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Abstract

Offline reinforcement learning (RL) offers an ap-
pealing approach to real-world tasks by learning
policies from pre-collected datasets without inter-
acting with the environment. However, the perfor-
mance of existing offline RL algorithms heavily
depends on the scale and state-action space cover-
age of datasets. Real-world data collection is of-
ten expensive and uncontrollable, leading to small
and narrowly covered datasets and posing sig-
nificant challenges for practical deployments of
offline RL. In this paper, we provide a new insight
that leveraging the fundamental symmetry of sys-
tem dynamics can substantially enhance offline
RL performance under small datasets. Specifi-
cally, we propose a Time-reversal symmetry (T-
symmetry) enforced Dynamics Model (TDM),
which establishes consistency between a pair
of forward and reverse latent dynamics. TDM
provides both well-behaved representations for
small datasets and a new reliability measure for
OOD samples based on compliance with the T-
symmetry. These can be readily used to construct
a new offline RL algorithm (TSRL) with less con-
servative policy constraints and a reliable latent
space data augmentation procedure. Based on
extensive experiments, we find TSRL achieves
great performance on small benchmark datasets
with as few as 1% of the original samples, which
significantly outperforms the recent offline RL
algorithms in terms of data efficiency and gener-
alizability.

1. Introduction

The recently emerged offline reinforcement learning (RL)
provides a new paradigm to learn policies from pre-collected
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Figure 1: Performance of existing offline RL methods and our
proposed TSRL on the D4RL-MuJoCo-v2 Walker2d medium and
expert datasets (Fu et al., 2020) when reducing the number of
samples from 1M (full dataset) to 10k (1%).

datasets without the need of interacting with the environ-
ments (Levine et al., 2020; Fujimoto et al., 2018; Kumar
et al., 2019). This is particularly desirable for solving prac-
tical tasks, as interacting with real-world systems can be
costly or risky, and high-fidelity simulators are also hard
to build (Zhan et al., 2022). However, existing offline RL
methods have high requirements on the size and quality of
offline datasets in order to achieve reasonable performance.
When such requirements are not met, these algorithms may
suffer from severe performance drop, as illustrated in Figure
1. Current offline RL algorithms are trained and validated
on benchmark datasets (e.g., D4RL (Fu et al., 2020)) that
contain millions of transitions for simple tasks. Whereas
under realistic settings, it is often impractical or costly to
collect such a large amount of data, and the real datasets
might only narrowly cover the state-action space. Clearly,
learning reliable policies from small datasets with partial
coverage has become one of the most pressing challenges
for successful real-world deployments of offline RL.

Unfortunately, sample-efficient design considerations have
been largely overlooked in the majority of previous offline
RL studies. Pessimism is universally adopted in existing
offline RL methods and various forms of data-related reg-
ularizations have been applied to combat the distributional
shift and (Kumar et al., 2019; Fujimoto et al., 2019) ex-
ploitation error accumulation issues, such as conservatively
restricting policy deviation from the behavioral data (Kumar
et al., 2019; Fujimoto et al., 2019; Wu et al., 2019; Fuji-
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moto & Gu, 2021), regularizing value function on out-of-
distribution (OOD) samples (Kumar et al., 2020; Kostrikov
et al., 2021a; Xu et al., 2022b; Bai et al., 2021), learning
policy on a pessimistic MDP (Yu et al., 2020; Kidambi et al.,
2020; Zhan et al., 2022), or adopting strict in-sample learn-
ing (Kostrikov et al., 2021b; Brandfonbrener et al., 2021;
Xu et al.; 2022a). In many of these methods, the full cover-
age assumption plays an important role in their theoretical
performance guarantees (Kumar et al., 2019; Le et al., 2019;
Chen & Jiang, 2019), which assumes the dataset to contain
all state-action pairs in the induced distribution of the policy.
Obviously, most of the state-action space will become OOD
areas under a small dataset. Applying strict data-related
regularizations will inevitably cause severe performance
degradation and poor generalization. Consequently, it is
important to rethink what is essential in policy learning with
small datasets. In other words, what is the fundamental
or invariant information that can be used to facilitate pol-
icy learning, without being conservatively confined by the
limited data?

In this paper, we provide a new insight that exploiting the
fundamental symmetries in the system dynamics can sub-
stantially enhance the performance of offline RL with small
datasets. Specifically, we consider the time-reversal sym-
metry (also called T-symmetry), which is one of the most
fundamental properties discovered in classical and quan-
tum mechanics (Elliott & Dawber, 1979; Lamb & Roberts,
1998). It suggests that the underlying laws of physics
should not change under the time-reversal transformation:
t — —t (Lamb & Roberts, 1998; Bluman & Kumei, 2013).
Specifically, we are interested in an extended form of T-
symmetry due to its simplicity and universality in physical
systems.

Based on these intuitions, we develop a physics-informed
T-symmetry enforced Dynamics Model (TDM) to learn a
well-behaved and generalizable dynamics model with small
datasets. TDM enforces the extended T-symmetry between
a pair of latent space forward and reverse dynamics sub-
models, which are modeled as first-order ordinary differen-
tial equation (ODE) systems to extract fundamental dynam-
ics patterns in data. TDM provides both well-behaved repre-
sentations for small datasets and a new reliability measure
for OOD samples based on compliance with the T-symmetry.
These can be used to construct a highly data-efficient offline
RL algorithm, which we call T-Symmetry regularized of-
fline RL (TSRL). Specifically, TSRL uses the T-symmetry
regularized representations learned in TDM to facilitate
value function learning. Furthermore, the deviation on la-
tent actions and the consistency with T-symmetry specified
in TDM actually provide another perspective to detect un-
reliable or non-generalizable samples, which can serve as
a new set of policy constraints to replace the highly restric-
tive OOD regularizations in existing offline RL algorithms.

Lastly, a reliable latent space data augmentation scheme
based on compliance with the T-symmetry is also applied to
further remedy the limited size of training data. With these
designs, TSRL performs surprisingly well compared with
the state-of-the-art offline RL algorithms on reduced-size
D4RL benchmark datasets with even as few as 1% of the
original samples. To the best of the authors’ knowledge, this
is the first offline RL method that demonstrates promising
performance on extremely small datasets.

2. Preliminaries

Offline reinforcement learning. We consider the stan-
dard Markov decision process (MDP) setting (Sutton &
Barto, 2018), which is represented as a tuple M =
{S,A,r,P,p,v}, where S and A are the state and action
spaces, (s, a) is a scalar reward function, P is the transition
dynamics, p is the initial state distribution, and y € (0, 1) is
a discount factor. The objective of RL is to learn a policy
m(als) by maximizing the expected cumulative discounted
return E[7°  7'r(s¢, ar))], which is typically approxi-
mated by a value function Q(s, a) using some function ap-
proximators, such as deep neural networks. The Q-function
is typically learned by minimizing the squared Bellman
error:

Q@ = argmin E [(Q (s,a) — B"Q(s, a))2] (D
Q

where Q denotes a target Q-function, which is a delayed
copy of the current Q-function; B™ is the Bellman opera-
tor, which is often used as the Bellman evaluation operator
B™Q(s,a) = r(s,a) + YEa~rQ (s',a’) in many RL algo-
rithms.

