bayesian MAB setting

We consider a contextual MAB problem modeled in a Bayesian manner. Let A be a finite action set
(arms), S the state space where each state s ∈ S encodes the current estimates for the parameters
of the payoff distribution, and C a (finite) context space. We assume ct+1 ∼ µξ( · | ct) (exogenous,
independent of actions). So µ defines the distribution of the next context state, and does not depend on
the action chosen. Define the augmented state space X = S×C with x = (s, c). Let R : X×A → R
be a bounded reward function and P (s′, c′ | (s, c), a) the transition probability from (s, c) to (s′, c′)
upon playing a, as determined by the Bayesian update. Note that we allow some underlying parameter
θ that parametrizes the pay-off distribution as rt ∼ Dθ(ct, at). With discount factor γ ∈ (0, 1), the
value function satisfies

V (s, c) = max
a∈A

{
R(s, c, a) + γ E

[
V (s′, c′) | s, c, a

]}
.

Value iteration converges to the unique fixed point V ?; the greedy policy a?(x) =
argmaxa∈A{R(x, a) + γ E[V ?(x′) | x, a]} maximizes expected discounted reward with respect to
the discretized belief-MDP we solve here. The posterior update inside V already optimally weighs
information gain against immediate revenue, so no explicit exploration heuristic is required. This is
the Contextual Value Iteration (CVI) algorithm.

2.2 Deep value iteration via function approximation

To address the curse of dimensionality inherent in tabulating V on large belief grids, we approximate
the value function using a neural network that closely follows the theoretical structure. We employ a
dual-stream architecture that explicitly separates the contribution from arm uncertainty and contextual
information: the base stream embeds each arms belief parameters and aggregates across arms before
passing through an MLP to yield a base value; in parallel, the context stream projects the context
through its own MLP to produce a context-dependent correction. The two outputs are concatenated
and passed through a final fusion block that learns a non-linear combination, yielding the overall
value estimate. Offline, the network is pre-trained using randomly sampled states (with zero context)
to robustly learn the base value function; afterwards, the base stream is frozen. In the online phase, a
warm-up stage with actual transitions (chosen arm, context, reward) learns the context corrections,
after which experience replay with mini-batch updates stabilizes temporal-difference learning. This
is the Deep Value Iteration (DVI) algorithm.

3 Results

3.1 Airline seat pricing (Poisson GLM).

We evaluate CVI on a small but complete pricing problem to assess the approach in 2.1. We simulate
an airline that needs to decide the price for a seat, where there are multiple types of flights (the
context). The price used can be seen as the action, or arm, chosen.
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Model At each round t we observe a discrete context ct ∈ {0, 1}, with c = 0 denoting leisure and
c = 1 business. We choose a price at ∈ P from a small finite grid and realize seats sold

yt ∼ Poisson(λθ(ct, at)) , λθ(c, a) = exp
(
θ>φ(c, a)

)
,

with revenue rt = at yt. Context evolves exogenously via a Markov kernel µ(c′ | c).
To capture that business is less price elastic, we use the 4-dimensional feature map

φ(c, a) =
[
1, a, 1{c=1}, 1{c=1} · a

]>
,

with corresponding parameter names θ =
[
θ0, θp, θb0, θbp

]t
. This gives the log-intensity

log λθ(c, a) = θ0 + θp · a+ θb01{c=1}+ θbp1{c=1} · a so that leisure has logintensity θ0 + θpa
and business θ0 + θb0 + (θp + θbp)a.

Belief and planning We maintain a Gaussian belief on θ: θ ∼ N (m,Σ) and update the mean with
a one-step Laplace/EKF correction, while keeping Σ fixed to the prior covariance Σ0 to keep the
belief state finite. We discretize m on a tensor grid M centered at the prior mean and define the
belief state as (m, c) ∈ M× {0, 1}. Running value iteration on this finite state space yields a table
V ∗ and a greedy policy π∗(m, c) that we use online by look-up.

Experimental setup True parameters are chosen to yield realistic elasticities. The agents prior is
close but miscalibrated on the slopes to permit learning. We grid each coordinate of m with 5 points
over ±1.5 prior standard deviations (a 5×5×5×5 grid), set γ = 0.99, truncate the Poisson support at
ymax = 12, and jitter the initial belief to avoid identical early actions across episodes. We compare
against contextual ε-greedy, contextual Thompson sampling, LinUCB, LinTS, and Tree-UCB using
the same GLM and features. Each method is run for 2500 episodes of 500 rounds. We report total
expected regret and mean cumulative expected regret, where we compare against an oracle that knows
all parameters and selects a∗t (xt), so results and confidence intervals reflect expectations under the
data-generating process and leave out realized noise.

