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Abstract

The integration of large language models (LLMs) and scientific knowledge graphs
(SciKGs) is emerging as a powerful paradigm in AI for science. This survey
examines their bidirectional synergy: LLMs accelerate SciKG construction via
automated extraction, completion, and maintenance, while SciKGs make LLMs
more factual and explainable and strengthen scientific reasoning and comprehen-
sion. We organize the survey around these two directions and adopt a task-centered
framework that aligns technical methods with scientific objectives. Building on this
framework, we (i) chart techniques that automate and sustain SciKG construction
with LLMs, (ii) systematize how SciKGs ground and guide LLMs to improve fac-
tuality, explainability, and reasoning, (iii) synthesize representative applications in
biomedicine, chemistry, and materials, and (iv) outline open problems and research
directions around knowledge consistency and conflict handling, temporal modeling
and updating, scalable retrieval and inference, and rigorous evaluation. This work’s
insights recast LLMs and SciKGs as complementary components of a dynamic,
self-improving knowledge infrastructure for scientific discovery, providing a clear
foundation for building grounded, transparent, and knowledge-driven models in
high-stakes scientific domains.

1 Introduction

The rapid advancement of large language models (LLMs) has transformed the landscape of artificial
intelligence in science, enabling new forms of hypothesis generation, literature integration, and
experimental planning [1–5]. However, there are major barriers to the reliable application of LLMs
in high-stakes scientific areas due to their inherent shortcomings, especially their propensity for
hallucinations, lack of verifiability, and opacity in reasoning [6–9]. At the same time, scientific
knowledge graphs (SciKGs), which encode structured, curated, and interlinked facts, offer a principled
foundation for trustworthy knowledge representation[10–14]. Yet, their construction and maintenance
remain labor-intensive and often lag behind the pace of scientific discovery[15, 16].

A growing body of work suggests that the solution lies not in choosing between LLMs and KGs, but
in synergizing them[17–21]. This survey aims to explore the bidirectional synergy between LLMs
and SciKGs, a paradigm in which each component compensates for the other’s weaknesses and
amplifies its strengths (Figure 1). On one hand, LLMs serve as powerful engines for automating the
construction and evolution of SciKGs: through domain-adaptive pre-training on scientific corpora and
end-to-end pipeline design, they extract entities and relations from unstructured text, complete missing
links, and dynamically update knowledge bases[22–26]. On the other hand, SciKGs act as grounding
mechanisms for LLMs, providing structured, verifiable facts that reduce hallucinations, enhance
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Figure 1: Illustration of the bidirectional synergy between scientific knowledge graphs (SciKGs)
and large language models (LLMs). SciKGs serve as structured, scalable repositories of scientific
knowledge, while LLMs bring robust natural language understanding, generation, and generalization.
Their integration creates a synergistic framework that enhances knowledge discovery by merging
structured querying with semantic reasoning, improves research efficiency through automated knowl-
edge extraction from scientific literature, and strengthens decision-making support by leveraging
detailed background knowledge and advanced inference.

interpretability, and enable complex, multi-step scientific reasoning through retrieval-augmented
generation (RAG) and knowledge-guided prompting[27–34].

This dual role, with "SciKGs for LLMs" and "LLMs for SciKGs", represents a fundamental shift
in how we approach scientific knowledge engineering. It moves beyond static, manually curated
knowledge bases and ungrounded generative models toward a dynamic, self-improving ecosystem
of knowledge creation and utilization. This integration is further enhanced by multimodal scientific
data, including text, images, and molecular structures. In these cases, LLMs work as adaptable
interfaces for knowledge extraction and reasoning, while SciKGs integrate disparate sources to
facilitate cross-modal understanding[35, 36].