Under the offline RL setting, we are provided with a
fixed dataset D = {(s0, ag, 0, 51, - - )}, without any
chance of further environment interactions. Directly ap-
plying standard online RL methods in the offline setting
suffers from severe value overestimation, due to counterfac-
tual queries on OOD data and the resulting extrapolation
errors (Levine et al., 2020; Kumar et al., 2019; Fujimoto
et al., 2019). To avoid this issue, a widely used offline
RL framework adopts the following behavior regulariza-
tion scheme which regularizes the divergence between the
learned policy 7 and the behavior policy 7g of the dataset
D:

m = argmax Eop.ann(fs) [Q(s,0) =D (7( [ s)[7ms(- | 5))]
@
where D(-||-) is some divergence measures, which can have
either an explicit (Kumar et al., 2019; Fujimoto & Gu, 2021)
or implicit form (Fujimoto et al., 2019; Wang et al., 2020).
Although straightforward, existing behavior regularization
methods have been shown to be over-conservative (Kumar
et al., 2020; Li et al., 2022) due to the restrictive regulariza-
tion with respect to the behavior policy in data, which may
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suffer from notable performance drop under small datasets.

Time-reversal symmetry in dynamical systems. Most
real-world dynamical systems with state measurement x €
) on some phase space €2 can be modeled or approximated
by the system of non-linear first-order ordinary differen-
tial equations (ODEs) as % = F(x), where F is some
general non-linear, at least Cl-differentiable vector-valued
function. First-order ODE systems are said to be time-
reversal symmetric if there is an invertible transformation
T : Q — Q, that reverses the direction of time (Lamb &
Roberts, 1998; Huh et al., 2020): dI'(x)/dt = —F(I'(x)).
If we define a time evolution operator Uay : 2 — € as
Uat : x(t) = Uar(x(t)) = x(t + At). Then T-symmetry
implies that 'o U, = U_ oI'. In other words, the reversing
of the forward time evolution of an arbitrary state should be
equal to the backward time evolution of the reversed state.

Extending T-symmetry for more generic MDP settings.
In our discrete-time MDP setting, we have x = (s, a).
We can slightly abuse the notations and denote s = %
as the time-derivative of the current state s, which can
be approximated as the difference between the next and
current states, i.e., $ = s’ — s. For a dynamical system
that satisfies T-symmetry, it suggests that if we learn a
forward dynamics F'(s,a) = $ and a reverse dynamics

G(s',a') = —$ as a pair of first-order ODEs, we should
have F(s,a) = —G(s',d’).

However, from a decision-making perspective, it is known
that T-symmetry can sometimes be broken by irreversible
actions or some special dynamic processes (e.g., frictional
force against motion). Hence in this paper, we consider a
more generic treatment by leveraging an alternative ODE
reverse dynamics model G(s’,a) = —s to establish the
T-symmetry with the forward dynamics, i.e., enforcing
F(s,a) = —G(s',a). Note that G(s',a) is now defined
on the next state s’ and the current action a, rather than the
next action a’, thus is not impacted if the next action is irre-
versible. This extended T-symmetry provides a more funda-
mental and almost universally held property in discrete-time
MDP systems. Its simplicity and fundamentalness make it
an ideal property that we can leverage to construct a well-
behaved data-driven dynamics model and a robust offline
RL algorithm under small datasets.

3. T-Symmetry Enforced Dynamics Model

In this section, we present the detailed design of TDM,
which is capable of learning a more fundamental and T-
symmetry preserving dynamics from small datasets. The
key ingredients of TDM are to embed a pair of latent forward
and reverse dynamics as ODE systems, and further enforce
their T-symmetry consistency. As illustrated in Figure 2, the
proposed TDM consists the following components:
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Figure 2: Overall architecture of the proposed TDM

Encoder and decoders. TDM implements a state-action
encoder ¢(s,a) = (zs,2,) and a pair of decoders
Ys(+, 0s), ¥a(zq) = a that embed the state-action pair (s, a)
into latent representations (zs, z,) and then map them back.
Specifically, we require the state decoder ;5(-,d5) to be
capable of decoding both z; and 2, where J is an indicator
to help the decoder to decide the target output, with 6, = 0
as decoding z; — s and §; = 1 as decoding 2, — 5. The
encoder ¢ and decoders 15 and v, induce the following
reconstruction loss term for each state-action pair (s, a):

lrec(s,a) = HS - ¢s(zs,0)||§ + [la — %(Za)H% 3

Latent forward dynamics f(zs,2,) = Zs. Inspired by
the prior works that incorporate physics-informed infor-
mation into dynamical systems modeling (Mezié, 2005;
Brunton et al., 2016; Champion et al., 2019), we embed a
discrete-time first-order ODE system to capture the latent
forward dynamics f(zs, zq4) = Zs. Similar to §, we write
%2y = zg — 2z to denote the forward difference of the next
and current latent state representations. Note that based on
the chain-rule, we have 2, = dés = %Z; - % = V,zs-5. To
enforce the ODE property, we can introduce the following
loss term for f:

Crwa(s,a,8") = [[(Vszs)3 — Z]13
99(s, “
e )

Minimizing £ ,,q ensures that the latent forward dynamics
f correctly predicts the forward time evolution of latent
states in the dynamical system. We also require the decoder
1s(+,03) to be able to decode § from Z; to ensure it is com-
patible with the ODE property, which implies the following
loss:

EdS(Sva’ S/) = HS - z/}S(ém 1)“%

. ,

= [[$ = ¥s(f(o(s,a)), D3
Latent reverse dynamics g(zy, 2,) = —2s. We can fur-
ther introduce a latent reverse dynamics g(zy/, 24) = —Z5 in

the model, which captures the reverse time evolution of the
system in the latent space. Similar to the forward dynamics
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loss L ¢4, we can write the reverse dynamics loss for g as:

lros(s,a,8") = [(Verzs)(=38) — (_ZS)HS
! (6)
= 12 () glots' a3

T-symmetry regularization. The above latent forward
and reverse dynamics f and g are learned to be two
models, which may not necessarily satisfy the proposed
extended T-symmetry. We can enforce the extended T-
symmetry by requiring f(zs,24) = —g(2s, 24). To fur-
ther couple the learning process of f and g, note that
zs = Zs+2s = 25+ [(2s, 2a), which suggests g(zy/, z4) =
9(zs + f(2sy2a)s 2a) = —Z2s = —f(2s, 24). This implies
the following T-symmetry consistency loss:

fT—sym(zsa Za) = Hf(zs: Za) + Q(Zs + f(zsa Za)7 Za)”g (7)

Above instance-wise T-symmetry consistency loss also pro-
vides an alternative measure for evaluating the reliability
of a data sample. A state-action pair (s,a) with a large
Cp_sym(@(s, a)) implies that this sample may not be well-
explained by TDM or consistent with the fundamental sym-
metry of the system. This can be used to detect unreli-
able OOD samples in offline policy optimization as well as
construct a new latent space data augmentation procedure,
which will be discussed in later content.

Final learning objective of TDM. Finally, we can formu-
late the overall loss function of TDM as:

Z [grec + gds + gfwd + grvs
(s,a,s")€D (8)

+ lrsym](s,a,8") + Apa[L1(f) + L1(g)]

where £ (f) and £;(g) are L1-norms of the parameters
of f and g, and Ay is a scale parameter. L1 regulariza-
tion is introduced to encourage learning parsimonious latent
dynamics for f and g, which helps to improve model gener-
alizability (Brunton et al., 2016; Champion et al., 2019).