Results Figure 1a plots the total expected regret with a 95%-confidence interval, and figure 1c
shows the cumulative expected regret over time. CVI outperforms benchmark algorithms by a
factor of ≈ 1.7× in total expected regret, with comparable variance across runs. Wall-clock on a
MacBook Pro (M1) laptop: computing V ∗ once takes ≈170 seconds; the subsequent online phase
(all 2500×500 decisions) takes ≈ 50 seconds, compared to Contextual ε-Greedy: ≈ 40 s, Contextual
TS: ≈ 110 s, LinTS: ≈ 90 s, LinUCB: ≈ 60 s, Tree-UCB: ≈ 1130 s.

3.2 Logistic Contextual Bandit simulation

We evaluate Deep Value Iteration (DVI) on a synthetic but standardized contextual bandit in which
the dominant statistical challenge is learning arm payoffs under uncertainty rather than context
classification. We adopt standard linear/ensemble baselines representative of contextual bandit
practice.

At each round t, a ddimensional context xt∼N (0, Id) is observed and an arm at ∈ {1, . . . ,K} is
chosen. The Bernoulli reward obeys a logistic GLM with a shared slope and perarm intercepts:

Pr(rt=1 | xt, at=a) = σ
(
αa + x>

t β
)
, σ(z) = 1

1+e−z .

Initialization follows a fixed generative recipe (same across methods): arm effects αa
i.i.d.∼ N (0, σ2

α)
with σα = 1.0, and a shared slope β drawn from N (0, Id) and then rescaled to ‖β‖2 = 0.4σα.
Because x ∼ N (0, Id), the contextual term x>β is N (0, ‖β‖22) with standard deviation 0.4, i.e.,
context contributes non-trivially, but is smaller than the intercept variability. This makes the problem
armcentric (learning the unknown {αa} is crucial), while still allowing the optimal arm to depend on
x.

Setup and metrics We use K=20 arms, d=10 context dimensions, T=5000 rounds, averaged over
50 independent seeds. Performance is reported as expected cumulative regret against a contextual
oracle that knows (α, β) and plays a?t (xt) = argmaxa σ(αa + x>

t β) at every round. We also report
end-to-end wall-clock time.
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(a) Seat pricing (Poisson GLM) - expected regret
over 2500 episodes, 500 rounds each. CVI shows
≈ 1.7× lower expected regret vs LinUCB, LinTS
and Tree-UCB.

(b) Contextual Bandit (K=20, d=10, T=5000,
50 seeds): Error bars: 95%-confidence interval.
DVI shows ≈ 2× lower expected regret vs Lin-
UCB, LinTS and Tree-UCB.

(c) Seat pricing (Poisson GLM) - mean cumu-
lative expected regret over 2500 episodes, 500
rounds each. Shaded band (95% confidence in-
terval) shown only for CVI for readability.

Figure 1: Results of CVI and DVI benchmarks.

Compared methods We compare DVI to strong contextual bandit baselines: LinUCB, LinTS, and
Tree-UCB. For linear/GLM methods we supply the hybrid feature map φ(x, a) = [x; ea ], so that all
baselines can represent perarm fixed effects (intercepts) alongside the shared slope on x.

Results Figure 1b summarizes average final expected cumulative regret with a 95%-confidence
interval. DVI attains substantially lower regret than the baselines (about 2× improvement on
average), demonstrating that planning with a value function over belief states can efficiently trade off
exploration and exploitation in this arm-uncertainty regime. DVIs across-seed variability is larger,
which can follow from the nonconvex value-function training and approximate planning, but the
mean performance advantage is clear. Online wall-clock on a MacBook Pro (M1): DVI ≈ 950 s,
LinUCB ≈ 20 s, LinTS ≈ 30 s, Tree-UCB ≈ 970 s, so DVI has a relatively longer run-time, but
remains manageable.

4 Conclusion and discussion

By defining the state of a contextual MAB as its posterior estimates, the problem becomes an MDP
and value iteration yields an optimal policy (for the discretized belief-MDP). Context-free index
policies arise as special cases. We have shown that CVI works on a practical pricing simulation, and
that a dual-stream deep learning approximation makes the approach tractable at larger scale. The
approach remains sensitive to priors and suffers the curse of dimensionality for large exact grids
- motivating function approximation - yet offers a practical, model-based alternative to heuristic
exploration with competitive empirical performance.
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