In this survey, we provide a comprehensive and structured review of this emerging synergy. We
examine both directions of the interaction: (1) how LLMs empower the automated construction,
completion, and maintenance of SciKGs; and (2) how SciKGs enhance the reliability, accuracy,
and interpretability of LLMs in scientific tasks. We analyze key methodologies, including prompt
engineering and retrieval mechanisms, and discuss real-world applications across biomedicine,
chemistry, and materials science. We also critically assess challenges such as knowledge consistency,
efficiency, and scalability, and outline future directions for building more robust and trustworthy
LLM systems for scientific discovery.

2 LLMs for SciKGs

LLMs are reshaping the paradigm of SciKG construction by automating and enriching the integration
of knowledge from heterogeneous sources. This section outlines the dual function of LLMs in this
process (Figure 2): (a) extracting and aligning entities, relations, and facts across heterogeneous sci-
entific data and achieving end-to-end construction; and (b) enhancing the SciKG through knowledge
completion, reasoning, and automated maintenance.
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Figure 2: LLMs for SciKGs. (a) LLMs facilitate automated information extraction from scientific
databases; (b) LLMs empower automated completion, reasoning, and maintenance.

2.1 LLMs enhance scientific information extraction

Named Entity Recognition (NER) and Relation Extraction (RE) are foundational steps in SciKG
construction. Traditional methods rely on rule-based systems or feature engineering, which require
extensive manual design and domain knowledge [37–41]. These approaches struggle with the
terminological diversity, syntactic complexity, and semantic nuance of scientific texts, limiting
scalability and generalization. LLMs address these challenges through deep semantic understanding
and contextual reasoning[42–46]. They can automatically identify entities and relations from diverse
scientific sources, including published literature, patents, public domain-specific databases, and raw
experimental records, significantly improving extraction accuracy, coverage, and efficiency.

Pre-trained language models such as BERT [47] and T5 [48] capture rich linguistic representations
and serve as strong backbones for scientific information extraction. Through domain-adaptive
pre-training on large corpora of scientific text, such as PubMed and arXiv, these models acquire
a deeper understanding of domain-specific terminology and context. When further fine-tuned on
labeled datasets, they achieve high accuracy and scalability in NER and RE. For instance, BioBERT
[22], a domain-adapted version of BERT, achieves state-of-the-art performance in biomedical NER
and RE after fine-tuning. Similarly, MatSciBERT [49] demonstrates strong efficacy in tasks such
as chemical component recognition when adapted to downstream tasks. These models show that
the combination of domain-adaptive pre-training and task-specific fine-tuning enables precise and
generalizable scientific knowledge extraction.
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Building on these advances, modern frameworks pursue fully end-to-end SciKG construction with
automated NER and RE as the core, integrated into a unified pipeline that turns raw text directly into
structured graphs. Unlike modular systems (which separate entity extraction, relation identification,
and graph assembly, risking error propagation), these approaches use LLMs to jointly optimize NER
and RE while organizing results into graphs in one pass. For example, ReguloGPT [50] leverages
GPT-4 and structured prompting to simultaneously identify entities (e.g., m6A regulators, cancer
types via NER) and extract N-ary relations (e.g., regulatory interactions via RE), then builds the
m6A-KG from 400 PubMed titles. Similarly, Ma et al. [24] combine prompt engineering and
chain-of-thought (CoT) reasoning to anchor polymer retrosynthesis SciKG construction to NER and
RE: the LLM first recognizes entities (e.g., monomers, catalysts, reaction types) from scientific text,
then extracts directional relations (e.g., "monomer A reacts with monomer B under catalyst C to form
polymer D"), and finally maps these entity-relation pairs directly to reaction graphs. These works
reflect a paradigm shift: from "extract-then-integrate" (separate NER/RE then graph assembly) to
"generate-as-structure", where LLMs act as unified compilers.

2.2 LLMs empower scientific knowledge completion, reasoning, and maintenance

In the construction of SciKGs, LLMs serve as effective technological drivers for overcoming three
principal challenges of conventional KGs: the incompleteness of triples, delays in the integration
of new knowledge, and the inefficiency of manual upkeep by operating as advanced knowledge
completion instruments, intelligent reasoning engines for discovery, and automated maintenance
systems[23, 51–53]. These features jointly enhance the completeness, accuracy, and dynamic
adaptability of SciKGs, hence maintaining their cutting-edge quality and reliability.