Lrpm =

Note that the proposed TDM is very different from the
conventional dynamics models used in model-based RL
(MBRL) methods (Janner et al., 2019; Yu et al., 2020; Ki-
dambi et al., 2020; Wang et al., 2021; Zhan et al., 2022).
The dynamics models in MBRL focus on constructing a pre-
dictive model to represent the forward transition dynamics
of the system. Whereas, TDM is formulated as a reconstruc-
tion model with T-symmetry preserving embedded ODE
latent dynamics, which aims at explaining and extracting
the fundamental dynamics of the system. As a result, TDM
can be substantially more well-behaved and robust when
learning from small datasets.

4. T-Symmetry Regularized Offline RL

In this section, we discuss how to incorporate the properties
of TDM to construct a sample-efficient offline RL algorithm,

which we call T-Symmetry regularized offline RL (TSRL).

T-symmetry regularized representation. Representation
learning has been shown to be an effective approach to
enhancing sample efficiency and generalization in many
online and offline RL studies (Zhang et al., 2020; Srinivas
et al., 2020; Agarwal et al., 2021; Yang & Nachum, 2021;
Uehara et al., 2021). A notable property of TDM is that
the learned latent state-action representations from the en-
coder (zs, zq) = ¢(s,a) are compatible with both the latent
forward and reverse ODE dynamics f and g. This leads
to well-regularized and T-symmetry preserving representa-
tions that can potentially generalize better on OOD areas
under small dataset settings. We can simply use the latent
state-action representation (zs, z,) extracted by the encoder
@(s,a) of TDM in the value function learning, which gives
the following policy evaluation objective:

Q = argmin By, 000 (7(5,) +1Q(0(S' 7(15')
- Q6(5,))’] ©)

T-symmetry regularized policy constraints. Existing of-
fline RL methods primarily penalize the divergence between
the learned policy 7 and the behavioral data in the original
action space, which ignores the underlying manifold struc-
ture of actions in the latent space (Zhou et al., 2021) and the
system dynamics properties. In TSRL, we instead consider
an alternative regularization scheme, which restricts the de-
viation on latent actions and the T-symmetry consistency
of policy-induced samples, corresponding to the following
policy optimization objective:

max B, a)~p[Q(4(s, 7(-]5)))]
st ||zar — za||§ <n (Latent action deviation) (10)
1 sym(9(s,7(-|s))) = 0

where latent actions z, and z,~ are obtained from ¢(s, a)
and ¢(s,7(+|s)) respectively. The second term restricts the
latent action z,~ of policy 7 from deviating too much from
the latent action z, in data. The third term regularizes the T-
symmetry consistency of policy-induced samples (s, 7(+|s)),
which is evaluated based on Eq. (7) and the learned TDM.
A1 and Ao are weight parameters, which only need to be
roughly adjusted to ensure both the regularization terms
are in a similar scale as the first term. We also introduce
a normalization term « on the value function for training
stability similar to TD3+BC (Fujimoto & Gu, 2021), which
is computed based on a training batch B of samples as
ao/[>s,ayen Q(@(s,m(:[s)))]. We set ag = 2.5 in all of
our experiments without tuning.

(T-sym consistency)

argmax E(s,q)~p [aQ(o(s,7(-]5)))

= Mllzar = 2all3 = Aolr-sym (6(s, 7(]5)))

Y
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where latent actions z, and z,~ are obtained from ¢(s, a)
and ¢(s, w(+|s)) respectively. The second term restricts the
latent action z,~ of policy 7 from deviating too much from
the latent action z, in data. The third term regularizes the T-
symmetry consistency of policy-induced samples (s, 7(+|s)),
which is evaluated based on Eq. (7) and the learned TDM.
A1 and \; are weight parameters, which only need to be
roughly adjusted to ensure both the regularization terms
are in a similar scale as the first term. We also introduce
a normalization term « on the value function for training
stability similar to TD3+BC (Fujimoto & Gu, 2021), which
is computed based on a training batch B of samples as
ao/[>s,ayep Q(é(s, m(:]5)))]. We set ag = 2.5 in all of
our experiments without tuning.

T-symmetry consistent latent space data augmentation.
It has been shown in previous studies (Sinha et al., 2022;
Weissenbacher et al., 2022; Lyu et al., 2022) that data aug-
mentation can potentially improve the function approxi-
mation of the Q-networks by smoothing out the learned
state-action space, hence often lead to more robust policy
and better data efficiency. However, existing data augmenta-
tion methods in offline RL studies either blindly add random
perturbations to states (Sinha et al., 2022) or utilize costly
non-linear symmetry transformations, such as Koopman
theory (Weissenbacher et al., 2022). With TDM, we can
provide a very simple yet principled data augmentation
scheme based on the T-symmetry property.

Assuming we add a small perturbation € to a latent state
zs, 1.€., (25,2a) = (25 + €,24), then the corresponding
perturbation €’ on the next latent state z4 according to the
latent forward dynamics 2, = f(zs,2,) satisfies: zg +
€ = zs+ €+ f(zs + € 24). On the other hand, by the
T-symmetry construction in TDM, we can recover back the
current perturbed latent state based on the latent reverse
dynamics —Z; = g(zs,24) a8t zs + € = 29 + €' + g(2s +
€', z,). Clearly, we should have € = ¢”, which suggests the
following condition:

1"

€' —e=f(zs+€2a)+g(2s+e+ f(zs+€24),20) =0 (12)

This is exactly equivalent to requiring the instance-wise T-
symmetry consistency loss (Eq. (7)) £1-sym (zs +¢€, z4) = 0.
Hence we can use T-symmetry consistency 10ss £7_gym, () as
a reliability measure to filter out unreliable augmented sam-
ples (zs + €, z,) that are inconsistent with the T-symmetry
property of the learned latent dynamics in TDM. In our
implementation, we only keep augmented samples that sat-
isfy lr.sym(zs + €,2,) < h, where we consider a non-
parametric treatment for threshold h, by setting it as the
T-quantile value of all {7_gym (¢(s,a)) values of (s,a) in
D (we choose 7 = 50% or 70% in our experiments). This
ensures that the augmented samples at least maintain the
similar level of T-symmetry agreement explained by TDM
as the data samples in D.

5. Experiments

We evaluate TSRL on the D4RL MuJoCo-v2 and Adroit-
vl benchmark datasets (Fu et al., 2020) against behavior
cloning (BC) as well as state-of-the-art (SOTA) offline RL
methods, including model-free methods TD3+BC (Fujimoto
& Gu, 2021), CQL (Kumar et al., 2020), and IQL (Kostrikov
et al., 2021b), and model-based method MOPO (Yu et al.,
2020). We report the final normalized performance of each
algorithm after training 1M steps.

Performance on small datasets. We compare the perfor-
mance of TSRL and the baseline methods on both the full
DA4RL datasets and their reduced-size datasets with only
5k~10k samples, which are constructed by randomly sam-
pling a given fraction of trajectories in the full datasets'.
These reduced-size datasets are only about 1/20~1/200 of
their original size. Compared with the performances on
the full datasets, the baseline offline RL methods suffer
from a noticeable performance drop under these extremely
small datasets, mainly due to their over-reliance on the size
and coverage of training data. By contrast, TSRL achieves
substantially better performance in all small dataset tasks,
indicating superior sample efficiency. Moreover, although
MOPO also learns a dynamics model for offline policy learn-
ing, it performs badly when the dataset is small, revealing
the importance of using a well-regularized model like TDM
in the small-sample regime.