LLMs excel at identifying missing facts in SciKGs through knowledge graph completion (KGC),
including entity prediction, relation prediction, and triple classification. Two primary paradigms
dominate: Predictor as Encoder (PaE) and Predictor as Generator (PaG) [17]. The PaE technique
optimizes and evaluates using prediction heads on the LLM encoding representation; nevertheless,
it is constrained by resource utilization and generalization capacity. Conversely, the PaG technique
leverages the generative capacity of LLMs to produce absent entities or relationships without necessi-
tating supplementary parameter training, rendering it appropriate for novel entity identification in
open-world contexts. For example, DDI-GPT[54] conceptualizes DDI as a natural language gener-
ation task, integrating data such as SMILES structures, targets, and pathways to formulate prompt
templates, thereby directing the model to identify interaction types (e.g., synergistic or antagonistic),
thus proficiently addressing critical deficiencies in drug SciKGs. Similarly, KGAREVION [23]
dynamically generates candidate triples in response to biomedical queries and refines them through
verification and correction modules, enabling robust reasoning over incomplete knowledge.

LLMs not only thrive in KGC tasks but also demonstrate diverse capabilities as fundamental reasoning
engines for scientific knowledge discovery, including pattern recognition, analogical reasoning,
causal inference, and multi-hop reasoning. These capabilities allow LLMs to discern hidden linkages
within complex, unstructured scientific literature and formulate novel insights that can be structured
and integrated to enhance the completeness and depth of SciKGs. For instance, BioGPT [55]
leverages large-scale pattern recognition to autonomously identify potential associations between
pharmaceuticals and diseases (e.g., "Aspirin → reduced risk → heart attack"). These co-occurrence-
derived hypotheses, while emerging from text, can serve as candidate triples for enriching biomedical
SciKGs. In chemistry, StructChem [56] employs a multi-step prompting technique to guide LLMs in
systematically extracting products from reactants, ensuring adherence to chemical principles through
a self-validation process. The resulting reaction pathways can be directly mapped to chemical KG
schemas, facilitating automated KG population. In materials science, LLMs in MKG creation employ
analogical reasoning via semantic similarity to generate novel material-application combinations
[57], showcasing the capacity for generalization from the known to the unknown. Similarly, Bai et al.
[27] demonstrate causal reasoning capabilities of LLMs in analyzing ferroelectric materials, using
ChatGPT to elucidate relationships between synthesis conditions and material properties. When
formalized, such analogical and causal insights can be transformed into structured knowledge to
expand and deepen SciKGs.

LLMs also exhibit distinct benefits in the automated maintenance and updating of SciKGs, facili-
tating the ongoing evolution and quality assurance of KGs. Due to the highly dynamic and varied
characteristics of scientific information, conventional manual maintenance approaches encounter
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considerable constraints regarding timeliness and scalability. LLMs, with their robust semantic
comprehension and creation skills, offer systematic, automated assistance for SciKGs. Initially,
LLMs are capable of detecting and rectifying semantic discrepancies and factual inaccuracies inside
SciKGs. The SAC-KG framework [58] employs multi-dimensional validation methods to assess the
numerical rationality of triples and rectify logical consistency, thereby significantly improving the
quality and coherence of the SciKG. Furthermore, LLMs can semantically match newly retrieved
things with pre-existing knowledge. NetMe 2.0 [59] employs a tailored entity linker, OntoTagMe,
for biomedical entity recognition and normalization, alongside the semantic analysis tool SpaCy
for constructing syntactic dependency trees, to precisely extract and standardize gene-disease and
drug-target interactions. Moreover, LLMs facilitate real-time knowledge integration from literary
sources. LightRAG [60] utilizes a dual-layer retrieval system to swiftly identify newly incorporated
nodes and associations within local subgraphs, while ensuring their semantic coherence through
the global graph framework, hence facilitating efficient and resilient knowledge growth. Ultimately,
LLMs can evaluate the reliability of information sources and curate high-quality triples. TrustLLM
[61] employs criteria like citation count and journal impact factor to rank various data sources, thereby
substantially improving the authority and stability of SciKGs. In conclusion, LLMs are emerging
as the fundamental technological force propelling the sustained advancement of SciKGs. Their
extensive capabilities in knowledge cleansing, standardization, updating, and validation offer robust
assistance for constructing high-precision, adaptive scientific knowledge infrastructures.