To further examine the impact of the training data size on al-
gorithm performance, we also conduct experiments on three
Walker2d datasets (medium, medium-expert, and expert)
by varying the size of samples from 1M to 5k. The results
are presented in Figure 3. It can be observed that most
baseline offline RL algorithms experience a sharp perfor-
mance drop when the datasets are reduced to 10k samples.
Whereas, TSRL is still capable of preserving reasonable
performance as the decrease of data size, even for extremely
small datasets that contain only Sk samples.

Investigation on learned representations. To investigate
the quality of the latent representation learned in TDM,
we compare the performance of different representation
learning approaches on the 10k datasets in Figure 4. To
solely evaluate the impact of the representation, we remove
the latent space data augmentation component from TSRL
(“TSRL-no-A”) and replace the state-action encoder ¢(s, a)
learned from other representation learning approaches, in-
cluding the autoencoder (“AE-rep”), autoencoder with latent
forward dynamics (“AE-fwd-rep”’) without the ODE struc-
ture and the T-symmetry regularization in TDM, and a re-
cent popular self-supervised representation learning method
SimSiam (Chen & He, 2021) (“SimSiam”). To further in-

"We didn’t construct reduced-size datasets for Adroit-human
tasks, as the full datasets are already very small.
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Table 1: Average normalized score on DARL MuJoCo and Adroit tasks with full and reduced-size datasets. Some of the
full dataset performance scores are reported from the IQL (Kostrikov et al., 2021b) and MOPO (Yu et al., 2020) papers.
Complete scores for Adroit-human and cloned tasks are included in Appendix C.

Task Ratio  Size BC TD3+BC  MOPO CQL IQL TSRL(ours)
H 1 M 52.9 59.3 28.0 58.5 66.3 86.7+8.7
opper-m 1/100 10k 29.7+11.7 40.1+18.6 55423 43.14246 467465  62.043.7
Hopoermr 1 400k 18.1 60.9 67.5 95.0 94.7 78.7428.1
opper- 1/40 10k 12,1453 73461 68403 23419  13443.1 21.848.2
Hovoerm 1 M 52.5 98.0 23.7 105.4 91.5 95.9418.4
opper-me 1200 10k 27.8410.7 17.847.9 58458 299445 343487 50.9+8.6
Hopperc 1 M 108.0 100.1 16.246.2 98.4 99.3 110.0 +3.3
PP 1/100 10k 208469 2324182 65437 33.04222 384+113 8274219
Halfeheetah 1 M 4.6 48.3 423 44.0 474 48.2 +0.7
alicheetah-m 1100 10k 264473 1644102 -1.1+4.1 358438 29.940.12  38.4+3.1
Halfcheetah 1 200k 55.2 44.6 53.1 45.5 442 422435
alicheetah-mr 120 10k 143478 179495 117452 81494 227464 281435
Halfeheetahome 1 M 552 90.7 63.3 91.6 86.7 92.0+1.6
1200 10k 19.1494 1544107 -1.1+14 2654+108 10.5+8.8  39.9421.1
Halfcheetahec 1 M 922 82.1 14422 95.6 88.9+12 943455
17100 10k 1.1042.4 172433  -0.6+1.1 424094 20404  40.6+24.4
Walker2dom 1 M 75.3 83.7 17.8 72.5 78.3 77.5 +4.5
alkersd- 1/100 10k 1584141 7.4+13.1  3.144.7 1884188 225438  49.7+10.6
Walkerodomr 1 300k 26.0 81.8 39.0 772 73.9 66.1412.0
alkersd- 130 10k 14419 57458 33427 854219 1074119  26.0+11.3
Walker2dom 1 M 107.5 110.1 44.6 108.8 109.6 109.843.12
alke ¢ 1200 10k 217482  7.949.1 06427 19.1+144 265+8.6  46.4+17.4
Walker2doc 1 IM 107.9 108.2 0.140.3 101.3 109.740.1  110.2+0.3
1/100 10k 104453 23.8416.0 14434 41.6421.6 12.6+45 102.2+11.3
Adroit-human-total 1 sk 71.5 10.6 9.5 522 77.3 80.94+21.1
Adroitcloned-total 1 500k 60.1 41.1 12 41.6 40.8 58.6425.4
! 1/50 10k 29.5437.8  0240.1  -1.7415 06408 3274246  44.94+25.7

vestigate the impact of enforcing the ODE property, we
also consider a variant of TDM (“TDM-no-ODE”) by re-
moving the ODE structure in latent forward and reverse
dynamics. More detailed experiment setups are presented
in Appendix C.

The results demonstrate that TDM representation achieves
the best performance in all small-dataset experiments. By
comparing “TSRL-no-A” and “TDM-no-ODE” with “AE-
rep” and “AE-fwd-rep”, we can see that the bi-directional
design and the T-symmetry regularization are crucial for
performance improvement. Moreover, we find “TSRL-no-A”
consistently achieves better performance and lower variance
as compared to “TDM-no-ODE”, further confirming the
benefit of incorporating ODE structure in producing a well-
behaved representation for downstream tasks under small
datasets.

Evaluation on data augmentation. We evaluate the im-
pact of the proposed T-symmetry consistent latent space

data augmentation in Figure 5. The results show that our
proposed data augmentation scheme can help speed up con-
vergence and reduce variance. Compared with less princi-
pled data augmentation methods such as adding zero-mean
Gaussian noises as in S4RL (Sinha et al., 2022), our method
offers much better performance improvement. As shown in
Figure 5, blindly adding random perturbations could suffer
from performance degradation over the course of training,
while TSRL with T-symmetry consistent data augmentation
enjoys better training robustness.

Additional ablations. We also investigate the joint im-
pact of the three design components in TSRL, including T-
symmetry regularized representation and policy constraints,
as well as the T-symmetry consistent latent space data aug-
mentation. We include TD3+BC for comparison, as it can be
perceived as a vanilla version of TSRL without the previous
three components. Moreover, the variant of TSRL with only
the latent representation removed is not evaluated, as the
latent space data augmentation also depends on the represen-
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Figure 5: Impact of T-symmetry consistent latent space data
augmentation on Halfcheetah medium and medium-expert 10k
datasets. “TSRL+S4RL” denotes replacing the latent space
data augmentation in TSRL with the zero-mean Gaussian noise
(IN(0,0.11)) as proposed in S4RL(Sinha et al., 2022).

tation provided by TDM. Figure 6 presents the performance
of all variants of TSRL on the 10k Halfcheetah medium and
medium-expert datasets. As expected, it is observed that T-
symmetry regularized representation and policy constraints
jointly play a critical role in maintaining the performance
of TSRL. As discussed previously, adding T-symmetry con-
sistent latent space data augmentation also shows a positive
impact on performance. Furthermore, it is observed that
TD3+BC suffers from over-fitting on small datasets as its
performance drops significantly with the increase of train-
ing steps, especially in the 10k Halfcheetah-medium dataset,
while this phenomenon is not observed in TSRL. Neverthe-
less, the complete TSRL achieves the best performance in
both tasks.
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Figure 6: Ablation on TSRL on Halfcheetah medium and medium-
expert 10k datasets. “no-R” denotes no T-symmetry regularized
representation; ‘“no-P”” denotes no T-symmetry policy constraints,
and use BC constraint similar to TD3+BC; “no-A” denotes no
T-symmetry consistent latent space data augmentation.

Generalization performance. To further verify the gen-
eralizability of TSRL, we construct a low-speed dataset
from the Walker2d-medium dataset by filtering out all high
x-velocity samples (x-velocity of the top> 0.2x max-x-
velocity). This results in a smaller dataset (about 200k
samples) with a large proportion of transition dynamics un-
observed. We want to test if the agent can still generalize
and learn well given only these low x-velocity data, with all
high-speed samples removed. The experiment results are
presented in Figure 7, for other results see Appendix C. It
is observed that the baseline methods perform poorly when
trained with only the low-speed dataset. This is primarily
due to over-conservative data-related regularizations, which
cause ineffective policy learning if the OOD region occupies
the majority of state-action space. However, we observe
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Figure 7: Comparison of TSRL and baselines trained on the
Walk2d-medium dataset that removing all samples with x-velocity
of the top> 0.2 max-x-velocity recorded in the data. Left: learn-
ing curves. Right: x-velocity distribution of policy evaluation
rollouts during the last 10k training steps. Additional general-
ization results on other filtered D4RL datasets can be found in
Appendix C.

that TSRL is still able to achieve good performance, due to
the access to more fundamental dynamics information that
remains invariant in both low- and high-speed data. This
can be further verified if we inspect the policy rollout distri-
bution (right figure of Figure 7) that the policy learned by
TSRL indeed generalizes to high-speed behavior that is not
present in the training data.

6. Related Work

Learning fundamental dynamics in physical systems.
Learning conservation laws or invariant properties within a
physical system is an active research area in physics (An-
derson & Wendt, 1995; Grigorenko & Grigorenko, 2003;
Brunton et al, 2016; Champion et al., 2019), cli-
mate science (Trenberth & Trenberth, 1992), and neuro-
science (Izhikevich, 2007), etc. A classic approach is based
on Koopman theory, which represents the nonlinear dynam-
ics in terms of an infinitedimensional linear operator (Mezic,
2005). In practice, this is achieved by finding a coordinate
transformation to produce a finite-dimensional representa-
tion in which the non-linear dynamics are approximately
linear. However, it also suffers from computationally expen-
sive coordinate transformations and is only able to approxi-
mate the system dynamics. Another approach is utilizing a
sparse regression model with the fewest terms to describe
the nonlinear system dynamics (Brunton et al., 2016; Cham-
pion et al., 2019). However, it assumes that the dynamical
systems only have a few critical terms, which severely limits
the model expressiveness and often requires prior knowl-
edge of these critical terms. Based on expressive deep neural
networks, a recently emerged research direction is to build
ODE networks to learn conservation law in the dynamical
system from data (Chen et al., 2018; Dupont et al., 2019;
Liu et al., 2019; Huh et al., 2020). Our proposed TDM
falls within this direction, which models both forward and
reverse latent ODE dynamics with deep neural networks
and incorporates additional regularization on T-symmetry.

Offline reinforcement learning. Offline RL addresses

the challenge of deriving policies from fixed, pre-collected
datasets without interaction with the environment. Under
this offline learning paradigm, conventional off-policy RL
approaches are prone to substantial value overestimation
when there is a large deviation between the policy and data
distributions. Existing offline RL methods address this issue
by following several directions, such as constraining the
learned policy to be “close” to the behavior policy (Fuji-
moto et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021;
Wang et al., 2020), regularizing value function on OOD
samples (Kumar et al., 2020; Kostrikov et al., 2021a; Xu
et al., 2022b), enforcing strict in-sample learning (Brand-
fonbrener et al., 2021; Kostrikov et al., 2021b; Xu et al.;
2022a), and performing pessimistic policy learning with
uncertainty-based reward or value penalties (Yu et al., 2020;
Kidambi et al., 2020; Zhan et al., 2022; Bai et al., 2021;
An et al., 2021). Most existing offline RL methods adopt
the pessimism principle and avoid policy evaluation on
OOD samples. Although this treatment helps to alleviate
exploitation error accumulation, it can be over-conservative
and causes severe performance degradation if the training
dataset is small or has poor state-action space coverage (Li
et al., 2022). TSRL tackles this issue by allowing dynam-
ics explainable OOD samples for policy optimization, thus
offering greatly improved small-sample performance.

7. Discussion and Conclusion

In this paper, we propose a physics-informed dynamics
model TDM and a new offline RL algorithm TSRL, which
exploit the fundamental symmetries in the system dynamics
for sample-efficient offline policy learning. TDM embeds
and enforces T-symmetry between a pair of latent forward
and reverse ODE dynamics to learn fundamental dynam-
ics patterns in data. The well-behaved representations and
a new reliability measure for OOD samples based on T-
symmetry from TDM can be readily used to construct the
proposed TSRL algorithm, which achieves strong perfor-
mance on small D4RL benchmark datasets and exhibits
good generalization ability. There are also some limitations
in our proposed approach. For example, in order to learn
a well-behaved dynamics model, we introduced a set of
dynamics and symmetry regularizations in TDM, which are
beneficial to improve model generalization, but will lose
some model expressiveness. However, we believe this can
be a worthwhile trade-off between precision and general-
ization under small dataset settings, due to substantially
improved model robustness.

References

Agarwal, R., Machado, M. C., Castro, P. S., and Bellemare,
M. G. Contrastive behavioral similarity embeddings for
generalization in reinforcement learning. arXiv preprint



Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline Reinforcement Learning

arXiv:2101.05265, 2021.

An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-
based offline reinforcement learning with diversified q-
ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Anderson, J. D. and Wendt, J. Computational fluid dynamics,
volume 206. Springer, 1995.

Bai, C., Wang, L., Yang, Z., Deng, Z.-H., Garg, A., Liu, P,
and Wang, Z. Pessimistic bootstrapping for uncertainty-
driven offline reinforcement learning. In International
Conference on Learning Representations, 2021.

Bluman, G. W. and Kumei, S. Symmetries and differential
equations, volume 81. Springer Science & Business
Media, 2013.

Brandfonbrener, D., Whitney, W., Ranganath, R., and Bruna,
J. Offline rl without off-policy evaluation. Advances in
Neural Information Processing Systems, 34:4933-4946,
2021.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering
governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932-3937, 2016.

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L.
Data-driven discovery of coordinates and governing equa-
tions. Proceedings of the National Academy of Sciences,
116(45):22445-22451, 2019.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Con-
ference on Machine Learning, pp. 1042-1051. PMLR,
2019.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
15750-15758, 2021.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neu-
ral odes. Advances in Neural Information Processing
Systems, 32, 2019.

Elliott, J. and Dawber, P. Symmetry in Physics, Volume 1
and 2. Macmillan, 1979.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in Neural Information
Processing Systems, 34, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587-1596,
2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, pp. 2052-2062.
PMLR, 2019.

Grigorenko, I. and Grigorenko, E. Chaotic dynamics of the
fractional lorenz system. Physical review letters, 91(3):
034101, 2003.