3 SciKGs for LLMs

This section demonstrates how SciKGs augment LLMs across two dimensions (Figure 3): (a)
enhancing factuality and explainability by grounding outputs in structured knowledge, enabling fact
verification and evidence-based reasoning; and (b) improving scientific reasoning and comprehension
through context-enhanced QA, multi-hop inference, and structured summarization.

3.1 SciKGs strengthen factuality and explainability in LLMs

SciKGs serve as organized knowledge repositories for LLMs, significantly contributing to the im-
provement of their specialized comprehension, reasoning capabilities, and generalization efficacy.
Integrating SciKGs into the pretraining or inference stages of LLMs significantly enhances the
model’s capacity to semantically analyze intricate scientific texts. Common methodologies en-
compass knowledge injection utilizing structured embeddings (e.g., CoLAKE [62], which employs
a unified graph structure to represent language-knowledge interaction), modular adapter-driven
knowledge integration (e.g., K-ADAPTER [63], which engages domain knowledge without altering
backbone parameters), dynamic knowledge fusion within the retrieval-augmented generation (RAG)
framework (e.g., KG-FM [27], which leverages materials science SciKGs to markedly enhance
question-answering precision), and multimodal knowledge alignment for heterogeneoous data (e.g.,
MR-MKG [64], which processes text, images, and structured triples via dedicated encoders and
aligns them with a knowledge adapter). These tactics not only augment the LLM’s comprehension of
long-tail entities and multi-hop relationships but also furnish knowledge backing for its deployment
in high-precision scientific endeavors.

Building on this foundation, SciKG is extensively utilized to develop fact-checking mechanisms for
LLM outputs to alleviate the "hallucination" issue frequently encountered in the scientific domain,
thereby circumventing the potential hazards associated with factual inaccuracies in high-stakes
areas such as pharmaceutical research and biological diagnostics. Researchers have methodically
included SciKGs in three phases: pre-generation retrieval augmentation, dynamic validation during
generation, and post-generation triple validation, establishing a closed-loop verification system.
During the pre-generation phase, SciKG is employed to augment input comprehension; for instance,
MedRAG [65] connects symptom and disease entity pathways via a four-tiered medical SciKG to
direct the model in forming a reasoning foundation grounded in authoritative information. In the
generation phase, techniques such as KG-Rank [32] integrate the UMLS to create a high-quality triple
repository and implement multi-tiered ranking systems to dynamically evaluate the alignment of
output with established knowledge during decoding. During the post-generation phase, CoK (Chain-
of-Knowledge) [66] necessitates that LLMs explicitly cite structured triples from SciKG, so creating
traceable and verifiable reasoning chains to guarantee that each conclusion is interpretable and aligns
with established knowledge. These methods together establish a closed-loop verification system that
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Figure 3: SciKGs for LLMs. (a) Enhancing factuality and explainability of LLMs via knowledge
grounding, fact verification, and evidence-based reasoning. (b) Improving scientific reasoning and
comprehension of LLM through context-enhanced QA, multi-hop scientific reasoning, and structured
scientific summarization.

spans from input comprehension to output rectification, markedly improving the professionalism
and dependability of model outputs. It is important to acknowledge that while SciKG offers robust
knowledge support, certain inquiries may beyond the existing boundaries of SciKGs. The CogMG
framework [67] resolves this issue through a collaborative enhancement method. When a query
exceeds the SciKG’s scope, LLMs are instructed to methodically disaggregate the requisite knowledge
triples and autonomously validate them by consulting external documents. This method addresses
the issue of insufficient knowledge coverage while guaranteeing the precision of newly integrated
information via external validation, hence facilitating new avenues for knowledge creation in the
scientific field.