Huh, I, Yang, E., Hwang, S. J., and Shin, J. Time-reversal
symmetric ode network. Advances in Neural Information
Processing Systems, 33:19016-19027, 2020.

Izhikevich, E. M. Dynamical systems in neuroscience. MIT
press, 2007.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12519-12530, 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning. In
Neural Information Processing Systems (NeurlPS), 2020.

Kostrikov, 1., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In International Conference on Machine
Learning, pp. 5774-5783. PMLR, 2021a.

Kostrikov, 1., Nair, A., and Levine, S. Offline reinforcement
learning with implicit g-learning. In Deep RL Workshop
NeurIPS 2021, 2021b.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy g-learning via bootstrapping error
reduction. In Advances in Neural Information Processing
Systems, pp. 11761-11771, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative g-learning for offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2020.

Lamb, J. S. and Roberts, J. A. Time-reversal symmetry
in dynamical systems: a survey. Physica D: Nonlinear
Phenomena, 112(1-2):1-39, 1998.

Le, H. M., Voloshin, C., and Yue, Y. Batch policy learn-
ing under constraints. arXiv preprint arXiv:1903.08738,
2019.



Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline Reinforcement Learning

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, J., Zhan, X., Xu, H., Zhu, X., Liu, J., and Zhang, Y.-Q.
When data geometry meets deep function: Generalizing
offline reinforcement learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Liu, X., Xiao, T., Si, S., Cao, Q., Kumar, S., and Hsieh,
C.-J. Neural sde: Stabilizing neural ode networks with
stochastic noise. arXiv preprint arXiv:1906.02355, 2019.

Lyu, J., Li, X., and Lu, Z. Double check your state before
trusting it: Confidence-aware bidirectional offline model-
based imagination. arXiv preprint arXiv:2206.07989,
2022.

Mezié, 1. Spectral properties of dynamical systems, model
reduction and decompositions. Nonlinear Dynamics, 41:
309-325, 2005.

Sinha, S., Mandlekar, A., and Garg, A. S4rl: Surprisingly
simple self-supervision for offline reinforcement learning
in robotics. In Conference on Robot Learning, pp. 907—
917. PMLR, 2022.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
arXiv preprint arXiv:2004.04136, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Trenberth, K. E. and Trenberth, K. E. Climate system mod-
eling. Cambridge University Press, 1992.

Uehara, M., Zhang, X., and Sun, W. Representation learning
for online and offline 1l in low-rank mdps. arXiv preprint
arXiv:2110.04652, 2021.

Wang, J., Li, W., Jiang, H., Zhu, G., Li, S., and Zhang, C.
Offline reinforcement learning with reverse model-based
imagination. Advances in Neural Information Processing
Systems, 34:29420-29432, 2021.

Wang, Z., Novikov, A., Zolna, K., Merel, J. S., Springen-
berg, J. T., Reed, S. E., Shahriari, B., Siegel, N., Gulcehre,
C., Heess, N, et al. Critic regularized regression. Ad-

vances in Neural Information Processing Systems, 33:
7768-77178, 2020.

Weissenbacher, M., Sinha, S., Garg, A., and Yoshinobu, K.
Koopman g-learning: Offline reinforcement learning via
symmetries of dynamics. In International Conference on
Machine Learning, pp. 23645-23667. PMLR, 2022.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361,2019.

Xu, H., Jiang, L., Li, J., Yang, Z., Wang, Z., Chan, V. W. K.,
and Zhan, X. Offline rl with no ood actions: In-sample
learning via implicit value regularization. In The Eleventh
International Conference on Learning Representations.

Xu, H., Li, J., Li, J., and Zhan, X. A policy-guided imitation
approach for offline reinforcement learning. In Advances
in Neural Information Processing Systems, 2022a.

Xu, H., Zhan, X., and Zhu, X. Constraints penalized g-
learning for safe offline reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 2022b.

Yang, M. and Nachum, O. Representation matters: of-
fline pretraining for sequential decision making. In In-
ternational Conference on Machine Learning, pp. 11784—
11794. PMLR, 2021.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. In Neural Information Processing Systems
(NeurlPS), 2020.

Zhan, X., Xu, H., Zhang, Y., Zhu, X., Yin, H., and Zheng,
Y. Deepthermal: Combustion optimization for thermal
power generating units using offline reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

Zhang, A., McAllister, R., Calandra, R., Gal, Y., and
Levine, S. Learning invariant representations for rein-
forcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Zhou, W., Bajracharya, S., and Held, D. Plas: Latent action
space for offline reinforcement learning. In Conference
on Robot Learning, pp. 1719—1735. PMLR, 2021.



Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline Reinforcement Learning

A. Implementation Details

Implementation details for TDM. TSRL can be implemented based upon TD3 (Fujimoto et al., 2018), with the addition of
the proposed T-symmetry regularized representation and policy constraints as in Eq. (9) and (11), as well as the T-symmetry
consistent latent space data augmentation. In our experiments, we generate ' = 1 augmented samples for each transition in
the dataset, and filter based on the T-symmetry consistency loss. The pseudo-code of TSRL is summarized in Algorithm 1.

* Network structure: In all our D4RL experiments, we implement the encoder, decoders, latent forward and reverse
dynamics as 4-layer feed-forward neural networks with ReLU activation, and optimized using Adam optimizer. For the
state decoder (-, J5 ), we concatenate an extra indicator J, in the input to help the state decoder to decide the target output.
More specifically, to decode z;— s, we concatenate s = 0 with z, as input; and for 2, — §, we concatenate §; = 1 with
Zs.

» Computing second derivative of ¢(-): As TDM involves a pair of latent ODE forward and reverse dynamics models,

whose training losses Eq. (4) and (6) involve regressing on (9(17((32,{1) s and 6"5((9'1/,’“) (—$) as target values. This results in a

gradient through a gradient of ¢(-). Computationally, we calculate the Jacobian matrix % using the vmap () function

in Functorch? to ensure the second derivative of ¢(-) can be correctly backpropagated dufing stochastic gradient descent.
Similar a treatment can also be implemented with other auto-differentiation frameworks like Jax® that support computing

higher-order derivatives.

* Pre-training the encoder and decoders: As the final learning objective of TDM Egq. (8) involves several loss terms, we
observe that in small datasets, loss terms such as the reconstruction loss (Eq. (3)) for the encoder and decoders converges
much slower than other loss terms. When updating all the loss terms with the same number of training steps, some losses
suffer from over-fitting while others are still not fully converged. For these cases, we pre-train the encoder and decoders
with the reconstruction loss for a given number of training steps, and then use the complete learning objective of TDM
(Eq. (4)) for the rest of the training. The numbers of pre-training/training epochs for the experiments in this paper are
reported in Table 2.

As reported in Table 2, we find that the number of pre-training epochs required for TDM to reach the best learning
performance is associated with the specific task and the size of training data. For small datasets, TDM generally needs
more training and pre-training epochs to avoid overfitting the latent dynamics and T-symmetry losses. For MuJoCo
locomotion tasks, we recommend pre-training the encoder and decoders for 10% of the total training epoch. For the more
complex adroit tasks, TDM requires more epochs to extract the ODE dynamics and T-symmetry property of the system
dynamics. In this case, there is no pre-training necessary for the encoder and decoders.

Table 2: Training epochs of TDM for D4RL tasks with different dataset scales

Locomotion Tasks Adroit Tasks
S5k&10k 50k & 100k  Full dataset 5k&10k  Full dataset
Training epoch 2000 1000 200 2000 200
Pre-train epoch 200 100 20 0 0

* Enhancement on the T-symmetry regularization: We observe that in some small datasets (mainly in the Halfcheetah
environment), the training of the latent reverse dynamics model g might suffer from a certain level of degeneration. This
is reflected as the g(zs + f(2s, 24 ), 2a) produces similar values as — f(zs, 2, ), resulting in small T-symmetry consistency
loss values (Eq. (7)), however, the discrepancy between g(zs, z,) and — f(zs, z,) remains large. To solve this issue and
further enforce the T-symmetry, we apply the following enhanced T-symmetry regularization when such a phenomenon is
observed:

CBnhanced-T-sym (Zs; 2a) = | (25, 7a) + g(zs + [ (25, 2a), za)ll3 + £ (25, 2a) + 9(2s7, 2a) |13 (13)

We find that applying the above enhanced T-symmetry loss can successfully resolve the degeneration issue of the latent
reverse dynamics model and achieve good performance in the downstream offline RL tasks. However, we find in most small
datasets, the original T-symmetry consistency loss is sufficient. We advise only to use the above enhanced T-symmetry

2https://pytorch.org/functorch/stable/functorch.html
3https://github.com/google/jax
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Algorithm 1 T-Symmetry Regularized Offline RL (TSRL)

Require: Offline dataset D, encoder ¢, latent forward and reverse dynamics models f and g from TDM trained using objective Eq. (8).
1: Compute the T-symmetry consistency loss £7-sym (¢(s, a)) (Eq. (7)) for all samples in D, and set their T-quantile value as the
augmentation threshold h.
2: Initialize the policy network 7, critic networks () and their target network.
3: fort =1, .-, M training steps do
4:  Sample a mini-batch B of samples {(s, a,r,s’)} ~ D and compute their representations {(zs, za, 25/ ) }.
5:  //T-symmetry consistent latent space data augmentation
6:  Generate K perturbed samples by adding perturbations € ~ N (0,0.010_) on latent states zs of each sample in B, where o is
the std of latent states in data.
7:  Add augmented samples (25 + €, 24, 25 + €' ) to B if satisfies £7-sym (zs + €, za) < h.
8:  //Critic training with T-symmetry regularized representation
9:  Update the value function () based on the policy evaluation objective Eq. (9).
10:  // Policy training with T-symmetry regularized policy constraints
11:  Update the policy 7 based on the policy improvement objective Eq. (11).
12: Soft update the target networks.
13: end for

consistency loss when large discrepancies between || f(zs, za) + g(2zs + f(2s, 2a)s za)||3 and || f(2s, za) + 9(2s, za)||§
are observed.

Implementation details for TSRL. TSRL can be implemented based upon TD3 (Fujimoto et al., 2018), with the addition
of the proposed T-symmetry regularized representation and policy constraints as in Eq. (9) and (11), as well as the T-
symmetry consistent latent space data augmentation. In our experiments, we generate ' = 1 augmented samples for each
transition in the dataset, and filter based on the T-symmetry consistency loss. The pseudo-code of TSRL is summarized in
Algorithm 1.

Hyperparameter details. The architecture parameters of TDM and TSRL, as well as the TSRL hyperparameters are
summarized in Table 3. It should be noted that we use the same set of TSRL hyperparameters for all D4RL-MuJoCo
experiments in this paper without tuning. It is expected that fine-tuning the hyperparameters could potentially produce
much better results. But as off-policy evaluation in real-world scenarios can be rather difficult, which in most cases makes
offline hyperparameter fine-tuning infeasible, thus we choose to report all results under the same set of hyperparameters. We
find these hyperparameters already produce good performance on both small and large datasets of D4RL MuJoCo tasks.

B. Detailed Experiment Setups

Reduced-size dataset generation. To create reasonable reduced-size D4RL datasets for a fair comparison, we sub-sample
the trajectories in the datasets rather than directly sampling the (s, a, s’, r) transitions. For example, there are 2M (s, a, ', )
transitions in the "halfcheetah-medium-expert" dataset, we first split these records into 2,000 trajectories based on the done
condition, then randomly draw 10 trajectories (10k transition points) to serve as the reduced-size datasets for model training.

Experiment setups for representation learning evaluation. To evaluate the representation quality and the impact of each
design choice of TDM, we compare TDM representation with several baselines on the small dataset settings. We provide the
detailed description of the representation learning baselines as follows:

» “AE-rep” model: We construct a vanilla auto-encoder without any further constraints during the learning process, which
was trained by the reconstruction loss only. The network sizes of the encoder and decoders are the same as the ones used
in TDM.

o “AE-fwd-rep” model: Similar to the “AE-rep” model but with a latent forward dynamics prediction model f, which is
implemented as a 4-layer feed-forward neural network with ReLLU activation, and optimized using Adam optimizer (same
as TDM). The forward model was trained by minimizing the loss term |2, — f(4(s,a))||3, where we directly regress
f(@(s,a)) with the 25 derived from the latent states obtained from the encoder as Z2; = z, — z,. Note that in this baseline,
no ODE property nor T-symmetry regularization is included. Again we use the decoder to decode z; — s as in TDM for
the next state prediction.

e “TDM-no-ODE” model: Holds the same structure with TDM but trained with no ODE property. More specifically,
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Table 3: Hyperparameter details for TDM and TSRL

Hyperparameters Value
Optimizer type Adam
Weight of {1 _sym and £gs and £rec 1
TDM Weight of 4,5 and £.,q 0.1
Architecture Learning rate 3x1074
State normalization True
Hidden units of forward and reverse model 512
Hidden units of encoder 512 x 256 x 128
Critic neural network layer width 512
Actor neural network layer width 512
State normalization True
Actor learning rate 3x107*
Critic learning rate 3x107*
TSRL Policy noise 0.2
Architecture Policy noise clipping 0.5
Policy update frequency 2
Discount factor ~y 0.99
Number of iterations 10°
Target update rate 0.005
A L1 le-5
«@ 2.5

50% for Walker2d and Adroit tasks,

TSRL T 70% for HalfCheetah and Hopper2d
Hyperparameters A MuJoCo: 5 or 10 for full dataset, 100 or 200 for 10k dataset
! Adroit: 10,000 for both full and reduced datasets
Ao 1 for MuJoCo full & Adroit datasets

100 for MuJoCo 10k dataset

similar with “AE-fwd-rep”, the latent forward and reverse dynamics model was trained by ||Zs — f(#(s,a))||3 and
|(—2s) — g(¢(s’,a))||3, where —Z is directly calculated from the encoded latent states, i.e., Z; = 2, — z5. Note that in
this baseline, the T-symmetry is also implicitly captured, since both the latent forward and reverse dynamics models are
regressing the same Z, and its opposite value.

* “SimSiam” model: For the self-supervised representation learning baseline, we implement an auto-encoder structure
with the optimization objective proposed in the SimSiam paper (Chen & He, 2021). For detailed model description and
hyperparameters setting, please refer to Chen et al. (Chen & He, 2021).