Moreover, the organized depiction of SciKG offers a viable means to enhance the transparency and
interpretability of the LLM reasoning process. The "black-box" nature of traditional LLMs restricts
their reliability in research settings, whereas the symbolic and verifiable knowledge frameworks
offered by SciKG facilitate the visualization and auditing of reasoning chains. In biomedical question-
answering tasks, the KGT [33] framework correlates user questions with entity routes in SciKG,
dynamically constructing the best reasoning subgraph and identifying the most pertinent knowledge
paths via text embeddings to provide a comprehensive, traceable reasoning chain. MechGPT [68]
attains graphical support for reasoning and improved control in physical modeling activities by
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developing a material mechanics ontology graph that includes nodes, edges, and subgraph hierarchy
data. These methods utilize the structured triples and graph framework of SciKG, ensuring that each
reasoning step is linked to specific knowledge facts, hence greatly improving the transparency and
scientific validity of model outputs.

3.2 SciKGs improve scientific reasoning and comprehension in LLMs

Scientific questions are generally domain-specific, dependent on fundamental knowledge, and fre-
quently entail intricate multi-step reasoning[69–71]. In this context, SciKGs act as essential structured
knowledge repositories that substantially enhance the question-answering (QA), reasoning, and sum-
marizing capacities of LLMs. SciKG gives traceable factual assistance and organized advice for
constructing reasoning paths, guaranteeing logical coherence, and producing coherent summaries, so
enhancing the professionalism and credibility of scientific text processing.

A central challenge in scientific QA is identifying relevant knowledge paths within large-scale,
heterogeneous knowledge networks. GraphRAG [65, 72, 73] introduces a paradigm shift by retrieving
task-specific subgraphs from SciKGs and injecting them as structured context into the LLM prompt.
This approach grounds generation in verifiable facts and supports dynamic knowledge retrieval. For
instance, MedGraphRAG [72] leverages Meta-MedGraphs to construct disease-drug-mechanism
pathways, significantly enhancing the interpretability of medical QA. Similarly, KGT [33] integrates
clinical guidelines and therapeutic targets into cancer-related reasoning, employing subgraph pruning
to filter noise and focus the model on high-relevance knowledge segments. KG-FM [27] utilizes
material science SciKGs with Cypher-based querying to dynamically retrieve synthesis routes and
performance metrics, improving precision in materials QA.

In addition to single-hop retrieval, scientific reasoning frequently necessitates multi-step causal
inference. LLMs alone are prone to logical inconsistencies due to incomplete or implicit knowledge.
SciKGs provide external symbolic support that enables explicit CoT construction. Self-BioRAG
[34] employs a “reason-reflect-verify” loop, where medical KGs are used to generate candidate
inference subgraphs, which are then validated against known facts to correct erroneous reasoning
paths. MedReason [28] autonomously discovers latent reasoning chains between queries and answers,
using SciKG to generate structured CoT prompts that guide the LLM toward clinically valid outputs.
These methods transform reasoning into a transparent, auditable process, where each inference step is
anchored to a specific triple or subgraph. For tasks with heterogeneous inputs (e.g., language, images,
and KG subgraphs), the KAM-CoT system [36] enhances CoT reasoning without LLM fine-tuning. It
uses cross-attention to align these three modalities and a dual-phase training strategy, achieving a high
accuracy on ScienceQA and showing how multimodal SciKG integration boosts logical coherence in
complex scientific inference.