Experiment setups for evaluating generalization performance. To evaluate TSRL’s generalization capability beyond
the offline datasets, we construct two low-speed datasets based on the original D4ARL Walker2d medium and medium-expert
datasets. In accordance with the Gym documentation, we selected the “x-coordinate velocity of the top” (8th dimension of
the states) in the walker environment to perform data filtering. We remove all samples with the x-coordinate velocity of the
top greater than 0.2 x max-x-velocity recorded in the data. This results in two smaller low-speed datasets (about 200k for
the medium dataset and 250k for the medium-expert dataset). We train TDM and TSRL on these low-speed datasets and the
results are reported in Figure 7 (main paper) and 8.

C. Additional Results

Complete results on D4RL Adroit tasks. The complete results of TSRL in Adroit human and cloned tasks with different
dataset scales are presented in Table 4. As shown in the results, TSRL achieves much better performance in the pen tasks,
both the full datasets and the reduced-size datasets.
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Table 4: Complete results on DARL Adroit tasks

Task Ratio  Size BC TD3+BC  MOPO CQL IQL TSRL

Pen-human 1 5k 34.4 8.4 9.7 37.5 71.5 80.1+18.1

Hammer-human 1 S5k 1.5 2.0 0.2 4.4 1.4 02+ 0.3

door-human 1 5k 0.5 0.5 -0.2 9.9 4.3 0.5+ 0.3

Relocate-human 1 5k 0.0 -0.3 -0.2 0.2 0.1 0.1 £0.1
Pen-cloned 1 500k 56.9 41.5 0.1 39.2 37.3 64.9 + 20.1
en-clone 1/50 10k 3744376 01469 01401 15448 356+305 d41.6+27.5
Hammer-cloned 1 500k 0.8 0.8 0.2 2.1 2.1 17419
ammer-cione 1/50 10k 03404 02401 01401 02401 04402 0.6+0.3
Doorcloned 1 500k 0.1 0.4 0.1 0.4 1.6 0.14+06
1/50 10k -0.1+01 -034+01 02401 -03+01 15+08 -0.1+03

1 500k 0.1 0.3 0.3 0.1 0.2 02+0.1

Relocate-cloned /5 “jo0" 02401 03401 03401 -03+01 -01+05 -02+01

Table 5: Results on D4RL Antmaze-umaze tasks with full and reduced-size datasets

Task Ratio  Size BC TD3+BC CQL IQL TSRL(ours)
Antmaze-u 1 IM 54.6 78.6 84.8 85.5 81.4+19.2
17100 10k  44.7 +£42.1 0712 0.1£00 651£194 76.1+15.6

1 ™M 45.6 71.4 43.4 66.7 76.5 + 29.7

Antmaze-u-d 600 ok 2414222 16274164 05+0.1 346+ 185 5224221

8 Walker2d-medium-expert-v2 Distribution of x-velocity in policy rollouts
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Figure 8: Comparison of TSRL and baselines trained on the Walker2d-medium-expert dataset that removing all samples with x-velocity
of the top> 0.2x max-x-velocity recorded in the data. Left: learning curves. Right: x-velocity distribution of policy evaluation rollouts
during the last 10k training steps.

Additional results on Antmaze-umaze tasks. We also conduct experiments on the D4RL Antmaze-umaze tasks with
full and reduced-size 10k datasets. The results are presented in Table 5. We use the same hyperparameters as in the D4RL
MulJoCo tasks. Again, we find that TSRL achieves comparable performance as other baselines on the full datasets, but is
substantially better under small datasets.

Additional results on the generalization performance. Due to the limited space of the main paper, we provide the
additional experiment results on the low-speed Walker2d-medium-expert dataset in Figure 8. Similar to the results on the
low-speed Walker2d-medium dataset (Figure 7 in the main paper), we find that the policy learned by TSRL effectively
generalizes to novel high-speed behaviors that are not present in the offline data but can achieve high returns.
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In both low-speed Walker2d medium and medium-expert datasets, a large proportion of transitions in the high-speed regime
are removed. Under this setting, we find that all existing offline RL baselines fail to achieve reasonable performance, due to
their over-conservative regularization on the offline dataset. CQL performs especially poorly in both tasks, perhaps due
to over-conservative value function learning that impedes the policy to acquire some necessary control strategy to finish
the task. TD3+BC performs poorly in the low-speed medium dataset, probably because this dataset has a narrower data
distribution than the medium-expert dataset, and the latter could still contain some samples with reasonable speeds after
filtering with x-velocity> 0.2 x max-x-velocity in the dataset. IQL exhibits some level of generalization capability but is still
much weaker as compared to TSRL. By comparison, we observe that the policy rollout distribution generated by TSRL
policies can substantially deviate from the training data distribution while also achieving very good performance.

Ablation on the level of ODE and T-symmetry regularization in TDM. As discussed in the conclusion section of
the main paper, TDM adds extra ODE dynamics and symmetry regularizations, which are beneficial to improve model
generalization, but will lose some model expressiveness if the regularization is too strong. In this section, we conduct an
ablation study on the impact of the regularization strength of the ODE property and T-symmetry satisfaction. Specifically,
we vary the loss weights of {74, {5 and f7_ gy, in the TDM learning objective (Eq. (8)), and train a loosely regularized
and a strongly regularized TDM model on the 10k datasets (see Table 6). The loosely regularized model has the maximum
reconstruction expressivity but may not produce a well-behaved representation due to weak regularization. Whereas the
strongly regularized model sacrifices the expressivity for regularized behaviors. We further evaluate their performance with
TSRL, with the results reported in Table 7. The experiment results demonstrated that an overly expressive model could not
help the RL algorithm to derive a well-behaved policy with limited data due to potential overfitting and inconsistency with
the T-symmetry property. On the other hand, an overly regularized model may also hurt performance. This is consistent
with our previous insight that a trade-off exists between model expressiveness and T-symmetry agreement. A proper balance
between these two behaviors can be necessary for small-sample learning.

Table 6: TDM with different regularization strengths

Different versions of TDM V...  {lgs  Lljwa  lros Lr—sym ALl
Loosely regularized 1 1 0.01 0.01 0.01 le-5
Paper 1 1 0.1 0.1 0.1 le-5
Strongly regularized 1 1 1 1 1 le-5

Table 7: Performance of TSRL with different TDM models on 10k datasets

Task TDM (loosely regularized) TDM (paper) TDM (strongly regularized)
Hopper-m 50.7+13.6 62.0+3.7 43.6+14.3
Hopper-m-r 15.4+9.7 21.8+8.2 15.6+£9.8
Hopper-m-e 49.7£17.1 50.9+8.6 30.94+20.5
Halfcheetah-m 39.1+3.6 38.4£3.1 36.6£30.0
Halfcheetah-m-r 28.3+6.9 28.14£3.5 22.948.4
Halfcheetah-m-e 36.2+5.4 39.9+21.1 31.0+£34
Walker2d-m 43.2+27.3 49.71+10.6 35.6£26.2
Walker2d-m-r 20.24+18.1 26.0+11.3 21.746.1
Walker2d-m-e 25.9420.7 46.4+174 29.4424.7

Learning curves for TSRL. The learning curves for reduced-size D4RL-MuJoCo datasets with 10k samples are showed
in Figure 9. The policies are evaluated with 5 episodes over 3 random seeds.
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Figure 9: Learning curves for reduced-size DARL MuJoCo datasets. Error bars indicate min and max over 5 seeds.