In scientific summarization, where factual consistency is crucial, SciKGs augment reliability by
systematic fact validation. Traditional LLMs may introduce knowledge drift or vague expressions. In-
corporating SciKG into the summarizing process provides structured knowledge assistance, allowing
the model to validate facts and arrange content according to explicit triples. FASUM [74] addresses
this by extracting entity-relation triples from input texts to build a local KG, which is then integrated
via a graph attention network to guide summary generation. A post-hoc Fact Checker (FC) module
further validates output consistency. These methods illustrate how SciKGs restructure the LLM’s
reasoning in the QA process, transforming it from a generative black box into a knowledge-grounded,
traceable, and verifiable agent, enabling more trustworthy and scientifically rigorous AI-assisted
discovery.

4 Challenges and Future Directions

4.1 Key Challenges

Despite the promising synergy between LLMs and SciKGs, several critical challenges hinder their
robust and scalable integration in scientific domains.

• Knowledge Consistency and Conflict Resolution. Automated knowledge extraction by LLMs
may generate contradictions or redundancies in SciKGs, particularly when analyzing developing
or conflicting literature, such as disputed protein functions or contradictory material qualities.
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Addressing these inconsistencies necessitates both logical reasoning and the implementation of
provenance-aware conflict detection and domain-specific validation procedures, which are currently
insufficiently developed.

• Dynamic Knowledge Updating and Temporal Reasoning. Scientific knowledge is inherently
temporal and evolving. Although LLMs can extract new facts, it is still difficult to integrate them
into a time-aware knowledge graph structure that tracks the evolution of beliefs, preserves historical
states, and supports temporal queries. Most current SciKGs lack explicit temporal modeling,
limiting their utility for longitudinal analysis.

• Scalability and Efficiency. End-to-end pipelines combining LLM inference with large-scale KG
querying (e.g., in RAG) suffer from high computational costs and latency. As SciKGs expand,
indexing, retrieval, and grounding operations become bottlenecks, particularly in domains like
biomedicine with millions of entities. Efficient indexing strategies and lightweight LLMs tailored
for scientific reasoning are urgently needed.

• Evaluation and Benchmarking. There is a lack of standardized, domain-specific benchmarks for
evaluating the joint performance of LLM–SciKG systems. Metrics often focus on isolated tasks
(e.g., relation extraction F1-score or QA accuracy), failing to capture higher-order outcomes such
as scientific insight generation, hypothesis validity, or reproducibility. Ground-truth curation for
such complex outputs is labor-intensive and subjective.

4.2 Future Directions

To realize the full potential of LLM–SciKG integration, we envision several transformative directions
for future research.

• Neural-Symbolic Fusion Architectures. Rather than treating LLMs and SciKGs as separate
modules, deeper integration through neural-symbolic computing can unify probabilistic reasoning
with logical inference. Hybrid architectures, which integrate symbolic rules to regulate LLM
outputs while neural models are trained to perform KG queries, can enhance both reliability and
flexibility in scientific reasoning.

• Multimodal Knowledge Graph Foundation Models. Just as LLMs are foundation models for text,
we anticipate the emergence of multimodal scientific foundation models that natively embed and
reason over multimodal SciKGs. These models would be jointly trained on text, structures, spectra,
and images, with built-in grounding to structured knowledge, enabling seamless cross-modal
understanding and generation.

• Toward Autonomous Scientific Agents. Future systems could evolve into autonomous scientific
agents that iteratively generate hypotheses using LLMs, validate them against SciKGs, design
experiments, and update knowledge bases with new findings. Such agents would operate in a
closed-loop cycle of "propose–test–learn", enabling self-driving discovery in domains like drug
design or materials optimization.

• Open and Interoperable SciKG Ecosystems. A fragmented landscape of isolated knowledge
graphs limits scalability. Future efforts should promote open standards (e.g., domain-agnostic
ontologies, FAIR principles) and federated architectures that allow distributed, privacy-preserving
querying across multiple SciKGs, therefore enabling large-scale, collaborative knowledge ecosys-
tems.

In summary, these directions point toward a future in which LLM–SciKG integration evolves from
a tool for information retrieval into a foundational framework for trustworthy, autonomous, and
knowledge-driven scientific discovery.
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